PD - 9.800
IRGPC50FD2
INSULATED GATE BIPOLAR TRANSISTOR
WITH ULTRAFAST SOFT RECOVERY
DIODE
Fast CoPack IGBT
Features
C
• Switching-loss rating includes all "tail" losses
TM
• HEXFRED soft ultrafast diodes
• Optimized for medium operating frequency (1 to
10kHz) See Fig. 1 for Current vs. Frequency curve
VCES = 600V
VCE(sat) ≤ 1.7V
G
@VGE = 15V, IC = 39A
E
n-channel
Description
Co-packaged IGBTs are a natural extension of International Rectifier's well
known IGBT line. They provide the convenience of an IGBT and an ultrafast
recovery diode in one package, resulting in substantial benefits to a host of
high-voltage, high-current, motor control, UPS and power supply applications.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
70
39
280
280
25
280
± 20
200
78
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
C-125
Min.
Typ.
Max.
—
—
—
—
—
—
—
0.24
—
6 (0.21)
0.64
0.83
—
40
—
Units
°C/W
g (oz)
Revision 1
IRGPC50FD2
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Parameter
Collector-to-Emitter Breakdown Voltage
Temp. Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
Min. Typ. Max. Units
Conditions
600
—
—
V
VGE = 0V, IC = 250µA
— 0.62 —
V/°C VGE = 0V, IC = 1.0mA
—
1.6 1.7
IC = 39A
VGE = 15V
—
2.0
—
V
IC = 70A
See Fig. 2, 5
—
1.7
—
IC = 39A, T J = 150°C
Gate Threshold Voltage
3.0
—
5.5
VCE = VGE, IC = 250µA
Temperature Coeff. of Threshold Voltage —
-14
— mV/°C VCE = VGE, IC = 250µA
Forward Transconductance
21
24
—
S
VCE = 100V, IC = 39A
Zero Gate Voltage Collector Current
—
—
250
µA
VGE = 0V, VCE = 600V
—
— 6500
VGE = 0V, VCE = 600V, T J = 150°C
Diode Forward Voltage Drop
—
1.3 1.7
V
IC = 25A
See Fig. 13
—
1.2 1.5
IC = 25A, T J = 150°C
Gate-to-Emitter Leakage Current
—
— ±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 20 )
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
110
20
50
70
110
400
290
2.5
6.0
8.5
68
100
760
520
14
13
3000
340
40
50
105
4.5
8.0
112
420
250
160
Max. Units
Conditions
170
IC = 39A
30
nC
VCC = 400V
75
See Fig. 8
—
TJ = 25°C
—
ns
IC = 39A, VCC = 480V
600
VGE = 15V, RG = 5.0Ω
400
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ See Fig. 9, 10, 11, 18
13
—
TJ = 150°C,
See Fig. 9, 10, 11, 18
—
ns
IC = 39A, VCC = 480V
—
VGE = 15V, RG = 5.0Ω
—
Energy losses include "tail" and
—
mJ diode reverse recovery.
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
75
ns
TJ = 25°C See Fig.
160
TJ = 125°C
14
IF = 25A
10
A
TJ = 25°C See Fig.
15
TJ = 125°C
15
V R = 200V
375
nC
TJ = 25°C See Fig.
1200
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
VCC=80%(VCES), VGE=20V, L=10µH,
RG= 5.0Ω, ( See fig. 19 )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-126
Pulse width 5.0µs,
single shot.
IRGPC50FD2
30
D u ty c y cl e : 5 0 %
TJ = 1 2 5 ° C
T s in k = 9 0 ° C
G a te d riv e a s s p e c ifie d
T u rn -o n lo s s e s in c lu d e
e f fe c ts o f re v e r s e re c o v e ry
P o w e r D is s ip a tio n = 4 0 W
Load Current (A)
25
20
6 0 % o f ra te d
v o lta g e
15
10
5
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
1000
TJ = 2 5°C
TJ = 25 °C
IC , Collector-to-E m itter C urrent (A )
I C , Collector-to-E m itter C urrent (A)
1000
TJ = 1 50 °C
100
10
V G E = 15 V
2 0 µs P U L S E W ID TH
1
0.1
1
TJ = 1 5 0°C
100
10
V C C = 1 00 V
5µ s P U L S E W ID TH
1
10
5
10
15
V G E , G ate -to-E m itter V olta ge (V )
V C E , C o llector-to-Em itter V oltage (V)
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-127
20
IRGPC50FD2
3.0
V G E = 15 V
VC E , C o llector-to-E mitte r V oltage (V )
M aximum D C Collector Current (A )
70
60
50
40
30
20
10
VG E = 1 5 V
80 µs P UL S E W ID TH
I C = 78 A
2.5
2.0
I C = 39 A
1.5
I C = 20 A
1.0
0
25
50
75
100
125
-60
150
-40
-20
0
20
40
60
80
1 00 120 140 160
TC , C ase Tem perature (°C )
T C , C ase Tem perature (°C )
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T he rm al R espons e (Z thJC )
1
D = 0 .5 0
0 .2 0
0.1
0 .1 0
PDM
0 .0 5
t
0 .0 2
0.01
0.00001
t2
S ING L E P U L S E
(TH E R M A L R E S PO N S E)
0 .0 1
1
N o te s :
1 . D u ty fa c to r D = t
1
/ t
2
2 . P e a k TJ = P D M x Z th J C + T C
0.000 1
0.001
0.01
0.1
1
t 1 , R ectangu lar Pulse D u ration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
C-128
10
IRGPC50FD2
7000
5000
V G E , G ate-to-E m itte r V oltag e (V )
6000
C , C apacitance (pF )
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , C ce SHORTED
C res = C gc
C oes = C ce + C gc
V C E = 48 0V
I C = 39 A
16
Cies
12
4000
Coes
3000
2000
Cres
1000
8
4
0
0
1
10
0
1 00
30
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
90
120
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
100
VCC
VGE
TC
IC
9.0
= 480V
= 15V
= 25°C
= 39A
Total Switching Losses (mJ)
9.2
Total Switching Losses (mJ)
60
Q g , T o tal G a te C h a rg e (n C )
V C E , C o llector-to-Em itter V oltage (V)
8.8
8.6
8.4
A
8.2
0
10
20
30
40
50
60
RG = 5.0Ω
V GE = 15V
V CC = 480V
I C = 78A
I C = 39A
10
I C = 20A
1
-60
A
-40
-20
0
20
40
60
80
100 120 140 160
TC , Case Temperature (°C)
RG , Gate Resistance (Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-129
IRGPC50FD2
1000
I C , C o lle c to r-to -E m itte r C u rre n t (A )
RG = 5Ω
T C = 150°C
V CC = 480V
V GE = 15V
30
20
10
A
0
0
20
40
60
VGGE E= 20 V
T J = 12 5°C
S A FE O P E RA TIN G A RE A
100
10
1
80
1
10
100
V C E , C o lle cto r-to-E m itte r V olta g e (V )
I C , Collector-to-Emitter Current (A)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instantaneous Forward Current - I F (A)
Total Switching Losses (mJ)
40
TJ = 150°C
TJ = 125°C
10
1
0.6
TJ = 25°C
1.0
1.4
1.8
2.2
2.6
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
C-130
1000
IRGPC50FD2
100
140
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
I IRRM - (A)
t rr - (ns)
100
IF = 50A
80
IF = 25A
I F = 50A
I F = 25A
10
I F = 10A
IF = 10A
60
40
20
100
di f /dt - (A/µs)
1
100
1000
1000
di f /dt - (A/µs)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1500
10000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
1200
900
IF = 50A
600
IF = 25A
1000
IF = 10A
IF = 25A
300
I F = 10A
0
100
di f /dt - (A/µs)
IF = 50A
1000
100
100
1000
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
C-131
IRGPC50FD2
90% Vge
+Vge
Vce
Same type
device as
D.U.T.
Ic
90% Ic
10% Vce
Ic
5% Ic
430µF
80%
of Vce
td(off)
D.U.T.
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1+5µS
Vce ic dt
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
trr
GATE VOLTAGE D.U.T.
10% +Vg
Qrr =
Ic
∫
trr
id dt
tx
+Vg
tx
10% Vcc
10% Irr
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
Ipk
90% Ic
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
t1
5% Vce
∫
t2
Eon = Vce ie dt
t1
DIODE REVERSE
RECOVERY ENERGY
t2
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig.
18a, Defining Erec, trr, Qrr, Irr
Refer to Section D for the following:
Appendix D: Section D - page D-6
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a
Fig. 19 - Clamped Inductive Load Test Circuit
Fig. 20 - Pulsed Collector Current Test Circuit
Package Outline 3 - JEDEC Outline TO-247AC (TO-3P)
C-132
Section D - page D-13
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/