PD - 95315B
IRFR3504PbF
IRFU3504PbF
Features
l
l
l
l
l
l
HEXFET® Power MOSFET
Advanced Process Technology
Ultra Low On-Resistance
175°C Operating Temperature
Fast Switching
Repetitive Avalanche Allowed up to Tjmax
Lead-Free
Description
D
VDSS = 40V
RDS(on) = 9.2mΩ
G
This HEXFET® Power MOSFET utilizes the latest processing
techniques to achieve extremely low on-resistance per silicon
area. Additional features of this product are a 175°C junction
operating temperature, fast switching speed and improved
repetitive avalanche rating. These features combine to make
this design an extremely efficient and reliable device for use in
a wide variety of applications.
The D-Pak is designed for surface mounting using vapor
phase, infrared, or wave soldering techniques. The straight
lead version (IRFU series) is for through-hole mounting
applications. Power dissipation levels up to 1.5 watts are
possible in typical surface mount applications.
ID = 30A
S
D-Pak
IRFR3504PbF
I-Pak
IRFU3504PbF
Absolute Maximum Ratings
Parameter
ID @ TC
ID @ TC
ID @ TC
IDM
PD @TC
= 25°C
= 100°C
= 25°C
= 25°C
VGS
EAS
EAS (tested)
IAR
EAR
TJ
TSTG
Max.
Continuous Drain Current, VGS @ 10V (Silicon limited)
Continuous Drain Current, VGS @ 10V (See Fig.9)
Continuous Drain Current, VGS @ 10V (Package limited)
Pulsed Drain Current
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy
Single Pulse Avalanche Energy Tested Value
Avalanche Current
Repetitive Avalanche Energy
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Units
87
61
30
350
140
0.92
± 20
240
480
See Fig.12a, 12b, 15, 16
A
W
W/°C
V
mJ
A
mJ
-55 to + 175
°C
300 (1.6mm from case )
Thermal Resistance
Parameter
RθJC
RθJA
RθJA
Junction-to-Case
Junction-to-Ambient (PCB mount)
Junction-to-Ambient
Typ.
Max.
Units
–––
–––
–––
1.09
50
110
°C/W
HEXFET(R) is a registered trademark of International Rectifier.
www.irf.com
1
09/21/10
IRFR/U3504PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
gfs
Forward Transconductance
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
LD
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Internal Drain Inductance
Min.
40
–––
–––
2.0
40
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
0.041
7.8
–––
–––
–––
–––
–––
–––
48
12
13
11
53
36
22
4.5
LS
Internal Source Inductance
–––
7.5
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
–––
–––
–––
–––
–––
–––
2150
580
46
2830
510
870
V(BR)DSS
IDSS
IGSS
Drain-to-Source Leakage Current
Max. Units
Conditions
–––
V
VGS = 0V, ID = 250µA
––– V/°C Reference to 25°C, ID = 1mA
9.2
mΩ VGS = 10V, ID = 30A
4.0
V
VDS = 10V, ID = 250µA
–––
S
VDS = 10V, ID = 30A
20
VDS = 40V, VGS = 0V
µA
250
VDS = 40V, VGS = 0V, TJ = 125°C
200
VGS = 20V
nA
-200
VGS = -20V
71
ID = 30A
18
nC VDS = 32V
20
VGS = 10V
–––
VDD = 20V
–––
ID = 30A
ns
–––
RG = 6.8Ω
–––
VGS = 10V
D
–––
Between lead,
nH 6mm (0.25in.)
G
–––
from package
S
and center of die contact
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz, See Fig. 5
–––
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 32V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 32V
Source-Drain Ratings and Characteristics
IS
I SM
VSD
trr
Q rr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
87
––– –––
showing the
A
G
integral reverse
––– ––– 350
S
p-n junction diode.
––– ––– 1.3
V
TJ = 25°C, IS = 30A, VGS = 0V
––– 53
80
ns
TJ = 25°C, IF = 30A, VDD = 20V
––– 86 130
nC di/dt = 100A/µs
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFR/U3504PbF
1000
1000
ID, Drain-to-Source Current (A)
100
10
BOTTOM
1
4.0V
0.1
0.01
TOP
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.0V
20µs PULSE WIDTH
Tj = 25°C
0.001
0.1
1
10
100
100
BOTTOM
10
4.0V
1
20µs PULSE WIDTH
Tj = 175°C
0.1
1000
0.1
1
VDS, Drain-to-Source Voltage (V)
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.00
80
G fs , Forward Transconductance (S)
ID, Drain-to-Source Current (Α)
VGS
15V
10V
7.0V
6.0V
5.5V
5.0V
4.5V
4.0V
T J = 175°C
100.00
10.00
TJ = 25°C
1.00
VDS = 25V
20µs PULSE WIDTH
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
T J = 25°C
60
50
TJ = 175°C
40
30
20
VDS = 25V
10
0.10
2.0
70
16.0
20µs PULSE WIDTH
0
0
20
40
60
80
100
120
ID,Drain-to-Source Current (A)
Fig 4. Typical Forward Transconductance
Vs. Drain Current
3
IRFR/U3504PbF
100000
I D = 30A
10
VGS , Gate-to-Source Voltage (V)
Ciss
1000
Coss
100
Crss
8
6
4
2
10
0
1
10
0
100
1000
ID, Drain-to-Source Current (A)
1000
I SD , Reverse Drain Current (A)
100
°C
TJ = 25
°C
1
V GS = 0 V
0.1
0.5
30
40
50
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
10
0.0
20
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
TJ = 175
10
QG, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
1.0
1.5
2.0
2.5
V SD,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS = 32V
VDS = 20V
VDS = 8V
Coss = Cds + Cgd
10000
C, Capacitance(pF)
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, C ds SHORTED
Crss = Cgd
100µsec
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
10msec
1
3.0
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFR/U3504PbF
2.5
100
I D = 87A
LIMITED BY PACKAGE
2.0
60
40
20
0
25
50
75
100
125
150
175
(Normalized)
RDS(on) , Drain-to-Source On Resistance
ID , Drain Current (A)
80
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
80
100 120 140 160 180
( ° C)
TJ , Junction Temperature
TC , Case Temperature ( °C)
Fig 10. Normalized On-Resistance
Vs. Temperature
Fig 9. Maximum Drain Current Vs.
Case Temperature
(Z thJC )
10
1
Thermal Response
D = 0.50
0.20
P DM
0.10
0.1
0.05
0.02
0.01
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D =
2. Peak T
0.01
0.00001
0.0001
0.001
0.01
t1 / t 2
J = P DM x Z thJC
+TC
0.1
1
t1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFR/U3504PbF
500
15V
20V
VGS
+
V
- DD
IAS
E AS , Single Pulse Avalanche Energy (mJ)
D.U.T
RG
400
DRIVER
L
VDS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
TOP
ID
12A
21A
BOTTOM
30A
300
200
100
0
25
50
75
100
Starting Tj, Junction Temperature
I AS
125
150
175
( ° C)
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
QG
QGS
QGD
4.0
VG
Charge
Fig 13a. Basic Gate Charge Waveform
Current Regulator
Same Type as D.U.T.
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
VGS(th) Gate threshold Voltage (V)
10 V
3.5
3.0
ID = 250µA
2.5
2.0
1.5
VGS
-75 -50 -25
3mA
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
6
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
IRFR/U3504PbF
10000
Duty Cycle = Single Pulse
Avalanche Current (A)
1000
100
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming ∆ Tj = 25°C due to
avalanche losses
0.01
0.05
10
0.10
1
0.1
1.0E-08
1.0E-07
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
TOP
Single Pulse
BOTTOM 10% Duty Cycle
ID = 30A
200
150
100
50
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 16. Maximum Avalanche Energy
Vs. Temperature
www.irf.com
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of T jmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asT jmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
175
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav ) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
7
IRFR/U3504PbF
D.U.T
Driver Gate Drive
+
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
RG
•
•
•
•
V DD
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V DS
V GS
RG
RD
D.U.T.
+
-V DD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 18a. Switching Time Test Circuit
VDS
90%
10%
VGS
td(on)
tr
t d(off)
tf
Fig 18b. Switching Time Waveforms
8
www.irf.com
IRFR/U3504PbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
EXAMPLE: THIS IS AN IRFR120
WITH ASS EMBLY
LOT CODE 1234
ASS EMBLED ON WW 16, 2001
IN THE AS SEMBLY LINE "A"
PART NUMBER
INTERNATIONAL
RECTIFIER
LOGO
Note: "P" in assembly line position
indicates "Lead-Free"
IRFR120
12
116A
34
ASS EMBLY
LOT CODE
DATE CODE
YEAR 1 = 2001
WEEK 16
LINE A
"P" in assembly line position indicates
"Lead-Free" qualification to the consumer-level
OR
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFR120
12
ASSEMBLY
LOT CODE
34
DATE CODE
P = DES IGNATES LEAD-FREE
PRODUCT (OPTIONAL)
P = DES IGNATES LEAD-FREE
PRODUCT QUALIFIED TO THE
CONSUMER LEVEL (OPTIONAL)
YEAR 1 = 2001
WEEK 16
A = AS SEMBLY SITE CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRFR/U3504PbF
I-Pak (TO-251AA) Package Outline
Dimensions are shown in millimeters (inches)
I-Pak (TO-251AA) Part Marking Information
EXAMPLE: T HIS IS AN IRF U120
WIT H AS SEMBLY
LOT CODE 5678
AS SEMBLED ON WW 19, 2001
IN THE ASS EMB LY LINE "A"
INT ERNATIONAL
RECTIF IER
LOGO
PART NUMBER
IRFU120
119A
56
78
ASS EMBLY
LOT CODE
Note: "P" in ass embly line pos ition
indicates Lead-Free"
DAT E CODE
YEAR 1 = 2001
WEEK 19
LINE A
OR
INT ERNATIONAL
RECTIFIER
LOGO
PART NUMB ER
IRFU120
56
ASSEMBLY
LOT CODE
78
DAT E CODE
P = DESIGNAT ES LEAD-F REE
PRODUCT (OPT IONAL)
YEAR 1 = 2001
WEEK 19
A = ASSEMBLY SITE CODE
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
IRFR/U3504PbF
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR
TRR
TRL
16.3 ( .641 )
15.7 ( .619 )
12.1 ( .476 )
11.9 ( .469 )
FEED DIRECTION
16.3 ( .641 )
15.7 ( .619 )
8.1 ( .318 )
7.9 ( .312 )
FEED DIRECTION
NOTES :
1. CONTROLLING DIMENSION : MILLIMETER.
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm
NOTES :
1. OUTLINE CONFORMS TO EIA-481.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C,
L = 0.52mH, RG = 25Ω, IAS = 30A, VGS =10V.
Part not recommended for use above this
value.
ISD ≤ 30A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C.
Pulse width ≤ 1.0ms; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
When mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to
application note #AN-994.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2010
www.irf.com
11