PD- 95612
IRG4BC15MDPbF
Short Circuit Rated
Fast IGBT
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST
SOFT RECOVERY DIODE
Features
C
• Rugged: 10µsec short circuit capable at VGS = 15V
• Low VCE(on) for 4 to 10kHz applications
• IGBT co-packaged with ultra-soft-recovery anti-parallel
VCES = 600V
diodes
• Industry standard TO-220AB package
• Lead-Free
VCE(on) typ. = 1.88V
G
Benefits
• Best Value for Appliance and Industrial applications
• Offers highest efficiency and short circuit capability for
intermediate applications
• Provides best efficiency for the mid range frequency
(4 to 10kHz)
• Optimized for Appliance and Industrial applications up to
1HP
• High noise immune "Positive Only" gate drive - Negative
bias gate drive not necessary
• For Low EMI designs - requires little or no snubbing
• Single Package switch for bridge circuit applications
• Compatible with high voltage Gate Drive IC's
• Allows simpler gate drive
@VGE = 15V, IC = 8.6A
E
n-channel
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
tsc
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Short Circuit Withstand Time
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Max.
Units
600
14
8.6
28
28
4.0
12
16
± 20
49
19
-55 to +150
V
A
µs
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Min.
Typ.
Max.
–––
–––
–––
–––
–––
–––
–––
0.50
–––
2 (0.07)
2.7
7.0
–––
80
–––
Units
°C/W
g (oz)
1
8/2/04
IRG4BC15MDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
V(BR)CES
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Min.
600
–––
–––
–––
–––
Gate Threshold Voltage
4.0
Temperature Coeff. of Threshold Voltage –––
Forward Transconductance
2.3
Zero Gate Voltage Collector Current
–––
–––
Diode Forward Voltage Drop
–––
–––
Gate-to-Emitter Leakage Current
–––
Typ.
–––
0.65
1.88
2.6
2.1
–––
-10
3.4
–––
–––
1.5
1.4
–––
Max. Units
Conditions
–––
V
VGE = 0V, IC = 250µA
––– V/°C VGE = 0V, IC = 1.0mA
2.3
IC = 8.6A
VGE = 15V
–––
V
IC = 14A
–––
IC = 8.6A, TJ = 150°C
6.5
VCE = VGE, IC = 250µA
––– mV/°C VCE = VGE, IC = 250µA
–––
S
VCE = 100V, IC = 6.5A
250
µA
VGE = 0V, VCE = 600V
1400
VGE = 0V, VCE = 600V, TJ = 150°C
1.8
V
IC = 4.0A
1.7
IC = 4.0A, TJ = 150°C
±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Min.
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
46
4.2
15
21
38
540
350
0.32
1.93
2.25
20
42
650
590
3.0
7.5
340
35
8.8
28
38
2.9
3.7
40
70
280
240
Max. Units
Conditions
–––
IC = 8.6A
–––
nC
VCC = 400V
–––
VGE = 15V
–––
TJ = 25°C
–––
ns
IC = 8.6A, VCC = 480V
810
VGE = 15V, RG = 75Ω
530
Energy losses include "tail" and
–––
diode reverse recovery.
–––
mJ
3.6
–––
TJ = 150°C,
–––
ns
IC = 8.6A, VCC = 480V
–––
VGE = 15V, RG = 75Ω
–––
Energy losses include "tail" and
–––
mJ diode reverse recovery.
–––
nH
Measured 5mm from package
–––
VGE = 0V
–––
pF
VCC = 30V
–––
ƒ = 1.0MHz
42
ns
TJ = 25°C
57
TJ = 125°C
IF = 4.0A
5.2
A
TJ = 25°C
6.7
TJ = 125°C
VR = 200V
60
nC
TJ = 25°C
110
TJ = 125°C
di/dt 200A/µs
––– A/µs TJ = 25°C
–––
TJ = 125°C
IRG4BC15MDPbF
10
Duty cycle : 50%
Tj = 125°C
Tsink = 90°C
Gate drive as specified
Turn-on losses include effects of
reverse recovery
Power Dissipation = 11W
Load Current ( A )
8
6
60% of rated
voltage
4
Ideal diodes
2
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
10
TJ = 150 °C
1
TJ = 25 °C
0.1
0.1
V GE = 15V
20µs PULSE WIDTH
1
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
10
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
10
TJ = 150 °C
1
TJ = 25 °C
0.1
5.0
V CC = 50V
5µs PULSE WIDTH
10.0
15.0
20.0
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
IRG4BC15MDPbF
4.0
VCE , Collector-to Emitter Voltage (V)
Maximum DC Collector Current(A)
15
12
9
6
3
0
VGE = 15V
80µs PULSE WIDTH
IC = 17A
3.0
IC = 9.0A
2.0
IC = 4.3A
1.0
25
50
75
100
125
150
-60 -40 -20
TC , Case Temperature ( °C)
0
20
40
60
80 100 120 140
T J , Junction Temperature (°C)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.00001
0.02
0.01
PDM
t1
SINGLE PULSE
(THERMAL RESPONSE)
t2
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
1
IRG4BC15MDPbF
500
VGE , Gate-to-Emitter Voltage (V)
400
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
300
200
100
0
Coes
Cres
1
10
16
12
8
4
0
100
VCE , Collector-to-Emitter Voltage (V)
0
10
20
30
40
50
QG , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
2.30
100
VCC = 480V
VGE = 15V
TJ = 25°C
I C = 8.6A
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC = 400V
I C = 9.0A
2.20
2.10
2.00
RG = 75Ω
VGE = 15V
VCC = 480V
IC = 17A
10
IC = 9.0A
IC = 4.3A
1
0.1
0
10
20
30
40
50
60
70
RG, Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
80
-60 -40 -20
0
20
40
60
80 100 120 140 160
T J, Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
IRG4BC15MDPbF
100
RG = 75Ω
TJ = 150°C
VGE = 15V
8.0
IC , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
10.0
VCC = 480V
6.0
4.0
2.0
VGE = 20V
T J = 125°
SAFE OPERATING AREA
10
1
0.0
1
2
4
6
8
10
12
14
16
18
10
VDS, Drain-to-Source Voltage (V)
IC, Collector Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Fig. 12 - Turn-Off SOA
100
TJ = 150°C
10
T = 125°C
J
T = 25°C
J
1
0.1
0.0
1.0
100
2.0
3.0
4.0
5.0
Forward Voltage
Voltage Drop
Drop -- VVFM
((V)
V)
FM
6.0
1000
IRG4BC15MDPbF
50
14
I F = 8.0A
45
12
I F = 4.0A
10
I F = 8.0A
I F = 4.0A
Irr- ( A)
trr- (nC)
40
VR = 200V
TJ = 125°C
TJ = 25°C
35
8
6
30
4
25
2
VR = 200V
TJ = 125°C
TJ = 25°C
20
100
di f /dt - (A/µs)
0
100
1000
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
200
1000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
160
I F = 8.0A
di (rec) M/dt- (A /µs)
I F = 4.0A
Qrr- (nC)
120
I F = 8.0A
80
I F = 4.0A
40
0
100
di f /dt - (A/µs)
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
100
100
A
di f /dt - (A/µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt,
1000
IRG4BC15MDPbF
90% Vge
Same type
device as
D.U.T.
+Vge
Vce
430µF
80%
of Vce
D.U.T.
Ic
90% Ic
10% Vce
Ic
5% Ic
td(off)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
∫
t1+5µS
Vce icIcdtdt
Vce
t1
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
∫
+Vg
10% Irr
10% Vcc
Vcc
trr
id
Icdtdt
tx
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
VceieIcdt dt
Eon = Vce
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
Erec = Vd
VdidIcdt dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
IRG4BC15MDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
D.U.T.
L
1000V
Vc*
RL=
0 - 480V
480V
4 X IC @25°C
50V
6000µF
100V
Figure 19. Clamped Inductive Load Test Circuit
Figure 20. Pulsed Collector Current
Test Circuit
IRG4BC15MDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
VCC=80%(VCES), VGE=20V, L=10µH, RG = 75Ω
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
TO-220AB Package Outline
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
1.40 (.055)
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION : INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T HE AS S E MB LY L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
PAR T NU MB ER
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
Data and specifications subject to change without notice.
This product has been designed and qualified for the industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.08/04
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/