PD - 96305A
IRG7PH46UPbF
IRG7PH46U-EP
INSULATED GATE BIPOLAR TRANSISTOR
Features
•
•
•
•
•
•
•
•
C
Low VCE (ON) trench IGBT technology
Low switching losses
Maximum junction temperature 175 °C
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) temperature co-efficient
Tight parameter distribution
Lead -Free
VCES = 1200V
IC = 75A, TC = 100°C
G
TJ(max) =175°C
E
VCE(on) typ. = 1.7V
n-channel
Benefits
• High efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
low VCE (ON) and low switching losses
• Rugged transient performance for increased reliability
• Excellent current sharing in parallel operation
E
C
G
Applications
•
•
•
•
C
C
E
C
G
TO-247AD
IRG7PH46U-EP
TO-247AC
IRG7PH46UPbF
U.P.S
Welding
Solar inverter
Induction heating
G
Gate
C
Collector
E
Emitter
Absolute Maximum Ratings
VCES
Collector-to-Emitter Voltage
Parameter
Max.
1200
IC @ TC = 25°C
Continuous Collector Current (Silicon Limited)
130
IC @ TC = 100°C
Continuous Collector Current (Silicon Limited)
75
Units
V
g
INOMINAL
Nominal Current
40
ICM
Pulse Collector Current, VGE = 20V
160
c
ILM
Clamped Inductive Load Current, VGE = 20V
VGE
Continuous Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
469
PD @ TC = 100°C
Maximum Power Dissipation
234
TJ
Operating Junction and
TST G
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw
A
160
V
W
-55 to +175
°C
300 (0.063 in. (1.6mm) from case)
10 lbf·in (1.1 N·m)
Thermal Resistance
Parameter
f
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT) TO-247AC
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
f
Min.
Typ.
Max.
–––
–––
0.32
–––
0.24
–––
–––
40
–––
Units
°C/W
www.irf.com
07/27/12
IRG7PH46UPbF/IRG7PH46U-EP
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
1200
—
—
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
—
1.2
—
—
1.7
2.0
—
2.0
—
—
2.1
—
3.0
—
6.0
VCE(on)
VGE(th)
Collector-to-Emitter Saturation Voltage
Gate Threshold Voltage
Max. Units
ΔVGE(th)/ΔTJ
Threshold Voltage temp. coefficient
—
-15
—
gfe
ICES
Forward Transconductance
—
60
—
Collector-to-Emitter Leakage Current
—
1
100
—
1170
—
—
—
±200
IGES
Gate-to-Emitter Leakage Current
V
Conditions
VGE = 0V, IC = 100μA
e
e
d
= 150°C d
= 175°C d
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 40A, VGE = 15V, TJ = 25°C
V
IC = 40A, VGE = 15V, TJ
V
VCE = VGE, IC = 1.6mA
IC = 40A, VGE = 15V, TJ
mV/°C VCE = VGE, IC = 1.6mA (25°C - 175°C)
S VCE = 50V, IC = 40A, PW = 20μs
μA
nA
VGE = 0V, VCE = 1200V
VGE = 0V, VCE = 1200V, TJ = 175°C
VGE = ±30V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
220
Max. Units
Qge
Gate-to-Emitter Charge (turn-on)
—
30
50
Qgc
Gate-to-Collector Charge (turn-on)
—
85
130
Eon
Turn-On Switching Loss
—
2560
3460
Eoff
Turn-Off Switching Loss
—
1780
2660
IC = 40A
320
nC
d
Conditions
VGE = 15V
VCC = 600V
IC = 40A, VCC = 600V, VGE = 15V
μJ
RG = 10Ω, L = 200μH,TJ = 25°C
Etotal
Total Switching Loss
—
4340
6120
td(on)
Turn-On delay time
—
45
65
tr
Rise time
—
40
55
td(off)
Turn-Off delay time
—
410
445
tf
Fall time
—
45
65
Eon
Turn-On Switching Loss
—
3950
—
IC = 40A, VCC = 600V, VGE=15V
RG=10Ω, L=200μH, TJ = 175°C
d
Energy losses include tail & diode reverse recovery
Diode clamp the same as IRG7PH46UDPbF
ns
Eoff
Turn-Off Switching Loss
—
3020
—
Etotal
Total Switching Loss
—
6970
—
td(on)
Turn-On delay time
—
40
—
tr
Rise time
—
40
—
td(off)
Turn-Off delay time
—
480
—
tf
Fall time
—
220
—
Cies
Input Capacitance
—
4820
—
Coes
Output Capacitance
—
150
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
110
—
f = 1.0Mhz
IC = 160A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
μJ
d
Energy losses include tail & diode reverse recovery
Diode clamp the same as IRG7PH46UDPbF
ns
pF
VGE = 0V
VCC = 960V, Vp =1200V
Rg = 10Ω, VGE = +20V to 0V, TJ =175°C
Notes:
VCC = 80% (VCES ), VGE = 20V, L = 25μH, RG = 50Ω
Pulse width ≤ 400μs; duty cycle ≤ 2%.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Rθ is measured at TJ of approximately 90°C.
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 117A. Note that current
limitations arising from heating of the device leads may occur with
some lead mounting arrangements.
2
www.irf.com
IRG7PH46UPbF/IRG7PH46U-EP
100
For both:
Duty cycle : 50%
Tj = 150°C
Tc = 100°C
Vcc = 600V
Gate drive as specified
Power Dissipation = 154W
Load Current ( A )
80
60
Square Wave:
VCC
40
I
20
Diode as specified
0
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
140
500
450
120
400
350
Ptot (W)
IC (A)
100
80
60
300
250
200
150
40
100
20
50
0
0
25
50
75
100
125
150
0
175
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
Fig. 3 - Power Dissipation vs. Case
Temperature
1000
1000
100
10μsec
100
10
IC (A)
IC (A)
100μsec
1msec
DC
10
1
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
1
1
10
100
1000
VCE (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
www.irf.com
10000
10
100
1000
10000
VCE (V)
Fig. 5 - Reverse Bias SOA
TJ = 175°C; VGE =20V
3
IRG7PH46UPbF/IRG7PH46U-EP
160
160
140
100
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
100
ICE (A)
120
ICE (A)
140
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
80
80
60
60
40
40
20
20
0
0
0
2
4
6
8
0
10
2
4
8
10
VCE (V)
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp =20μs
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 20μs
12
160
140
10
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
8
VCE (V)
120
ICE (A)
6
80
60
ICE = 20A
ICE = 40A
6
ICE = 80A
4
40
2
20
0
0
0
2
4
6
8
4
10
8
12
10
10
8
8
VCE (V)
VCE (V)
12
ICE = 20A
ICE = 40A
ICE = 80A
ICE = 20A
6
ICE = 40A
ICE = 80A
4
2
2
0
0
4
8
12
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
4
20
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 20μs
4
16
VGE (V)
VCE (V)
6
12
16
20
4
8
12
16
20
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
www.irf.com
ICE, Collector-to-Emitter Current (A)
IRG7PH46UPbF/IRG7PH46U-EP
160
9200
140
8200
7200
T J = 25°C
120
T J = 175°C
6200
Energy (μJ)
100
80
60
EON
5200
4200
EOFF
3200
40
2200
20
1200
200
0
3
4
5
6
7
8
0
9
10
20
30
VGE, Gate-to-Emitter Voltage (V)
40
50
60
70
80
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V
Fig. 12- Typ. Transfer Characteristics
VCE = 50V; tp = 20μs
10000
1000
tdOFF
EOFF
tF
Energy (μJ)
Swiching Time (ns)
8000
100
td ON
2000
10
10
EON
4000
tR
0
6000
20
30
40
50
60
70
0
80
25
50
75
100
Rg (Ω)
IC (A)
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 600V, RG = 10Ω; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 600V, ICE = 40A; VGE = 15V
Swiching Time (ns)
10000
1000
tdOFF
tF
100
tR
tdON
10
0
20
40
60
80
100
RG (Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 600V, ICE = 40A; VGE = 15V
www.irf.com
5
IRG7PH46UPbF/IRG7PH46U-EP
10000
16
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
Cies
1000
100
Coes
Cres
VCES = 600V
VCES = 400V
14
12
10
8
6
4
2
10
0
0
100
200
300
400
500
600
0
50
VCE (V)
100
150
200
250
Q G, Total Gate Charge (nC)
Fig. 18- Typical Gate Charge vs. VGE
ICE = 40A; L = 2.4mH
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Thermal Response ( Z thJC )
1
0.1
D = 0.50
0.20
0.10
0.05
0.01
0.001
0.0001
1E-006
0.02
0.01
τJ
R1
R1
τJ
τ1
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R2
R2
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
τ4
0.006
0.000011
0.090
0.000177
0.142
0.002958
0.085
0.015029
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ci= τi/Ri
Ci i/Ri
0.0001
τ4
τi (sec)
Ri (°C/W)
R4
R4
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) TO-247AC
6
www.irf.com
IRG7PH46UPbF/IRG7PH46U-EP
L
L
DUT
0
80 V +
VCC
DUT
-
Vclamped
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
R = VCC
ICM
DIODE CLAMP
L
DUT
DUT /
DRIVER
VCC
VCC
Rg
Rg
Fig.C.T.3 - Switching Loss Circuit
Fig.C.T.4 - Resistive Load Circuit
C fo rce
100K
D1
22K
C sense
0.0075μ
G force
DUT
E sense
E fo rce
Fig.C.T.5 - BVCES Filter Circuit
www.irf.com
7
IRG7PH46UPbF/IRG7PH46U-EP
80
800
70
700
70
60
600
60
500
50
500
50
400
40
400
40
700
VCE (V)
600
90% ICE
300
30
5% V CE
200
5% ICE
100
0
-100
-0.5
200
10
100
0
0.5
1
-10
1.5
2
time(μs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
8
20
0
Eoff Loss
300
90
tr
TEST
CURRENT
10% test
current
90% test
current
30
20
5% V CE
0
-100
-0.3
80
I CE (A)
tf
800
VCE (V)
900
I CE (A)
90
900
Eon
-0.1
0.1
0.3
10
0
-10
0.5
time (μs)
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
www.irf.com
IRG7PH46UPbF/IRG7PH46U-EP
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: THIS IS AN IRFPE30
WITH AS SEMBLY
LOT CODE 5657
ASS EMBLED ON WW 35, 2001
IN THE AS SEMBLY LINE "H"
Note: "P" in as sembly line pos ition
indicates "Lead-Free"
INTERNAT IONAL
RECT IFIER
LOGO
ASS EMBLY
LOT CODE
PART NUMBER
IRFPE30
56
135H
57
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRG7PH46UPbF/IRG7PH46U-EP
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
EXAMPLE: T HIS IS AN IRGP30B120KD-E
WIT H AS S EMBLY
LOT CODE 5657
AS S EMBLED ON WW 35, 2000
IN T HE AS S EMBLY LINE "H"
Note: "P" in as sembly line pos ition
indicates "Lead-Free"
INT ERNAT IONAL
RECT IFIER
LOGO
PART NUMBER
56
AS S EMBLY
LOT CODE
035H
57
DAT E CODE
YEAR 0 = 2000
WEEK 35
LINE H
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101N Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2012
10
www.irf.com