0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGP4262D-EPBF

IRGP4262D-EPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO247

  • 描述:

    IGBT 650V 60A 250W TO247AC

  • 数据手册
  • 价格&库存
IRGP4262D-EPBF 数据手册
IRGP4262DPbF IRGP4262D-EPbF Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode VCES = 650V C G G IC = 40A, TC =100°C tSC 5.5µs, TJ(max) = 175°C G C VCE(ON) typ. = 1.7V @ IC = 24A C n-channel Applications G Gate E G IRGP4262D-EPbF TO-247AD G IRGP4262DPbF TO-247AC E • Industrial Motor Drive E C Collector E Emitter • UPS Features Benefits Low VCE(ON) and Switching Losses 5.5µs Short Circuit SOA Square RBSOA Maximum Junction Temperature 175°C Positive VCE (ON) Temperature Coefficient Base part number Package Type IRGP4262DPBF IRGP4262D-EPBF TO-247AC TO-247AD High Efficiency in a Wide Range of Applications Rugged Transient Performance Increased Reliability Excellent Current Sharing in Parallel Operation Standard Pack Form Quantity Tube 25 Tube 25 Orderable Part Number IRGP4262DPBF IRGP4262D-EPBF Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current, VGE=20V Clamped Inductive Load Current, VGE=20V  Diode Continuous Forward Current Diode Continuous Forward Current Continuous Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw Max. Units 650 60 40 96 96 45 27 ±20 250 125 -40 to +175 V A V W 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) C Thermal Resistance RJC (IGBT) RJC (Diode) RCS RJA 1 Parameter Thermal Resistance Junction-to-Case-(each IGBT)  Thermal Resistance Junction-to-Case-(each Diode)  Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount) www.irf.com © 2013 International Rectifier Min. ––– ––– ––– ––– Typ. ––– ––– 0.24 40 Max. 0.6 1.6 ––– ––– Units °C/W June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES V(BR)CES/TJ Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage Min. 650 — Typ. — 0.86 — 1.7 — 2.1 Gate Threshold Voltage 5.5 — VGE(th) Threshold Voltage Temperature Coeff. — -20 VGE(th)/TJ gfe Forward Transconductance — 16 — 1.0 Collector-to-Emitter Leakage Current ICES — 530 Gate-to-Emitter Leakage Current — — IGES — 1.6 Diode Forward Voltage Drop VF — 1.26 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Max. — — Units Conditions V VGE = 0V, IC = 100µA  V/°C VGE = 0V, IC = 2mA (25°C-175°C) 2.1 V IC = 24A, VGE = 15V, TJ = 25°C — IC = 24A, VGE = 15V, TJ = 175°C 7.7 V VCE = VGE, IC = 700µA — mV/°C VCE = VGE, IC = 700µA (25°C-150°C) — S VCE = 50V, IC = 24A, PW = 20µs 35 µA VGE = 0V, VCE = 650V — VGE = 0V, VCE = 650V, TJ = 175°C ±100 nA VGE = ±20V 2.4 V IF = 24A — IF = 24A, TJ = 175°C VCE(on) Collector-to-Emitter Saturation Voltage Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Parameter Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operating Area SCSOA Short Circuit Safe Operating Area 5.5 — — µs Erec trr Irr Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current — — — 292 170 17 — — — µJ ns A Min. — — — — — — — — — — — Typ. 47 15 20 520 240 760 24 27 73 23 1120 — — — — — — — — — 475 1595 22 28 88 74 1550 124 43 Max Units Conditions 70 IC = 24A nC VGE = 15V 23 VCC = 400V 30 740 350 µJ IC = 24A, VCC = 400V, VGE=15V 1090 RG = 10, L = 0.40µH, TJ = 25°C 40 Energy losses include tail & diode 45 ns reverse recovery  90 40 — — — — — — — — — — µJ ns pF FULL SQUARE IC = 24A, VCC = 400V, VGE=15V RG = 10, L = 0.40µH, TJ = 175°C Energy losses include tail & diode reverse recovery  VGE = 0V VCC = 30V f = 1.0MHz TJ = 175°C, IC = 96A VCC = 480V, Vp ≤ 650V VGE = +20V to 0V TJ = 150°C,VCC = 400V, Vp ≤ 650V VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 24A VGE = 15V, Rg = 10 Notes:       VCC = 80% (VCES), VGE = 20V. R is measured at TJ of approximately 90°C. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Maximum limits are based on statistical sample size characterization. Pulse width limited by max. junction temperature. Values influenced by parasitic L and C in measurement. 2 www.irf.com © 2013 International Rectifier June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF 60 For both: Duty cycle : 50% Tj = 175°C Tcase = 100°C Gate drive as specified Power Dissipation = 108.7W Load Current ( A ) 50 40 Square Wave: VCC 30 I 20 Diode as specified 10 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 60 250 50 200 Ptot (W) IC (A) 40 30 150 100 20 50 10 0 0 25 50 75 100 125 150 175 25 TC (°C) 50 75 100 125 150 175 TC (°C) Fig. 3 - Power Dissipation vs. Case Temperature Fig. 2 - Maximum DC Collector Current vs. Case Temperature 1000 1000 100 100 IC (A) IC (A) 10µsec 10 100µsec 10 1 1msec Tc = 25°C Tj = 175°C Single Pulse DC 1 0.1 1 10 100 1000 10000 VCE (V) Fig. 4 - Forward SOA TC = 25°C; TJ ≤ 175°C; VGE = 15V 3 www.irf.com © 2013 International Rectifier 10 100 1000 VCE (V) Fig. 5 - Reverse Bias SOA TJ = 175°C; VGE = 20V June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF 100 100 80 80 60 VGE = 18V VGE = 15V VGE = 12V 40 VGE = 12V VGE = 10V VGE = 8.0V 60 ICE (A) ICE (A) VGE = 18V VGE = 15V 40 VGE = 10V VGE = 8.0V 20 20 0 0 0 2 4 6 8 10 0 2 4 6 8 10 V CE (V) V CE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 20µs Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 20µs 100 100 VGE = 18V VGE = 15V 80 80 VGE = 12V VGE = 10V VGE = 8.0V 60 IF (A) ICE (A) 60 40 40 20 20 -40°C 25°C 175°C 0 0 0 2 4 6 8 0 10 1 12 12 10 10 ICE = 12A ICE = 24A 8 ICE = 12A ICE = 24A 8 ICE = 48A V CE (V) V CE (V) 3 Fig. 9 - Typ. Diode Forward Voltage Drop Characteristics Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 20µs 6 ICE = 48A 6 4 4 2 2 0 0 5 10 15 20 V GE (V) Fig. 10 - Typical VCE vs. VGE TJ = -40°C 4 2 V F (V) V CE (V) www.irf.com © 2013 International Rectifier 5 10 15 20 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 25°C June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF 12 100 10 8 ICE = 48A 60 ICE (A) V CE (V) 80 ICE = 12A ICE = 24A 6 40 4 TJ = 25°C TJ = 175°C 20 2 0 0 5 10 15 20 4 8 10 12 14 V GE (V) Fig. 12 - Typical VCE vs. VGE TJ = 175°C Fig. 13 - Typ. Transfer Characteristics VCE = 50V; tp = 20µs 3000 1000 2500 Swiching Time (ns) tdOFF 2000 Energy (µJ) 6 V GE (V) 1500 EON 1000 100 tF tdON 10 tR EOFF 500 0 1 0 10 20 30 40 50 0 10 20 IC (A) 30 40 50 IC (A) Fig. 14 - Typ. Energy Loss vs. IC TJ = 175°C; L = 0.40mH; VCE = 400V, RG = 10; VGE = 15V Fig. 15 - Typ. Switching Time vs. IC TJ = 175°C; L = 0.40mH; VCE = 400V, RG = 10; VGE = 15V 2400 1000 2000 Energy (µJ) Swiching Time (ns) EON 1600 1200 EOFF 800 tdOFF 100 tF tR 400 tdON 0 10 0 20 40 60 80 100 0 20 40 60 80 100 Rg () RG ( ) Fig. 16 - Typ. Energy Loss vs. RG TJ = 175°C; L = 0.40mH; VCE = 400V, ICE = 24A; VGE = 15V Fig. 17 - Typ. Switching Time vs. RG TJ = 175°C; L = 0.40mH; VCE = 400V, ICE = 24A; VGE = 15V 5 www.irf.com © 2013 International Rectifier June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF 17 17 16 15 15 RG = 22 14 IRR (A) IRR (A) 16 RG = 10 RG = 47 13 14 13 12 12 RG = 100 11 11 10 10 10 15 20 25 30 35 40 45 0 50 20 40 60 IF (A) RG (  Fig. 18 - Typ. Diode IRR vs. IF TJ = 175°C Fig. 19 - Typ. Diode IRR vs. RG TJ = 175°C 17 100 2.5 48A 16 15 14 13 47 1.5 12 10 22 2.0 QRR (µC) IRR (A) 80 24A 100 12A 11 1.0 10 0 200 400 600 800 0 1000 200 400 600 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 20 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C Fig. 21 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C 21 400 140 Isc Tsc 18 120 Time (µs) RG = 10 200 RG = 22 RG = 47 100 RG = 100 100 12 80 9 60 6 40 3 0 0 10 20 30 40 50 IF (A) Fig. 22 - Typ. Diode ERR vs. IF TJ = 175°C 6 15 www.irf.com © 2013 International Rectifier Current (A) Energy (µJ) 300 20 8 10 12 14 16 18 VGE (V) Fig. 23 - VGE vs. Short Circuit Time VCC = 400V; TC = 150°C June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF 16 V GE, Gate-to-Emitter Voltage (V) 10000 Capacitance (pF) Cies 1000 Coes 100 Cres V CES = 400V 14 V CES = 300V 12 10 8 6 4 2 0 10 0 100 200 300 400 500 0 600 10 20 30 40 50 Q G, Total Gate Charge (nC) V CE (V) Fig. 25 - Typical Gate Charge vs. VGE ICE = 24A Fig. 24 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 1 Thermal Response ( ZthJC ) D = 0.50 0.20 0.1 0.10 0.05 0.01 J R1 R1 J 1 0.02 R2 R2 R3 R3 R4 R4 C 2 1 2 3 4 3 4 Ci= iRi Ci= iRi 0.01 1E-005 i (sec) 0.014255 0.000015 0.163283 0.000127 0.257883 0.003125 0.164579 0.019104 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 C Ri (°C/W) 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26 - Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 J 0.02 R1 R1 J 1 R2 R2 R3 R3 R4 R4 C 2 1 2 3 4 3 Ci= iRi Ci= iRi 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 0.001 C i (sec) 0.026766 0.000026 0.573978 0.000561 0.655762 0.005131 0.344981 0.039505 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.01 0.001 1E-006 4 Ri (°C/W) 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 27 - Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 7 www.irf.com © 2013 International Rectifier June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF L L VCC DUT 0 80 V + - DUT 1K VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC VCC -5V DUT / DRIVER DUT VCC Rg RSH Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 22K C sense DUT VCC G force DUT 0.0075µF Rg E sense E force Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com © 2013 International Rectifier Fig.C.T.6 - BVCES Filter Circuit June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF 60 600 500 50 500 400 40 400 30 90% ICE 200 20 VCE (V) 300 ICE (A) 50 10 300 30 200 100 10 10%ICE 0 Eoff Loss -100 -0.3 -0.05 0.2 0.45 -10 0.7 0 Eon Loss -100 -0.5 0 0.5 -10 1 time(µs) time (µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 600 500 tRR 20 Vce (V) 0 Peak IRR 100 300 75 200 50 100 25 0 -100 0.00 0.15 0.30 time (µs) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 www.irf.com VCE 0 -20 -30 -0.15 125 400 10 -10 150 ICE QRR 30 IF (A) 10% VCE 0 40 9 20 90% ICE 10% ICE 0 40 TEST CURRENT 10% VCE 100 60 tr © 2013 International Rectifier Ice (A) VCE (V) tf ICE (A) 600 -5.0 0.0 5.0 -25 10.0 time (µs) Fig. WF4 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information Notes: This part marking information applies to devices produced after 02/26/2001 EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 135H 57 ASSEMBLY LOT CODE DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2013 International Rectifier June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF TO-247AD Package Outline Dimensions are shown in millimeters (inches) E Q A A E2/2 "A" A2 E2 2X D B L1 "A" L SEE VIEW "B" 2x b2 3x b Ø .010 B A c b4 e A1 2x LEAD TIP ØP Ø .010 B A -A- S D1 VIEW: "B" THERMAL PAD PLATING BASE METAL E1 Ø .010 (c) B A VIEW: "A" - "A" (b, b2, b4) SECTION: C-C, D-D, E-E TO-247AD Part Marking Information E X A M P L E : T H IS IS A N IR G P 3 0 B 1 2 0 K D - E W IT H A S S E M B L Y LO T C O D E 5657 ASSEM BLED O N W W 35, 2000 IN T H E A S S E M B L Y L IN E "H " N o te : "P " in a s s e m b ly lin e p o s itio n in d ic a te s "L e a d - F r e e " PART NUM BER IN T E R N A T IO N A L R E C T IF IE R LO G O 56 035H 57 ASSEM BLY LO T CO DE DATE CO D E YEAR 0 = 2000 W EEK 35 L IN E H TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 11 www.irf.com © 2013 International Rectifier June 12, 2013 IRGP4262DPbF/IRGP4262D-EPbF Qualification Information† Industrial Qualification Level (per JEDEC JESD47F) †† Moisture Sensitivity Level TO-247AC N/A TO-247AD N/A Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 12 www.irf.com © 2013 International Rectifier June 12, 2013
IRGP4262D-EPBF 价格&库存

很抱歉,暂时无法提供与“IRGP4262D-EPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货