0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGP4068D-EPBF

IRGP4068D-EPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO247

  • 描述:

    IGBT 600V 96A 330W TO247AD

  • 详情介绍
  • 数据手册
  • 价格&库存
IRGP4068D-EPBF 数据手册
PD - 97250C IRGP4068DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS IRGP4068D-EPbF Features • • • • • • • • • • Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5 μS short circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature co-efficient Ultra-low VF Hyperfast Diode Tight parameter distribution Lead Free Package C VCES = 600V IC = 48A, TC = 100°C tSC ≥ 5μs, TJ(max) = 175°C G VCE(on) typ. = 1.65V E n-channel Benefits C • Device optimized for induction heating and soft switching applications • High Efficiency due to Low VCE(on), Low Switching Losses and Ultra-low VF • Rugged transient Performance for increased reliability • Excellent Current sharing in parallel operation • Low EMI C GC E TO-247AC IRGP4068DPbF G Gate E GC TO-247AD IRGP4068D-EPbF C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 96 IC @ TC = 100°C ICM Continuous Collector Current Pulse Collector Current, VGE = 15V 48 ILM Clamped Inductive Load Current, VGE = 20V IF @ TC = 160°C IFSM Diode Continous Forward Current Diode Non Repetitive Peak Surge Current @ TJ = 25°C IFRM @Tc = 100°C Diode Repetitive Peak Forward Current at tp=10μs VGE Continuous Gate-to-Emitter Voltage ±20 Transient Gate-to-Emitter Voltage ±30 PD @ TC = 25°C Maximum Power Dissipation 330 PD @ TC = 100°C Maximum Power Dissipation 170 TJ Operating Junction and TSTG Storage Temperature Range g 144 c 192 df A 8.0 dg 175 100 V W -55 to +175 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.45 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 2.0 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 RθJC (IGBT) 1 www.irf.com 07/27/09 IRGP4068DPbF/IRGP4068D-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ΔV(BR)CES/ΔTJ Temperature Coeff. of Breakdown Voltage — 0.30 — — 1.65 2.14 — 2.0 — VCE(on) Collector-to-Emitter Saturation Voltage Max. Units V Conditions VGE = 0V, IC = 100μA e V/°C VGE = 0V, IC = 1mA (25°C-175°C) IC = 48A, VGE = 15V, TJ = 25°C V IC = 48A, VGE = 15V, TJ = 150°C — 2.05 — Gate Threshold Voltage 4.0 — 6.5 V VCE = VGE, IC = 1.4mA gfe ICES Forward Transconductance — 32 — S VCE = 50V, IC = 48A, PW = 80μs Collector-to-Emitter Leakage Current — 1.0 150 μA VGE = 0V, VCE = 600V — 450 1000 — 0.96 1.05 V IF = 8.0A — 0.81 0.86 — — ±100 Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current CT6 CT6 4,5,6 8,9,10 IC = 48A, VGE = 15V, TJ = 175°C VGE(th) VFM Ref.Fig 8,9,10,11,20 VGE = 0V, VCE = 600V, TJ = 175°C 7 IF = 8.0A, TJ = 150°C nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 95 Max. Units 140 Qge Gate-to-Emitter Charge (turn-on) — 28 42 Qgc Gate-to-Collector Charge (turn-on) — 35 53 Eoff Turn-Off Switching Loss — 1275 1481 μJ td(off) Turn-Off delay time — 145 176 ns tf Fall time — 35 46 Eoff Turn-Off Switching Loss — 1585 — Conditions IC = 48A nC VGE = 15V Ref.Fig 18 CT1 VCC = 400V IC = 48A, VCC = 400V, VGE = 15V RG = 10Ω, L = 200μH,TJ = 25°C CT4 Energy losses include tail IC = 48A, VCC = 400V, VGE = 15V RG = 10Ω, L = 200μH,TJ = 25°C IC = 48A, VCC = 400V, VGE = 15V μJ RG = 10Ω, L = 200μH,TJ = 175°C CT4 Energy losses include tail td(off) Turn-Off delay time — 165 — tf Fall time — 45 — Cies Input Capacitance — 3025 — Coes Output Capacitance — 245 — Cres Reverse Transfer Capacitance — 90 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE SCSOA Short Circuit Safe Operating Area 5 ns IC = 48A, VCC = 400V, VGE = 15V WF1 RG=10Ω, L=200μH, TJ = 175°C VGE = 0V pF 17 VCC = 30V f = 1.0Mhz TJ = 175°C, IC = 192A 3 VCC = 480V, Vp =600V CT2 Rg = 10Ω, VGE = +20V to 0V — — μs VCC = 400V, Vp =600V Rg = 10Ω, VGE = +15V to 0V 16, CT3 WF2 Notes:  VCC = 80% (VCES), VGE = 20V, L = 200μH, RG = 10Ω. ‚ Pulse width limited by max. junction temperature. ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely. „ fsw = 20KHz, refer to figure 19. … Sinusoidal half wave, t=10ms. 2 www.irf.com IRGP4068DPbF/IRGP4068D-EPbF 100 350 90 300 80 250 70 200 Ptot (W) IC (A) 60 50 40 150 30 100 20 50 10 0 0 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 200 1000 180 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 160 140 IC (A) ICE (A) 100 10 120 100 80 60 40 20 0 1 10 100 0 1000 2 4 VCE (V) 200 180 180 140 ICE (A) ICE (A) 100 80 120 100 80 60 60 40 40 20 20 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs www.irf.com VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 160 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 120 10 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs 200 140 8 VCE (V) Fig. 3 - Reverse Bias SOA TJ = 175°C; VGE = 20V 160 6 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80μs 3 IRGP4068DPbF/IRGP4068D-EPbF 20 18 16 VCE (V) 14 12 ICE = 24A ICE = 48A 10 ICE = 96A 8 6 4 2 0 5 10 15 20 VGE (V) Fig. 8 - Typical VCE vs. VGE TJ = -40°C 20 20 18 18 16 16 14 14 12 ICE = 24A ICE = 48A 10 VCE (V) VCE (V) Fig. 7 - Typ. Diode Forward Voltage Drop Characteristics ICE = 96A 8 12 10 ICE = 96A 8 6 6 4 4 2 2 0 ICE = 24A ICE = 48A 0 5 10 15 20 5 10 VGE (V) 20 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 25°C Fig. 10 - Typical VCE vs. VGE TJ = 175°C 6000 200 180 T J = 25°C T J = 175°C 160 5000 140 EOFF 4000 Energy (μJ) ICE (A) 15 120 100 80 3000 2000 60 40 1000 20 0 0 0 5 10 VGE (V) Fig. 11 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs 4 15 0 25 50 75 100 IC (A) Fig. 12 - Typ. Energy Loss vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V www.irf.com IRGP4068DPbF/IRGP4068D-EPbF 5000 1000 4500 EOFF tdOFF 3500 Energy (μJ) Swiching Time (ns) 4000 100 3000 2500 tF 2000 1500 1000 10 0 20 40 60 80 0 100 25 50 IC (A) 400 18 tdOFF 16 350 Tsc Isc Time (μs) 14 100 tF 300 12 250 10 200 8 150 6 100 50 4 10 0 25 50 75 100 8 125 Current (A) Swiching Time (ns) 125 Fig. 14 - Typ. Energy Loss vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V 1000 10 12 14 16 18 VGE (V) RG (Ω) Fig. 16 - VGE vs. Short Circuit VCC = 400V; TC = 25°C Fig. 15 - Typ. Switching Time vs. RG TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V 10000 16 VGE, Gate-to-Emitter Voltage (V) Cies 1000 Coes 100 Cres 10 V CES = 300V 14 V CES = 400V 12 10 8 6 4 2 0 0 20 40 60 80 VCE (V) Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz www.irf.com 100 Rg (Ω) Fig. 13 - Typ. Switching Time vs. IC TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V Capacitance (pF) 75 100 0 25 50 75 100 Q G, Total Gate Charge (nC) Fig. 18 - Typical Gate Charge vs. VGE ICE = 48A; L = 600μH 5 IRGP4068DPbF/IRGP4068D-EPbF Repetitive Peak Current (A) 140 D=0.1 120 D=0.2 100 D=0.5 80 60 Square Pulse, f = 20KHz D = t/T 40 20 t T = 50us 0 25 50 75 100 125 1.0 VGE(th) , Gate Threshold Voltage (Normalized) 160 150 IC = 1.4mA 0.9 0.8 0.7 0.6 0.5 0.4 175 25 50 75 100 125 150 175 T J , Temperature (°C) Case Temperature (°C) Fig 20. Typical Gate Threshold Voltage (Normalized) vs. Junction Temperature Fig 19. Maximum Diode Repetitive Forward Peak Current vs. Case Temperature Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 τJ 0.02 0.01 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 1E-005 τi (sec) 0.0248 0.000014 0.0652 0.000050 0.1537 0.001041 0.2065 0.013663 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 Ri (°C/W) R4 R4 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 21. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.05 0.1 0.02 0.01 τJ 0.01 0.0001 1E-006 1E-005 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 τ4 τ4 Ri (°C/W) τi (sec) 0.0400 0.000030 0.7532 0.000717 0.8317 0.004860 0.3766 0.036590 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 22. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 6 www.irf.com IRGP4068DPbF/IRGP4068D-EPbF L L VC C D UT 0 80 V DU T 4 80V Rg 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit DIODE CLAMP / DUT L 4x DC - 5V 360V DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C. SOA Circuit R= Fig.C.T.4 - Switching Loss Circuit VCC ICM C force 400μH D1 10K C sense DUT VCC G force DUT 0.0075μ Rg E sense E force Fig.C.T.5 - Resistive Load Circuit www.irf.com Fig.C.T.6 - BVCES Filter Circuit 7 IRGP4068DPbF/IRGP4068D-EPbF 700 140 600 600 120 500 500 VCE 400 60 90% ICE 5% VCE 100 5% ICE 0 EOFF Loss 0.10 0.60 300 300 200 200 100 100 ICE (A) 300 200 40 20 0 -20 1.10 Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 8 ICE 80 tf -100 -0.40 500 400 VCE (V) VCE (V) 400 100 600 0 0 -100 -5.00 0.00 5.00 -100 10.00 time (µS) Fig. WF2 - Typ. S.C. Waveform @ TJ = 25°C using Fig. CT.3 www.irf.com IRGP4068DPbF/IRGP4068D-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/
IRGP4068D-EPBF
物料型号:IRGP4068DPbF 和 IRGP4068D-EPbF

器件简介:绝缘栅双极晶体管(IGBT),具有超低正向电压降的二极管,适用于感应加热和软开关应用。

引脚分配: - G:栅极 - C:集电极 - E:发射极

参数特性: - 低VCE(on):典型值为1.65V - 低开关损耗 - 最大结温175°C - 5μs短路SOA - 方形RBSOA - 100%测试ILM(电机电流) - 正VCE(on)温度系数 - 超低VF超快二极管 - 紧密的参数分布 - 无铅封装

功能详解: - 器件优化用于感应加热和软开关应用 - 由于低VCE(on)、低开关损耗和超低VF,具有高效率 - 坚固的瞬态性能,提高可靠性 - 并联操作中出色的电流共享 - 低电磁干扰(EMI)

应用信息:适用于感应加热和软开关应用。

封装信息: - TO-247AC 和 TO-247AD 封装类型。
IRGP4068D-EPBF 价格&库存

很抱歉,暂时无法提供与“IRGP4068D-EPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货