0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGPH50F

IRGPH50F

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TO247

  • 描述:

    IGBTFAST1200V45ATO-247AC

  • 数据手册
  • 价格&库存
IRGPH50F 数据手册
PD - 9.761A IRGPH50F Fast Speed IGBT INSULATED GATE BIPOLAR TRANSISTOR Features C • Switching-loss rating includes all "tail" losses • Optimized for medium operating frequency (1 to 10kHz) See Fig. 1 for Current vs. Frequency curve VCES = 1200V VCE(sat) ≤ 2.9V G @VGE = 15V, I C = 25A E n-channel Description Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, highcurrent applications. TO-247AC Absolute Maximum Ratings Parameter VCES IC @ T C = 25°C IC @ T C = 100°C ICM ILM VGE EARV PD @ T C = 25°C PD @ T C = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Gate-to-Emitter Voltage Reverse Voltage Avalanche Energy Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting torque, 6-32 or M3 screw. Max. Units 1200 45 25 90 90 ±20 20 200 78 -55 to +150 V A V mJ W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθCS RθJA Wt Junction-to-Case Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight C-279 Min. Typ. Max. — — — — — 0.24 — 6 (0.21) 0.64 — 40 — Units °C/W g (oz) Revision 0 IRGPH50F Electrical Characteristics @ TJ = 25°C (unless otherwise specified) VCE(on) Parameter Collector-to-Emitter Breakdown Voltage Emitter-to-Collector Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage VGE(th) ∆VGE(th)/∆TJ gfe ICES Gate Threshold Voltage Temperature Coeff. of Threshold Voltage Forward Transconductance Zero Gate Voltage Collector Current IGES Gate-to-Emitter Leakage Current V(BR)CES V(BR)ECS ∆V(BR)CES/∆TJ Min. Typ. Max. Units Conditions 1200 — — V VGE = 0V, I C = 250µA 20 — — V VGE = 0V, IC = 1.0A — 1.3 — V/°C VGE = 0V, I C = 1.0mA — 2.1 2.9 IC = 25A V GE = 15V — 2.5 — V IC = 45A See Fig. 2, 5 — 2.4 — IC = 25A, T J = 150°C 3.0 — 5.5 VCE = VGE, IC = 250µA — -14 — mV/°C VCE = VGE, IC = 250µA 7.5 17 — S VCE = 100V, I C = 25A — — 250 µA VGE = 0V, V CE = 1200V — — 1200 VGE = 0V, V CE = 1200V, T J = 150°C — — ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets td(on) tr td(off) tf Ets LE Cies Coes Cres Min. — — — — — — — — — — — — — — — — — — — Typ. 82 16 30 34 13 320 240 1.4 4.5 5.9 33 15 590 500 13 13 2400 140 28 Max. Units Conditions 100 IC = 25A 21 nC VCC = 400V See Fig. 8 43 VGE = 15V — TJ = 25°C — ns IC = 25A, V CC = 960V 480 VGE = 15V, R G = 5.0Ω 330 Energy losses include "tail" — — mJ See Fig. 9, 10, 11, 14 8.2 — TJ = 150°C, — ns IC = 25A, V CC = 960V — VGE = 15V, R G = 5.0Ω — Energy losses include "tail" — mJ See Fig. 10, 14 — nH Measured 5mm from package — VGE = 0V — pF VCC = 30V See Fig. 7 — ƒ = 1.0MHz Notes: Repetitive rating; V GE=20V, pulse width limited by max. junction temperature. ( See fig. 13b ) Repetitive rating; pulse width limited by maximum junction temperature. VCC=80%(V CES), VGE=20V, L=10µH, R G= 5.0Ω, ( See fig. 13a ) Pulse width ≤ 80µs; duty factor ≤ 0.1%. C-280 Pulse width 5.0µs, single shot. IRGPH50F 60 F or bo th : 50 L O A D C U R R E N T (A ) T ria n g u la r w a v e : D u ty c yc le : 5 0 % TJ = 1 2 5 ° C T s ink = 9 0 ° C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 4 0 W 40 C la m p v o lta g e : 8 0 % o f ra te d S q u a re w a v e : 30 6 0 % o f ra te d v o lta g e 20 10 Id e a l d iod e s 0 0.1 1 10 100 f, F re q u e n c y (k H z ) Fig. 1 - Typical Load Current vs. Frequency (For square wave, I=I RMS of fundamental; for triangular wave, I=I PK) 1000 IC , C ollector-to-E mitter C urrent (A ) I C , C ollector-to-E mitter C urrent (A ) 10 00 TJ = 25 °C 1 00 TJ = 15 0°C 10 V G E = 1 5V 2 0µ s P U LS E W IDTH 1 1 100 TJ = 1 50 °C 10 TJ = 2 5 °C 1 V C C = 1 00 V 5 µ s P UL S E W IDTH 0.1 10 5 VC E , C o llector-to-Em itter V oltage (V) 10 15 V G E , G ate -to-E m itter V olta ge (V ) Fig. 3 - Typical Transfer Characteristics Fig. 2 - Typical Output Characteristics C-281 20 IRGPH50F 4.0 V G E = 15 V V CE , C o lle cto r-to -E m itte r V o lta g e (V ) M aximum D C Collector C urrent (A) 50 40 30 20 10 V G E = 15 V 8 0µ s P U LS E W IDTH I C = 5 0A 3.0 I C = 2 5A 2.0 IC = 13A 1.0 0 25 50 75 100 125 -60 150 T C , C ase Tem perature (°C ) -40 -20 0 20 40 60 80 100 120 140 160 T C , C a s e Te m p e ra ture (°C ) Fig. 5 - Collector-to-Emitter Voltage vs. Case Temperature Fig. 4 - Maximum Collector Current vs. Case Temperature T herma l R espo nse (Z thJ C ) 1 D = 0.5 0 0.2 0 0.1 0.1 0 PD M 0 .0 5 t 0.02 t2 N o te s : 1 . D u ty fa c to r D = t 0.01 0.01 0.00001 1 SIN G LE P U LSE (TH ER MA L R E SP O N SE ) 1 /t 2 2 . P e a k T J = P D M x Z thJ C + T C 0.0 001 0.001 0.01 0.1 1 t 1 , R ectangular Pulse D ura tion (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case C-282 10 IRGPH50F 5 0 00 V G E , G ate-to-Em itter V oltage (V ) 4 0 00 C , C ap ac ita nc e (pF ) 20 V GE = 0V, f = 1MHz C ies = C ge + C gc , Cce SHORTED C res = C gc C oes = C ce + C gc V C E = 40 0 V I C = 2 5A 16 Cies 12 3 0 00 Coes 2 0 00 Cres 1 0 00 0 8 4 0 1 10 10 0 0 20 V C E , C o lle c to r-to -E m itte r V o lta g e (V ) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage Total S w itching Losses (m J) 7 .0 = 9 60 V = 15 V = 25 °C = 2 5A To ta l S w itc hing Lo sse s (m J) VC C VG E TC IC 60 80 1 00 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage 100 7 .2 40 Q g , Total G ate C harge (nC ) 6 .8 6 .6 6 .4 6 .2 RG = 5 Ω V G E = 15 V V C C = 9 60 V I C = 50 A I C = 2 5A 10 I C = 1 3A 6 .0 1 5 .8 0 10 20 30 40 50 -60 60 -40 -20 0 20 40 60 80 100 120 140 160 TC , C ase Tem perature (°C ) R G , G ate R es istance (Ω ) W Fig. 9 - Typical Switching Losses vs. Gate Resistance Fig. 10 - Typical Switching Losses vs. Case Temperature C-283 IRGPH50F RG TC VCC VGE 1000 =5 Ω = 1 50°C = 96 0V = 1 5V I C , C o llec to r-to-E m itter C urrent (A ) T o ta l S w itc hin g L o s s e s (m J ) 40 30 20 10 0 VGGE E= 20 V T J = 12 5°C 100 S A FE O P E RA TING A RE A 10 1 10 20 30 40 50 60 1 I C , C o lle c to r-to -E m itte r C u rre n t (A ) 10 100 1000 V C E , C o lle cto r-to-E m itte r V olta g e (V ) Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current Fig. 12 - Turn-Off SOA Refer to Section D for the following: Appendix G: Section D - page D-9 Fig. 13a - Clamped Inductive Load Test Circuit Fig. 13b - Pulsed Collector Current Test Circuit Fig. 14a - Switching Loss Test Circuit Fig. 14b - Switching Loss Waveform Package Outline 3 - JEDEC Outline TO-247AC (TO-3P) C-284 Section D - page D-13 10000 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/
IRGPH50F 价格&库存

很抱歉,暂时无法提供与“IRGPH50F”相匹配的价格&库存,您可以联系我们找货

免费人工找货