0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IMC101TF048XUMA1

IMC101TF048XUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LQFP48

  • 描述:

    PMSM/BLDC MOTOR CONTROLLER

  • 数据手册
  • 价格&库存
IMC101TF048XUMA1 数据手册
IMC099T/IMC101T/IMC102T iMOTION™ IMC100 High performance motor control IC series IMC100 Quality Requirement Category: Industry Feature list • • • • • • • • • • • Motion Control Engine (MCE) as ready-to-use solution for variable speed drives Field oriented control (FOC) for permanent magnet synchronous motor (PMSM) Space vector PWM with sinusoidal commutation and integrated protection features Current sensing via single or leg shunt Sensorless operation Optional support for hall sensors (analog or digital) Optional boost or totem pole PFC control integrated Flexible host interface options for motor control commands: UART, PWM or analog input signal Support for IEC/UL 60335 (‘Class B’) Integrated scripting engine for application flexibility Multiple package options Applications • • • • Refrigerators Home appliances Pumps, fans ...any other PMSM drive Ordering Information Product Type Application Package IMC099T-T038 single motor, no scripting, no class B TSSOP-38 IMC101T-T038 single motor TSSOP-38 IMC101T-Q048 QFN-48 IMC101T-F048 LQFP-48 IMC101T-F064 LQFP-64 IMC102T-F048 IMC102T-F064 Datasheet www.infineon.com single motor + PFC (boost, totem pole) LQFP-48 LQFP-64 Please read the Important Notice and Warnings at the end of this document 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Description Description iMOTION™ IMC100 is a family of highly integrated ICs for the control of variable speed drives. By integrating both the required hardware and software to perform control of a permanent magnet synchronous motor (PMSM) they provide the shortest time to market for any motor system at the lowest system and development cost. The integrated script engine allows to add application flexibility without interfering with the motor and PFC control algorithm. Power Factor Correction boost/ totem pole Power Supply Gate Driver 3-Phase Inverter UART iMOTION™ analog IMC100 Status LED Temp Sense Datasheet M Position Current Sensing single / leg shunt Position Sensing sensorless / hall 2 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Table of contents Table of contents Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 About this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 Block Diagram Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.2 2.3 2.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Configuration IMC099T/ IMC101T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration Drawing IMC099T/ IMC101T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Configuration IMC102T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Pin Configuration Drawing IMC102T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 3.1 3.2 3.3 3.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Application schematic motor control single shunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Application schematic motor control leg shunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Application schematic motor control plus boost PFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Application schematic motor control plus totem pole PFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.5 4.5.1 Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Power-Up and Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Motor Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 PWM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Fault Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Power Factor Correction (PFC) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Boost PFC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Datasheet 3 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series About this document 4.5.2 4.5.3 4.5.4 4.6 4.6.1 4.6.1.1 4.6.2 4.6.3 4.6.4 4.6.5 4.6.6 4.6.7 4.7 Totem Pole PFC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 PFC Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 PFC Fault Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Control Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Serial Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Analog Speed Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Frequency Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Duty Cycle Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Over Temperature Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 LED Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Quality declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.3 5.4 Device and Package specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46 SBSL and Chip-IDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Package Outline PG-TSSOP-38-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47 Package Outline PG-VQFN-48-73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Package Outline PG-LQFP-48-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 Package Outline PG-LQFP-64-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51 Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 About this document Scope and purpose This Datasheet describes the mechanical, electrical and functional characteristics of the iMOTION™ IMC100 series of motor control ICs. If no specific device is given the characteristics are valid for all devices within the iMOTION™ IMC100 series. For a detailed description of the functionality and configuration options please refer to the reference manual of the Motion Control Engine. Intended audience The Datasheet is targeting developers implementing a variable speed drive. Datasheet 4 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Block Diagram Reference 1 Block Diagram Reference The block diagram below gives an overview on the available functional units in the iMOTION™ IMC100 family. Not all units are required in all applications and some modules might share pins in smaller packages. Please refer to the pin configuration for the individual packages and the application schematic examples given. Motion Control Engine Motor Control Interface Parameter Table Calculation Engine FOC Block Totem-Pole PFC Angle Estimator Boost PFC Parameter Selection Interrupt Controller Motion Control Sequencer Space Vector PWM Control Interface Safety Monitor Fault Handling Current Sense Logic Script Engine Program RAM Task0 Task1 Data RAM UART PROG Flash Memory UART COM Enable/ Disable Digital filter OR Enable/ Disable Comparator Programmable Gain 12bit A/D & MUX Programmable Gain DAC Reference Voltage Temperature sensing GPIO PORT Clock monitoring optional 96 MHz Oscillator 32 kHz Oscillator Oscillator Watchdog Watchdog Timer RESET Voltage supervision 3.3V – 5.0V Figure 1 Datasheet Analog Comparator Hall digital analog Encoder EVR Block diagram 5 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2 Pin Configuration The following tables give the pin configurations of the individual devices of the IMC100 series in the available packages. The pin type is specified as follows: • I - digital input • O - digital output • AIN - analog input The pin function given below refers to the standard software configuration. Different software might configure pins differently. Some of the input pins can be configured to have pull up or pull down resistor and some output pins can be configured to push-pull or open drain. This is described in the reference manual of the respective software. Pins can serve multiple functions and have to be configured accordingly. Please also refer to the respective pin configuration drawings in this data sheet and the description in the MCE software manual. Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Note: All required reference voltages are generated by an internal DAC, therefor the pins like REFU, REFV, REFW and PFCREF only require a blocking capacitor. 2.1 Note: Pin Configuration IMC099T/ IMC101T IMC099T-T038 does not support scripting. Therefore the scripting pins given below for the TSSOP-38 package only apply to the IMC101T-T038. Table 1 Signal Pin list Type LQFP-64 VQFN-48 LQFP-48 TSSOP-38 Description VDD Power 2, 24, 25, 18, 19, 35, 50 27, 38 21, 28, 38 10, 26 Supply Voltage VSS Power 1, 23, 49 17, 37 20, 37 9, 25 Ground PWMUL O 29 21 22 11 PWM output phase U low side PWMUH O 30 22 23 12 PWM output phase U high side PWMVL O 31 23 24 13 PWM output phase V low side PWMVH O 32 24 25 14 PWM output phase V high side PWMWL O 33 25 26 15 PWM output phase W low side PWMWH O 34 26 27 16 PWM output phase W high side GK I 36 28 29 18 Motor gate kill input VDC AIN 14 8 11 2 DC bus sensing input ISS/IU AIN 18 12 15 6 Current sense input single shunt / phase U IV AIN 15 9 12 3 Current sense input phase V / analog input Supply Motor control Datasheet 6 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration Table 1 Pin list (continued) Signal Type LQFP-64 VQFN-48 LQFP-48 TSSOP-38 Description IW AIN 11 5 8 37 Current sense input phase W / analog input REFU AIN 17 11 14 5 Itrip phase U reference / analog input REFV AIN 16 10 13 4 Itrip phase V reference / analog input REFW AIN 10 4 7 36 Itrip phase W reference / analog input Hall sensor inputs AHALL1+ AIN 10 4 7 36 Analog hall 1 positive input AHALL1- AIN 11 5 8 37 Analog hall 1 negative input AHALL2+ AIN 16 10 13 4 Analog hall 2 positive input AHALL2- AIN 15 9 12 3 Analog hall 2 negative input HALL1 I 26 44 47 1 Digital hall input 1 HALL2 I 27 45 48 38 Digital hall input 2 HALL3 I 28 46 1 8 Digital hall input 3 DIR I 52 40 40 28 Direction input DUTYFREQ1) I 55 43 43 31 Duty/Frequency input VSP AIN 9 3 6 35 Analog speed reference input PGOUT O 42 30 34 21 Pulse output PARAM AIN 20 14 17 8 Parameter table selection, analog PAR0 I 3 33 2 22 Parameter page select 0 PAR1 I 4 34 3 23 Parameter page select 1 PAR2 I 5 35 4 24 Parameter page select 2 PAR3 I 6 36 5 27 Parameter page select 3 NTC AIN 13 7 10 7 External thermistor input LED O 41 29 35 17 Status LED Interface Communication RX0 I 57 45 45 33 Serial port 0, device programming, receive input TX0 O 58 46 46 34 Serial port 0, device programming, transmit output RX1 I 63 47 30 20 Serial port 1, user communication, receive input TX1 O 64 48 31 19 Serial port 1, user communication, transmit output AIN 9 3 6 35 Analog input 0 Scripting AIN0 1 Function not available when used with Hall sensor mode (i.e. AHALL1+/- and AHALL2+/- or HALL1/2/3 are used) Datasheet 7 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration Table 1 Pin list (continued) Signal Type LQFP-64 VQFN-48 LQFP-48 TSSOP-38 Description AIN1 AIN 10 4 7 36 Analog input 1 AIN2 AIN 11 5 8 37 Analog input 2 AIN3 AIN 12 6 9 38 Analog input 3 AIN4 AIN 13 7 10 1 Analog input 4 AIN7 AIN 16 10 13 4 Analog input 7 AIN8 AIN 17 11 14 5 Analog input 8 AIN10 AIN 19 13 16 7 Analog input 5 AIN11 AIN 20 14 17 8 Analog input 6 GPIO2 IO 3 33 2 22 Digital input/output 2 GPIO3 IO 4 34 3 23 Digital input/output 3 GPIO4 IO 5 35 4 24 Digital input/output 4 GPIO5 IO 6 36 5 27 Digital input/output 5 GPIO6 IO 52 40 40 28 Digital input/output 6 GPIO7 IO 7 1 1 29 Digital input/output 7 GPIO8 IO 8 2 32 30 Digital input/output 8 GPIO9 IO 26 20 33 32 Digital input/output 9 GPIO10 IO 27 31 36 Digital input/output 10 GPIO11 IO 28 32 39 Digital input/output 11 GPIO12 IO 37 39 41 Digital input/output 12 GPIO13 IO 38 41 42 Digital input/output 13 GPIO14 IO 39 42 44 Digital input/output 14 GPIO15 IO 40 44 47 Digital input/output 15 GPIO16 IO 43 15 48 Digital input/output 16 GPIO17 IO 44 16 18 Digital input/output 17 GPIO18 IO 45 19 Digital input/output 18 GPIO19 IO 46 Digital input/output 19 GPIO20 IO 47 Digital input/output 20 GPIO21 IO 48 Digital input/output 21 GPIO22 IO 51 Digital input/output 22 GPIO23 IO 53 Digital input/output 23 GPIO24 IO 54 Digital input/output 24 GPIO25 IO 56 Digital input/output 25 GPIO26 IO 59 Digital input/output 26 GPIO27 IO 60 Digital input/output 27 GPIO28 IO 61 Digital input/output 28 GPIO29 IO 62 Digital input/output 29 Datasheet 8 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2.2 Pin Configuration Drawing IMC099T/ IMC101T The following drawings give the position of the functional pins for the available packages. Note: Figure 2 IMC099T-T038 does not support scripting. Therefore the scripting pins given in the drawing below for the TSSOP-38 package only apply to the IMC101T-T038. HALL1/AIN4 1 38 HALL2/AIN3 VDC 2 37 IW/AHALL1-/AIN2 IV/AHALL2- 3 36 REFW/AHALL1+/AIN1 REFV/AHALL2+/AIN7 4 35 VSP/AIN0 REFU/AIN8 5 34 TX0 ISS/IU 6 33 RX0 NTC/AIN10 7 32 GPIO9 PARAM/HALL3/AIN11 8 31 DUTYFREQ 1) VSS 9 30 GPIO8 VDD 10 29 GPIO7 PWMUL 11 28 DIR/GPIO6 PWMUH 12 27 PAR3/GPIO5 PWMVL 13 26 VDD PWMVH 14 25 VSS PWMWL 15 24 PAR2/GPIO4 PWMWH 16 23 PAR1/GPIO3 LED 17 22 PAR0/GPIO2 GK 18 21 PGOUT TX1 19 20 RX1 Top View IMC101T T038 IMC099T-T038, IMC101T-T038 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 9 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series HALL3/TX0 HALL2/RX0 HALL1/GPIO15 DUTYFREQ 1) GPIO14 GPIO13 DIR/GPIO6 GPIO12 VDD VSS 46 45 44 43 42 41 40 39 38 37 PAR2/GPIO4 3 34 PAR1/GPIO3 REFW/AHALL1+/AIN1 4 33 PAR0/GPIO2 IW/AHALL1-/AIN2 5 32 GPIO11 AIN3 6 31 GPIO10 NTC/AIN4 7 30 PGOUT VDC 8 29 LED IV/AHALL2- 9 28 GK REFV/AHALL2+/AIN7 10 27 VDD REFU/AIN8 11 26 PWMWH ISS/IU 12 25 PWMWL Figure 3 16 17 18 19 20 21 22 23 24 VSS VDD VDD GPIO9 PWMUL PWMUH PWMVL PWMVH IMC101T Q048 GPIO17 VSP/AIN0 RX1 35 Top View 15 2 47 PAR3/GPIO5 GPIO16 GPIO8 TX1 36 14 1 13 GPIO7 48 Pin Configuration IMC101T-Q048 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 10 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series TX0 RX0 GPIO14 DUTYFREQ 1) GPIO13 GPIO12 DIR/GPIO6 GPIO11 VDD VSS 46 45 44 43 42 41 40 39 38 37 LED 3 34 PGOUT PAR2/GPIO4 4 33 GPIO9 PAR3/GPIO5 5 32 GPIO8 VSP/AIN0 6 31 TX1 REFW/AHALL1+/AIN1 7 30 RX1 IW/AHALL1-/AIN2 8 29 GK AIN3 9 28 VDD NTC/AIN4 10 27 PWMWH VDC 11 26 PWMWL IV/AHALL2- 12 25 PWMVH 15 16 17 18 19 20 21 22 23 24 IU/ISS AIN10 PARAM/AIN11 GPIO17 GPIO18 VSS VDD PWMUL PWMUH PWMVL IMC101T F048 14 PAR1/GPIO3 HALL1/GPIO15 35 Top View REFU/AIN8 2 13 PAR0/GPIO2 47 GPIO10 REFV/AHALL2+/AIN7 1 HALL2/GPIO16 36 Figure 4 HALL3/GPIO7 48 Pin Configuration IMC101T-F048 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 11 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series VSS 1 VDD 2 PAR0/GPIO2 3 PAR1/GPIO3 TX1 RX1 GPIO29 GPIO28 GPIO27 GPIO26 TX0 RX0 GPIO25 DUTYFREQ 1) GPIO24 GPIO23 DIR/GPIO6 GPIO22 VDD VSS 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pin Configuration 48 GPIO21 47 GPIO20 46 GPIO19 4 45 GPIO18 PAR2/GPIO4 5 44 GPIO17 PAR3/GPIO5 6 43 GPIO16 GPIO7 7 42 PGOUT GPIO8 8 41 LED VSP/AIN0 9 40 GPIO15 REFW/AHALL1+/AIN1 10 39 GPIO14 IW/AHALL1-/AIN2 11 38 GPIO13 AIN3 12 37 GPIO12 NTC/AIN4 13 36 GK VDC 14 35 VDD IV/AHALL2- 15 34 PWMWH REFV/AHALL2+/AIN7 16 33 PWMWL Figure 5 Top View 25 26 27 28 29 30 31 32 HALL1/GPIO9 HALL2/GPIO10 HALL3/GPIO11 PWMUL PWMUH PWMVL PWMVH 22 - VDD 21 - 24 20 PARAM/AIN11 VDD 19 AIN10 23 18 ISS/IU VSS 17 REFU/AIN8 IMC101T F064 IMC101T-F064 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 12 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2.3 Pin Configuration IMC102T Table 2 Pin list Motion Control Engine Signal Type LQFP-64 LQFP-48 Description VDD Power 2, 24, 25, 35, 50 21, 28, 38 Supply Voltage VSS Power 1, 23, 49 20, 37 Ground PWMUL O 29 22 PWM output phase U low side PWMUH O 30 23 PWM output phase U high side PWMVL O 31 24 PWM output phase V low side PWMVH O 32 25 PWM output phase V high side PWMWL O 33 26 PWM output phase W low side PWMWH O 34 27 PWM output phase W high side GK I 36 29 Motor gate kill input VDC AIN 14 11 DC bus sensing input ISS/IU AIN 18 15 Current sense input single shunt / phase U IV AIN 15 12 Current sense input phase V / analog input IW AIN 11 8 Current sense input phase W / analog input REFU AIN 17 14 Itrip phase U reference / analog input REFV AIN 16 13 Itrip phase V reference / analog input REFW AIN 10 7 Itrip phase W reference / analog input AHALL1+ AIN 10 7 Analog hall 1 positive input AHALL1- AIN 11 8 Analog hall 1 negative input AHALL2+ AIN 16 13 Analog hall 2 positive input AHALL2- AIN 15 12 Analog hall 2 negative input HALL1 I 26 47 Digital hall input 1 HALL2 I 27 48 Digital hall input 2 HALL3 I 28 1 Digital hall input 3 Supply Motor control Hall sensor inputs Power factor correction PFCG0 O 44 33 PFC gate drive 0 PFCG1 O 43 32 PFC gate drive 1 (totem pole only - high side switch) PFCI AIN 12 9 PFC current sensing PFCREF AIN 21 18 Itrip PFC reference input PFCITRIP AIN 22 19 Itrip PFC input VAC1 AIN 20 17 VAC sense input line 1 Datasheet 13 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration Table 2 Pin list Motion Control Engine (continued) Signal Type LQFP-64 LQFP-48 Description VAC2 AIN 19 16 VAC sense input line 2 DIR I 52 40 Direction input DUTYFREQ2) I 55 43 Duty/Frequency input VSP AIN 9 6 Analog speed reference input PGOUT O 42 34 Pulse output PAR0 I 3 2 Parameter page select 0 PAR1 I 4 3 Parameter page select 1 PAR2 I 5 4 Parameter page select 2 PAR3 I 6 5 Parameter page select 3 NTC AIN 13 10 External thermistor input LED O 41 35 Status LED RX0 I 57 45 Serial port 0, device programming, receive input TX0 O 58 46 Serial port 0, device programming, transmit output RX1 I 63 30 Serial port 1, user communication, receive input TX1 O 64 31 Serial port 1, user communication, transmit output AIN0 AIN 9 6 Analog input 0 AIN1 AIN 10 7 Analog input 1 AIN2 AIN 11 8 Analog input 2 AIN4 AIN 13 10 Analog input 4 AIN7 AIN 16 13 Analog input 7 AIN8 AIN 17 14 Analog input 8 GPIO2 IO 3 2 Digital input/output 2 GPIO3 IO 4 3 Digital input/output 3 GPIO4 IO 5 4 Digital input/output 4 GPIO5 IO 6 5 Digital input/output 5 GPIO6 IO 52 - Digital input/output 6 GPIO7 IO 7 1 Digital input/output 7 GPIO8 IO 8 - Digital input/output 8 GPIO9 IO 26 - Digital input/output 9 GPIO10 IO 27 36 Digital input/output 10 GPIO11 IO 28 39 Digital input/output 11 Interface Communication Scripting pins 2 Function not available when used with Hall sensor mode (i.e. AHALL1+/- and AHALL2+/- or HALL1/2/3 are used) Datasheet 14 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration Table 2 Pin list Motion Control Engine (continued) Signal Type LQFP-64 LQFP-48 Description GPIO12 IO 37 41 Digital input/output 12 GPIO13 IO 38 42 Digital input/output 13 GPIO14 IO 39 44 Digital input/output 14 GPIO15 IO 40 47 Digital input/output 15 GPIO18 IO 45 48 Digital input/output 18 GPIO19 IO 46 Digital input/output 19 GPIO20 IO 47 Digital input/output 20 GPIO21 IO 48 Digital input/output 21 GPIO22 IO 51 Digital input/output 22 GPIO23 IO 53 Digital input/output 23 GPIO24 IO 54 Digital input/output 24 GPIO25 IO 56 Digital input/output 25 GPIO26 IO 59 Digital input/output 26 GPIO27 IO 60 Digital input/output 27 GPIO28 IO 61 Digital input/output 28 GPIO29 IO 62 Digital input/output 29 Datasheet 15 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2.4 Pin Configuration Drawing IMC102T TX0 RX0 GPIO14 DUTYFREQ 2) GPIO13 GPIO12 DIR/GPIO6 GPIO11 VDD VSS 46 45 44 43 42 41 40 39 38 37 LED 3 34 PGOUT PAR2/GPIO4 4 33 PFCG0 PAR3/GPIO5 5 32 PFCG1 VSP/AIN0 6 31 TX1 REFW/AHALL1+/AIN1 7 30 RX1 IW/AHALL1-/AIN2 8 29 GK PFCI 9 28 VDD NTC/AIN4 10 27 PWMWH VDC 11 26 PWMWL IV/AHALL2- 12 25 PWMVH 17 18 19 20 21 22 23 24 PFCREF PFCITRIP VSS VDD PWMUL PWMUH PWMVL 16 VAC2 VAC1 15 ISS/IU IMC102T F048 14 PAR1/GPIO3 HALL1/GPIO15 35 Top View REFU/AIN8 2 13 PAR0/GPIO2 47 GPIO10 REFV/AHALL2+/AIN7 1 HALL2/GPIO16 36 Figure 6 HALL3/GPIO7 48 The following drawings give the position of the functional pins for the available packages. IMC102T-F048 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 16 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series GPIO28 GPIO27 GPIO26 TX0 RX0 GPIO25 DUTYFREQ 2) GPIO24 GPIO23 DIR/GPIO6 GPIO22 VDD VSS 61 60 59 58 57 56 55 54 53 52 51 50 49 GPIO19 4 45 GPIO18 PAR2/GPIO4 5 44 PFCG0 PAR3/GPIO5 6 43 PFCG1 GPIO7 7 42 PGOUT GPIO8 8 41 LED VSP/AIN0 9 40 GPIO15 REFW/AHALL1+/AIN1 10 39 GPIO14 IW/AHALL1-/AIN2 11 38 GPIO13 PFCI 12 37 GPIO12 NTC/AIN4 13 36 GK VDC 14 35 VDD IV/AHALL2- 15 34 PWMWH REFV/AHALL2+/AIN7 16 33 PWMWL 20 21 22 23 24 25 26 27 28 29 30 31 32 VAC1 PFCREF PFCITRIP VSS VDD VDD HALL1/GPIO9 HALL2/GPIO10 HALL3/GPIO11 PWMUL PWMUH PWMVL PWMVH IMC102T F064 19 PAR1/GPIO3 GPIO29 46 VAC2 3 62 GPIO20 18 PAR0/GPIO2 RXD1 47 Top View ISS/IU 2 17 VDD 63 GPIO21 REFU/AIN8 1 TXD1 48 Figure 7 VSS 64 Pin Configuration IMC102T-F064 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 17 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Functional description 3 Functional description iMOTION™ IMC100 is a series of highly integrated ICs for the control of a Permanent Magnet Synchronous Motor (PMSM). IMC101 devices provide control of a single motor while the IMC102 devices control the motor and additionally a boost or totem pole power factor correction (PFC). The IMC100 series is based on Infineon’s Motion Control Engine (MCE) and integrate all hardware and software functions required to implement a closed loop sensorless or optionally sensor based control algorithm for permanent magnet motors. IMC100 devices do not require any software programming and can be configured for a wide range of motor control inverters. The IMC100 series takes advantage of a new hardware platform that is based on a comprehensive set of innovative analog and motor control peripherals. The high level of integration both in terms of hardware modules and software algorithms results in a minimum number of external components required for the implementation of the inverter control. Infineon’s patented and field proven Motion Control Engine (MCE) implements field oriented control (FOC) using single or leg shunt current feedback and uses space vector pulse width modulation (PWM) with sinusoidal signals to achieve highest energy efficiency. In addition to the motor control algorithm it also integrates multiple configurable protection features like over- and under-voltage, over current, rotor lock etc. to protect both the power stage as well as the motor during application tuning or in case of malfunction. The second generation of the MCE further improves the performance of the sensorless control algorithm and adds functionality like optional sensor support for applications that require accurate rotor positioning, two types of ready-to-use PFC algorithms as well as more and flexible and faster host interface options. The IMC100 series is offered in several device and package variants for applications from single motor control to motor control plus PFC. All devices can be used in applications requiring functional safety according to IEC 60335 (‘Class B’). There are multiple versions of the MCE software offered by Infineon and made available for download from the Infineon web site. By using a special secure boot loader algorithm in combination with type specific chip IDs it is assured that these MCE software versions can only be installed onto the matching hardware derivatives, i.e. IMC100 variants for which the software has been tested and released for. Infineon as well as third parties provides tools to program these software images. For details please refer to the iMOTION™ programming manual. The MCE integrates a script engine providing additional flexibility. The script engine can make use of analog and digital IOs for reading sensors or driving signals. The respective IOs are given in the pin lists referencing the name in the script to the physical pin of the package. This data sheet provides all electrical, mechanical, thermal and quality parameters. A detailed description of the features, functionality and configuration of the Motion Control Engine (MCE) including scripting can be found in the respective reference manual of the MCE. The application schematics in the following chapters show some examples of different use cases for the IMC100 devices. The combination of the different configuration options like leg vs. single shunt, sensorless or sensored operation, boost or totem pole PFC etc. is not limited to the examples shown here but can be chosen according to the individual application requirements. Datasheet 18 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Functional description 3.1 Application schematic motor control single shunt Figure 8 gives the schematic diagram for a motor control system using the IMC101 in sensorless operation and single shunt mode. As an option analog hall elements can be used to improve low speed performance. ~ VDD PAR0/GPIO2 Motor Parameter Selection/ Programmable IO 4 digital analog 3.3V – 5.0V PWMUH PAR1/GPIO3 PAR2/GPIO4 PWMUL PAR3/GPIO5 PWMVH 6 PWMVL PARAM/HALL3/AIN11 (TSSOP38) or PARAM/AIN11 (LQFP48, QFN48, LQFP64) PWMWH PWMWL VDC DUTYFREQ Preconfigured/ Programmable IO Host Interface SW Update Host Interface UART DIR/GPIO6 GK PGOUT LED VDD GPIO7,8,9 AIN3 REFU/AIN8 RX0 TX0 NTC/AIN10 (TSSOP38) or NTC/AIN4(QFN48,LQFP48,LQFP64) RX1 Programmable Analog Input IFX High Voltage Gate Drive IC Temperature sensing ISS/IU TX1 REFW/AHALL1+/AIN1 IW/AHALL1-/AIN2 REFV/AHALL2+/AIN7 IV/AHALL2- Motor Analog Hall Element (optional) VSS Figure 8 Datasheet IMC101 in single shunt configuration 19 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Functional description 3.2 Application schematic motor control leg shunt Figure 9 gives the schematic diagram for a motor control system using the IMC101 in sensorless operation and leg shunt mode. An NTC can be used for temperature sensing at the power stage. ~ VDD PAR0/GPIO2 Motor Parameter Selection/ Programmable IO 4 digital analog 3.3V – 5.0V PWMUH PAR1/GPIO3 PAR2/GPIO4 PWMUL PAR3/GPIO5 PWMVH 6 PWMVL PARAM//HALL3/AIN11 (TSSOP38) or PARAM/AIN11 (LQFP48,LQFP64,QFN48) PWMWH PWMWL VSP/AIN0 Preconfigured/ Programmable IO VDC DUTYFREQ DIR/GPIO6 VDD GK PGOUT LED GPIO7,8,9 Host Interface SW Update Host Interface UART VDD IFX High Voltage Gate Drive IC NTC/AIN10 (TSSOP38) or NTC/AIN4(QFN48,LQFP48,LQFP64) ISS/IU RX0 TX0 REFU/AIN8 VDD Temperature sensing IV RX1 REFV/AHALL3+/AIN7 TX1 VDD IW REFW/AHALL3-/AIN1 AIN3 (LQFP48,LQFP64,QFN48)or HALL2/AIN3 (TSSOP38) REFW/AHALL1+/AIN1 IW/AHALL1-/AIN2 VSS Figure 9 Datasheet Programmable Analog Input Motor VSP/AIN0 IMC101 in leg shunt configuration 20 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Functional description 3.3 Application schematic motor control plus boost PFC Figure 10 gives the schematic diagram for a motor control system with boost PFC using the IMC102 in sensorless operation and single shunt mode. An NTC can be used for temperature sensing at the power stage. ~ VDD Motor Parameter Selection/ Programmable IO PAR0/GPIO2 4 digital 3.3V – 5.0V PFCG0 PAR1/GPIO3 PAR2/GPIO4 PWMUH PAR3/GPIO5 PWMUL 6 PWMVH PWMVL DUTYFREQ PWMWH DIR/GPIO6 Preconfigured/ Programmable IO PWMWL HALL1/GPIO9 HALL2/GPIO10 GK HALL3/GPIO11 VDD PGOUT VDC LED GPIO7,8,12,13,14,15,18,19, 20,21,22,23,24,25,26,27,28,29 Host Interface SW Update Host Interface UART Gate Driver VDD PFCI PFCREF 3 phase Gate Driver VDD RX0 TX0 ISS/IU VDD REFU/AIN8 RX1 TX1 NTC/AIN4 Temperature sensing VAC1 VAC2 Motor REFV/AHALL2+/AIN7 REFW/AHALL1+/AIN1 IW/AHALL1-/AIN2 VSP/AIN0 VSS Figure 10 Datasheet Programmable Analog Input IMC102 in single shunt configuration with boost PFC control 21 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Functional description 3.4 Application schematic motor control plus totem pole PFC Figure 11 gives the schematic diagram for a motor control system with totem pole PFC using the IMC102 in sensorless operation and single shunt mode. ~ VDD Motor Parameter Selection/ Programmable IO PAR0/GPIO2 4 digital 2 PFCG0 3.3V – 5.0V PFCG1 PAR1/GPIO3 PAR2/GPIO4 PWMUH PAR3/GPIO5 PWMUL 6 PWMVH PWMVL DUTYFREQ PWMWH DIR/GPIO6 Preconfigured/ Programmable IO PWMWL HALL1/GPIO9 HALL2/GPIO10 GK HALL3/GPIO11 VDD PGOUT VDC LED GPIO7,8,12,13,14,15,18,19, 20,21,22,23,24,25,26,27,28,29 PFCI VDD VDD 3 phase Gate Driver PFCREF Host Interface SW Update Host Interface UART Gate Driver RX0 TX0 ISS/IU VDD REFU RX1 TX1 NTC/AIN4 Temperature sensing VAC1 VAC2 Motor REFV/AHALL2+/AIN7 REFW/AHALL1+1/AIN1 IW/AHALL1-/AIN2 VSS Figure 11 Datasheet VSP/AIN0 Programmable Analog Input IMC102 in single shunt configuration with totem pole PFC 22 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4 Electrical characteristics and parameters 4.1 General Parameters 4.1.1 Parameter Interpretation The parameters listed in this section represent partly the characteristics of the IMC100 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • CC Such parameters indicate Controller Characteristics, which are distinctive feature of the IMC100 and must be regarded for a system design. • SR Such parameters indicate System Requirements, which must be provided by the application system in which the IMC100 is designed in. 4.1.2 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 3 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Ambient temperature TA SR -40 – 105 °C – Junction temperature TJ SR -40 – 115 °C – Storage temperature TST SR -55 – 125 °C – Voltage on power supply pin with respect to VSS VDD SR -0.3 – 6 V – Voltage on pins with respect to VSS VIN SR -0.3 – VDD + 0.3 V Input current on any pin during overload condition IIN SR -10 – 10 mA – Absolute maximum sum of all input currents during overload condition ΣIIN SR -50 – +50 mA – Datasheet 23 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.1.3 Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 4 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • full operation life-time is not exceeded • Operating Conditions are met for - pad supply levels (VDD) - temperature If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery. Table 4 Overload Parameters Parameter Symbol Values Min. Unit Typ. Max. Input current on analog port pins IOVA SR during overload condition -3 – 3 mA Input current on any port pin during overload condition -5 – 5 mA – – 25 mA IOV SR Absolute sum of all input currents IOVS SR during overload condition Note or Test Condition Figure 12 shows the path of the input currents during overload via the ESD protection structures. The diodes against VDD and ground are a simplified representation of these ESD protection structures. Datasheet 24 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters VDDP VDDP Pn.y IOVx GND ESD Figure 12 GND Pad Input Overload Current via ESD structures Table 5 and Table 6 list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload. Table 5 PN-Junction Characterisitics for positive Overload Pad Type IOV = 5 mA Standard, High-current, AN/DIG_IN VIN = VDD +(0.3 ... 0.5) V VAIN = VDD + 0.5 V VAREF = VDD + 0.5 V Table 6 PN-Junction Characterisitics for negative Overload Pad Type IOV = 5 mA Standard, High-current, AN/DIG_IN VIN = VSS - (0.3 … 0.5) V VAIN = VSS - 0.5 V VAREF = VSS - 0.5 V Datasheet 25 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.1.4 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the IMC100. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise. Table 7 Recommended Operating Conditions Parameter Symbol Values Min. Unit Typ. Max. Ambient Temperature TA SR -40 – 105 °C Junction temperature TJ SR -40 – 115 °C Positive DC Bus Input Voltage VDCP SR 12 - 400 V Gate Driver High Side Floating Supply Voltage VB1,2,3 SR VS + 5 - VS + 18 V Gate Driver Low Side Supply Voltage VCC SR 12 - 16.5 Digital supply voltage3) VDD SR 3.0 3.3 5.5 V Voltage regulator input voltage VCC1 SR 5.5 – 40 V Pulse width for gate driver ON or OFF Ta SR 1 – - µs 3 Note or Test Condition Internal voltage regulator disabled See also the Supply Monitoring thresholds Power-Up and Supply Threshold Characteristics . Datasheet 26 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.2 DC Parameters 4.2.1 Input/Output Characteristics The table below provides the characteristics of the input/output pins of the controller. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis. Table 8 Input/Output Characteristics (Operating Conditions apply) Parameter Symbol Limit Values Min. Max. Unit Test Conditions Input low voltage on port pins (Standard Hysteresis) VILPS SR – 0.19 × VDD V CMOS Mode Input high voltage on port pins (Standard Hysteresis) VIHPS SR 0.7 × VDD – V CMOS Mode Input low voltage on port pins (Large Hysteresis, scripting pins only) VILPL SR – 0.08 × VDD V CMOS Mode Input high voltage on port pins (Large Hysteresis, scripting pins only) VIHPL SR 0.85 × VDD – V CMOS Mode Output low voltage on port pins VOLP CC – 1.0 V IOL = 11 mA ( V) IOL = 7 mA (3.3 V) – 0.4 V IOL = 5 mA (5 V) IOL = 3.5 mA (3.3 V) – 1.0 V IOL = 50 mA (5 V) IOL = 25 mA (3.3 V) – 0.32 V IOL = 10 mA (5 V) – 0.4 V IOL = 5 mA (3.3 V) VDD - 1.0 – V IOH = -10 mA (5 V) IOH = -7 mA (3.3 V) VDD - 0.4 – V IOH = -4.5 mA (5 V) IOH = -2.5 mA (3.3 V) VDD - 0.32 – V IOH = -6 mA (5 V) VDD - 1.0 – V IOH = -8 mA (3.3 V) VDD - 0.4 – V IOH = -4 mA (3.3 V) Output low voltage on PWM outputs Output high voltage on port pins Output high voltage on PWM outputs Datasheet VOLP1 VOHP VOHP1 CC CC CC 27 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters Table 8 Input/Output Characteristics (Operating Conditions apply) (continued) Parameter Rise/fall time on PWM outputs4) Rise/fall time on standard pad Symbol Limit Values tHCPR, tHCPF CC tR, tF CC Unit Test Conditions Min. Max. – 9 ns 50 pF @ 5 V – 12 ns 50 pF @ 3.3 V – 12 ns 50 pF @ 5 V – 15 ns 50 pF @ 3.3 V. Pin capacitance (digital inputs/outputs) CIO CC – 10 pF Pull-up/-down resistor on port pins (if enabled in software) RPUP CC 20 50 kΩ VIN = VSS Input leakage current 5) IOZP CC -1 1 µA 0 < VIN < VDD, TA 105°C Maximum current per pin standard pin IMP SR -10 11 mA – Maximum current per PWM outputs pins IMP1A SR -10 50 mA – Maximum current into VDD / out of VSS IMVDD / IMVSS SR – 260 mA 4 5 Rise/Fall time parameters are taken with 10% - 90% of supply. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Datasheet 28 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.2.2 Analog to Digital Converter (ADC) The following table shows the Analog to Digital Converter (ADC) characteristics. This specification applies to all analog input including the analog Hall sensor interface input (AHALLx+/AHALLx-, where x=1,2) as given in the pin configuration list. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 9 ADC Characteristics (Operating Conditions apply)6) Parameter Symbol Values Min. Unit Typ. Max. Supply voltage range VDD SR 3.0 – 5.5 V Analog input voltage range VAIN SR VSS0.05 – VDD+ 0.05 V Conversion time tC12 CC – 1.0 1.6 μs Total capacitance of an analog input CAINT CC – – 10 pF Total capacitance of the reference CAREFT CC – input – 10 pF Sample time tsample CC – 200 – ns RMS noise ENRMS CC – 1.5 – LSB12 DNL error EADNL CC – ±2.0 – LSB12 INL error EAINL CC – ±4.0 – LSB12 Gain error EAGAIN CC – ±0.5 – % Offset error EAOFF CC ±8.0 – mV 6 – Note or Test Condition VDD = 3.3V All parameters are defined for the full supply range if not stated otherwise. Datasheet 29 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.2.3 Power Supply Current The total power supply current defined below consists of a leakage and a switching component. Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 10 Power Supply parameter table; VDDP = 5V Parameter Symbol Values Min. Unit Typ. Max. Active mode current motor control only IDDPWM CC − 10 20 mA Active mode current motor control plus PFC IDDPFC CC − 14 20 mA Deep Sleep mode current7) IDDPDS CC − 0.27 − mA Wake-up time from Sleep to Active mode tSSA CC − 6 − cycles Wake-up time from Deep Sleep to tDSA CC Active mode − 290 − μsec 4.2.4 Note: These parameters are not subject to production test, but verified by design and/or characterization. Flash Memory Parameters Parameter Symbol Values Min. Typ. Unit Note or Test Condition years Max. 100 erase / program cycles Sum of page and sector erase cycles Max. Data Retention Time tRET CC Erase Cycles8) NECYC CC 5*104 cycles Total Erase Cycles NTECYC CC 2*106 cycles 8 product with PFC only Flash Memory Parameters Table 11 7 Note or Test Condition 10 CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wakeup. Sum of page erase and sector erase cycles a page sees. Datasheet 30 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.3 AC Parameters 4.3.1 Testing Waveforms VDDP VSS 90% 90% 10% 10% tR Figure 13 tF Rise/Fall Time Parameters VDDP VDDP / 2 Test Points VDDP / 2 VSS Figure 14 Testing Waveform, Output Delay VLOAD + 0.1V VLOAD - 0.1V Figure 15 Datasheet Timing Reference Points VOH - 0.1V VOL + 0.1V Testing Waveform, Output High Impedance 31 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.3.2 Power-Up and Supply Threshold Characteristics This chapter provides the characteristics of the supply threshold for the controller. The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while VDD is outside its operating range. The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply. Table 12 Power-Up and Supply Threshold Parameters Parameter Symbol Values Min. Unit Typ. Note or Test Condition Max. VDD ramp-up time tRAMPUP SR VDD/ SVDDrise – 107 μs VDD slew rate SVDDOP SR 0 – 0.1 V/μs Slope during normal operation SVDD10 SR 0 – 10 V/μs Slope during fast transient within +/-10% of VDD SVDDrise SR 0 – 10 V/μs Slope during power-on or restart after brownout event SVDDfall9) SR 0 – 0.25 V/μs Slope during supply falling out of the +/-10% limits10) VDDPW CC 2.1 2.25 2.4 V ANAVDEL.VDEL_SELECT = 00B 2.85 3 3.15 V ANAVDEL.VDEL_SELECT = 01B 4.2 4.4 4.6 V ANAVDEL.VDEL_SELECT = 10B VDD brownout reset voltage VDDBO CC 1.55 1.62 1.75 V calibrated, before user code starts running VDD voltage to ensure defined pad states – 1.0 – V VDD prewarning voltage 9 10 VDDA CC A capacitor of at least 100 nF has to be added between VDD and VSS to fulfill the requirement as stated for this parameter. Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current. Datasheet 32 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters Table 12 Power-Up and Supply Threshold Parameters (continued) Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Start-up time from poweron reset tSSW CC − 260 – μs Time to the first user code instruction11) Start-up time to PWM on tPWMON CC 5.2 - 360 ms Time to PWM enabled 5.0V } VDDP Figure 16 11 VDDPPW VDDPBO Supply Threshold Parameters This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 48 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated. Datasheet 33 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.3.3 On-Chip Oscillator Characteristics Table 13 provides the characteristics of the 96 MHz digital controlled oscillator DCO1. The DCO1 is used as the time base during normal operation. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 13 96 MHz DCO1 Characteristics Parameter Symbol Limit Values Min. Typ. Max. Unit Test Conditions Nominal frequency fNOM CC - 96 - MHz under nominal conditions after trimming Accuracy with adjustment based on XTAL as reference ΔfLTX CC -0.3 - +0.3 % with respect to fNOM(typ), TA from -40 °C to 105 °C Accuracy with adjustment algorithm 12) based on temperature sensor ΔfLTTS CC -0.6 – +0.6 % with respect to fNOM(typ), TA from 0°C to 105°C -1.9 – +1.0 % with respect to fNOM(typ), TA from -25 °C to 105°C -2.6 – +1.3 % with respect to fNOM(typ), TA from -40° C to 105 °C -1.7 – +3.4 % with respect to fNOM(typ), TA from 0 ° C to 85 °C -3.9 – +4.0 % with respect to fNOM(typ), TA from -40° C to 105 °C Accuracy ΔfLT CC Table 14 provides the characteristics of the 32 kHz digital controlled oscillator DCO2. The DCO2 is only used internally as a secondary clock source for the internal watchdog and as a fallback in case of failure of DCO1. Table 14 Parameter Nominal frequency 12 13 32 kHz DCO2 Characteristics Symbol fNOM CC Limit Values Min. Typ. Max. 32.5 32.75 33 Unit Test Conditions kHz under nominal conditions13) after trimming MCE version newer or equal to V1.03.00, clock adjustment algorithm for improved accuracy enabled The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25°C. Datasheet 34 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters Table 14 32 kHz DCO2 Characteristics (continued) Parameter Symbol Limit Values Min. Typ. Max. Unit Test Conditions Short term frequency deviation (over VDDC) ΔfST CC -1 – +1 % with respect to fNOM(typ), at 25°C Accuracy ΔfLT CC -1.7 – +3.4 % with respect to fNOM(typ), TA from 0 ° C to 85 °C -3.9 – +4.0 % with respect to fNOM(typ), TA from -40° C to 105 °C Datasheet 35 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.4 Motor Control Parameters The following parameters are defined in the iMOTION™ Motion Control Engine (MCE) software. 4.4.1 PWM Characteristics Table 15 Electrical characteristics Parameter Symbol Values Min. Motor PWM Frequency fPWM 4.4.2 Current Sensing Table 16 Motor Current Sensing Parameter 5 Typ. 16 Symbol IPWM Configurable analog gain Itrip input range IPWMTRIP Itrip offset Input capacitance Datasheet CREF Max. 40 Unit Typ. Max. VSS-0.05 - - 1/ 3/ 6/ 12 - VSS-0.05 - VDD+0.05 V - ±8 - mV - - 10 pF 36 Note or test condition kHz Values Min. Input range Unit VDD+0.05 Note or test condition V REFU, REFV, REFW capacitor 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.4.3 Fault Timing Figure 17 Fault timing Table 17 Gatekill timing Parameter Symbol Values Min. Unit Typ. Max. Note or test condition GK pulse width twGK 1 - - μs GK input to PWM shutoff tGK - 1.3 - μs Motor Fault reset timing tRESET - 1.84 - ms fault reset command via UART to PWM reactivation Itrip to PWM shutoff tPWMOFF - 1.0 - μs single shunt Itrip to PWM shutoff tPWMOFF - 1.0 - μs leg shunt Datasheet 37 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.5 Power Factor Correction (PFC) parameters The parameters specified for the power factor correction only refer to products with integrated PFC control algorithms. 4.5.1 Boost PFC characteristics Table 18 Electrical characteristics Parameter Symbol Values Min. PFC frequency fPFC - Typ. 20 4.5.2 Totem Pole PFC characteristics Table 19 Electrical characteristics Parameter Symbol PFC frequency 4.5.3 fPFC - 50 Typ. 20 Note or test condition kHz Motor PWM frequency within specified range Unit Note or test condition kHz Motor PWM frequency within specified range Max. Values Min. Unit Max. 50 PFC Current Sensing The current sensing specification applies to both PFC algorithms, boost mode and totem pole. Table 20 PFC Current Sensing Parameter Symbol Values Min. Input range IPFC Configurable analog gain PFC Itrip input range IPFCTRIP Itrip offset Input capacitance Datasheet CREF Typ. Unit Note or test condition V VDD= 3.3 or 5.0 V Max. VSS- 0.05 - - 1/ 3/ 6/ 12 - VSS-0.05 - VDD+ 0.05 V VDD= 3.3 or 5.0 V - ±3 - mV Input voltage difference > 200mV - - 10 pF PFCREF capacitor 38 VDD+ 0.05 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.5.4 PFC Fault Timing Table 21 PFC Fault timing Parameter Symbol Values Min. Unit Typ. Max. Itrip to PFC PWM shutoff tPFCOFF - 1.18 - μs PFC fault reset timing tRESET - 1.0 - ms Datasheet 39 Note or test condition fault reset command via UART to PWM reactivation 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6 Control Interface Parameters The following tables specify the interfaces that can be used to control the motor drive in the application. 4.6.1 Serial Interface Parameters The IMC100 series provides the following communication interfaces. Note: These parameters are not subject to production test, but verified by design and/or characterization. 4.6.1.1 UART Interface The UART interface is configured as given below. Note: Operating Conditions apply. Table 22 Electrical characteristics Parameter Symbol Values Min. Unit Typ. Max. UART baud rate 1200 57600 - UART mode - 8-N-1 - UART sampling filter period 14) TUARTFIL - 1/16 - Note or test condition Bps data-parity-stop bit TBAUD TBAUD TXD Start Bit Data and Parity Bit Stop Bit RXD TUARTFIL Figure 18 14 UART timing Each bit including start and stop bit is sampled three times at center of a bit at an interval of 1/16 TBAUD. If three sampled values do not agree, then UART noise error is generated. Datasheet 40 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.2 Analog Speed Input motor speed RPM max motor stop RPM min VSP VSP MAX VSP START VSP STOP Figure 19 VSP analog control mode Table 23 Analog Speed Control Voltage (VSP) Parameter Symbol Values Min. Typ. Unit Note or test condition Max. Motor start voltage VSPSTART - 1.2 - V Configured VSPSTART=1.0V Motor stop voltage VSPSTOP - 1.0 - V Configured VSPSTOP=1.0V Motor max voltage VSPMAX - 4.9 4.95 V VDD=5.0V VSP active to PWM start tSTART - 44 - ms VSP inactive to PWM stop tSTOP - 16 - ms Datasheet 41 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.3 Frequency Input In frequency input control mode, the motor operations like motor start, motor stop and speed change are controlled by applying a square wave frequency signal on a digital input pin. motor speed RPM max motor stop RPM min f CTRL f MAX f START f STOP Figure 20 Frequency input control mode Table 24 Frequency Control Mode Parameter Symbol Values Min. Typ. Unit Note or test condition fSTART > fSTOP Max. Motor start frequency fSTART - 100 360 Hz Motor stop frequency fSTOP - 50 - Hz Motor max speed frequency fMAX - - 1000 Hz Frequency input duty cycle TDUTY 10 - 90 % Datasheet 42 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.4 Duty Cycle Input In duty cycle input control mode, the motor operations like motor start, stop and speed change are controlled by varying the duty cycle of a rectangular wave signal on a digital input pin. motor speed RPM max motor stop RPM min T CTRL T MAX T START T STOP Figure 21 Duty cycle input control mode Table 25 Duty Cycle Control Mode Parameter Symbol Values Min. Unit Typ. Max. Input signal frequency fDUTY 5 1000 20000 Hz Motor start duty cycle TSTART - 10 - % Motor stop duty cycle TSTOP - 5 - % Motor max duty cycle TMAX - 95 - % Datasheet 43 Note or test condition TSTART > TSTOP 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.5 Over Temperature Input The over temperature input can be used to continuously monitor an external temperature sensor like an NTC. Table 26 Over Temperature Input Parameter Symbol Values Min. Over Temperature Input Threshold VOT Over Temperature to PWM shutdown tOT 4.6.6 0.1 Typ. Unit Note or test condition VDD=3.3V, Configurable parameter e.g. via MCEDesigner, default=1.0V Max. 1.0 3.0 V 1.0 2.1 ms Pulse Output The IMC100 series can generate a square wave pulse output in sync with the motor rotation which can be used to monitor the motor speed. The number of pulses to be generated for a full rotation can be configured. Table 27 Pulse Output Parameter Symbol Values Min. Unit Typ. Max. Pulses per Rotation PPR 4 - 24 Pulse duty cycle tPPR - 50 - 4.6.7 Note or test condition % LED Output The IMC100 series provides an output that can be connected to an LED to give a visual indication of the status of the motor drive. Table 28 LED Output Parameter Symbol Values Min. Unit Typ. Max. Fault to LED delay tLEDFAULT - 53 - ms Fault reset to LED delay tLEDRESET - 1.84 - ms LED blinking frequency fLED 1 1000 Hz LED blinking duty cycle tLED 5 95 % Datasheet 44 Note or test condition 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.7 Quality declaration Table 29 Quality Parameters Parameter Symbol Limit Values Unit Notes Min. Max. VHBM SR − 2000 V Conforming to ANSI/ ESDA/JEDEC JS-001 ESD susceptibility according to VCDM SR Charged Device Model (CDM) pins − 500 V Conforming to ANSI/ ESDA/JEDEC JS-002 Moisture sensitivity level MSL CC − 3 − JEDEC J-STD-020D Soldering temperature TSDR SR − 260 °C Profile according to JEDEC J-STD-020D ESD susceptibility according to Human Body Model (HBM) Datasheet 45 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Device and Package specification 5 Device and Package specification 5.1 SBSL and Chip-IDs The table below gives the IDs for the individual devices in the IMC100 family. Depending upon the mode either the SBSL-ID (secure boot loader) or the Chip-ID should be used to identify the device. For details refer to the Reference Manual or the iMOTION™ Programming Manual. Table 30 SBSL-IDs and Chip-IDs Product Type Package Chip-ID SBSL-ID IMC099T-T038 TSSOP-38 0x10990005 02af86dbe4df1c3471cd41bfae101928 IMC101T-T038 TSSOP-38 0x11010005 02270f1fccdf57c333d31abd78f960b0 IMC101T-Q048 QFN-48 0x11010008 0244e4486f613c04e6539585aec5d311 IMC101T-F048 LQFP-48 0x11010006 023443609d83afdd5bbda261eb9469b4 IMC101T-F064 LQFP-64 0x1101000B 02a5cdc6d93bbfba0e3617fd7be5df07 IMC102T-F048 LQFP-48 0x11020006 02fc84949a9e41a3043571111137bffb IMC102T-F064 LQFP-64 0x1102000B 0289426daa14293ab31828d8341ad4ef Datasheet 46 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Device and Package specification 5.2 Package Outlines All dimensions in mm. You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page “Packages”: www.infineon.com/packages 5.2.1 Package Outline PG-TSSOP-38-9 Figure 22 PG-TSSOP-38-9 Datasheet 47 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Device and Package specification 5.2.2 Package Outline PG-VQFN-48-73 Figure 23 PG-VQFN-48-73 Datasheet 48 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Device and Package specification 5.2.3 Package Outline PG-LQFP-48-10 Figure 24 PG-LQFP-48-10 Datasheet 49 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Device and Package specification 5.2.4 Package Outline PG-LQFP-64-26 Figure 25 PG-LQFP-64-26 Datasheet 50 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Device and Package specification 5.3 Thermal Considerations Table 31 Thermal Characteristics of the Packages Parameter Symbol Limit Values Min. Max. Unit Package Types Exposed Die Pad Dimensions Ex × Ey CC - 4.2 × 4.2 mm PG-VQFN-48-73 Thermal resistance JunctionAmbient15) RΘJA CC - 86.0 K/W PG-TSSOP-38-9 - 44.9 K/W PG-VQFN-48-73 - t.b.d. K/W PG-LQFP-48-10 66.7 K/W PG-LQFP-64-26 Note: For electrical reasons, it is required to connect the exposed pad to the board ground VSSP, independent of EMC and thermal requirements. When operating the IMC100 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115°C. The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDD × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDD - VOH) × IOH) + Σ(VOLIOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • Reduce VDD, if possible in the system • Reduce the system frequency • Reduce the number of output pins • Reduce the load on active output drivers 15 Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad of VQFN soldered. Datasheet 51 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series Device and Package specification 5.4 Part marking Manufacturer IMC101T T038 XXXXX Figure 26 Datasheet Part number Lot number or -code IMC102T Q048 XXXXX Part marking 52 1.6 2020-06-22 iMOTION™ IMC100 High performance motor control IC series References 6 References Revision history Document version Date of release Description of changes 1.0 2018-02-09 • Initial version 1.1 2018-02-20 • Corrected RX1, TX1 in QFN-48, QFP-48 and LQFP-64 1.2 2018-07-24 • • • • Added pins for scripting engine Added SBSL-IDs and Chip-IDs Added input voltage specification Several minor corrections 1.3 2019-02-14 • Added the IMC099T-T038 1.4 2019-07-09 • • • • Added IMC102T-F048, IMC102T-F048 Corrected position of hall pins Corrected min/max pin input voltage Added GPIO16/GPIO17/GPIO18 to QFN-48 and QFP-48 1.5 2020-04-15 • • • Added clarification on DUTYFREQ vs. Hall sensor availability Added DCO accuracy with calibration Increased max motor PWM to 40 kHz 1.6 2020-06-18 • • Added GPIO6, GPIO7 to pin table for LQFP-48 Corrected pin drawing for IMC101F-F048 Datasheet 53 1.6 2020-06-22 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2020-06-22 Published by Infineon Technologies AG 81726 Munich, Germany © 2020 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-utn1491921304081 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
IMC101TF048XUMA1 价格&库存

很抱歉,暂时无法提供与“IMC101TF048XUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货