0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRFSL4229PBF

IRFSL4229PBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT226

  • 描述:

    MOSFET N-CH 250V 45A TO-262

  • 数据手册
  • 价格&库存
IRFSL4229PBF 数据手册
PD - 96285 IRFSL4229PbF Features l Advanced Process Technology l Low QG for Fast Response l High Repetitive Peak Current Capability for Reliable Operation l Short Fall & Rise Times for Fast Switching l175°C Operating Junction Temperature for Improved Ruggedness l Repetitive Avalanche Capability for Robustness and Reliability Key Parameters VDS min VDS (Avalanche) typ. RDS(ON) typ. @ 10V IRP max @ TC= 100°C TJ max 250 300 42 91 175 V V m: A °C D D G G D S TO-262 IRFSL4229PbF S G D S Gate Drain Source Description This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Additional features of this MOSFET are 175°C operating juntion temperature and high repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust and reliable device. Absolute Maximum Ratings Max. Parameter VGS ID @ TC = 25°C Units Gate-to-Source Voltage ±30 V Continuous Drain Current, VGS @ 10V 45 A ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 32 IDM Pulsed Drain Current 180 IRP @ TC = 100°C Repetitive Peak Current c g 91 PD @TC = 25°C Power Dissipation 330 PD @TC = 100°C Power Dissipation 190 W Linear Derating Factor 2.2 W/°C TJ Operating Junction and -40 to + 175 °C TSTG Storage Temperature Range Soldering Temperature for 10 seconds Mounting Torque, 6-32 or M3 Screw x 300 x 10lb in (1.1N m) N Thermal Resistance Parameter RθJC RθJA f Junction-to-Case Junction-to-Ambient f Typ. ––– ––– Max. 0.45* 62 Units * RθJC (end of life) for TO-262 = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium. Notes  through … are on page 8 www.irf.com 1 01/04/10 IRFSL4229PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 26A VDS = VGS, ID = 250µA V Drain-to-Source Breakdown Voltage 250 ––– ––– ∆ΒVDSS/∆TJ RDS(on) VGS(th) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– ––– 210 42 ––– 48 Gate Threshold Voltage Gate Threshold Voltage Coefficient 3.0 ––– ––– -14 5.0 ––– Drain-to-Source Leakage Current ––– ––– ––– ––– 20 200 µA Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage ––– ––– ––– ––– 100 -100 nA Forward Transconductance Total Gate Charge 83 ––– ––– 72 ––– 110 Gate-to-Drain Charge Turn-On Delay Time ––– ––– 26 18 ––– ––– Rise Time Turn-Off Delay Time ––– ––– 31 30 ––– ––– tst Fall Time Shoot Through Blocking Time ––– 100 21 ––– ––– ––– EPULSE Energy per Pulse ––– 790 ––– ∆VGS(th)/∆TJ IDSS IGSS gfs Qg Qgd td(on) tr td(off) tf ––– 1390 ––– Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– 4560 390 100 ––– ––– ––– Effective Output Capacitance Internal Drain Inductance ––– 290 ––– LD ––– 4.5 ––– LS Internal Source Inductance Ciss Coss Crss Coss eff. e mV/°C S nC ns 7.5 VDS = 250V, VGS = 0V VDS = 250V, VGS = 0V, TJ = 125°C VGS = 20V VGS = -20V VDS = 25V, ID = 26A VDD = 125V, ID = 26A, VGS = 10V VDD = 125V, VGS = 10V ID = 26A e e RG = 2.4Ω ns See Fig. 22 VDD = 200V, VGS = 15V, RG= 4.7Ω L = 220nH, C= 0.3µF, VGS = 15V µJ VDS = 200V, RG= 4.7Ω, TJ = 25°C L = 220nH, C= 0.3µF, VGS = 15V VDS = 200V, RG= 4.7Ω, TJ = 100°C VGS = 0V pF nH ––– Conditions Typ. Max. Units BVDSS VDS = 25V ƒ = 1.0MHz, VGS = 0V, VDS = 0V to 200V Between lead, and center of die contact D G ––– S Avalanche Characteristics Parameter EAS EAR VDS(Avalanche) IAS d Repetitive Avalanche Energy c Repetitive Avalanche Voltagec Avalanche Currentd Single Pulse Avalanche Energy Typ. Max. Units ––– 130 mJ ––– 300 33 ––– mJ ––– 26 A V Diode Characteristics Parameter IS @ TC = 25°C Continuous Source Current ISM VSD trr Qrr 2 (Body Diode) Pulsed Source Current c (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. ––– Typ. Max. Units ––– Conditions MOSFET symbol 45 A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 26A, VGS = 0V TJ = 25°C, IF = 26A, VDD = 50V ––– ––– 180 ––– ––– 1.3 V ––– ––– 190 840 290 1260 ns nC e di/dt = 100A/µs e www.irf.com IRFSL4229PbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V 100 BOTTOM 10 5.5V 1 0.1 100 5.5V 10 ≤ 60µs PULSE WIDTH Tj = 25°C 1 10 BOTTOM ≤ 60µs PULSE WIDTH Tj = 175°C 1 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 3.5 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 TJ = 175°C 10 1 TJ = 25°C 0.1 VDS = 25V ≤ 60µs PULSE WIDTH 0.01 4.0 5.0 6.0 7.0 ID = 26A VGS = 10V 3.0 2.5 2.0 1.5 1.0 0.5 0.0 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 0 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance vs. Temperature 1600 1400 L = 220nH C = 0.3µF 100°C 25°C 1200 L = 220nH C = Variable 100°C 25°C 1200 Energy per pulse (µJ) Energy per pulse (µJ) VGS 15V 10V 8.0V 7.0V 6.5V 6.0V 5.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 800 400 1000 800 600 400 200 0 0 150 160 170 180 190 200 VDS, Drain-to -Source Voltage (V) Fig 5. Typical EPULSE vs. Drain-to-Source Voltage www.irf.com 100 110 120 130 140 150 160 170 ID, Peak Drain Current (A) Fig 6. Typical EPULSE vs. Drain Current 3 IRFSL4229PbF 2000 1000 L = 220nH Energy per pulse (µJ) ISD , Reverse Drain Current (A) C= 0.3µF C= 0.2µF C= 0.1µF 1600 1200 800 400 100 TJ = 175°C 10 1 TJ = 25°C VGS = 0V 0 25 50 75 100 125 0.1 150 0.2 Temperature (°C) Fig 7. Typical EPULSE vs.Temperature 7000 VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 20 Coss = Cds + Cgd 5000 Ciss 4000 3000 Coss 2000 1000 Crss 1 1.0 1.2 ID= 26A VDS = 160V VDS = 100V 16 VDS = 40V 12 8 4 10 100 0 1000 Fig 9. Typical Capacitance vs.Drain-to-Source Voltage ID, Drain-to-Source Current (A) 1000 30 20 10 0 40 60 80 100 120 Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage 50 40 20 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) ID, Drain Current (A) 0.8 0 0 OPERATION IN THIS AREA LIMITED BY R DS(on) 1µsec 100 100µsec 10µsec 10 1 Tc = 25°C Tj = 175°C Single Pulse 0.1 25 50 75 100 125 150 175 TJ , Junction Temperature (°C) Fig 11. Maximum Drain Current vs. Case Temperature 4 0.6 Fig 8. Typical Source-Drain Diode Forward Voltage VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 6000 0.4 VSD, Source-to-Drain Voltage (V) 1 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 12. Maximum Safe Operating Area www.irf.com 0.40 EAS, Single Pulse Avalanche Energy (mJ) () RDS (on), Drain-to -Source On Resistance Ω IRFSL4229PbF ID = 26A 0.30 0.20 TJ = 125°C 0.10 TJ = 25°C 600 I D 7.4A 13A BOTTOM 26A TOP 500 400 300 200 100 0.00 0 5 6 7 8 9 10 25 VGS, Gate-to-Source Voltage (V) 100 125 150 175 Fig 14. Maximum Avalanche Energy Vs. Temperature 5.0 140 4.5 120 Repetitive Peak Current (A) VGS(th) Gate threshold Voltage (V) 75 Starting TJ, Junction Temperature (°C) Fig 13. On-Resistance Vs. Gate Voltage 4.0 50 ID = 250µA 3.5 3.0 2.5 ton= 1µs Duty cycle = 0.25 Half Sine Wave Square Pulse 100 2.0 80 60 40 20 1.5 0 -75 -50 -25 0 25 50 75 100 125 150 175 25 50 75 100 125 150 175 Case Temperature (°C) TJ , Temperature ( °C ) Fig 16. Typical Repetitive peak Current vs. Case temperature Fig 15. Threshold Voltage vs. Temperature Thermal Response ( ZthJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) τC τ2 τ1 τ2 Ci= τi/Ri Ci= τi/Ri τ3 τ3 τ τι (sec) 0.080717 0.000052 0.209555 0.001021 0.159883 0.007276 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFSL4229PbF Driver Gate Drive D.U.T ƒ + ‚ - -  * RG • • • • „ *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + V DD ** + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 19a. Unclamped Inductive Test Circuit Fig 19b. Unclamped Inductive Waveforms Id Vds Vgs L DUT 0 1K VCC Vgs(th) Qgs1 Qgs2 Fig 20a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 20b. Gate Charge Waveform www.irf.com IRFSL4229PbF PULSE A A RG C DRIVER L PULSE B VCC B Ipulse RG tST DUT Fig 21b. tst Test Waveforms Fig 21a. tst and EPULSE Test Circuit Fig 21c. EPULSE Test Waveforms V DS V GS RG RD VDS 90% D.U.T. + -V DD VGS Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 22a. Switching Time Test Circuit www.irf.com 10% VGS td(on) tr t d(off) tf Fig 22b. Switching Time Waveforms 7 IRFSL4229PbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information (;$03/( 7+,6,6$1,5// /27&2'( $66(0%/('21:: ,17+($66(0%/
IRFSL4229PBF 价格&库存

很抱歉,暂时无法提供与“IRFSL4229PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货