PD - 96285
IRFSL4229PbF
Features
l Advanced Process Technology
l Low QG for Fast Response
l High Repetitive Peak Current Capability for
Reliable Operation
l Short Fall & Rise Times for Fast Switching
l175°C Operating Junction Temperature for
Improved Ruggedness
l Repetitive Avalanche Capability for Robustness
and Reliability
Key Parameters
VDS min
VDS (Avalanche) typ.
RDS(ON) typ. @ 10V
IRP max @ TC= 100°C
TJ max
250
300
42
91
175
V
V
m:
A
°C
D
D
G
G
D
S
TO-262
IRFSL4229PbF
S
G
D
S
Gate
Drain
Source
Description
This HEXFET® Power MOSFET utilizes the latest processing techniques to achieve low on-resistance
per silicon area. Additional features of this MOSFET are 175°C operating juntion temperature and high
repetitive peak current capability. These features combine to make this MOSFET a highly efficient, robust
and reliable device.
Absolute Maximum Ratings
Max.
Parameter
VGS
ID @ TC = 25°C
Units
Gate-to-Source Voltage
±30
V
Continuous Drain Current, VGS @ 10V
45
A
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
32
IDM
Pulsed Drain Current
180
IRP @ TC = 100°C
Repetitive Peak Current
c
g
91
PD @TC = 25°C
Power Dissipation
330
PD @TC = 100°C
Power Dissipation
190
W
Linear Derating Factor
2.2
W/°C
TJ
Operating Junction and
-40 to + 175
°C
TSTG
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
300
x
10lb in (1.1N m)
N
Thermal Resistance
Parameter
RθJC
RθJA
f
Junction-to-Case
Junction-to-Ambient
f
Typ.
–––
–––
Max.
0.45*
62
Units
* RθJC (end of life) for TO-262 = 0.65°C/W. This is the maximum measured value after 1000 temperature
cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium.
Notes through
are on page 8
www.irf.com
1
01/04/10
IRFSL4229PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
VGS = 0V, ID = 250µA
V
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 26A
VDS = VGS, ID = 250µA
V
Drain-to-Source Breakdown Voltage
250
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
VGS(th)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
210
42
–––
48
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
3.0
–––
–––
-14
5.0
–––
Drain-to-Source Leakage Current
–––
–––
–––
–––
20
200
µA
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
Forward Transconductance
Total Gate Charge
83
–––
–––
72
–––
110
Gate-to-Drain Charge
Turn-On Delay Time
–––
–––
26
18
–––
–––
Rise Time
Turn-Off Delay Time
–––
–––
31
30
–––
–––
tst
Fall Time
Shoot Through Blocking Time
–––
100
21
–––
–––
–––
EPULSE
Energy per Pulse
–––
790
–––
∆VGS(th)/∆TJ
IDSS
IGSS
gfs
Qg
Qgd
td(on)
tr
td(off)
tf
–––
1390
–––
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
–––
–––
–––
4560
390
100
–––
–––
–––
Effective Output Capacitance
Internal Drain Inductance
–––
290
–––
LD
–––
4.5
–––
LS
Internal Source Inductance
Ciss
Coss
Crss
Coss eff.
e
mV/°C
S
nC
ns
7.5
VDS = 250V, VGS = 0V
VDS = 250V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VDS = 25V, ID = 26A
VDD = 125V, ID = 26A, VGS = 10V
VDD = 125V, VGS = 10V
ID = 26A
e
e
RG = 2.4Ω
ns
See Fig. 22
VDD = 200V, VGS = 15V, RG= 4.7Ω
L = 220nH, C= 0.3µF, VGS = 15V
µJ
VDS = 200V, RG= 4.7Ω, TJ = 25°C
L = 220nH, C= 0.3µF, VGS = 15V
VDS = 200V, RG= 4.7Ω, TJ = 100°C
VGS = 0V
pF
nH
–––
Conditions
Typ. Max. Units
BVDSS
VDS = 25V
ƒ = 1.0MHz,
VGS = 0V, VDS = 0V to 200V
Between lead,
and center of die contact
D
G
–––
S
Avalanche Characteristics
Parameter
EAS
EAR
VDS(Avalanche)
IAS
d
Repetitive Avalanche Energy c
Repetitive Avalanche Voltagec
Avalanche Currentd
Single Pulse Avalanche Energy
Typ.
Max.
Units
–––
130
mJ
–––
300
33
–––
mJ
–––
26
A
V
Diode Characteristics
Parameter
IS @ TC = 25°C Continuous Source Current
ISM
VSD
trr
Qrr
2
(Body Diode)
Pulsed Source Current
c
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
Min.
–––
Typ. Max. Units
–––
Conditions
MOSFET symbol
45
A
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 26A, VGS = 0V
TJ = 25°C, IF = 26A, VDD = 50V
–––
–––
180
–––
–––
1.3
V
–––
–––
190
840
290
1260
ns
nC
e
di/dt = 100A/µs
e
www.irf.com
IRFSL4229PbF
1000
1000
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
100
BOTTOM
10
5.5V
1
0.1
100
5.5V
10
≤ 60µs PULSE WIDTH
Tj = 25°C
1
10
BOTTOM
≤ 60µs PULSE WIDTH
Tj = 175°C
1
100
0.1
VDS, Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
3.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
TJ = 175°C
10
1
TJ = 25°C
0.1
VDS = 25V
≤ 60µs PULSE WIDTH
0.01
4.0
5.0
6.0
7.0
ID = 26A
VGS = 10V
3.0
2.5
2.0
1.5
1.0
0.5
0.0
8.0
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
0
20 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
Fig 4. Normalized On-Resistance vs. Temperature
1600
1400
L = 220nH
C = 0.3µF
100°C
25°C
1200
L = 220nH
C = Variable
100°C
25°C
1200
Energy per pulse (µJ)
Energy per pulse (µJ)
VGS
15V
10V
8.0V
7.0V
6.5V
6.0V
5.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
800
400
1000
800
600
400
200
0
0
150
160
170
180
190
200
VDS, Drain-to -Source Voltage (V)
Fig 5. Typical EPULSE vs. Drain-to-Source Voltage
www.irf.com
100
110
120
130
140
150
160
170
ID, Peak Drain Current (A)
Fig 6. Typical EPULSE vs. Drain Current
3
IRFSL4229PbF
2000
1000
L = 220nH
Energy per pulse (µJ)
ISD , Reverse Drain Current (A)
C= 0.3µF
C= 0.2µF
C= 0.1µF
1600
1200
800
400
100
TJ = 175°C
10
1
TJ = 25°C
VGS = 0V
0
25
50
75
100
125
0.1
150
0.2
Temperature (°C)
Fig 7. Typical EPULSE vs.Temperature
7000
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
20
Coss = Cds + Cgd
5000
Ciss
4000
3000
Coss
2000
1000
Crss
1
1.0
1.2
ID= 26A
VDS = 160V
VDS = 100V
16
VDS = 40V
12
8
4
10
100
0
1000
Fig 9. Typical Capacitance vs.Drain-to-Source Voltage
ID, Drain-to-Source Current (A)
1000
30
20
10
0
40
60
80
100
120
Fig 10. Typical Gate Charge vs.Gate-to-Source Voltage
50
40
20
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
ID, Drain Current (A)
0.8
0
0
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1µsec
100
100µsec
10µsec
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
25
50
75
100
125
150
175
TJ , Junction Temperature (°C)
Fig 11. Maximum Drain Current vs. Case Temperature
4
0.6
Fig 8. Typical Source-Drain Diode Forward Voltage
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
6000
0.4
VSD, Source-to-Drain Voltage (V)
1
10
100
1000
VDS , Drain-to-Source Voltage (V)
Fig 12. Maximum Safe Operating Area
www.irf.com
0.40
EAS, Single Pulse Avalanche Energy (mJ)
()
RDS (on), Drain-to -Source On Resistance Ω
IRFSL4229PbF
ID = 26A
0.30
0.20
TJ = 125°C
0.10
TJ = 25°C
600
I D
7.4A
13A
BOTTOM 26A
TOP
500
400
300
200
100
0.00
0
5
6
7
8
9
10
25
VGS, Gate-to-Source Voltage (V)
100
125
150
175
Fig 14. Maximum Avalanche Energy Vs. Temperature
5.0
140
4.5
120
Repetitive Peak Current (A)
VGS(th) Gate threshold Voltage (V)
75
Starting TJ, Junction Temperature (°C)
Fig 13. On-Resistance Vs. Gate Voltage
4.0
50
ID = 250µA
3.5
3.0
2.5
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
Square Pulse
100
2.0
80
60
40
20
1.5
0
-75 -50 -25
0
25
50
75
100 125 150 175
25
50
75
100
125
150
175
Case Temperature (°C)
TJ , Temperature ( °C )
Fig 16. Typical Repetitive peak Current vs.
Case temperature
Fig 15. Threshold Voltage vs. Temperature
Thermal Response ( ZthJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ2
τ1
τ2
Ci= τi/Ri
Ci= τi/Ri
τ3
τ3
τ
τι (sec)
0.080717 0.000052
0.209555 0.001021
0.159883 0.007276
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 17. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFSL4229PbF
Driver Gate Drive
D.U.T
+
-
-
*
RG
•
•
•
•
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
**
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 19a. Unclamped Inductive Test Circuit
Fig 19b. Unclamped Inductive Waveforms
Id
Vds
Vgs
L
DUT
0
1K
VCC
Vgs(th)
Qgs1 Qgs2
Fig 20a. Gate Charge Test Circuit
6
Qgd
Qgodr
Fig 20b. Gate Charge Waveform
www.irf.com
IRFSL4229PbF
PULSE A
A
RG
C
DRIVER
L
PULSE B
VCC
B
Ipulse
RG
tST
DUT
Fig 21b. tst Test Waveforms
Fig 21a. tst and EPULSE Test Circuit
Fig 21c. EPULSE Test Waveforms
V DS
V GS
RG
RD
VDS
90%
D.U.T.
+
-V DD
VGS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 22a. Switching Time Test Circuit
www.irf.com
10%
VGS
td(on)
tr
t d(off)
tf
Fig 22b. Switching Time Waveforms
7
IRFSL4229PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/