IRF1405ZS-7PPbF
IRF1405ZL-7PPbF
HEXFET® Power MOSFET
Features
D
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
l
l
l
l
l
l
IRF1405ZS-7PPbF
IRF1405ZS-7PPbF
IRF1405ZL-7PPbF
D2Pak 7 Pin
Standard Pack
Form
Quantity
TO-263CA 7 Pin
Orderable Part Number
Note
EOL notice # 289
Tube
50
IRF1405ZS-7PPbF
Tape and Reel Left
800
IRF1405ZSTRL7PP
Tube
50
IRF1405ZL-7PPbF
2
D Pak-7Pin
ID = 120A
S
S (Pin 2, 3, 5, 6, 7)
G (Pin 1)
This HEXFET® Power MOSFET utilizes the latest
processing techniques to achieve extremely low
on-resistance per silicon area. Additional features
of this design are a 175°C junction operating
temperature, fast switching speed and improved
repetitive avalanche rating.These features
combine to make this design an extremely efficient
and reliable device for use in a wide variety of
applications.
Package Type
RDS(on) = 4.9mΩ
G
Description
Base part number
VDSS = 55V
TO-263CA
EOL notice # 288
Absolute Maximum Ratings
Max.
Parameter
Units
Continuous Drain Current, V GS @ 10V (Silicon Limited)
150
I D @ TC = 100°C
Continuous Drain Current, V GS @ 10V (See Fig. 9)
100
I D @ TC = 25°C
Continuous Drain Current, V GS @ 10V (Package L imited)
120
I DM
Pulsed Drain Current
590
P D @TC = 25°C
Maximum Power Dissipation
230
W
Linear Derating Factor
1.5
W/°C
I D @ TC = 25°C
c
V GS
E AS
Gate-to-Source Voltage
Single Pulse Avalanche Energy (Thermally Limited)
E AS (tested)
Single Pulse Avalanche Energy Tested Value
I AR
Avalanche Current
E AR
Repetitive Avalanche Energy
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
h
d
A
± 20
V
250
mJ
810
See Fig.12a,12b,15,16
g
A
mJ
-55 to + 175
°C
300(1.6mm from case)
Soldering Temperature, for 10 seconds
Thermal Resistance
j
Parameter
RθJC
Junction-to-Case
RθJA
Junction-to-Ambient (PCB Mount, steady state)
i
Typ.
Max.
–––
0.65
–––
40
Units
°C/W
HEXFET® is a registered trademark of International Rectifier.
1
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
V (BR)DSS
Drain-to-Source Breakdown Voltage
Min.
Typ.
Max.
Units
55
–––
–––
V
Conditions
V GS = 0V, I D = 250μA
ΔΒV DSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.054
–––
V/°C
Reference to 25°C, I D = 1mA
RDS(on) SMD
Static Drain-to-Source On-Resistance
–––
3.7
4.9
mΩ
V GS = 10V, I D = 88A
V GS(th)
Gate Threshold Voltage
2.0
–––
4.0
V
V DS = V GS, I D = 150μA
gfs
Forward Transconductance
150
–––
–––
S
V DS = 25V, I D = 88A
I DSS
Drain-to-Source Leakage Current
–––
–––
20
–––
–––
250
Gate-to-Source Forward Leakage
–––
–––
200
Gate-to-Source Reverse Leakage
–––
–––
-200
Qg
Total Gate Charge
–––
150
230
Qgs
Gate-to-Source Charge
–––
37
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
64
–––
t d(on)
Turn-On Delay Time
–––
16
–––
V DD = 28V
tr
Rise Time
–––
140
–––
I D = 88A
t d(off)
Turn-Off Delay Time
–––
170
–––
tf
Fall Time
–––
130
–––
LD
Internal Drain Inductance
–––
4.5
–––
I GSS
μA
nA
e
V DS = 55V, V GS = 0V
V DS = 55V, V GS = 0V, TJ = 125°C
V GS = 20V
V GS = -20V
I D = 88A
nC
V DS = 44V
V GS = 10V
ns
RG = 5.0Ω
V GS = 10V
nH
e
d
Between lead,
D
6mm (0.25in.)
G
LS
Internal Source Inductance
–––
7.5
–––
Ciss
Input Capacitance
–––
5360
–––
Coss
Output Capacitance
–––
1310
–––
V DS = 25V
Crss
Reverse Transfer Capacitance
–––
340
–––
ƒ = 1.0MHz, See Fig. 5
Coss
Output Capacitance
–––
6080
–––
Coss
Output Capacitance
–––
920
–––
V GS = 0V, V DS = 44V, ƒ = 1.0MHz
Coss eff.
Effective Output Capacitance
–––
1700
–––
V GS = 0V, V DS = 0V to 44V
Min.
Typ.
Max.
from package
and center of die contact
S
V GS = 0V
pF
V GS = 0V, V DS = 1.0V, ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
I SM
Pulsed Source Current
c
(Body Diode)
–––
–––
150
–––
–––
590
Units
Conditions
D
MOSFET symbol
A
showing the
G
integral reverse
p-n junction diode.
V SD
Diode Forward Voltage
–––
–––
1.3
V
TJ = 25°C, I S = 88A, V GS = 0V
t rr
Reverse Recovery Time
–––
63
95
ns
TJ = 25°C, I F = 88A, V DD = 28V
Qrr
Reverse Recovery Charge
–––
160
240
nC
di/dt = 100A/μs
S
e
e
Notes:
Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11).
Limited by T Jmax, starting TJ = 25°C, L=0.064mH, RG = 25Ω, IAS = 88A, VGS =10V.
Part not recommended for use above this value.
Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance.
This value determined from sample failure population. 100% tested to this value in production.
This is applied to D 2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and
soldering techniques refer to application note #AN-994.
Rθ is measured at TJ of approximately 90°C.
Solder mounted on IMS substrate.
2
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
4.5V
10
BOTTOM
4.5V
10
≤60μs PULSE WIDTH
≤60μs PULSE WIDTH
Tj = 175°C
Tj = 25°C
1
0.1
1
10
1
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
10
100
1000
Fig 2. Typical Output Characteristics
150
Gfs, Forward Transconductance (S)
1000
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60μs PULSE WIDTH
0.1
0
2
4
6
8
10
12
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
3
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com © 2014 International Rectifier
125
T J = 25°C
100
T J = 175°C
75
50
V DS = 10V
25
300μs PULSE WIDTH
0
0
25
50
75
100 125 150 175 200
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
vs. Drain Current
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 88A
C, Capacitance(pF)
C oss = C ds + C gd
10000
Ciss
Coss
Crss
1000
100
VDS= 44V
VDS= 28V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
0
VDS, Drain-to-Source Voltage (V)
150
200
10000
ID, Drain-to-Source Current (A)
1000
ISD, Reverse Drain Current (A)
100
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
T J = 175°C
100
T J = 25°C
10
VGS = 0V
1
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
50
QG Total Gate Charge (nC)
www.irf.com © 2014 International Rectifier
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100μsec
100
1msec
10
DC
1
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
0.01
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
150
RDS(on) , Drain-to-Source On Resistance
(Normalized)
2.5
ID, Drain Current (A)
125
100
75
50
25
0
25
50
75
100
125
150
ID = 88A
VGS = 10V
2.0
1.5
1.0
0.5
175
-60 -40 -20 0
T C , Case Temperature (°C)
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 10. Normalized On-Resistance
vs. Temperature
Fig 9. Maximum Drain Current vs.
Case Temperature
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
τ1
R2
R2
τ2
R3
R3
τ3
τ2
τC
τ
τ3
Ci= τi/Ri
Ci i/Ri
Ri (°C/W)
0.1707
τi (sec)
0.000235
0.1923
0.000791
0.2885
0.008193
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
5
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014
1
IRF1405ZS/L-7PPbF
15V
D.U.T
RG
VGS
20V
+
V
- DD
IAS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
DRIVER
L
VDS
1000
ID
14A
23A
BOTTOM 88A
TOP
800
600
400
200
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
I AS
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
10 V
QGS
QGD
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
.2μF
12V
.3μF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
4.5
VG
4.0
3.5
3.0
2.5
2.0
ID = 150μA
ID = 250μA
ID = 1.0mA
ID = 1.0A
1.5
1.0
-75 -50 -25
VGS
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
3mA
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
www.irf.com © 2014 International Rectifier
Fig 14. Threshold Voltage vs. Temperature
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
1000
Avalanche Current (A)
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
0.01
0.05
0.10
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 88A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
vs. Temperature
7
www.irf.com © 2014 International Rectifier
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
D.U.T
Driver Gate Drive
+
-
P.W.
+
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
V DD
• dv/dt controlled by RG
• Driver same type as D.U.T.
• I SD controlled by Duty Factor "D"
• D.U.T. - Device Under Test
P.W.
Period
*
RG
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
Period
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
*
VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
D2Pak - 7 Pin Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
D2Pak - 7 Pin Part Marking Information
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
9
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
TO-263CA 7 Pin Long Leads Package Outline
Dimensions are shown in millimeters (inches)
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
10
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
D2Pak - 7 Pin Tape and Reel
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
11
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014
IRF1405ZS/L-7PPbF
†
Qualification information
††
Industrial
Qualification level
†††
(per JEDEC JESD47F
guidelines)
MS L1
2
D Pak-7PIN
Moisture Sensitivity Level
††
(per JEDE C J-S T D-020D )
TO-263CA 7Pin
RoHS compliant
Yes
Qualification standards can be found at International Rectifiers web site:
http://www.irf.com/product-info/reliability
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
Comments
• Updated data sheet with IR corporate template.
• Updated D2-Pak 7-Pin ordering information to reflect the End-Of-life of the Tube packaging option (EOL notice #289)
10/29/2014 • Removed TO-263CA package (EOL notice # 288).
• Removed RθJA = 62 °C/W & Rθ = 0.5 °C/W from thermal resistance table on page 1( does not apply to D2-Pak 7- Pin).
• Updated part marking on page 9 .
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
12
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
October 29, 2014