PD-95331A
IRF1405SPbF
IRF1405LPbF
Typical Applications
HEXFET® Power MOSFET
l Industrial Motor Drive
D
VDSS = 55V
Benefits
l
l
l
l
l
l
Advanced Process Technology
Ultra Low On-Resistance
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
RDS(on) = 5.3mΩ
G
ID = 131A
S
Description
Stripe Planar design of HEXFET® Power MOSFETs
utilizes the lastest processing techniques to achieve
extremely low on-resistance per silicon area. Additional
features of this HEXFET power MOSFET are a 175°C
junction operating temperature, fast switching speed
and improved repetitive avalanche rating. These
benefits combine to make this design an extremely
efficient and reliable device for use in a wide variety
of applications.
D2Pak
IRF1405SPbF
TO-262
IRF1405LPbF
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
Peak Diode Recovery dv/dt
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Max.
Units
131
93
680
200
1.3
± 20
590
See Fig.12a, 12b, 15, 16
5.0
-55 to + 175
A
W
W/°C
V
mJ
A
mJ
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθJA
www.irf.com
Junction-to-Case
Junction-to-Ambient (PCB mount)
Typ.
Max.
Units
–––
–––
0.75
40
°C/W
1
07/14/10
IRF1405S/LPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
RDS(on)
VGS(th)
gfs
Parameter
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Min.
55
–––
–––
2.0
69
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.057
4.6
–––
–––
–––
–––
–––
–––
170
44
62
13
190
130
110
IDSS
Drain-to-Source Leakage Current
LD
Internal Drain Inductance
–––
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
5480
1210
280
5210
900
1500
V(BR)DSS
∆V(BR)DSS/∆TJ
IGSS
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
5.3
mΩ VGS = 10V, ID = 101A
4.0
V
VDS = 10V, ID = 250µA
–––
S
VDS = 25V, ID = 110A
20
VDS = 55V, VGS = 0V
µA
250
VDS = 44V, VGS = 0V, TJ = 150°C
200
VGS = 20V
nA
-200
VGS = -20V
260
ID = 101A
66
nC
VDS = 44V
93
VGS = 10V
–––
VDD = 38V
–––
ID = 110A
ns
–––
RG = 1.1Ω
–––
VGS = 10V
D
Between lead,
–––
6mm (0.25in.)
nH
G
from package
–––
and center of die contact
S
–––
VGS = 0V
–––
pF
VDS = 25V
–––
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 44V
Source-Drain Ratings and Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 131
showing the
A
G
integral reverse
––– ––– 680
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 101A, VGS = 0V
––– 88 130
ns
TJ = 25°C, IF = 101A
––– 250 380
nC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRF1405S/LPbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
100
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
100
10
4.5V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
4.5V
10
0.1
100
Fig 1. Typical Output Characteristics
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
TJ = 25 ° C
TJ = 175 ° C
100
10
V DS = 25V
20µs PULSE WIDTH
6
8
10
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
10
100
Fig 2. Typical Output Characteristics
1000
4
1
VDS , Drain-to-Source Voltage (V)
VDS , Drain-to-Source Voltage (V)
1
20µs PULSE WIDTH
TJ = 175 ° C
12
ID = 169A
2.5
2.0
1.5
1.0
0.5
0.0
-60 -40 -20 0
VGS = 10V
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
3
IRF1405S/LPbF
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
C, Capacitance(pF)
Coss = Cds + Cgd
10000
Ciss
Coss
1000
Crss
20
VGS , Gate-to-Source Voltage (V)
100000
10
12
8
4
0
100
FOR TEST CIRCUIT
SEE FIGURE 13
0
120
180
240
300
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
1000
10000
OPERATION IN THIS AREA LIMITED
BY RDS(on)
TJ = 175 ° C
1000
I D , Drain Current (A)
ISD , Reverse Drain Current (A)
60
QG , Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
100
10us
100us
100
TJ = 25 ° C
10
1
0.0
V GS = 0 V
0.5
1.0
1.5
2.0
2.5
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS = 44V
VDS = 27V
16
100
1
ID = 101A
3.0
1ms
10ms
10
1
TC = 25 ° C
TJ = 175 ° C
Single Pulse
1
10
100
VDS , Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRF1405S/LPbF
160
VGS
120
I D , Drain Current (A)
RD
VDS
LIMITED BY PACKAGE
RG
D.U.T.
+
-VDD
10V
80
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 10a. Switching Time Test Circuit
40
VDS
90%
0
25
50
75
100
125
150
TC , Case Temperature ( °C)
175
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
1
Thermal Response (Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
SINGLE PULSE
(THERMAL RESPONSE)
PDM
t1
t2
0.001
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRF1405S/LPbF
EAS , Single Pulse Avalanche Energy (mJ)
1400
15V
ID
41A
71A
BOTTOM 101A
TOP
1200
DRIVER
L
VDS
1000
D.U.T
RG
+
- VDD
IAS
20V
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
A
800
600
400
200
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature ( °C)
I AS
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
VGS(th) , Variace ( V )
3.5
ID = 250µA
3.0
2.5
2.0
.3µF
D.U.T.
+
V
- DS
1.5
VGS
-75 -50 -25
3mA
0
25
50
75
100 125 150 175
T J , Temperature ( °C )
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRF1405S/LPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.05
10
0.10
1
0.1
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
600
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 101A
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
175
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRF1405S/LPbF
Peak Diode Recovery dv/dt Test Circuit
+
D.U.T*
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
-
-
+
RG
• dv/dt controlled by RG
• ISD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
VGS
*
+
-
VDD
Reverse Polarity of D.U.T for P-Channel
Driver Gate Drive
P.W.
Period
D=
P.W.
Period
[VGS=10V ] ***
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
[VDD]
Forward Drop
Inductor Curent
Ripple ≤ 5%
[ISD ]
*** VGS = 5.0V for Logic Level and 3V Drive Devices
Fig 17. For N-channel HEXFET® power MOSFETs
8
www.irf.com
IRF1405S/LPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
T HIS IS AN IRF 530S WIT H
LOT CODE 8024
ASSEMBLED ON WW 02, 2000
IN T HE ASS EMBLY LINE "L"
INT ERNATIONAL
RECT IFIER
LOGO
ASSEMBLY
LOT CODE
PART NUMBER
F530S
DAT E CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
INT ERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
F530S
DATE CODE
P = DESIGNATES LEAD - FRE E
PRODUCT (OPTIONAL)
YE AR 0 = 2000
WE EK 02
A = AS SEMBLY SIT E CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRF1405S/LPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
EXAMPLE: T HIS IS AN IRL3103L
LOT CODE 1789
ASS EMBLED ON WW 19, 1997
IN THE AS SEMBLY LINE "C"
INTERNAT IONAL
RECT IFIER
LOGO
AS S EMBLY
LOT CODE
PART NUMBER
DATE CODE
YEAR 7 = 1997
WEEK 19
LINE C
OR
INT ERNATIONAL
RECTIFIER
LOGO
AS SEMBLY
LOT CODE
PART NUMBER
DATE CODE
P = DES IGNATES LEAD-FREE
PRODUCT (OPTIONAL)
YEAR 7 = 1997
WEEK 19
A = AS S EMBLY S ITE CODE
Notes:
1. For an Automotive Qualified version of this part please see http://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRF1405S/LPbF
D2Pak Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
1.65 (.065)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
1.75 (.069)
1.25 (.049)
10.90 (.429)
10.70 (.421)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
Notes:
60.00 (2.362)
MIN.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Starting TJ = 25°C, L = 0.11mH
RG = 25Ω, IAS = 101A. (See Figure 12).
ISD ≤ 101A, di/dt ≤ 210A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
Pulse width ≤ 400µs; duty cycle ≤ 2%.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A.
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/2010
www.irf.com
11