StrongIRFET
IRFS7440PbF
IRFSL7440PbF
Applications
l
l
l
l
l
l
l
l
l
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
HEXFET® Power MOSFET
G
l
l
Base Part Number
Package Type
IRFS7440PbF
IRFS7440PbF
IRFSL7440PbF
D2-Pak
D2-Pak
TO-262
G
G
D2Pak
IRFS7440PbF
120A
D
S
TO-262
IRFSL7440PbF
G
D
S
Gate
Drain
Source
Standard Pack
Form
Quantity
Tube
50
Tape and Reel Left
800
Tube
50
7.0
Orderable Part Number
IRFS7440PbF
IRFS7440TRLPbF
IRFSL7440PbF
240
ID = 100A
6.0
Limited By Package
200
5.0
T J = 125°C
4.0
3.0
2.0
160
120
80
40
T J = 25°C
1.0
0
4
6
8
10
12
14
16
18
20
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
1
S
ID, Drain Current (A)
l
RDS(on), Drain-to -Source On Resistance (m Ω)
l
c
D
D
Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
Fully Characterized Capacitance and Avalanche
SOA
Enhanced body diode dV/dt and dI/dt Capability
Lead-Free
RoHS Compliant containing no Lead, no Bromide,
and no Halogen
40V
2.0mΩ
2.5mΩ
208A
ID (Package Limited)
S
Benefits
l
VDSS
RDS(on) typ.
max.
ID
D
www.irf.com © 2014 International Rectifier
25
50
75
100
125
150
175
T C , Case Temperature (°C)
Fig 2. Maximum Drain Current vs. Case Temperature
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
Absolute Maximum Ratings
Symbol
Parameter
Max.
Units
c
147c
208
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
120
IDM
Pulsed Drain Current
772
PD @TC = 25°C
Maximum Power Dissipation
208
W
Linear Derating Factor
1.4
W/°C
VGS
Gate-to-Source Voltage
± 20
V
TJ
Operating Junction and
-55 to + 175
TSTG
Storage Temperature Range
d
°C
Soldering Temperature, for 10 seconds (1.6mm from case)
x
EAS (Thermally limited)
Single Pulse Avalanche Energy
EAS (Thermally limited)
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
Thermal Resistance
Symbol
300
x
10lbf in (1.1N m)
Mounting torque, 6-32 or M3 screw
Avalanche Characteristics
d
A
e
k
mJ
238
560
mJ
Typ.
Max.
–––
0.72
Case-to-Sink, Flat Greased Surface
0.50
–––
Junction-to-Ambient
–––
62
RθJC
Junction-to-Case
RθCS
RθJA
j
A
See Fig. 14, 15, 22a, 22b
d
Parameter
Units
°C/W
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Max.
Units
V(BR)DSS
Symbol
Drain-to-Source Breakdown Voltage
40
–––
–––
V
ΔV(BR)DSS/ΔTJ
Breakdown Voltage Temp. Coefficient
–––
0.035
–––
V/°C
Reference to 25°C, ID = 5.0mA
RDS(on)
Static Drain-to-Source On-Resistance
–––
2.0
2.5
mΩ
VGS = 10V, ID = 100A
–––
3.0
–––
mΩ
VGS(th)
Gate Threshold Voltage
2.2
3.0
3.9
V
VDS = VGS, ID = 100μA
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
μA
VDS = 40V, VGS = 0V
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Internal Gate Resistance
–––
2.6
–––
IGSS
RG
Parameter
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements. (Refer to AN-1140)
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.048mH
RG = 50Ω, IAS = 100A, VGS =10V.
ISD ≤ 100A, di/dt ≤ 1330A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
2
www.irf.com © 2014 International Rectifier
Conditions
VGS = 0V, ID = 250μA
VGS = 6.0V, ID
g
= 50A g
d
VDS = 40V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
Ω
Pulse width ≤ 400μs; duty cycle ≤ 2%.
Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
Rθ is measured at TJ approximately 90°C.
Limited by TJmax starting TJ = 25°C, L= 1mH, RG = 50Ω, IAS = 34A, VGS =10V.
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
gfs
Forward Transconductance
Min.
Typ.
Max.
Units
88
–––
–––
S
VDS = 10V, ID = 100A
Conditions
nC
ID = 100A
Qg
Total Gate Charge
–––
90
135
Q gs
Gate-to-Source Charge
–––
23
–––
VDS =20V
Q gd
Gate-to-Drain ("Miller") Charge
–––
32
–––
VGS = 10V
Q sync
Total Gate Charge Sync. (Q g - Q gd )
–––
58
–––
ID = 100A, VDS =0V, VGS = 10V
g
td(on)
Turn-On Delay Time
–––
24
–––
tr
Rise Time
–––
68
–––
ID = 30A
td(off)
Turn-Off Delay Time
–––
115
–––
RG = 2.7Ω
tf
Fall Time
–––
68
–––
Ciss
Input Capacitance
–––
4730
–––
Coss
Output Capacitance
–––
680
–––
Crss
Reverse Transfer Capacitance
–––
460
–––
ƒ = 1.0 MHz
Coss eff. (ER)
Effective Output Capacitance (Energy Related)
–––
845
–––
VGS = 0V, VDS = 0V to 32V
Coss eff. (TR)
Effective Output Capacitance (Time Related)
–––
980
–––
VGS = 0V, VDS = 0V to 32V
Min.
Typ.
Max.
–––
–––
–––
–––
772
A
–––
0.9
1.3
V
ns
VDD = 20V
VGS = 10V
pF
g
VGS = 0V
VDS = 25V
i
h
Diode Characteristics
Symbol
IS
Parameter
Continuous Source Current
c
208
Units
A
Pulsed Source Current
(Body Diode)
d
integral reverse
G
p-n junction diode.
VSD
Diode Forward Voltage
dv/dt
Peak Diode Recovery
trr
Reverse Recovery Time
f
–––
6.8
–––
V/ns
–––
24
–––
ns
–––
28
–––
17
–––
Q rr
Reverse Recovery Charge
–––
–––
20
–––
IRRM
Reverse Recovery Current
–––
1.3
–––
3
D
showing the
(Body Diode)
ISM
Conditions
MOSFET symbol
www.irf.com © 2014 International Rectifier
TJ = 25°C, IS = 100A, VGS = 0V
g
S
TJ = 175°C, IS = 100A, VDS = 40V
TJ = 25°C
VR = 34V,
TJ = 125°C
IF = 100A
nC
TJ = 25°C
di/dt = 100A/μs
A
TJ = 25°C
g
TJ = 125°C
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
1000
1000
100
BOTTOM
TOP
10
4.5V
1
≤60μs PULSE WIDTH
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
100
BOTTOM
10
4.5V
≤60μs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.1
1
0.1
1
10
100
0.1
V DS, Drain-to-Source Voltage (V)
100
2.0
100
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
10
Fig 4. Typical Output Characteristics
1000
T J = 175°C
T J = 25°C
10
VDS = 10V
≤60μs PULSE WIDTH
ID = 100A
VGS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
1.0
3
4
5
6
7
8
9
Fig 5. Typical Transfer Characteristics
100000
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 6. Normalized On-Resistance vs. Temperature
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
VGS, Gate-to-Source Voltage (V)
C rss = C gd
C oss = C ds + C gd
C, Capacitance (pF)
1
V DS, Drain-to-Source Voltage (V)
Fig 3. Typical Output Characteristics
10000
Ciss
Coss
Crss
1000
100
ID= 100A
12.0
VDS= 32V
VDS= 20V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
4
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
www.irf.com © 2014 International Rectifier
0
20
40
60
80
100
120
QG, Total Gate Charge (nC)
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
10000
T J = 175°C
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100μsec
100
1msec
Limited by
package
10
10msec
DC
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
2.5
0.1
1
100
Fig 10. Maximum Safe Operating Area
Fig 9. Typical Source-Drain Diode
Forward Voltage
0.8
50
49
10
VDS, Drain-to-Source Voltage (V)
Id = 5.0mA
VDS= 0V to 32V
48
0.6
47
Energy (μJ)
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
VSD, Source-to-Drain Voltage (V)
46
45
44
0.4
43
0.2
42
41
0.0
40
0
-60 -40 -20 0 20 40 60 80 100120140160180
5
T J , Temperature ( °C )
15
20
25
30
35
40
45
VDS, Drain-to-Source Voltage (V)
Fig 11. Drain-to-Source Breakdown Voltage
RDS(on), Drain-to -Source On Resistance ( mΩ)
10
Fig 12. Typical COSS Stored Energy
40
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
30
VGS =10V
20
10
0
0
100 200 300 400 500 600 700 800
ID, Drain Current (A)
Fig 13. Typical On-Resistance vs. Drain Current
5
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
1
Thermal Response ( Z thJC ) °C/W
D = 0.50
0.20
0.10
0.1
0.05
0.02
0.01
0.01
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔTj = 150°C and
Tstart =25°C (Single Pulse)
100
10
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ΔΤ j = 25°C and
Tstart = 150°C.
1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
250
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 100A
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Fig 16. Maximum Avalanche Energy vs. Temperature
6
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
8
IF = 60A
V R = 34V
7
4.0
TJ = 25°C
TJ = 125°C
6
3.0
IRRM (A)
VGS(th), Gate threshold Voltage (V)
5.0
ID = 100μA
ID = 1.0mA
ID = 1.0A
5
4
3
2.0
2
1
1.0
-75 -50 -25
0
0
25 50 75 100 125 150 175
200
T J , Temperature ( °C )
600
800
1000
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig 17. Threshold Voltage vs. Temperature
8
110
IF = 100A
V R = 34V
7
IF = 60A
V R = 34V
100
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
90
QRR (nC)
6
IRRM (A)
400
diF /dt (A/μs)
5
4
80
70
3
60
2
50
1
40
0
200
400
600
800
1000
0
200
diF /dt (A/μs)
400
600
800
1000
diF /dt (A/μs)
Fig. 20 - Typical Stored Charge vs. dif/dt
Fig. 19 - Typical Recovery Current vs. dif/dt
100
IF = 100A
V R = 34V
QRR (nC)
80
TJ = 25°C
TJ = 125°C
60
40
20
0
0
200
400
600
800
1000
diF /dt (A/μs)
Fig. 21 - Typical Stored Charge vs. dif/dt
7
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
Driver Gate Drive
D.U.T
-
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
20V
VGS
+
V
- DD
IAS
A
0.01Ω
tp
I AS
Fig 22a. Unclamped Inductive Test Circuit
RD
VDS
Fig 22b. Unclamped Inductive Waveforms
VDS
90%
VGS
D.U.T.
RG
+
- VDD
V10V
GS
10%
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
td(on)
Fig 23a. Switching Time Test Circuit
tr
t d(off)
Fig 23b. Switching Time Waveforms
Id
Current Regulator
Same Type as D.U.T.
Vds
Vgs
50KΩ
12V
tf
.2μF
.3μF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 24a. Gate Charge Test Circuit
8
www.irf.com © 2014 International Rectifier
Qgs1 Qgs2
Qgd
Qgodr
Fig 24b. Gate Charge Waveform
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
INTERNATIONAL
RECTIFIER LOGO
ASSEMBLY
LOT CODE
PART NUMBER
IRFS7440
PYWW?
LC
LC
OR
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
INTERNATIONAL
RECTIFIER LOGO
ASSEMBLY
LOT CODE
PART NUMBER
IRFS7440
YWWP
LC
LC
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
9
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
INTERNATIONAL
RECTIFIER LOGO
IRFSL7440
PYWW?
ASSEMBLY
LOT CODE
LC
LC
PART NUMBER
OR
DATE CODE
P = LEAD-FREE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
? = ASSEMBLY SITE CODE
INTERNATIONAL
RECTIFIER LOGO
IRFSL7440
YWWP
ASSEMBLY
LOT CODE
LC
LC
PART NUMBER
DATE CODE
Y = LAST DIGIT OF YEAR
WW = WORK WEEK
P = LEAD-FREE
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
10
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
D2Pak (TO-263AB) Tape & Reel Information Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
15.42 (.609)
15.22 (.601)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
11
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IRFS7440PbF/IRFSL7440PbF
†
Qualification information
††
Industrial
Qualification level
†††
(per JEDEC JESD47F
Moisture Sensitivity Level
D2Pak
guidelines)
MS L1
†††
(per JE DEC J-S T D-020D
TO-262
)
Yes
RoHS compliant
Qualification standards can be found at International Rectifiers web site: http://www.irf.com/product-info/reliability/
Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http:www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
4/30/2014
11/19/2014
Comment
• Updated data sheet based on corporate template.
• Updated package outline and part marking on page 9 & 10.
• Updated EAS (L =1mH) = 560mJ on page 2
• Updated note 9 “Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50Ω, IAS = 34A, VGS =10V”. on page 2
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
12
www.irf.com © 2014 International Rectifier
Submit Datasheet Feedback
November 19, 2014
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement
of intellectual property rights of any third party.
In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and
standards concerning customer’s products and any
use of the product of Infineon Technologies in
customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.
For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).
WARNINGS
Due to technical requirements products may
contain dangerous substances. For information on
the types in question please contact your nearest
Infineon Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized
representatives
of
Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of
the product or any consequences of the use thereof
can reasonably be expected to result in personal
injury.