IRGP4266PbF
IRGP4266-EPbF
Insulated Gate Bipolar Transistor
VCES = 650V
C
IC = 90A, TC =100°C
tSC 5.5µs, TJ(max) = 175°C
G
VCE(ON) typ. = 1.7V @ IC = 75A
G
E
G
Gate
Low VCE(ON) and switching Losses
Square RBSOA and Maximum Junction Temperature 175°C
Positive VCE (ON) Temperature Coefficient
5.5µs short circuit SOA
Lead-Free, RoHS compliant
Base part number
Package Type
IRGP4266PbF
IRGP4266-EPbF
TO-247AC
TO-247AD
C
G
C
Collector
Features
E
IRGP4266PbF
TO-247AC
n-channel
Applications
Industrial Motor Drive
Inverters
UPS
Welding
C
E
IRGP4266-EPbF
TO-247AD
E
Emitter
Benefits
High efficiency in a wide range of applications and
switching frequencies
Improved reliability due to rugged hard switching
performance and higher power capability
Excellent current sharing in parallel operation
Enables short circuit protection scheme
Environmentally friendly
Standard Pack
Form
Quantity
Tube
Tube
Orderable Part Number
25
25
IRGP4266PbF
IRGP4266-EPbF
Absolute Maximum Ratings
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Parameter
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulse Collector Current, VGE=20V
Clamped Inductive Load Current, VGE=20V
Continuous Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw
Max.
650
140
90
300
300
±20
455
230
-40 to +175
Units
V
A
V
W
300 (0.063 in. (1.6mm) from case)
10 lbf·in (1.1 N·m)
°C
Thermal Resistance
RJC
RCS
RJA
1
Parameter
Thermal Resistance Junction-to-Case
Thermal Resistance, Case-to-Sink (flat, greased surface)
Thermal Resistance, Junction-to-Ambient (typical socket mount)
www.irf.com
© 2014 International Rectifier
Min.
–––
–––
–––
Typ.
–––
0.24
40
Submit Datasheet Feedback
Max.
0.33
–––
–––
Units
°C/W
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Temperature
Coeff. of Breakdown Voltage
V(BR)CES/TJ
Min.
Typ. Max. Units
650
—
—
V
—
570
—
mV/°C
—
1.7
2.1
V
VCE(on)
Collector-to-Emitter Saturation Voltage
—
2.1
—
VGE(th)
Gate Threshold Voltage
5.5
—
7.7
V
Threshold
Voltage
temp.
coefficient
—
-22
—
mV/°C
VGE(th)/TJ
gfe
Forward Transconductance
—
43
—
S
—
1.0
25
µA
ICES
Collector-to-Emitter Leakage Current
mA
—
1.1
—
IGES
Gate-to-Emitter Leakage Current
—
—
±100
nA
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Qg
Total Gate Charge (turn-on)
—
140
210
Qge
Gate-to-Emitter Charge (turn-on)
—
40
60
nC
Gate-to-Collector Charge (turn-on)
—
60
90
Qgc
Turn-On Switching Loss
—
3.2
4.2
Eon
Eoff
Turn-Off Switching Loss
—
1.7
2.6
mJ
Total Switching Loss
—
4.9
6.8
Etotal
td(on)
Turn-On delay time
—
80
95
tr
Rise time
—
85
105
ns
td(off)
Turn-Off delay time
—
200
220
tf
Fall time
—
40
55
Eon
Turn-On Switching Loss
—
4.6
—
Eoff
Turn-Off Switching Loss
—
2.4
—
mJ
Etotal
Total Switching Loss
—
7.0
—
td(on)
Turn-On delay time
—
60
—
tr
Rise time
—
95
—
ns
td(off)
Turn-Off delay time
—
205
—
tf
Fall time
—
60
—
Cies
Input Capacitance
—
4300
—
Coes
Output Capacitance
—
230
—
pF
Reverse Transfer Capacitance
—
120
—
Cres
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5.5
—
—
µs
Conditions
VGE = 0V, IC = 100µA
VGE = 0V, IC = 1.0mA (25°C-175°C)
IC = 75A, VGE = 15V, TJ = 25°C
IC = 75A, VGE = 15V, TJ = 175°C
VCE = VGE, IC = 2.1mA
VCE=VGE, IC = 2.1mA (25°C - 175°C)
VCE = 50V, IC = 75A, PW = 20µs
VGE = 0V, VCE = 650V
VGE = 0V, VCE = 650V, TJ = 175°C
VGE = ±20V
Conditions
IC = 75A
VGE = 15V
VCC = 400V
IC = 75A, VCC = 400V, VGE = 15V
RG = 10, L = 200µH, TJ = 25°C
Energy losses include tail & diode
reverse recovery
IC = 75A, VCC = 400V, VGE=15V
RG=10, L=200µH,TJ = 175°C
Energy losses include tail & diode
reverse recovery
VGE = 0V
VCC = 30V
f = 1.0Mhz
TJ = 175°C, IC = 300A
VCC = 520V, Vp ≤ 650V
Rg = 50, VGE = +20V to 0V
TJ = 150°C,VCC = 400V, Vp ≤600V
Rg = 50, VGE = +15V to 0V
Notes:
VCC = 80% (VCES), VGE = 20V, L = 50µH, RG = 50.
R is measured at TJ of approximately 90°C.
Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
Maximum limits are based on statistical sample size characterization.
Pulse width limited by max. junction temperature.
Values influenced by parasitic L and C in measurement.
2
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
140
For both:
Duty cycle : 50%
Tj = 175°C
Tcase = 100°C
Gate drive as specified
Power Dissipation = 245W
Load Current ( A )
120
100
80
Square Wave:
VCC
60
I
Diode as specified
40
20
0.1
1
10
100
f , Frequency ( kHz )
Fig. 1 - Typical Load Current vs. Frequency
(Load Current= IRMS of fundamental)
500
160
140
400
120
300
Ptot (W)
IC (A)
100
80
200
60
40
100
20
0
0
25
50
75
100
125
150
25
175
100
125
150
175
Fig. 3 - Power Dissipation vs.
Case Temperature
Fig. 2 - Maximum DC Collector Current vs.
Case Temperature
1000
1000
OPERATION IN THIS AREA
LIMITED BY VCE(on)
100
1msec
100µsec
100
10
IC (A)
IC, Collector-to -Emitter Current (A)
75
TC (°C)
TC (°C)
10msec
1
10
0.1
Tc = 25°C
Tj = 175°C
Single Pulse
DC
1
0.01
1
10
100
1000
VCE, Collector-to-Emitter Voltage (V)
Fig. 4 - Forward SOA
3
50
www.irf.com
© 2014 International Rectifier
10
100
1000
V CE (V)
Fig. 5 - Reverse Bias SOA
TJ = 175°C; VGE = 20V
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
300
300
VGE = 18V
250
VGE = 15V
250
VGE = 12V
ICE (A)
ICE (A)
VGE = 8.0V
150
100
50
50
0
0
2
4
6
8
V GE = 15V
V GE = 12V
150
100
0
V GE = 18V
200
VGE = 10V
200
V GE = 10V
V GE = 8.0V
0
10
2
4
6
8
10
V CE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 20µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 20µs
10
300
VGE = 18V
VGE = 15V
250
8
VGE = 12V
VGE = 10V
VGE = 8.0V
V CE (V)
ICE (A)
200
150
ICE = 38A
ICE = 75A
6
ICE = 150A
4
100
2
50
0
0
0
2
4
6
8
6
10
8
10
10
10
8
8
ICE = 38A
ICE = 75A
V CE (V)
V CE (V)
Fig. 8 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 20µs
ICE = 150A
4
16
18
20
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
ICE = 38A
ICE = 75A
6
ICE = 150A
4
2
2
0
0
8
10
12
14
16
18
20
V GE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
4
14
V GE (V)
VCE (V)
6
12
www.irf.com
© 2014 International Rectifier
6
8
10
12
14
16
18
20
V GE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
18000
300
IC, Collector-to-Emitter Current(A)
16000
250
14000
TJ = 25°C
TJ = 175°C
12000
Energy (µJ)
200
150
EON
10000
100
8000
6000
EOFF
4000
50
2000
0
0
4
6
8
10
12
14
20
16
40
60
80
100
120
140
160
IC (A)
VGE, Gate-to-Emitter Voltage (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 20µs
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V
12000
1000
8000
Energy (µJ)
Swiching Time (ns)
tdOFF
100
tdON
EON
EOFF
4000
tF
tR
0
10
0
20
40
60
80
0
100 120 140 160
20
40
60
80
100
IC (A)
RG ( )
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10; VGE = 15V
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 75A; VGE = 15V
10000
20
400
Isc
15
300
10
200
5
100
tdOFF
tR
tF
100
Time (µs)
1000
Current (A)
Swiching Time (ns)
Tsc
tdON
10
0
0
20
40
60
80
100
RG ( )
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 75A; VGE = 15V
5
www.irf.com
© 2014 International Rectifier
0
8
10
12
14
16
V GE (V)
Fig. 17 - VGE vs. Short Circuit Time
VCC = 400V; TC = 150°C
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
10000
16
V GE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
Cies
1000
Coes
100
Cres
100
200
300
400
V CES = 300V
12
10
8
6
4
2
10
0
V CES = 400V
14
0
500
0
20
V CE (V)
40
60
80
100 120 140 160
Q G, Total Gate Charge (nC)
Fig. 18 - Typ. Capacitance vs. VCE
Fig. 19 - Typical Gate Charge vs. VGE
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
Ri (°C/W)
0.10
0.05
0.01
0.001
J
0.02
0.01
R1
R1
J
1
R2
R2
R3
R3
R4
R4
C
2
1
2
3
4
3
Ci= iRi
Ci= iRi
SINGLE PULSE
( THERMAL RESPONSE )
4
C
i (sec)
0.00738
0.000009
0.09441
0.000179
0.13424
0.002834
0.09294
0.0182
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 20. Maximum Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
L
L
VCC
DUT
0
80 V +
-
1K
DUT
VCC
Rg
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
diode clamp /
DUT
L
-5V
DUT /
DRIVER
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
C force
R = VCC
ICM
100K
D1
DUT
22K
C sense
VCC
G force
Rg
DUT
0.0075µF
E sense
Resistive Load
Fig.C.T.5 - Resistive Load Circuit
7
www.irf.com
© 2014 International Rectifier
E force
Fig.C.T.6 - BVCES Filter Circuit
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
600
120
600
500
100
500
80
400
300
60
300
200
40
120
TEST CURRENT
tf
400
tr
100
80
100
90% test current
200
100
0
20
5% VCE
5% ICE
0
40
10% test current
20
5% VCE
60
ICE (A)
VCE (V)
ICE (A)
VCE (V)
90% ICE
0
0
Eon Loss
Eoff Loss
-1.35
time(µs)
-20
-1.25
-1.3
-100
-0.55
-0.5
-0.45
-0.4
-20
-0.35
time (µs)
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.3
450
400
400
350
350
300
300
ICE
250
Vce (V)
450
VCE
250
200
200
150
150
100
100
50
50
0
0
-50
Ice (A)
-100
-1.4
-50
-10 -8 -6 -4 -2 0 2
Time (uS)
4
6
8
Fig. WF3 - Typ. S.C. Waveform
@ TJ = 150°C using Fig. CT.3
8
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
Notes: This part marking information applies to devices produced after 02/26/2001
EXAMPLE: THIS IS AN IRFPE30
WITH ASSEMBLY
LOT CODE 5657
ASSEMBLED ON WW 35, 2001
IN THE ASSEMBLY LINE "H"
Note: "P" in assembly line position
indicates "Lead-Free"
INTERNATIONAL
RECTIFIER
LOGO
PART NUMBER
IRFPE30
56
135H
57
ASSEMBLY
LOT CODE
DATE CODE
YEAR 1 = 2001
WEEK 35
LINE H
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
9
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
E X A M P L E : T H IS IS A N IR G P 3 0 B 1 2 0 K D - E
W IT H A S S E M B L Y
LO T C O D E 5657
ASSEM BLED O N W W 35, 2000
IN T H E A S S E M B L Y L IN E "H "
N o te : "P " in a s s e m b ly lin e p o s itio n
in d ic a te s "L e a d - F re e "
PART N U M BER
IN T E R N A T IO N A L
R E C T IF IE R
LO G O
56
035H
57
ASSEM B LY
LO T C O D E
D A TE C O D E
YE A R 0 = 2 0 0 0
W EEK 35
L IN E H
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 22, 2014
IRGP4266PbF/IRGP4266-EPbF
Qualification Information†
Industrial†
(per JEDEC JESD47F) ††
Qualification Level
TO-247AC
Moisture Sensitivity Level
N/A
TO-247AD
Yes
RoHS Compliant
†
Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/
††
Applicable version of JEDEC standard at the time of product release.
Revision History
Date
8/22/2014
Comments
Updated IC vs. TC graph Fig.2 to match page1 spec data on page 3.
Updated package outline on page 9.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
11
www.irf.com
© 2014 International Rectifier
Submit Datasheet Feedback
August 22, 2014