0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG4BC20WPBF

IRG4BC20WPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT78

  • 描述:

    IGBT 600V 13A 60W TO220AB

  • 数据手册
  • 价格&库存
IRG4BC20WPBF 数据手册
PD-95640 IRG4BC20W INSULATED GATE BIPOLAR TRANSISTOR Features • Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • Industry-benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Lead-Free C VCES = 600V VCE(on) typ. = 2.16V G @VGE = 15V, IC = 6.5A E n-channel Benefits • Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) • Of particular benefit to single-ended converters and boost PFC topologies 150W and higher • Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz) TO-220AB Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current  Clamped Inductive Load Current ‚ Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy ƒ Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 13 6.5 52 52 ± 20 200 60 24 -55 to + 150 V A V mJ W 300 (0.063 in. (1.6mm) from case ) 10 lbf•in (1.1N•m) °C Thermal Resistance Parameter RθJC RθCS RθJA Wt www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient, typical socket mount Weight Typ. Max. ––– 0.5 ––– 2.0 (0.07) 2.1 ––– 80 ––– Units °C/W g (oz) 1 7/23/04 IRG4BC20WPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ VCE(ON) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Parameter Min. Typ. Max. Units Conditions Collector-to-Emitter Breakdown Voltage 600 — — V VGE = 0V, IC = 250µA Emitter-to-Collector Breakdown Voltage „ 18 — — V VGE = 0V, IC = 1.0A Temperature Coeff. of Breakdown Voltage — 0.48 — V/°C VGE = 0V, IC = 1.0mA — 2.16 2.6 IC = 6.5A VGE = 15V Collector-to-Emitter Saturation Voltage — 2.55 — IC = 13A See Fig.2, 5 V — 2.05 — IC = 6.5A , TJ = 150°C Gate Threshold Voltage 3.0 — 6.0 VCE = VGE, IC = 250µA Temperature Coeff. of Threshold Voltage — -8.8 — mV/°C VCE = VGE, IC = 250µA Forward Transconductance … 5.5 8.3 — S VCE = 100 V, IC = 6.5A — — 250 VGE = 0V, VCE = 600V Zero Gate Voltage Collector Current µA — — 2.0 VGE = 0V, VCE = 10V, TJ = 25°C — — 1000 VGE = 0V, VCE = 600V, TJ = 150°C Gate-to-Emitter Leakage Current — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc t d(on) tr td(off) tf Eon Eoff Ets t d(on) tr td(off) tf E ts LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 26 38 IC = 6.5A 3.7 5.5 nC VCC = 400V See Fig.8 10 15 VGE = 15V 22 — 14 — TJ = 25°C ns 110 160 IC = 6.5A, VCC = 480V 64 96 VGE = 15V, RG = 50Ω 0.06 — Energy losses include "tail" 0.08 — mJ See Fig. 9, 10, 14 0.14 0.2 21 — TJ = 150°C, 15 — IC = 6.5A, VCC = 480V ns 150 — VGE = 15V, RG = 50Ω 150 — Energy losses include "tail" 0.34 — mJ See Fig. 10, 11, 14 7.5 — nH Measured 5mm from package 490 — VGE = 0V 38 — pF VCC = 30V See Fig. 7 8.8 — ƒ = 1.0MHz Notes:  Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) ‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 50Ω, (See fig. 13a) „ Pulse width ≤ 80µs; duty factor ≤ 0.1%. … Pulse width 5.0µs, single shot. ƒ Repetitive rating; pulse width limited by maximum junction temperature. 2 www.irf.com IRG4BC20WPbF 25 For both: Triangular wave: Duty cycle: 50% TJ = 125°C Tsink = 90°C Gate drive as specified 20 Clamp voltage: 80% of rated Load Current ( A ) Power Dissipation = 13W 15 Square wave: 60% of rated voltage 10 5 Ideal diodes A 0 0.1 1 10 100 1000 f, Frequency (kHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 100 10 TJ = 150 °C TJ = 25 °C V GE = 15V 20µs PULSE WIDTH 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) I C, Collector-to-Emitter Current (A) 100 TJ = 150 °C 10 TJ = 25 °C V CC = 50V 5µs PULSE WIDTH 1 5 6 7 9 10 11 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4BC20WPbF 3.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 14 12 10 8 6 4 2 0 25 50 75 100 125 150 VGE = 15V 80 us PULSE WIDTH IC = 13 A IC = 6.5 A 2.0 IC =3.25 A 1.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( ° C) TC , Case Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.10 P DM 0.05 0.1 0.01 0.00001 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4BC20WPbF 1000 600 VGE , Gate-to-Emitter Voltage (V) 800 C, Capacitance (pF) 20 VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc Cies 400 Coes 200 Cres 0 1 10 16 12 8 4 0 100 0 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 10 0.14 0.13 0.12 10 20 30 40 RG , Gate Resistance (Ohm) Ω Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 10 15 20 25 30 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 480V V GE = 15V TJ = 25 °C I C = 6.5A 0 5 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.15 VCC = 400V I C = 6.5A 50 50 Ω RG = Ohm VGE = 15V VCC = 480V 1 IC = 13 A IC = 6.5 A IC = 3.25 A 0.1 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4BC20WPbF RG TJ VCC VGE 100 Ω = 50 Ohm = 150° C = 480V = 15V I C , Collector-to-Emitter Current (A) Total Switching Losses (mJ) 0.8 0.6 0.4 0.2 VGE = 20V T J = 125 oC 10 SAFE OPERATING AREA 1 0.0 0 2 4 6 8 10 12 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 14 1 10 100 1000 VCE , Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA www.irf.com IRG4BC20WPbF L D.U.T. RL = VC * 50V 0 - 480V 1000V 480V 4 X I C@25°C 480µF 960V c d * Driver same type as D.U.T.; Vc = 80% of Vce(max) * Note: Due to the 50V power supply, pulse width and inductor will increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L Driver* D.U.T. Fig. 14a - Switching Loss Test Circuit VC 50V 1000V c d e * Driver same type as D.U.T., VC = 480V c d 90% e VC 10% 90% Fig. 14b - Switching Loss t d(off) 10% I C 5% Waveforms tf tr t d(on) t=5µs E on E off E ts = (Eon +Eoff ) www.irf.com 7 IRG4BC20WPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) 2.87 (.113) 2.62 (.103) 10.54 (.415) 10.29 (.405) -B- 3.78 (.149) 3.54 (.139) 4.69 (.185) 4.20 (.165) -A- 1.32 (.052) 1.22 (.048) 6.47 (.255) 6.10 (.240) 4 15.24 (.600) 14.84 (.584) LEAD ASSIGNMENTS 1.15 (.045) MIN 1 2 3 4- DRAIN 14.09 (.555) 13.47 (.530) 1.40 (.055) 1.15 (.045) 4- COLLECTOR 4.06 (.160) 3.55 (.140) 3X 3X LEAD ASSIGNMENTS IGBTs, CoPACK 1 - GATE 2 - DRAIN 1- GATE 1- GATE 3 - SOURCE 2- COLLECTOR 2- DRAIN 3- SOURCE 3- EMITTER 4 - DRAIN HEXFET 0.93 (.037) 0.69 (.027) 0.36 (.014) 3X M B A M 0.55 (.022) 0.46 (.018) 2.92 (.115) 2.64 (.104) 2.54 (.100) 2X NOTES: 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB. 2 CONTROLLING DIMENSION : INCH 4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS. TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRG4BC20WPBF 价格&库存

很抱歉,暂时无法提供与“IRG4BC20WPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货