PD - 97058B
IRGB4055PbF
IRGS4055PbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (E PULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
K ey Param eters
V CE m in
V CE (O N) typ. @ 110A
I RP m ax @ T C = 25°C
T J m ax
C
c
C
270
150
A
°C
E
C
G
E
C
G
D2Pak
IRGS4055DPbF
TO-220
IRGB4055DPbF
n-channel
V
V
C
G
E
300
1.70
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes
advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area
which improve panel efficiency. Additional features are 150°C operating junction temperature and high
repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust
and reliable device for PDP applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Continuous Collector, VGE @ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Max.
Units
±30
110
V
60
270
A
f
c
255
102
W
2.04
-40 to + 150
Linear Derating Factor
Operating Junction and
W/°C
°C
Storage Temperature Range
Soldering Temperature for 10 seconds
x
300
x
10lb in (1.1N m)
Mounting Torque, 6-32 or M3 Screw
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
RθJA
www.irf.com
d
Junction-to-Case
Case-to-Sink, Flat Greased Surface , TO-220
Junction-to-Ambient, TO-220
Junction-to-Ambient (PCB Mount) , D2Pak
d
d
Typ.
Max.
Units
–––
0.50
–––
–––
0.50
–––
62
40
°C/W
1
03/16/07
IRGB/S4055PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
VGE = 0V, ICE = 1 mA
V
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 35A
V
VGE = 15V, ICE = 110A
V
BVCES
Collector-to-Emitter Breakdown Voltage
300
–––
–––
∆ΒVCES/∆TJ
Breakdown Voltage Temp. Coefficient
–––
–––
0.23
1.10
–––
1.30
VCE(on)
Static Collector-to-Emitter Voltage
–––
–––
1.70
2.35
2.10
–––
VGE(th)
Gate Threshold Voltage
–––
2.6
1.95
–––
–––
5.0
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
–––
–––
-11
2.0
–––
25
Gate-to-Emitter Forward Leakage
–––
–––
100
–––
–––
100
Gate-to-Emitter Reverse Leakage
Forward Transconductance
–––
–––
–––
38
-100
–––
Total Gate Charge
Gate-to-Collector Charge
Turn-On delay time
–––
–––
—
132
42
44
–––
–––
57
nC
Rise time
Turn-Off delay time
—
—
39
245
55
308
ns
Fall time
Turn-On delay time
—
—
152
42
198
—
Rise time
Turn-Off delay time
—
—
40
362
—
—
Fall time
—
309
—
100
–––
–––
–––
705
–––
–––
915
–––
Input Capacitance
–––
4280
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
200
125
–––
–––
Internal Collector Inductance
–––
5.0
–––
IGES
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
tst
Shoot Through Blocking Time
EPULSE
Energy per Pulse
Ciss
Coss
Crss
LC
V
V
V
Internal Emitter Inductance
–––
13
–––
e
e
= 200A e
VGE = 15V, ICE
VGE = 15V, ICE = 110A, TJ = 150°C
VCE = VGE, ICE = 1mA
mV/°C
µA VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 150°C
nA
VGE = 30V
VGE = -30V
S
VCE = 25V, ICE = 35A
VCE = 200V, IC = 35A, VGE = 15V
e
IC = 35A, VCC = 180V
RG = 10Ω, L=250µH, LS= 150nH
TJ = 25°C
IC = 35A, VCC = 180V
ns
RG = 10Ω, L=250µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
pF
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
VCE = 30V
ƒ = 1.0MHz,
nH
LE
Conditions
Typ. Max. Units
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
Notes:
Half sine wave with duty cycle = 0.25, ton=1µsec.
Rθ is measured at TJ of approximately 90°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 70A.
2
www.irf.com
IRGB/S4055PbF
200
200
Top
150
V
= 18V
GE
V
= 15V
GE
VGE = 12V
150
V
= 8.0V
GE
V
= 6.0V
GE
Bottom
ICE (A)
Bottom
ICE (A)
Top
VGE = 18V
V
= 15V
GE
V
= 12V
GE
VGE = 10V
100
V
= 10V
GE
VGE = 8.0V
V
= 6.0V
GE
100
50
50
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
Fig 1. Typical Output Characteristics @ 25°C
2.5
3.0
3.5
200
Top
Top
VGE = 18V
V
= 15V
GE
V
= 12V
GE
VGE = 10V
150
V
= 18V
GE
V
= 15V
GE
VGE = 12V
150
V
= 8.0V
GE
VGE = 6.0V
Bottom
ICE (A)
Bottom
ICE (A)
2.0
Fig 2. Typical Output Characteristics @ 75°C
200
100
VGE = 10V
V
= 8.0V
GE
V
= 6.0V
GE
100
50
50
0
0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
0.0
3.5
0.5
1.0
1.5
2.0
2.5
3.0
3.5
V CE (V)
V CE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
20
300
IC = 35A
T J = 25°C
250
15
T J = 150°C
200
V CE (V)
IC, Collector-to-Emitter Current (A)
1.5
V CE (V)
V CE (V)
150
TJ = 25°C
TJ = 150°C
10
100
5
50
10µs PULSE WIDTH
0
0
0
5
10
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
15
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGB/S4055PbF
120
300
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
280
Limited By Package
240
Repetitive Peak Current (A)
100
IC, Collector Current (A)
260
80
60
40
220
200
180
160
140
120
100
80
60
20
40
20
0
0
0
25
50
75
100
125
25
150
100
125
150
Fig 8. Typical Repetitive Peak Current vs. Case
Temperature
Fig 7. Maximum Collector Current vs. Case Temperature
1000
1000
V CC = 240V
900
800
700
L = 220nH
C = 0.4µF
900
L = 220nH
C = variable
Energy per Pulse (µJ)
Energy per Pulse (µJ)
75
Case Temperature (°C)
TC , Case Temperature (°C)
100°C
600
25°C
500
400
800
700
100°C
600
500
25°C
400
300
300
200
160
170
180
190
200
210
220
230
150 160 170 180 190 200 210 220 230 240
Ic , Peak Collector Current (A)
V CE, Collector-to-Emitter Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
1200
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
V CC = 240V
L = 220nH
t = 1µs half sine
1000
C= 0.4µF
100
1µsec
800
10µsec
IC (A)
Energy Pulse (µJ)
50
C= 0.3µF
600
100µsec
10
C= 0.2µF
400
200
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGB/S4055PbF
100000
VGE, Gate-to-Emitter Voltage (V)
C oes = C ce + Cgc
10000
Capacitance (pF)
16
VGS = 0V,
f = 1 MHZ
C ies = C ge + Cgd , C ce SHORTED
C res = C gc
Cies
1000
Coes
Cres
100
IC = 35A
14
200V
12
240V
10
8
6
4
2
0
10
0
50
100
150
0
200
25
50
75
100
125
150
Q G, Total Gate Charge (nC)
V CE, Collector-toEmitter-Voltage(V)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.001
0.0001
1E-006
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R4
R4
τ4
τ4
Ri (°C/W)
τi (sec)
0.00773
0.000009
0.05408
0.000120
0.23564
0.002452
0.20216
0.022464
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRGB/S4055PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGB/S4055PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/