0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRG4IBC30W

IRG4IBC30W

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT78

  • 描述:

    IGBT600V17A45WTO220FP

  • 数据手册
  • 价格&库存
IRG4IBC30W 数据手册
PD 91791A IRG4IBC30W INSULATED GATE BIPOLAR TRANSISTOR Features • Designed expressly for Switch-Mode Power Supply and PFC (power factor correction) applications • 2.5kV, 60s insulation voltage V • Industry-benchmark switching losses improve efficiency of all power supply topologies • 50% reduction of Eoff parameter • Low IGBT conduction losses • Latest-generation IGBT design and construction offers tighter parameters distribution, exceptional reliability • Industry standard Isolated TO-220 FullpakTM outline C VCES = 600V VCE(on) typ. = 2.1V G @VGE = 15V, IC = 12 A E n-channel Benefits • Lower switching losses allow more cost-effective operation than power MOSFETs up to 150 kHz ("hard switched" mode) • Of particular benefit to single-ended converters and boost PFC topologies 150W and higher • Low conduction losses and minimal minority-carrier recombination make these an excellent option for resonant mode switching as well (up to >>300 kHz) TO-220 FULLPAK Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM VGE EARV PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Max. Units Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Q Clamped Inductive Load Current R Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy S Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw. 600 17 8.4 92 92 ± 20 180 45 18 -55 to + 150 V A V mJ W °C 300 (0.063 in. (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Ambient, typical socket mount Weight Typ. Max. Units ––– ––– 2.0 (0.07) 2.8 65 ––– °C/W g (oz) 1 12/30/00 IRG4IBC30W Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 600 — Emitter-to-Collector Breakdown Voltage T 18 — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.34 — 2.1 VCE(ON) Collector-to-Emitter Saturation Voltage — 2.45 — 1.95 VGE(th) Gate Threshold Voltage 3.0 — ∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage — -11 gfe Forward Transconductance U 11 16 — — ICES Zero Gate Voltage Collector Current — — — — IGES Gate-to-Emitter Leakage Current — — V(BR)CES V(BR)ECS Max. Units Conditions — V VGE = 0V, IC = 250µA — V VGE = 0V, IC = 1.0A — V/°C VGE = 0V, IC = 1.0mA VGE = 15V 2.7 IC = 12A — IC = 23A See Fig.2, 5 V — IC = 12A , TJ = 150°C 6.0 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA — S VCE = 100 V, IC = 12A 250 VGE = 0V, VCE = 600V µA 2.0 VGE = 0V, VCE = 10V, TJ = 25°C 1000 VGE = 0V, VCE = 600V, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. — — — — — — — — — — — — — — — — — — — Typ. 51 7.6 18 25 16 99 67 0.13 0.13 0.26 24 17 150 150 0.55 7.5 980 71 18 Max. Units Conditions 76 IC = 12A 11 nC VCC = 400V See Fig.8 27 VGE = 15V — — TJ = 25°C ns 150 IC = 12A, VCC = 480V 100 VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 9, 10, 13, 14 0.35 — TJ = 150°C, — IC = 12A, VCC = 480V ns — VGE = 15V, RG = 23Ω — Energy losses include "tail" — mJ See Fig. 11,13, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz Notes: Q Repetitive rating; VGE = 20V, pulse width limited by max. junction temperature. ( See fig. 13b ) R VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω, (See fig. 13a) S Repetitive rating; pulse width limited by maximum T Pulse width ≤ 80µs; duty factor ≤ 0.1%. U Pulse width 5.0µs, single shot. V t = 60s, f = 60Hz junction temperature. 2 www.irf.com IRG4IBC30W 25 For both: 20 Load C urre nt (A ) Triangular wave: Duty cycle: 50% T J = 125°C T sink= 90°C Gate drive as specified Power Dissipation = 10.6W Clamp voltage: 80% of rated 15 Square wave: 60% of rated voltage 10 5 Ideal diodes A 0 0.1 1 10 100 1000 f, F req ue n cy (kH z) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=IRMS of fundamental; for triangular wave, I=IPK) 100 TJ = 150 °C  10 TJ = 25 °C  V = 15V  20µs PULSE WIDTH I C , Collector-to-Emitter Current (A) I C , Collector-to-Emitter Current (A) 100 TJ = 150 °C  10 TJ = 25 ° C  1 V = 50V  5µs PULSE WIDTH CC GE 1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com 0.1 5.0 6.0 7.0 8.0 9.0 10.0 11.0 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4IBC30W 3.0 20 V = 15V  80 us PULSE WIDTH VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) GE 15 10 5 50 75 100 125 150  IC = 12 A  IC = 6 A 2.0 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C) TC , Case Temperature ( ° C) Fig. 4 - Maximum Collector Current vs. Temperature 2.5 1.5 -60 -40 -20 0 25  IC = 24 A Fig. 5 - Collector-to-Emitter Voltage vs. Junction Temperature Case Thermal Response (Z thJC) 10 D = 0.50 1 0.20  0.10 0.05 0.1 0.01 0.00001 P DM 0.02 0.01 t1 t2 SINGLE PULSE  (THERMAL RESPONSE) 0.0001  Notes: 1. Duty factor D = t 1 / t2 2. Peak TJ = PDM x Z thJC + TC 0.001 0.01 0.1 1 10 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4IBC30W VGE = 0V, f = 1MHz Cies = Cge + Cgc , Cce SHORTED Cres = Cgc Coes = Cce + Cgc C, Capacitance (pF) 1500 Cies  1000 C oes 500 C res 20 VGE , Gate-to-Emitter Voltage (V)  2000 1 16 12 8 4 10 0 100 Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Total Switching Losses (mJ) Total Switching Losses (mJ) 10  0.3 0.2 0.1 0.0 10 20 30 40 50 RGRG , ,Gate GateResistance Resistance (Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 20 30 40 50 60 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 480V V GE = 15V TJ = 25 ° C 0.4 I C = 12A 0 10 QG , Total Gate Charge (nC) VCE , Collector-to-Emitter Voltage (V) 10 VCC = 400V I C = 12A 0 0 0.5   Ω RG = 23 Ohm VGE = 15V VCC = 480V  IC = 24 A 1  IC = 12 A  IC = 6 A 0.1 0.01 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4IBC30W  RG TJ VCC VGE 1000 23Ω = Ohm = 150 ° C = 480V = 15V I C , C ollector-to-E m itter C urrent (A ) Total Switching Losses (mJ) 1.5 1.0 0.5 100 S A FE O P E R A TIN G A R E A 10 1 0.1 0.0 0 5 10 15 20 25 I C , Collector-to-emitter Current (A) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current 6 VGGE E= 20V T J = 125 °C 30 1 10 100 1000 V C E , C o lle cto r-to-E m itte r V olta g e (V ) Fig. 12 - Turn-Off SOA www.irf.com IRG4IBC30W L D .U .T. VC * 50V RL = 0 - 480V 1 000V 480V 4 X IC@25°C 480µF 960V Q R * D river sam e type as D.U.T .; Vc = 80% of Vce(m ax) * N ote: Due to the 50V pow er supply, pulse w idth and inductor w ill increase to obtain rated Id. Fig. 13a - Clamped Inductive Fig. 13b - Pulsed Collector Load Test Circuit Current Test Circuit IC L D river* D .U .T. VC Fig. 14a - Switching Loss Test Circuit 50V 1000V Q * Driver same type as D.U.T., VC = 480V R S Q R 90% 10 % S VC 90 % Fig. 14b - Switching Loss t d (o ff) 10% I C 5% Waveforms tf tr t d (o n ) t=5µs E on E o ff E ts = (E o n +E off ) www.irf.com 7 IRG4IBC30W Case Outline — TO-220 FULLPAK 1 0 .6 0 (.4 17 ) 1 0 .4 0 (.4 09 ) ø 3.4 0 (.13 3) 3.1 0 (.12 3) 4 .80 (.1 89 ) 4 .60 (.1 81 ) -A3.7 0 (.145 ) 3.2 0 (.126 ) 1 6.0 0 (.63 0) 1 5.8 0 (.62 2) 2 .8 0 (.1 10 ) 2 .6 0 (.1 02 ) LE A D A S S IG N M E N TS LEAD ASSIGMENTS 1 - G A TE 1- GATE 2 - D RA IN 2- COLLECTOR 3 - S O U RC E 3- EMITTER 7.10 (.28 0 ) 6.70 (.26 3 ) 1.1 5 (.0 45) M IN . NOTES: 1 D IM E N S IO N IN G & TO LE R A NC ING P E R A N S I Y 14.5M , 1 98 2 1 2 3 2 C O N TR O LL IN G D IM E N S IO N : IN C H . 3.3 0 (.130 ) 3.1 0 (.122 ) -B - 1 3.7 0 (.54 0) 1 3.5 0 (.53 0) C A 3X 1 .4 0 (.0 55) 1 .0 5 (.0 42) 0 .90 (.0 35) 3X 0 .70 (.0 28) 0 .2 5 (.0 10) 2.5 4 (.10 0 ) 2X 3X M A M B 0.4 8 (.01 9) 0.4 4 (.01 7) 2 .85 (.1 12 ) 2 .65 (.1 04 ) D B M IN IM U M C R E E P A G E D IS T A N C E B E TW E E N A -B -C -D = 4.8 0 (.189 ) IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 12/00 8 www.irf.com Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRG4IBC30W 价格&库存

很抱歉,暂时无法提供与“IRG4IBC30W”相匹配的价格&库存,您可以联系我们找货

免费人工找货