0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRF7103QTRPBF

IRF7103QTRPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT96-1

  • 描述:

    MOSFET 2N-CH 50V 3A 8-SOIC

  • 数据手册
  • 价格&库存
IRF7103QTRPBF 数据手册
PD - 96101C IRF7103QPbF HEXFET® Power MOSFET Benefits l l l l l l Advanced Process Technology Dual N-Channel MOSFET Ultra Low On-Resistance 175°C Operating Temperature Repetitive Avalanche Allowed up to Tjmax Lead-Free Description This HEXFET® Power MOSFET's in a Dual SO-8 package utilize the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of these HEXFET Power MOSFET's are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These benefits combine to make this design an extremely efficient and reliable device for use in a wide variety of applications. VDSS RDS(on) max (mW) ID 130@VGS = 10V 3.0A 200@VGS = 4.5V 1.5A 50V 1 8 D1 G1 2 7 D1 S2 3 6 D2 4 5 D2 S1 G2 SO-8 Top View The efficient SO-8 package provides enhanced thermal characteristics and dual MOSFET die capability making it ideal in a variety of power applications. This dual, surface mount SO-8 can dramatically reduce board space and is also available in Tape & Reel. Absolute Maximum Ratings Parameter Max. Units ID @ TA = 25°C Continuous Drain Current, VGS @ 4.5V 3.0 ID @ TA = 70°C Continuous Drain Current, VGS @ 4.5V Pulsed Drain Current 2.5 PD @TA = 25°C Power Dissipation 2.4 W VGS 16 ± 20 W/°C V EAS Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy 22 mJ IAR Avalanche Current EAR Repetitive Avalanche Energy dv/dt TJ Operating Junction and TSTG Storage Temperature Range IDM c e c h Peak Diode Recovery dv/dt g A 25 f See Fig. 16c, 16d, 19, 20 A mJ 12 -55 to + 175 V/ns °C Thermal Resistance Typ. Max. Units RθJL Junction-to-Drain Lead Parameter ––– 20 °C/W RθJA Junction-to-Ambient ––– 62.5 www.irf.com fg 1 08/02/10 IRF7103QPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) ∆V(BR)DSS/∆TJ Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient RDS(on) Static Drain-to-Source On-Resistance VGS(th) gfs Gate Threshold Voltage Forward Transconductance IDSS Drain-to-Source Leakage Current V(BR)DSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. 50 ––– ––– ––– 1.0 3.4 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.057 ––– ––– ––– ––– ––– ––– ––– ––– 10 1.2 2.8 5.1 1.7 15 2.3 255 69 29 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 130 VGS = 10V, ID = 3.0A ‚ mΩ 200 VGS = 4.5V, ID = 1.5A ‚ 3.0 V VDS = VGS, ID = 250µA ––– S VDS = 15V, ID = 3.0A 2.0 VDS = 40V, VGS = 0V µA 25 VDS = 40V, VGS = 0V, TJ = 55°C 100 VGS = 20V nA -100 VGS = -20V 15 ID = 2.0A ––– nC VDS = 40V ––– VGS = 10V ––– VDD = 25V ‚ ––– ID = 1.0A ns ––– RG = 6.0Ω ––– RD = 25Ω ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)  Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– 3.0 ––– ––– 12 ––– ––– ––– ––– 35 45 1.2 53 67 A V ns nC Conditions MOSFET symbol showing the G integral reverse p-n junction diode. TJ = 25°C, IS = 1.5A, VGS = 0V TJ = 25°C, IF = 1.5A di/dt = 100A/µs ‚ D S ‚ Notes:  Repetitive rating; pulse width limited by „ Starting TJ = 25°C, L = 4.9mH max. junction temperature. ‚ Pulse width ≤ 400µs; duty cycle ≤ 2%. ƒ Surface mounted on 1 in square Cu board … ISD ≤ 2.0A, di/dt ≤ 155A/µs, VDD ≤ V(BR)DSS, RG = 25Ω, IAS = 3.0A. (See Figure 12). TJ ≤ 175°C † Limited by TJmax , see Fig.16c, 16d, 19, 20 for typical repetitive avalanche performance. 2 www.irf.com IRF7103QPbF 100 100 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP TOP 4.5V 10 20µs PULSE WIDTH Tj = 25°C 1 10 1 20µs PULSE WIDTH Tj = 175°C 0.1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) RDS(on) , Drain-to-Source On Resistance (Normalized) 2.5 T J = 175°C T J = 25°C VDS = 25V 20µs PULSE WIDTH 1.00 3.0 6.0 9.0 12.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics 100.00 10.00 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics ID, Drain-to-Source Current (Α) 4.5V 15.0 ID = 3.0A 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( °C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7103QPbF 10000 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd , Cds SHORTED Crss = Cgd 1000 Ciss Coss 100 Crss 6 3 10 1 10 0 100 0 100 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 10 TJ = 175 ° C 1 TJ = 25 ° C V GS = 0 V 0.6 0.8 1.0 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 6 9 12 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 4 3 QG, Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) 0.1 0.4 VDS = 40V VDS = 25V VDS = 10V 9 VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) Coss = Cds + Cgd I D = 2.0A 1.2 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 1 100µsec 1msec 0.1 Tc = 25°C Tj = 175°C Single Pulse 0.01 0 1 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7103QPbF 3.0 RD VDS VGS ID , Drain Current (A) 2.4 D.U.T. RG + -V DD 1.8 VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 1.2 Fig 10a. Switching Time Test Circuit 0.6 VDS 0.0 90% 25 50 75 100 125 150 175 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response ( Z thJA ) °C/W 100 D = 0.50 0.20 0.10 0.05 10 0.02 0.01 1 0.1 SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + T A 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 0.15 RDS (on) , Drain-to-Source On Resistance (Ω) RDS(on) , Drain-to -Source On Resistance (Ω) IRF7103QPbF 0.14 0.13 0.12 ID = 3.0A 0.11 0.10 0.09 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 2.500 2.000 1.000 0.500 0 5 10 15 20 25 30 35 40 ID , Drain Current (A) Fig 13. Typical On-Resistance Vs. Drain Current Fig 12. Typical On-Resistance Vs. Gate Voltage 2.0 70 60 1.8 50 ID = 250µA Power (W) V GS(th) Gate threshold Voltage (V) VGS = 10V 0.000 -V GS, Gate -to -Source Voltage (V) 1.5 40 30 20 1.3 10 1.0 -75 -50 -25 0 25 50 75 100 125 150 TJ , Temperature ( °C ) 6 VGS = 4.5V 1.500 Fig 14. Typical Threshold Voltage Vs. Junction Temperature 0 1.00 10.00 100.00 1000.00 Time (sec) Fig 15. Typical Power Vs. Time www.irf.com EAS , Single Pulse Avalanche Energy (mJ) IRF7103QPbF 60 TOP 48 BOTTOM ID 1.2A 2.5A 3.0A 15V 36 D.U.T RG 24 DRIVER L VDS + V - DD IAS 20V 12 tp A 0.01Ω Fig 16c. Unclamped Inductive Test Circuit 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( °C) V(BR)DSS Fig 16a. Maximum Avalanche Energy Vs. Drain Current tp I AS Fig 16d. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V VGS .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 17. Gate Charge Test Circuit www.irf.com Charge Fig 18. Basic Gate Charge Waveform 7 IRF7103QPbF 1000 Duty Cycle = Single Pulse Avalanche Current (A) 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 10 1 0.01 0.1 0.05 0.10 0.01 1.0E-08 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 1.0E+00 1.0E+01 tav (sec) Fig 19. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 25 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 3.0A 20 15 10 5 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 20. Maximum Avalanche Energy Vs. Temperature 8 175 Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = t av ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave) ·tav www.irf.com IRF7103QPbF SO-8 Package Outline Dimensions are shown in millimeters (inches) D DIM B 5 A 8 6 7 6 H E 1 2 3 0.25 [.010] 4 A MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC e1 6X e e1 MAX .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° C y 0.10 [.004] A1 8X b 0.25 [.010] A MILLIMETERS MAX A 5 INCHES MIN 8X L 8X c 7 C A B FOOT PRINT NOT ES : 1. DIMENSIONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENSIONS ARE SHOWN IN MILLIMET ERS [INCHES]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROT RUSIONS NOT T O EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROT RUSIONS . MOLD PROT RUSIONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENSION IS T HE LENGT H OF LEAD FOR SOLDERING T O A S UBST RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF 7101 (MOS FET ) INT ERNATIONAL RECT IF IER LOGO YWW XXXX F7101 DAT E CODE (YWW) Y = LAS T DIGIT OF T HE YEAR WW = WEEK LOT CODE PART NUMBER Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 IRF7103QPbF SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/2010 10 www.irf.com
IRF7103QTRPBF 价格&库存

很抱歉,暂时无法提供与“IRF7103QTRPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货