PD - 9.802A
IRGPC50UD2
INSULATED GATE BIPOLAR TRANSISTOR
WITH ULTRAFAST SOFT RECOVERY
DIODE
UltraFast CoPack IGBT
Features
C
VCES = 600V
• Switching-loss rating includes all "tail" losses
TM
• HEXFRED soft ultrafast diodes
• Optimized for high operating frequency (over 5kHz)
See Fig. 1 for Current vs. Frequency curve
VCE(sat) ≤ 3.0V
G
@VGE = 15V, IC = 27A
E
n-channel
Description
Co-packaged IGBTs are a natural extension of International Rectifier's well
known IGBT line. They provide the convenience of an IGBT and an ultrafast
recovery diode in one package, resulting in substantial benefits to a host of
high-voltage, high-current, motor control, UPS and power supply applications.
TO-247AC
Absolute Maximum Ratings
Parameter
VCES
IC @ T C = 25°C
IC @ T C = 100°C
ICM
ILM
IF @ T C = 100°C
IFM
VGE
PD @ T C = 25°C
PD @ T C = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current
Clamped Inductive Load Current
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
55
27
220
220
25
220
± 20
200
78
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
C-725
Min.
Typ.
Max.
—
—
—
—
—
—
—
0.24
—
6 (0.21)
0.64
0.83
—
40
—
Units
°C/W
g (oz)
Revision 1
IRGPC50UD2
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
VCE(on)
Parameter
Collector-to-Emitter Breakdown Voltage
Temp. Coeff. of Breakdown Voltage
Collector-to-Emitter Saturation Voltage
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
Gate Threshold Voltage
Temp. Coeff. of Threshold Voltage
Forward Transconductance
Zero Gate Voltage Collector Current
VFM
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
V(BR)CES
∆V(BR)CES/∆TJ
Min. Typ. Max. Units
Conditions
600
—
—
V
VGE = 0V, I C = 250µA
— 0.60 — V/°C VGE = 0V, IC = 1.0mA
—
1.9 3.0
IC = 27A
V GE = 15V
—
2.4
—
V
IC = 55A
See Fig. 2, 5
—
1.9
—
IC = 27A, T J = 150°C
3.0
—
5.5
VCE = VGE, IC = 250µA
—
-13
— mV/°C VCE = VGE, IC = 250µA
16
24
—
S
VCE = 100V, I C = 27A
—
—
250
µA
VGE = 0V, V CE = 600V
—
— 6500
VGE = 0V, V CE = 600V, T J = 150°C
—
1.3 1.7
V
IC = 25A
See Fig. 13
—
1.2 1.5
IC = 25A, T J = 150°C
—
— ±100 nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
Irr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During t b
Notes:
Repetitive rating; V GE=20V, pulse width
limited by max. junction temperature.
( See fig. 20 )
Min.
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
Typ.
110
17
53
73
71
210
150
1.4
1.6
3.0
73
67
360
230
4.5
13
2900
330
40
50
105
4.5
8.0
112
420
250
160
Max. Units
Conditions
140
IC = 27A
21
nC
VCC = 400V
70
See Fig. 8
—
TJ = 25°C
—
ns
IC = 27A, V CC = 480V
320
VGE = 15V, R G = 5.0Ω
280
Energy losses include "tail" and
—
diode reverse recovery.
—
mJ
See Fig. 9, 10, 11, 18
4.5
—
TJ = 150°C,
See Fig. 9, 10, 11, 18
—
ns
IC = 27A, V CC = 480V
—
VGE = 15V, R G = 5.0Ω
—
Energy losses include "tail" and
—
mJ
diode reverse recovery.
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
75
ns
TJ = 25°C See Fig.
160
TJ = 125°C
14
I F = 25A
10
A
TJ = 25°C See Fig.
15
TJ = 125°C
15
V R = 200V
375
nC
TJ = 25°C See Fig.
1200
TJ = 125°C
16
di/dt = 200A/µs
—
A/µs TJ = 25°C See Fig.
—
TJ = 125°C
17
VCC=80%(V CES), VGE=20V, L=10µH,
R G= 5.0Ω, ( See fig. 19 )
Pulse width ≤ 80µs; duty factor ≤ 0.1%.
C-726
Pulse width 5.0µs,
single shot.
IRGPC50UD2
40
D u ty c ycle : 5 0 %
T J = 1 25 °C
T sin k = 9 0 °C
G a te d rive a s sp ecified
Tu rn -on los se s inc lu de
e ffe cts o f rev erse recov ery
P ower D issipation = 40W
Load Current (A)
30
6 0 % o f ra te d
vo lt a g e
20
10
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = I RMS of fundamental)
1000
IC , Collector-to-Emitter Current (A)
I C , Collector-to-E m itter C urrent (A)
1000
TJ = 25 °C
100
TJ = 1 50 °C
10
V G E = 15 V
20 µ s P UL S E W ID TH
1
0 .1
1
100
TJ = 150°C
TJ = 25°C
10
VCC = 100V
5µs PULSE WIDTH
1
5
10
10
15
VGE, Gate-to-Emitter Voltage (V)
V C E , C o llector-to-E m itter V oltage (V )
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
C-727
20
IRGPC50UD2
3.0
V G E = 15 V
VC E , Co lle ctor-to-E m itter V oltage (V )
M axim um DC C ollector C urrent (A)
60
50
40
30
20
10
V G E = 15 V
80 µs P UL S E W ID TH
I C = 5 4A
2.5
2.0
I C = 27 A
1.5
I C = 14 A
1.0
0
25
50
75
100
125
-60
150
T C , C ase Tem perature (°C )
-40
-20
0
20
40
60
80
100 120 140 160
TC , C ase Tem perature (°C )
Fig. 5 - Collector-to-Emitter Voltage vs.
Case Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
T herma l R espo nse (Z thJ C )
1
D = 0.5 0
0.2 0
0.1
0.1 0
PD M
0 .0 5
t
SIN G LE P U LSE
(TH ER MA L R E SP O N SE )
0.02
t2
N o te s :
1 . D u ty fa c to r D = t
0.01
0.01
0.00001
1
1
/t
2
2 . P e a k T J = P D M x Z thJ C + T C
0.0 001
0.001
0.01
0.1
1
t 1 , R ectangular Pulse D ura tion (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
C-728
10
IRGPC50UD2
20
7000
C , C apacitance (pF )
6000
V G E , G a te -to -E m itte r V o lta g e (V )
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
V C E = 48 0V
I C = 27 A
16
5000
12
4000
Cies
3000
Coes
2000
1000
8
4
Cres
0
0
1
10
0
1 00
30
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
VCC
VGE
TC
IC
3.4
90
100
= 480V
= 15V
= 25°C
= 27A
3.3
3.2
3.1
3.0
2.9
R G = 5Ω
V GE = 15V
V CC = 480V
I C = 54A
10
I C = 27A
I C = 14A
1
A
0.1
0
10
20
30
40
50
12 0
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
3.5
60
Q g , T o tal G a te C h a rg e (n C )
V C E , C ollector-to-E m itter V oltage (V )
60
R G , Gate Resistance (Ω)
-60
W
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
-40
-20
0
20
40
60
80
100 120 140 160
TC , Case Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Case Temperature
C-729
IRGPH50UD2
10
1000
= 5Ω
= 150°C
= 480V
= 15V
I C , Collector-to-E m itter C urrent (A)
RG
TC
V CC
V GE
8
6
4
2
A
0
0
20
40
VGGE E= 2 0V
T J = 125 °C
S A FE O P E R A TING A R E A
100
10
1
60
1
I C , Collector-to-Emitter Current (A)
10
100
V C E , Collecto r-to-E m itter V oltage (V )
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
100
Instantaneous Forward Current - I F (A)
Total Switching Losses (mJ)
12
TJ = 150°C
TJ = 125°C
10
1
0.6
TJ = 25°C
1.0
1.4
1.8
2.2
2.6
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
C-730
1000
IRGPC50UD2
100
140
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
I IRRM - (A)
t rr - (ns)
100
IF = 50A
80
I F = 25A
I F = 50A
I F = 25A
10
I F = 10A
IF = 10A
60
40
20
100
di f /dt - (A/µs)
1
100
1000
1000
di f /dt - (A/µs)
Fig. 15 - Typical Recovery Current vs. dif/dt
Fig. 14 - Typical Reverse Recovery vs. dif/dt
1500
10000
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
1200
900
I F = 50A
600
IF = 25A
1000
IF = 10A
I F = 25A
300
I F = 10A
0
100
di f /dt - (A/µs)
IF = 50A
1000
Fig. 16 - Typical Stored Charge vs. dif/dt
100
100
di f /dt - (A/µs)
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
C-731
1000
IRGPC50UD2
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
430µF
80%
of Vce
Ic
90% Ic
10% Vce
Ic
D.U.T.
5% Ic
td(off)
tf
Eoff =
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode) , trr, Qrr, Irr, td(on), tr, td(off), tf
t1
∫
t1+5µS
Vce ic dt
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
trr
GATE VOLTAGE D.U.T.
10% +Vg
Qrr =
Ic
∫
trr
id dt
tx
+Vg
tx
10% Vcc
10% Irr
Vcc
DUT VOLTAGE
AND CURRENT
Vce
Vpk
Irr
Vcc
10% Ic
90% Ic
Ipk
Ic
DIODE RECOVERY
WAVEFORMS
tr
td(on)
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
DIODE REVERSE
RECOVERY ENERGY
t2
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining E on, td(on), tr
Defining E rec, trr, Qrr, Irr
Refer to Section D for the following:
Appendix D: Section D - page D-6
Fig. 18e - Macro Waveforms for Test Circuit of Fig. 18a
Fig. 19 - Clamped Inductive Load Test Circuit
Fig. 20 - Pulsed Collector Current Test Circuit
Package Outline 3 - JEDEC Outline TO-247AC
C-732
Section D - page D-13
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/