IRF200P223
MOSFET
StrongIRFET™
D
Applications
VDSS
200V
RDS(on) typ.
9.5m
G
UPS and Inverter applications
Half-bridge and full-bridge topologies
Resonant mode power supplies
DC/DC and AC/DC converters
OR-ing and redundant power switches
Brushed and BLDC Motor drive applications
Battery powered circuits
ID
Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dv/dt and di/dt Capability
Pb-Free ; RoHS Compliant ; Halogen-Free
Base part number
Package Type
IRF200P223
TO-247AC
Quantity
25
S
Source
Orderable Part Number
IRF200P223
100
30
ID, Drain Current (A)
RDS(on), Drain-to -Source On Resistance (m )
I D = 60A
25
TJ = 125°C
15
TJ = 25°C
10
D
Drain
120
35
20
G
Gate
Standard Pack
Form
Tube
80
60
40
20
0
5
2
4
6
8
10
12
14
16
18
25
20
Typical On-Resistance vs. Gate Voltage
Final Datasheet
www.infineon.com
50
75
100
125
150
175
TC , Case Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Figure 1
100A
TO-247AC
IRF200P223
Benefits
11.5m
max
S
Figure 2
Maximum Drain Current vs. Case Temperature
Please read the important Notice and Warnings at the end of this document
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Table of Contents
Table of Contents
Applications
Benefits
…..………………………………………………………………………...……………..……………1
…..………………………………………………………………………...……………..…………….1
Ordering Table ….……………………………………………………………………………………………………1
Table of Contents ….………………………………………………………………………………………………...2
1
Parameters ………………………………………………………………………………………………3
2
Maximum ratings, Thermal, and Avalanche characteristics ………………………………………4
3
Electrical characteristics ………………………………………………………………………………5
4
Electrical characteristic diagrams ……………………………………………………………………6
Package Information ………………………………………………………………………………………………14
Qualification Information ……………………………………………………………………………………………15
Revision History …………………………………………………………………………………………..…………16
Final Datasheet
2
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Parameters
1
Parameters
Table1
Key performance parameters
Parameter
Values
Units
VDS
200
V
RDS(on) max
11.5
m
ID
100
A
Final Datasheet
3
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Maximum ratings and thermal characteristics
2
Maximum ratings and thermal characteristics
Table 2
Maximum ratings (at TJ=25°C, unless otherwise specified)
Parameter
Symbol
Conditions
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting Torque, 6-32 or M3 Screw
ID
ID
IDM
PD
Table 4
Unit
TC = 25°C, VGS @ 10V
TC = 100°C, VGS @ 10V
TC = 25°C
TC = 25°C
TC = 25°C
-
100
71
400
313
2.1
± 20
-
-55 to + 175
-
-
300
-
-
10 lbf·in (1.1 N·m)
VGS
TJ
TSTG
Table 3
Thermal characteristics
Parameter
Symbol
Junction-to-Case
RJC
Case-to-Sink, Flat Greased Surface
RCS
Junction-to-Ambient
RJA
Values
Conditions
TJ approximately 90°C
-
Min.
-
Typ.
0.24
-
A
W
W/°C
V
Max.
0.48
40
°C
-
Unit
°C/W
Avalanche characteristics
Parameter
Symbol
Values
Single Pulse Avalanche Energy
EAS (Thermally limited)
429
Single Pulse Avalanche Energy
EAS (Thermally limited)
541
Avalanche Current
IAR
Repetitive Avalanche Energy
EAR
See Fig 16, 17, 23a, 23b
Unit
mJ
A
mJ
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.24mH, RG = 50, IAS = 60A, VGS =10V.
ISD 60A, di/dt 2330A/µs, VDD V(BR)DSS, TJ 175°C.
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
R is measured at TJ approximately 90°C.
Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50, IAS = 33A, VGS =10V.
Final Datasheet
4
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristics
3
Electrical characteristics
Table 5
Static characteristics
Parameter
Symbol
Conditions
Min.
Drain-to-Source Breakdown Voltage
V(BR)DSS
VGS = 0V, ID = 1mA
200
Breakdown Voltage Temp. Coefficient V(BR)DSS/TJ Reference to 25°C, ID = 1mA
Static Drain-to-Source On-Resistance
RDS(on)
VGS = 10V, ID = 60A
Gate Threshold Voltage
VGS(th)
Drain-to-Source Leakage Current
IDSS
Gate-to-Source Forward Leakage
Gate Resistance
Table 6
VDS = VGS, ID = 270µA
VDS =160V, VGS =0V
2.0
-
-
4.0
1.0
VDS =160V,VGS = 0V,TJ =125°C
-
-
100
IGSS
RG
VGS = 20V
-
2.7
100
-
Symbol
Conditions
gfs
Qg
Qgs
Qgd
Qsync
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
VDS = 50V, ID =60A
VDD = 130V
ID = 60A
RG = 2.7
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz, See Fig.7
Min.
93
-
Coss eff.(ER)
VGS = 0V, VDS = 0V to 160V
-
537
-
Coss eff.(TR)
VGS = 0V, VDS = 0V to 160V
-
783
-
Forward Trans conductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain Charge
Total Gate Charge Sync. (Qg– Qgd)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Effective Output Capacitance
(Energy Related)
Output Capacitance (Time Related)
V
V/°C
m
V
µA
nA
ID = 60A
VDS = 100V
VGS = 10V
Values
Typ. Max.
68
102
25
13
55
16
66
55
62
5094
628
8.7
-
Unit
S
nC
ns
pF
Reverse Diode
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Peak Diode Recovery dv/dt
Symbol
IS
ISM
VSD
dv/dt
Reverse Recovery Time
trr
Reverse Recovery Charge
Qrr
Reverse Recovery Current
IRRM
Final Datasheet
Unit
Dynamic characteristics
Parameter
Table 7
Values
Typ. Max.
0.10
9.5
11.5
Conditions
MOSFET symbol
showing the
integral reverse
p-n junction diode.
Min.
D
-
-
100
-
-
400
-
15
105
150
283
580
4.1
1.2
-
G
S
TJ = 25°C, IS = 60A,VGS = 0V
TJ = 175°C, IS = 60A,VDS = 200V
TJ = 25°C VDD = 170V
TJ = 125°C IF = 60A,
TJ = 25°C di/dt = 100A/µs
TJ = 125°C
TJ = 25°C
5
Values
Typ. Max.
Unit
A
V
V/ns
ns
nC
A
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
4
Electrical characteristic diagrams
1000
100
BOTTOM
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.0V
TOP
ID, Drain-to-Source Current (A)
I D, Drain-to-Source Current (A)
TOP
1000
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.0V
10
4.0V
1
100
BOTTOM
4.0V
10
60µs PULSE WIDTH
60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
0.1
0.1
1
10
1
100
0.1
VDS, Drain-to-Source Voltage (V)
1
10
100
VDS, Drain-to-Source Voltage (V)
Figure 3
Figure 4
Typical Output Characteristics
Typical Output Characteristics
3.0
100
TJ = 175°C
TJ = 25°C
10
1.0
VDS = 50V
60µs PULSE WIDTH
I D = 60A
2.0
1.5
1.0
0.5
0.0
0.10
2
3
4
5
6
7
-60
8
Typical Transfer Characteristics
Final Datasheet
-20
20
60
100
140
180
TJ , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Figure 5
VGS = 10V
2.5
(Normalized)
RDS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (A)
1000
Figure 6
6
Normalized On-Resistance vs. Temperature
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
1000000
VGS
Ciss
Crss
Coss
C, Capacitance (pF)
100000
14
= 0V, f = 1 MHZ
= C gs + C gd, C ds SHORTED
= C gd
= C ds + C gd
10000
Ciss
1000
Coss
100
I D= 60A
12
VGS, Gate-to-Source Voltage (V)
Crss
10
VDS= 160V
10
VDS= 100V
8
6
VDS= 40V
4
2
1
1
10
100
0
1000
0
10
20
VDS, Drain-to-Source Voltage (V)
Figure 7
30
40
50
60
70
80
90 100
Q G, Total Gate Charge (nC)
Typical Capacitance vs. Drain-to-Source
Voltage
Figure 8
Typical Gate Charge vs. Gate-to-Source
Voltage
ISD, Reverse Drain Current (A)
1000
100
TJ = 175°C
10
TJ = 25°C
1
VGS = 0V
0.1
0.0
0.4
0.8
1.2
1.6
2.0
VSD, Source-to-Drain Voltage (V)
Figure 9
Final Datasheet
Typical Source-Drain Diode Forward
Voltage
7
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
I D, Drain-to-Source Current (A)
1000
100
100µsec
10
1msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1
10msec
DC
0.1
Tc = 25°C
Tj = 175°C
Single Pulse
0.01
0.1
1
10
100
VDS, Drain-to-Source Voltage (V)
Figure 10
Maximum Safe Operating Area
10
235
Id = 1.0mA
8
225
Energy (µJ)
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
215
205
6
4
2
0
195
0
-60 -40 -20 0 20 40 60 80 100 120 140 160 180
TJ , Temperature ( °C )
Figure 11
Final Datasheet
20 40 60 80 100 120 140 160 180 200 220
VDS, Drain-to-Source Voltage (V)
Drain-to-Source Breakdown Voltage
Figure 12
8
Typical Coss Stored Energy
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
4.5
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
14
VGS(th), Gate threshold Voltage (V)
RDS(on), Drain-to -Source On Resistance (m )
16
12
10
4.0
3.5
3.0
2.5
2.0
I D = 270µA
ID = 1.0mA
I D = 1.0A
1.5
1.0
8
0
25
50
75
100
125
150
175
-75 -50 -25
200
0
25
50
75 100 125 150 175
TJ , Temperature ( °C )
I D, Drain Current (A)
Figure 13
Typical On-Resistance vs. Drain
Current
Figure 14
Threshold Voltage vs. Temperature
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.20
0.1
0.10
0.05
0.02
0.01
0.01
0.001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t 1 , Rectangular Pulse Duration (sec)
Figure 15
Final Datasheet
Maximum Effective Transient Thermal Impedance, Junction-to-Case
9
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
Avalanche Current (A)
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
10
1
Allowed avalanche Current vs
avalanche pulsewidth, tav, assuming
Tj = 25°C and Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Figure 16
Avalanche Current vs. Pulse Width
EAR , Avalanche Energy (mJ)
500
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
I D = 60A
400
300
200
100
0
25
50
75
100
125
150
175
Notes on Repetitive Avalanche Curves , Figures 16, 17:
(For further info, see AN-1005 at www.infineon.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. DT = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 14)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Starting T J , Junction Temperature (°C)
Figure 17
Final Datasheet
Maximum Avalanche Energy vs.
Temperature
10
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
50
50
I F = 40A
VR = 170V
TJ = 25°C
TJ = 125°C
40
30
20
10
30
20
10
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
diF /dt (A/µs)
Figure 18
VR = 170V
TJ = 25°C
TJ = 125°C
40
IRRM (A)
IRRM (A)
I F = 60A
Typical Recovery Current vs. dif/dt
Figure 19
2000
Typical Recovery Current vs. dif/dt
2500
I F = 40A
I F = 60A
VR = 170V
TJ = 25°C
TJ = 125°C
QRR (nC)
1500
QRR (nC)
2000
1000
VR = 170V
TJ = 25°C
TJ = 125°C
1500
1000
500
500
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
Figure 20
Final Datasheet
Typical Stored Charge vs. dif/dt
diF /dt (A/µs)
Figure 21
11
Typical Stored Charge vs. dif/dt
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
Figure 22
Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs
Figure 23a
Final Datasheet
Unclamped Inductive Test Circuit
Figure 23b
12
Unclamped Inductive Waveforms
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Electrical characteristic diagrams
Figure 24a
Switching Time Test Circuit
Figure 24b
Switching Time Waveforms
Final Datasheet
Figure 25a
Gate Charge Test Circuit
13
Figure 25b
Gate Charge Waveform
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Package Information
5
Package Information
TO-247AC Package Outline (Dimensions are shown in millimeters (inches))
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2001
IN THE ASSEMBLY LINE "H"
Note: "P" in assembly line position
indicates "Lead-Free"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFPE30
56
ASSEMBLY
LOT CODE
135H
57
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Final Datasheet
14
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Qualification Information
6
Qualification Information
Qualification Information
Industrial
(per JEDEC JESD47F) †
Qualification Level
Moisture Sensitivity Level
TO-247AC
Yes
RoHS Compliant
†
N/A
Applicable version of JEDEC standard at the time of product release.
Final Datasheet
15
V2.1
2020-01-07
StrongIRFET™
IRF200P223
Revision History
Revision History
Major changes since the last revision
Page or Reference Revision
Date
Description of changes
All pages
2.0
2017-03-16
All pages
2.1
2020-01-07
Final Datasheet
First release data sheet.
Update from “IR MOSFT/StrongIRFET™” to “StrongIRFET™” -all pages
Update Package picture –page1
16
V2.1
2020-01-07
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
IMPORTANT NOTICE
Edition 2015-05-06
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about this
document?
Email: erratum@infineon.com
Document reference
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).
With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with