IRGP4263PbF
IRGP4263-EPbF
Insulated Gate Bipolar Transistor
C
VCES = 650V
IC = 60A, TC =100°C
tSC 5.5µs, TJ(max) = 175°C
E
G
VCE(ON) typ. = 1.7V @ IC = 48A
C
G
IRGP4263PbF
TO247AC
E
n-channel
Applications
• Industrial Motor Drive
• Inverters
• UPS
• Welding
G
Gate
G
E
IRGP4263-EPbF
TO-247AD
C
Collector
Features
C
E
Emitter
Benefits
Low VCE(ON) and switching losses
Square RBSOA and maximum junction temperature 175°C
Positive VCE (ON) temperature coefficient
5.5µs short circuit SOA
Lead-free, RoHS compliant
Base part number
Package Type
IRG7P4263PbF
IRG7P4263-EPbF
TO-247AC
TO-247AD
High efficiency in a wide range of applications and
switching frequencies
Improved reliability due to rugged hard switching
performance and higher power capability
Excellent current sharing in parallel operation
Enables short circuit protection scheme
Environmentally friendly
Standard Pack
Form
Quantity
Tube
25
Tube
25
Orderable Part Number
IRGP4263PbF
IRGP4263-EPbF
Absolute Maximum Ratings
Parameter
Max.
Units
V
VCES
Collector-to-Emitter Voltage
650
IC @ TC = 25°C
Continuous Collector Current
90
IC @ TC = 100°C
Continuous Collector Current
60
ICM
Pulse Collector Current, VGE=20V
192
ILM
Clamped Inductive Load Current, VGE=20V
192
VGE
Continuous Gate-to-Emitter Voltage
±20
PD @ TC = 25°C
Maximum Power Dissipation
300
PD @ TC = 100°C
Maximum Power Dissipation
150
TJ
Operating Junction and
TSTG
Storage Temperature Range
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
A
V
W
-40 to +175
C
Thermal Resistance
RJC (IGBT)
RCS
RJA
1
Parameter
Thermal Resistance Junction-to-Case-(each IGBT)
Thermal Resistance, Case-to-Sink (flat, greased surface)
Thermal Resistance, Junction-to-Ambient (typical socket mount)
www.irf.com
© 2014 International Rectifier
Min.
–––
–––
–––
Typ.
–––
0.24
40
Submit Datasheet Feedback
Max.
0.5
–––
–––
Units
°C/W
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES/
Parameter
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
VCE(on)
Collector-to-Emitter Saturation Voltage
VGE(th)
VGE(th)/TJ
gfe
Gate Threshold Voltage
Threshold Voltage Temperature Coeff.
Forward Transconductance
ICES
Collector-to-Emitter Leakage Current
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
Min.
650
—
Typ.
—
505
Max.
—
—
—
—
5.5
—
—
—
—
—
1.7
2.1
—
-23
31
1.0
700
—
2.1
V
IC = 48A, VGE = 15V, TJ = 25°C
—
IC = 48A, VGE = 15V, TJ = 175°C
7.7
V
VCE = VGE, IC = 1.4mA
—
mV/°C VCE = VGE, IC = 1.4mA (25°C-175°C)
—
S
VCE = 50V, IC = 48A, PW = 20µs
25
µA VGE = 0V, VCE = 650V
—
VGE = 0V, VCE = 650V, TJ = 175°C
±100
nA VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
Qg
Total Gate Charge (turn-on)
—
100
Qge
Gate-to-Emitter Charge (turn-on)
—
30
Gate-to-Collector Charge (turn-on)
—
40
Qgc
Eon
Turn-On Switching Loss
—
1.7
Eoff
Turn-Off Switching Loss
1.0
Etotal
Total Switching Loss
2.7
td(on)
Turn-On delay time
—
70
tr
Rise time
—
60
td(off)
Turn-Off delay time
—
140
tf
Fall time
—
30
Eon
Turn-On Switching Loss
—
2.9
Eoff
Etotal
td(on)
tr
td(off)
tf
Cies
Coes
Cres
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
RBSOA
SCSOA
—
—
—
—
—
—
—
—
Max Units
Conditions
150
IC = 48A
50
nC VGE = 15V
VCC = 600V
60
2.6
1.9
mJ
IC = 48A, VCC = 400V, VGE=15V
4.5
RG = 10, L = 210µH, TJ = 25°C
90
Energy losses include tail & diode
80
ns reverse recovery
160
50
—
—
—
—
—
—
—
—
—
mJ
IC = 48A, VCC = 400V, VGE=15V
RG = 10, L = 210µH, TJ = 175°C
Energy losses include tail & diode
ns reverse recovery
pF
5.5
—
—
VGE = 0V
VCC = 30V
f = 1.0Mhz
TJ = 175°C, IC = 192A
VCC = 520V, Vp ≤ 650V
FULL SQUARE
Reverse Bias Safe Operating Area
Short Circuit Safe Operating Area
1.4
4.3
55
60
145
65
3000
150
80
Units
Conditions
V
VGE = 0V, IC = 100µA
mV/°C VGE = 0V, IC = 1mA (25°C-175°C)
µs
Rg = 10, VGE = +20V to 0V
TJ = 150°C,VCC = 400V, Vp ≤ 650V
Rg = 10, VGE = +15V to 0V
Notes:
VCC = 80% (VCES), VGE = 20V, L = 50µH, RG = 10.
R is measured at TJ of approximately 90°C.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Maximum limits are based on statistical sample size characterization.
Pulse width limited by max. junction temperature.
Values influenced by parasitic L and C in measurement.
2
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
110
For both:
Duty cycle : 50%
Tj = 175°C
Tcase = 100°C
Gate drive as specified
Power Dissipation = 150W
Load Current ( A )
90
70
Square Wave:
50
VCC
I
30
Diode as specified
10
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
350
300
80
250
IC (A)
Ptot (W)
60
40
200
150
100
20
50
0
25
50
75
100
125
150
0
175
25
100
125
150
175
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
100
1msec
100µsec
100
10
IC (A)
IC, Collector-to -Emitter Current (A)
75
Fig. 3 - Power Dissipation vs.
Case Temperature
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
1000
50
TC (°C)
TC (°C)
10msec
1
10
0.1
Tc = 25°C
Tj = 175°C
Single Pulse
DC
1
0.01
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 4 - Forward SOA
TC = 25°C, TJ 175°C, VGE =15V
3
www.irf.com
© 2014 International Rectifier
10
100
1000
VCE (V)
Fig. 5- Reverse Bias SOA
TJ = 175°C; VGE = 20V
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
200
200
180
160
140
160
140
ICE (A)
ICE (A)
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
180
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
100
80
120
100
80
60
60
40
40
20
20
0
0
0
1
2
3
4
5
6
7
8
9
10
0
2
4
V CE (V)
8
10
V CE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 20µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 20µs
200
8
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
180
160
140
6
120
VCE (V)
ICE (A)
6
100
80
60
ICE = 24A
ICE = 48A
ICE = 96A
4
2
40
20
0
0
0
1
2
3
4
5
6
7
8
9
10
8
10
12
8
6
6
ICE = 24A
ICE = 48A
ICE = 96A
VCE (V)
VCE (V)
8
2
0
0
12
14
16
18
20
V GE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
4
www.irf.com
20
© 2014 International Rectifier
ICE = 24A
ICE = 48A
ICE = 96A
4
2
10
18
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 20µs
8
16
V GE (V)
V CE (V)
4
14
8
10
12
14
16
18
20
V GE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
10
200
9
IC, Collector-to-Emitter Current (A)
180
TJ = 25°C
TJ = 175°C
160
7
Energy (mJ)
140
8
120
100
80
EON
6
5
4
60
3
40
2
20
1
EOFF
0
0
4
6
8
10
12
14
16
18
0 10 20 30 40 50 60 70 80 90 100 110
20
V GE, Gate-to-Emitter Voltage (V)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 0.210mH; VCE = 400V, RG = 10; VGE = 15V
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 20µs
1000
8
6
tdOFF
100
Energy (mJ)
Swiching Time (ns)
7
tF
tdON
EON
5
4
3
EOFF
2
tR
1
10
0
0
10 20 30 40 50 60 70 80 90 100
0
20
40
IC (A)
80
100
120
RG ()
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 0.210mH; VCE = 400V, RG = 10; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 0.210mH; VCE = 400V, ICE = 48A; VGE = 15V
10000
280
35
30
Time (µs)
100
25
tdON
tR
tF
200
Isc
20
160
15
120
10
80
Current (A)
tdOFF
240
Tsc
1000
Swiching Time (ns)
60
10
1
20
40
60
80
100
RG ()
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 0.210mH; VCE = 400V, ICE = 48A; VGE = 15V
5
40
5
0
www.irf.com
© 2014 International Rectifier
8
10
12
14
16
18
VGE (V)
Fig. 17 - VCE vs. Short Circuit Time
Vcc= 400V; TC= 150°C
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
16
VGE, Gate-to-Emitter Voltage (V)
10000
Capacitance (pF)
Cies
1000
100
Coes
Cres
14
VCES = 400V
VCES = 300V
12
10
8
6
4
2
0
10
0
100
200
300
400
0
500
20
40
60
80
100
Q G, Total Gate Charge (nC)
VCE (V)
Fig. 19 - Typical Gate Charge vs. VGE
ICE = 48A
Fig. 18 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
J
R1
R1
J
1
R2
R2
R3
R3
R4
R4
C
2
1
2
3
3
4
C
4
Ci= iRi
Ci= iRi
Ri(°C/W)
i (sec)
0.0839
0.00012
0.0626
0.00012
0.2091
0.00425
0.1450
0.02510
Fig. 20 Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
6
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.3 - Switching Loss Circuit
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
100K
D1
22K
C sense
G force
DUT
0.0075µF
E sense
E force
BVCES Filter
Fig.C.T.5 - Resistive Load Circuit
7
www.irf.com
© 2014 International Rectifier
Fig.C.T.6 - BVCES Filter Circuit
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
600
60
800
tf
500
600
400
30
200
20
5% VCE
100
VCE (V)
300
10
5% ICE
-100
400
40
300
30
200
20
-2
0
2
10% ICE
4
5% VCE
0
-10
10
0
Eon Loss
-100
6
60
50
0
Eoff Loss
70
500
100
0
TEST
CURRENT
90% ICE
40
ICE (A)
VCE (V)
700
50
90% ICE
80
tr
ICE (A)
-10
-3 -2 -1 0 1 2 3 4 5 6 7
time(µs)
time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
500
500
400
300
300
200
200
Ice (A)
Vce (V)
VCE
400
ICE
100
100
0
0
-100
-100
-2
0
2
4
6
8
Time (uS)
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 150°C using Fig. CT.3
8
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
Notes: This part marking information applies to devices produced after 02/26/2001
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2001
IN THE ASSEMBLY LINE "H"
Note: "P" in assembly line position
indicates "Lead-Free"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFPE30
56
135H
57
ASSEMBLY
LOT CODE
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
EXAM PLE:
T H IS IS A N IR G P 3 0 B 1 2 0 K D - E
W IT H A S S E M B L Y
LO T C O D E 5657
ASSEM BLED O N W W 35, 2000
IN T H E A S S E M B L Y L IN E "H "
N o te : "P " in a s s e m b ly lin e p o s itio n
in d ic a t e s "L e a d - F re e "
PART N U M BER
IN T E R N A T IO N A L
R E C T IF IE R
LO G O
56
035H
57
ASSEM B LY
LO T C O D E
D A TE C O D E
YE A R 0 = 20 0 0
W EEK 35
L IN E H
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 21, 2014
IRGP4263PbF/IRGP4263-EPbF
Qualification Information†
Industrial
(per JEDEC JESD47F) ††
Qualification Level
TO-247AC
Moisture Sensitivity Level
N/A
TO-247AD
Yes
RoHS Compliant
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
††
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
8/21/2014
Comments
Updated IC vs. TC graph Fig.2 to match page1 spec data on page 3.
Updated package outline on page9
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
11
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 21, 2014