0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGB30B60KPBF

IRGB30B60KPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT78

  • 描述:

    IGBT 600V 78A 370W TO220AB

  • 详情介绍
  • 数据手册
  • 价格&库存
IRGB30B60KPBF 数据手册
PD - 97003 IRGB30B60KPbF IRGS30B60KPbF IRGSL30B60KPbF INSULATED GATE BIPOLAR TRANSISTOR VCES = 600V C Features • • • • • • IC = 50A, TC=100°C at TJ=175°C Low VCE (on) Non Punch Through IGBT Technology 10µs Short Circuit Capability Square RBSOA Positive VCE (on) Temperature Coefficient Maximum Junction Temperature rated at 175°C Lead-Free G tsc > 10µs, TJ=150°C E n-channel VCE(on) typ. = 1.95V Benefits • Benchmark Efficiency for Motor Control • Rugged Transient Performance • Low EMI • Excellent Current Sharing in Parallel Operation TO-220AB D2Pak IRGB30B60KPbF IRGS30B60KPbF TO-262 IRGSL30B60KPbF Absolute Maximum Ratings Parameter Max. Units V Continuous Collector Current 600 78 IC @ TC = 100°C Continuous Collector Current 50 A ICM Pulse Collector Current (Ref.Fig.C.T.5) Clamped Inductive Load current 120 ILM VISOL RMS Isolation Voltage, Terminal to Case, t=1 min. 2500 VGE Gate-to-Emitter Voltage ±20 PD @ TC = 25°C Maximum Power Dissipation 370 PD @ TC = 100°C Maximum Power Dissipation 180 VCES Collector-to-Emitter Voltage IC @ TC = 25°C g c TJ Operating Junction and TSTG Storage Temperature Range 120 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal / Mechanical Characteristics Min. Typ. Max. Units RθJC Junction-to-Case- IGBT Parameter ––– ––– 0.41* °C/W RθCS ––– 0.50 ––– RθJA Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount ––– ––– 62 RθJA Junction-to-Ambient (PCB Mount, Steady State) ––– ––– 40 Wt Weight ––– 1.44 ––– d e g * RθJC (end of life) = 0.65°C/W. This is the maximum measured value after 1000 temperature cycles from -55 to 150°C and is accounted for by the physical wearout of the die attach medium. www.irf.com 1 05/17/05 IRGB/S/SL30B60KPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES IGES Min. Typ. Max. Units Collector-to-Emitter Breakdown Voltage 600 Temperature Coeff. of Breakdown Voltage — — Collector-to-Emitter Voltage — — Gate Threshold Voltage 3.5 Threshold Voltage temp. coefficient — Forward Transconductance — — Zero Gate Voltage Collector Current — — Gate-to-Emitter Leakage Current — — 0.40 1.95 2.40 2.6 4.5 -10 18 5.0 1000 1830 — Conditions Ref.Fig. — V VGE = 0V, IC = 500µA — V/°C VGE = 0V, IC = 1mA (25°C-150°C) IC = 30A, VGE = 15V, TJ = 25°C 2.35 2.75 V IC = 30A, VGE = 15V, TJ = 150°C IC = 30A, VGE = 15V, TJ = 175°C 2.95 5.5 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1.0mA (25°C-150°C) — S VCE = 50V, IC = 50A, PW = 80µs VGE = 0V, VCE = 600V 250 2000 µA VGE = 0V, VCE = 600V, TJ = 150°C VGE = 0V, VCE = 600V, TJ = 175°C 3000 ±100 nA VGE = ±20V, VCE = 0V 5,6,7 8,9,10 8,9,10 11 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf LE Cies Coes Cres RBSOA SCSOA ISC (Peak) Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area Peak Short Circuit Collector Current Min. Typ. Max. Units — 102 153 — 14 21 — 44 66 — 350 620 — 825 955 — 1175 1575 — 46 60 — 28 39 — 185 200 — 31 40 — 635 1085 — 1150 1350 — 1785 2435 — 46 60 — 28 39 — 205 235 — 32 42 — 7.5 — — 1750 2500 — 160 255 — 60 90 FULL SQUARE 10 — — 200 — — nC µJ ns µJ ns Conditions Ref.Fig. IC = 30A VCC = 400V VGE = 15V IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 25°C IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 25°C 17 CT1 CT4 f IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 150°C IC = 30A, VCC = 400V VGE = 15V, RG = 10Ω, L = 200µH TJ = 150°C f CT4 CT4 12,14 WF1,WF2 CT4 WF1 WF2 nH pF µs Measured 5mm from package VGE = 0V VCC = 30V f = 1.0MHz TJ = 150°C, IC = 120A, Vp = 600V VCC=500V,VGE = +15V to 0V,RG =10Ω TJ = 150°C, Vp = 600V, RG = 10Ω VCC=360V,VGE = +15V to 0V A 16 4 CT2 CT3 WF3 WF3 Note  to … are on page 13 2 13,15 www.irf.com 80 400 70 350 60 300 50 250 Ptot (W) IC (A) IRGB/S/SL30B60KPbF 40 200 30 150 20 100 10 50 0 0 0 20 40 60 80 100 120 140 160 180 0 T C (°C) 20 40 60 80 100 120 140 160 180 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 1000 100 100 IC A) IC (A) 10 µs 10 100 µs 10 1ms 1 DC 0.1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 1 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGB/S/SL30B60KPbF 60 50 VGE = 18V VGE = 15V 50 VGE = 18V VGE = 15V 40 VGE = 12V VGE = 10V 40 VGE = 12V VGE = 10V VGE = 8.0V ICE (A) ICE (A) 60 30 VGE = 8.0V 30 20 20 10 10 0 0 0 1 2 3 4 0 5 1 2 3 4 5 VCE (V) VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs ICE (A) 60 50 VGE = 18V VGE = 15V 40 VGE = 12V VGE = 10V VGE = 8.0V 30 20 10 0 0 1 2 3 4 5 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80µs 4 www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 15A 10 ICE = 30A 8 ICE = 60A VCE (V) VCE (V) IRGB/S/SL30B60KPbF 12 ICE = 15A 10 ICE = 30A 8 ICE = 60A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 15 20 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 8 - Typical VCE vs. VGE TJ = -40°C 250 20 18 T J = 25°C T J = 150°C 200 16 12 10 ICE = 15A ICE = 30A 8 ICE = 60A ICE (A) VCE (V) 14 150 100 6 T J = 150°C 50 4 T J = 25°C 2 0 0 5 10 15 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs 5 IRGB/S/SL30B60KPbF 3000 1000 Swiching Time (ns) 2500 Energy (µJ) 2000 EOFF 1500 EON 1000 tdOFF 100 td ON tF 500 tR 0 0 20 40 60 10 80 0 IC (A) 20 40 60 80 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 150°C; L=200µH; VCE= 400V, RG= 10Ω; VGE= 15V Fig. 13 - Typ. Switching Time vs. IC TJ = 150°C; L=200µH; VCE= 400V RG= 10Ω; VGE= 15V 10000 3000 Energy (µJ) 2000 Swiching Time (ns) 2500 EOFF EON 1500 1000 1000 tdOFF 100 tdON tF 500 tR 10 0 0 25 50 75 100 RG (Ω) Fig. 14 - Typ. Energy Loss vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 30A; VGE= 15V 6 125 0 25 50 75 100 125 RG (Ω) Fig. 15 - Typ. Switching Time vs. RG TJ = 150°C; L=200µH; VCE= 400V ICE= 30A; VGE= 15V www.irf.com IRGB/S/SL30B60KPbF 16 10000 14 200V 12 1000 400V 10 VGE (V) Capacitance (pF) Cies Coes 100 8 6 4 2 Cres 0 10 0 20 40 60 80 0 100 25 50 75 100 125 Q G, Total Gate Charge (nC) VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 17 - Typical Gate Charge vs. VGE ICE = 30A; L = 600µH Thermal Response ( Z thJC ) 10 1 0.1 0.01 D = 0.50 0.20 0.10 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ1 τ2 τ2 τ Ri (°C/W) τi (sec) 0.200 0.000428 0.209 0.013031 Ci= τi/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 18. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) www.irf.com 7 IRGB/S/SL30B60KPbF L L VCC DUT 0 + - 80 V DUT Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT Driver L - 5V 360V DC 480V Rg 1K DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com IRGB/S/SL30B60KPbF 700 600 35 700 70 30 600 60 25 500 90% ICE tf 300 15 5% V CE 5% ICE 100 0 400 40 300 30 10 200 5 100 0 0 90% test current tr 10% test current 5% V CE 0.00 0.20 0.40 0.60 -5 0.80 -100 15.90 16.00 Time(µs) 16.10 10 16.20 -10 16.30 Time (µs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 600 300 500 250 ICE 400 200 VCE (V) VCE 300 150 200 100 100 50 0 -5.00 0.00 5.00 10.00 ICE (A) -100 -0.20 20 0 Eon Loss Eof f Loss ICE (A) 20 VCE (V) 400 200 50 TEST CURRENT ICE (A) V CE (V) 500 0 15.00 time (µS) Fig. WF3- Typ. S.C Waveform @ TC = 150°C using Fig. CT.3 www.irf.com 9 IRGB/S/SL30B60KPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/
IRGB30B60KPBF
### 物料型号 - IRGB30B60KPbF - IRGS30B60KPbF - IRGSL30B60KPbF

### 器件简介 - 这些是绝缘栅双极晶体管(IGBT),具有低VCE(on)非穿透型IGBT技术,旨在提高电机控制的基准效率。

### 引脚分配 - 引脚按照TO-262、TO-220AB D2Pak封装进行分配,通常为栅极(G)、漏极(D)、源极(S)。

### 参数特性 - 600V的集电极-发射极电压(VCES) - 50A的连续集电极电流(IC)在100°C时 - 10µs短路能力在175°C的结温(TJ)下 - 典型的VCE(on)为1.95V - 无铅材料

### 功能详解 - 提供了电机控制的基准效率、坚固的瞬态性能、低电磁干扰(EMI)和在并联操作中出色的电流共享。

### 应用信息 - 主要应用于电机控制领域。

### 封装信息 - 提供了TO-220AB、D2Pak和TO-262等封装类型的详细信息,包括尺寸和引脚分配

### 绝对最大额定值 - 包括集电极-发射极电压、连续集电极电流、脉冲集电极电流、隔离电压、栅极-发射极电压、最大功耗、工作结温和存储温度范围。

### 热/机械特性 - 包括结到外壳的热阻、外壳到散热器的热阻、结到环境的热阻、重量等。

### 电气特性 - 在25°C下的电气特性,包括击穿电压、阈值电压、正向跨导、零栅极电压集电极电流、栅极-发射极漏电流等。

### 开关特性 - 包括总栅极电荷、栅极-发射极电荷、栅极-集电极电荷、开关损耗、延迟时间和开关时间等。

### 反向偏置安全工作区(RBSOA)和短路安全工作区(SCSOA) - 提供了在特定条件下的RBSOA和SCSOA的图形表示。

### 图表 - 包括最大直流集电极电流与外壳温度的关系、功耗与外壳温度的关系、正向和反向偏置的安全工作区(SOA)图表、VCE与VGE的关系图、转移特性、开关损耗与电流和栅极电阻的关系图等。

### 包装信息 - 提供了D2Pak和TO-262封装的尺寸和标记信息。
IRGB30B60KPBF 价格&库存

很抱歉,暂时无法提供与“IRGB30B60KPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货