0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IR2113-2

IR2113-2

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    DIP16

  • 描述:

    IC GATE DRVR HALF-BRIDGE 16DIP

  • 详情介绍
  • 数据手册
  • 价格&库存
IR2113-2 数据手册
Data Sheet No. PD60147 rev.V IR2110(S)PbF/IR2113(S)PbF HIGH AND LOW SIDE DRIVER Features • Floating channel designed for bootstrap operation • • • • • • • Fully operational to +500V or +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout for both channels 3.3V logic compatible Separate logic supply range from 3.3V to 20V Logic and power ground ±5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs Product Summary VOFFSET (IR2110) (IR2113) 500V max. 600V max. IO+/- 2A / 2A VOUT 10 - 20V ton/off (typ.) 120 & 94 ns Delay Matching (IR2110) 10 ns max. (IR2113) 20ns max. Packages Description The IR2110/IR2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output chan16-Lead SOIC nels. Proprietary HVIC and latch immune CMOS technologies enable 14-Lead PDIP IR2110S/IR2113S ruggedized monolithic construction. Logic inputs are compatible with IR2110/IR2113 standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 500 or 600 volts. Typical Connection                       (Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.infineon.com/gatedriver 1 IR2110(S)PbF/IR2113(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figures 28 through 35. Symbol Definition Min. Max. -0.3 525 VB High side floating supply voltage (IR2110) -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 VDD Logic supply voltage -0.3 VSS + 25 VSS Logic supply offset voltage VCC - 25 VCC + 0.3 VIN Logic input voltage (HIN, LIN & SD) VSS - 0.3 VDD + 0.3 (IR2113) dVs/dt PD RTHJA Allowable offset supply voltage transient (figure 2) — 50 Package power dissipation @ TA ≤ +25°C (14 lead DIP) — 1.6 (16 lead SOIC) — 1.25 Thermal resistance, junction to ambient (14 lead DIP) — 75 (16 lead SOIC) — 100 150 TJ Junction temperature — TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 Units V V/ns W °C/W °C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at 15V differential. Typical ratings at other bias conditions are shown in figures 36 and 37. Symbol Definition VB High side floating supply absolute voltage VS High side floating supply offset voltage Min. Max. VS + 10 VS + 20 (IR2110) Note 1 500 (IR2113) Note 1 600 VHO High side floating output voltage VS VB VCC Low side fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VDD Logic supply voltage VSS Logic supply offset voltage VIN TA VSS + 3 VSS + 20 -5 (Note 2) 5 Logic input voltage (HIN, LIN & SD) VSS VDD Ambient temperature -40 125 Units V °C Note 1: Logic operational for VS of -4 to +500V. Logic state held for VS of -4V to -VBS. (Please refer to the Design Tip DT97-3 for more details). Note 2: When VDD < 5V, the minimum VSS offset is limited to -VDD. 2 www.infineon.com/gatedriver IR2110(S)PbF/IR2113(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, CL = 1000 pF, TA = 25°C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3. Symbol Definition Figure Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 7 — 120 150 VS = 0V toff Turn-off propagation delay 8 — 94 125 VS = 500V/600V tsd Shutdown propagation delay 9 — 110 140 tr Turn-on rise time 10 — 25 35 tf Turn-off fall time 11 — 17 25 — — — — — — 10 20 MT Delay matching, HS & LS turn-on/off (IR2110) (IR2113) ns VS = 500V/600V Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15V, TA = 25°C and VSS = COM unless otherwise specified. The VIN, VTH and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Figure Min. Typ. Max. Units Test Conditions VIH Logic “1” input voltage 12 9.5 — — VIL Logic “0” input voltage 13 — — 6.0 VOH High level output voltage, VBIAS - VO 14 — — 1.2 VOL Low level output voltage, VO 15 — — 0.1 IO = 0A ILK Offset supply leakage current 16 — — 50 VB=VS = 500V/600V IQBS Quiescent VBS supply current 17 — 125 230 VIN = 0V or VDD IQCC Quiescent VCC supply current 18 — 180 340 IQDD Quiescent VDD supply current 19 — 15 30 VIN = 0V or VDD IIN+ Logic “1” input bias current 20 — 20 40 VIN = VDD IIN- 21 22 — 7.5 — 8.6 1.0 9.7 VIN = 0V 23 7.0 8.2 9.4 24 7.4 8.5 9.6 25 7.0 8.2 9.4 IO+ Logic “0” input bias current VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold Output high short circuit pulsed current 26 2.0 2.5 — IO- Output low short circuit pulsed current 27 2.0 2.5 — VBSUV+ VBSUVVCCUV+ VCCUV- www.infineon.com/gatedriver V µA IO = 0A VIN = 0V or VDD V A VO = 0V, VIN = VDD PW ≤ 10 µs VO = 15V, VIN = 0V PW ≤ 10 µs 3 IR2110(S)PbF/IR2113(S)PbF Functional Block Diagram                                               Lead Definitions Symbol Description VDD HIN SD LIN VSS VB HO VS VCC LO COM 4 Logic supply Logic input for high side gate driver output (HO), in phase Logic input for shutdown Logic input for low side gate driver output (LO), in phase Logic ground High side floating supply High side gate drive output High side floating supply return Low side supply Low side gate drive output Low side return www.infineon.com/gatedriver IR2110(S)PbF/IR2113(S)PbF Lead Assignments 14 Lead PDIP 16 Lead SOIC (Wide Body) IR2110/IR2113 IR2110S/IR2113S Part Number www.infineon.com/gatedriver 5 IR2110(S)PbF/IR2113(S)PbF HV = 10 to 500V/600V Vcc =15V 10KF6 10 µF 0.1 µF 9 3 10 5 7 11 12 1 13 + 200 µH 0.1 µF 6 10KF6 HO 100µF dVS >50 V/ns dt OUTPUT 10KF6 MONITOR 2 IRF820 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit Vcc =15V 10 µF HIN SD LIN 0.1 µF 9 3 0.1 µF 6 10 5 7 11 12 1 CL HO LO VB + 10 15V µF V S (0 to 500V/600V) ! 2 Figure 3. Switching Time Test Circuit ""  $ # 10 µF CL 13 # #     " $ # % # % # Figure 4. Switching Time Waveform Definition   # # #    '*   % # $ #   $ #  Figure 5. Shutdown Waveform Definitions 6  Figure 6. Delay Matching Waveform Definitions www.infineon.com/gatedriver 250 250 200 200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) IR2110(S)PbF/IR2113(S)PbF 150 Max. 100 Typ. 50 150 Max. Typ. 100 50 0 0 -50 -25 0 25 50 75 100 125 10 12 14 Temperature (°C) Figure 7A. Turn-On Time vs. Temperature 250 20 250 Max. 200 Typ. 150 Turn-Off Delay Time (ns) Turn-On Delay Time (ns) 18 Figure 7B. Turn-On Time vs. VCC/VBS Supply Voltage 200 100 50 150 100 Max. Typ. 50 0 0 2 4 6 8 0 10 12 14 16 18 20 -50 -25 0 25 50 75 100 125 Temperature (°C) VDD Supply Voltage (V) Figure 8A. Turn-Off Time vs. Temperature Figure 7C. Turn-On Time vs. VDD Supply Voltage 250 250 200 200 Turn-Off Delay Time (ns) Turn-Off Delay Time (ns) 16 VCC/VBS Supply Voltage (V) Max. 150 Typ. 100 50 Max. 150 100 Typ 50 0 0 10 12 14 16 18 20 VCC/VBS Supply Voltage (V) Figure 8B. Turn-Off Time vs. VCC/VBS Supply Voltage www.infineon.com/gatedriver 0 2 4 6 8 10 12 14 16 18 20 VDD Supply Voltage (V) Figure 8C. Turn-Off Time vs. VDD Supply Voltage 7 250 250 200 200 Max. Shutdown Delay time (ns) Shutdown Delay Time (ns) IR2110(S)PbF/IR2113(S)PbF 150 Max. 100 Typ. 150 Typ. 100 50 50 0 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (°C) 16 18 20 Figure 9B. Shutdown Time vs. VCC/VBS Supply Voltage Figure 9A. Shutdown Time vs. Temperature 250 100 200 80 Max . Turn-On Rise Time (ns) Shutdown Delay Time (ns) 14 VCC/VBS Supply Voltage (V) 150 100 Typ 50 60 40 M ax. Typ. 20 0 0 2 4 6 8 10 12 14 16 VDD Supply Voltage (V) 18 0 20 -50 25 50 75 100 125 Figure 10A. Turn-On Rise Time vs. Temperature 50 80 40 Turn-Off Fall Time (ns) 100 Turn-On Rise Time (ns) 0 Temperature (°C) Figure 9C. Shutdown Time vs. VDD Supply Voltage 60 Max. 40 Typ. 20 30 Max. 20 Typ. 10 0 0 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 10B. Turn-On Rise Time vs. Voltage 8 -25 20 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 11A. Turn-Off Fall Time vs. Temperature www.infineon.com/gatedriver IR2110(S)PbF/IR2113(S)PbF 50 15.0 12.0 Logic "1" Input Threshold (V) Turn-Off Fall Time (ns) 40 30 20 Max. Typ. 10 Max Min. 9.0 6.0 3.0 0 10 12 14 16 18 0.0 20 -50 -25 0 25 VBIAS Supply Voltage (V) Figure 11B. Turn-Off Fall Time vs. Voltage 100 125 15.0 12 12.0 Max. Logic "0" Input Threshold (V) Logic " 1" Input Threshold (V) 75 Figure 12A. Logic “1” Input Threshold vs. Temperature 15 9 6 3 9.0 6.0 Max. Min. 3.0 0 0 2 4 6 8 10 12 14 16 18 0.0 20 -50 -25 0 VDD Logic Supply Voltage (V) 50 75 100 125 Figure 13A. Logic “0” Input Threshold vs. Temperature 5.00 12 4.00 High Level Output Voltage (V) 15 9 Min. 6 25 Temperature (°C) Figure 12B. Logic “1” Input Threshold vs. Voltage Logic "0" Input Threshold (V) 50 Temperature (°C) 3 3.00 2.00 Max. 1.00 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) Figure 13B. Logic “0” Input Threshold vs. Voltage www.infineon.com/gatedriver 0.00 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 14A. High Level Output vs. Temperature 9 5.00 1.00 4.00 0.80 Low Level Output Voltage (V) High Level Output Voltage (V) IR2110(S)PbF/IR2113(S)PbF 3.00 2.00 M ax. 1.00 0.60 0.40 0.20 Max. 0.00 0.00 10 12 14 16 18 20 -50 -25 0 VBIAS Supply Voltage (V) Figure 14B. High Level Output vs. Voltage 50 75 100 125 Figure 15A. Low Level Output vs. Temperature 1.00 500 0.80 400 Offset Supply Leakage Current (µA) Low Level Output Voltage (V) 25 Temperature (°C) 0.60 0.40 0.20 300 200 100 M ax. Max. 0.00 10 12 14 16 18 0 20 -50 -25 0 VBIAS Supply Voltage (V) 50 75 100 125 Figure 16A. Offset Supply Current vs. Temperature Figure 15B. Low Level Output vs. Voltage 500 500 400 400 VBS Supply Current (µA) Offset Supply Leakage Current (µA) 25 Temperature (°C) 300 200 300 Max. 200 Typ. 100 Max. 100 0 0 100 200 300 400 V B Boost Voltage (V) 500 IR2110 600 IR2113 Figure 16B. Offset Supply Current vs. Voltage 10 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 17A. VBS Supply Current vs. Temperature www.infineon.com/gatedriver 500 625 400 500 VCC Supply Current (µA) VBS Supply Current (µA) IR2110(S)PbF/IR2113(S)PbF 300 200 Max. 375 Max. 250 Typ. 100 125 Typ. 0 0 10 12 14 16 18 -50 20 -25 0 100 500 80 VDD Supply Current (µA) VCC Supply Current (µA) 625 375 250 Max. 75 100 125 60 40 Max. 20 Typ. Typ. 0 0 10 12 14 16 18 20 -50 -25 0 VCC Fixed Supply Voltage (V) Figure 18B. VCC Supply Current vs. Voltage 25 50 75 100 125 Temperature (°C) Figure 19A. VDD Supply Current vs. Temperature 60 100 Logic "1" Input Bias Current (µA) 50 VDD Supply Current (µA) 50 Figure 18A. VCC Supply Current vs. Temperature Figure 17B. VBS Supply Current vs. Voltage 125 25 Temperature (°C) VBS Floating Supply Voltage (V) 40 30 20 10 80 60 40 Max. 20 Typ. 0 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) Figure 19B. VDD Supply Current vs. VDD Voltage www.infineon.com/gatedriver 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 20A. Logic “1” Input Current vs. Temperature 11 IR2110(S)PbF/IR2113(S)PbF Logic “1” Input Bias Current (µA) 60 5.00 Logic "0" Input Bias Current (µA) 50 40 30 20 10 4.00 3.00 2.00 Max. 1.00 0 0 2 4 6 8 10 12 14 16 18 0.00 20 -50 -25 0 VDD Logic Supply Voltage (V) Figure 20B. Logic “1” Input Current vs. VDD Voltage 50 75 100 125 Figure 21A. Logic “0” Input Current vs. Temperature 5 11.0 4 10.0 VBS Undervoltage Lockout + (V) Logic “0” Input Bias Current (µA) 25 Temperature (°C) 3 2 1 Max. 9.0 Typ. 8.0 Min. 7.0 0 0 2 4 6 8 10 12 14 16 18 20 6.0 -50 VDD Logic Supply Voltage (V) VCC Undervoltage Lockout + (V) VBS Undervoltage Lockout - (V) 50 75 100 125 11.0 10.0 Max. 9.0 Typ. Min. 10.0 Max. 9.0 Typ. 8.0 Min. 7.0 6.0 6.0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 23. VBS Undervoltage (-) vs. Temperature 12 25 Figure 22. VBS Undervoltage (+) vs. Temperature 11.0 7.0 0 Temperature (°C) Figure 21B. Logic “0” Input Current vs. VDD Voltage 8.0 -25 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 24. VCC Undervoltage (+) vs. Temperature www.infineon.com/gatedriver IR2110(S)PbF/IR2113(S)PbF 11.0 5.00 4.00 Output Source Current (A) VCC Undervoltage Lockout - (V) 10.0 Max. 9.0 Typ. 8.0 7.0 Typ. Min. 2.00 1.00 Min. 0.00 -50 6.0 -50 3.00 -25 0 25 50 75 100 125 -25 0 5.00 5.00 4.00 4.00 3.00 2.00 Typ. 0.00 3.00 12 14 16 18 125 Min. 2.00 0.00 -50 20 -25 0 25 50 75 100 125 Temperature (°C) Figure 26B. Output Source Current vs. Voltage Figure 27A. Output Sink Current vs. Temperature 5.00 150 4.00 125 Junction Temperature (°C) Output Sink Current (A) 100 Typ. VBIAS Supply Voltage (V) 3.00 2.00 Typ. 1.00 75 1.00 Min. 10 50 Figure 26A. Output Source Current vs. Temperature Output Sink Current (A) Output Source Current (A) Figure 25. VCC Undervoltage (-) vs. Temperature 1.00 25 Temperature (°C) Temperature (°C) Min. 320V 140V 100 75 10V 50 25 0.00 0 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 27B. Output Sink Current vs. Voltage www.infineon.com/gatedriver 20 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 28. IR2110/IR2113 TJ vs. Frequency Ω, VCC = 15V (IRFBC20) RGATE = 33Ω 13 IR2110(S)PbF/IR2113(S)PbF 320V 150 320V 150 125 140V 125 100 75 10V 50 Junction Temperature (°C) Junction Temperature (°C) 140V 100 10V 75 50 25 25 0 1E+2 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) Figure 29. IR2110/IT2113 TJ vs. Frequency Ω, VCC = 15V (IRFBC30) RGATE = 22Ω 140V 50 Junction Temperature (°C) Junction Temperature (°C) 75 100 25 10V 75 50 25 1E+3 1E+4 1E+5 0 1E+2 1E+6 1E+3 Frequency (Hz) 1E+4 1E+5 1E+6 Frequency (Hz) Figure 31. IR2110/IR2113 TJ vs. Frequency Ω, VCC = 15V (IRFPE50) RGATE = 10Ω Figure 32. IR2110S/IR2113S TJ vs. Frequency Ω, VCC = 15V (IRFBC20) RGATE = 33Ω 140V 320V 150 320V 140V 150 125 100 10V 75 50 25 Junction Temperature (°C) 125 Junction Temperature (°C) 140V 125 10V 100 10V 100 75 50 25 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 33. IR2110S/IR2113S TJ vs. Frequency Ω, VCC = 15V (IRFBC30) RGATE = 22Ω 14 1E+6 320V 150 125 0 1E+2 1E+5 Figure 30. IR2110/IR2113 TJ vs. Frequency Ω, VCC = 15V (IRFBC40) RGATE = 15Ω 320V 150 0 1E+2 1E+4 Frequency (Hz) 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (Hz) Figure 34. IR2110S/IR2113S TJ vs. Frequency Ω, VCC = 15V (IRFBC40) RGATE = 15Ω www.infineon.com/gatedriver IR2110(S)PbF/IR2113(S)PbF 320V 140V 10V 150 0.0 -2.0 VS Offset Supply Voltage (V) Junction Temperature (°C) 125 100 75 50 Typ. -4.0 -6.0 -8.0 25 -10.0 0 1E+2 1E+3 1E+4 1E+5 1E+6 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Frequency (Hz) Figure 35. IR2110S/IR2113S TJ vs. Frequency Ω, VCC = 15V (IRFPE50) RGATE = 10Ω Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage VSS Logic Supply Offset Voltage (V) 20.0 16.0 12.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage www.infineon.com/gatedriver 15 IR2110(S)PbF/IR2113(S)PbF Case Outlines 16 14-Lead PDIP 01-6010 01-3002 03 (MS-001AC) 16-Lead SOIC (wide body) 01 6015 01-3014 03 (MS-013AA) www.infineon.com/gatedriver IR2110(S)PbF/IR2113(S)PbF LEADFREE PART MARKING INFORMATION IRxxxxxx Part number YWW? Date code Pin 1 Identifier ? MARKING CODE Lead Free Released Non-Lead Free Released P IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code ORDER INFORMATION Part only available Lead Free 14-Lead 14-Lead 16-Lead 16-Lead PDIP IR2110 order IR2110PbF PDIP IR2113 order IR2113PbF SOIC IR2110S order IR2110SPbF SOIC IR2113S order IR2113SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice 6/3/2019 www.infineon.com/gatedriver 17
IR2113-2
物料型号:IR2110(S)PbF/IR2113(S)PbF

器件简介:IR2110/IR2113是高电压、高速功率MOSFET和IGBT驱动器,具有独立的高侧和低侧参考输出通道。采用专有的HVIC和锁存免疫CMOS技术,实现了坚固的单片结构。

引脚分配:文档提供了引脚分配图和引脚定义,例如HIN(高侧门驱动输出HO的逻辑输入)、SD(关闭逻辑输入)、LIN(低侧门驱动输出LO的逻辑输入)等。

参数特性:包括但不限于: - 门驱动供应范围:10V至20V - 逻辑供应电压偏移:±5V - 典型开关时间:120ns至94ns - 传播延迟匹配:最高10ns - 短路脉冲电流:IO+/- 2A

功能详解:文档详细描述了器件的工作原理,包括其浮动通道设计、门驱动供应电压范围、逻辑输入兼容性等。

应用信息:虽然文档没有直接提供应用信息,但从其特性和引脚配置可以推断,这些驱动器适用于需要高电压和高速开关的应用,如电机驱动、电源转换等。

封装信息:提供14-Lead PDIP和16-Lead SOIC封装选项,文档还包含了封装的尺寸和引脚布局。
IR2113-2 价格&库存

很抱歉,暂时无法提供与“IR2113-2”相匹配的价格&库存,您可以联系我们找货

免费人工找货