0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGS4055PBF

IRGS4055PBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT404

  • 描述:

    IGBT 300V 110A 255W D2PAK

  • 数据手册
  • 价格&库存
IRGS4055PBF 数据手册
PD - 97058B IRGB4055PbF IRGS4055PbF PDP TRENCH IGBT Features l Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (E PULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package K ey Param eters V CE m in V CE (O N) typ. @ 110A I RP m ax @ T C = 25°C T J m ax C c C 270 150 A °C E C G E C G D2Pak IRGS4055DPbF TO-220 IRGB4055DPbF n-channel V V C G E 300 1.70 G Gate C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C IC @ TC = 100°C IRP @ TC = 25°C PD @TC = 25°C PD @TC = 100°C TJ TSTG Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Continuous Collector, VGE @ 15V Repetitive Peak Current Power Dissipation Power Dissipation Max. Units ±30 110 V 60 270 A f c 255 102 W 2.04 -40 to + 150 Linear Derating Factor Operating Junction and W/°C °C Storage Temperature Range Soldering Temperature for 10 seconds x 300 x 10lb in (1.1N m) Mounting Torque, 6-32 or M3 Screw N Thermal Resistance Parameter RθJC RθCS RθJA RθJA www.irf.com d Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 Junction-to-Ambient (PCB Mount) , D2Pak d d Typ. Max. Units ––– 0.50 ––– ––– 0.50 ––– 62 40 °C/W 1 03/16/07 IRGB/S4055PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. VGE = 0V, ICE = 1 mA V V/°C Reference to 25°C, ICE = 1mA VGE = 15V, ICE = 35A V VGE = 15V, ICE = 110A V BVCES Collector-to-Emitter Breakdown Voltage 300 ––– ––– ∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient ––– ––– 0.23 1.10 ––– 1.30 VCE(on) Static Collector-to-Emitter Voltage ––– ––– 1.70 2.35 2.10 ––– VGE(th) Gate Threshold Voltage ––– 2.6 1.95 ––– ––– 5.0 ∆VGE(th)/∆TJ ICES Gate Threshold Voltage Coefficient Collector-to-Emitter Leakage Current ––– ––– -11 2.0 ––– 25 Gate-to-Emitter Forward Leakage ––– ––– 100 ––– ––– 100 Gate-to-Emitter Reverse Leakage Forward Transconductance ––– ––– ––– 38 -100 ––– Total Gate Charge Gate-to-Collector Charge Turn-On delay time ––– ––– — 132 42 44 ––– ––– 57 nC Rise time Turn-Off delay time — — 39 245 55 308 ns Fall time Turn-On delay time — — 152 42 198 — Rise time Turn-Off delay time — — 40 362 — — Fall time — 309 — 100 ––– ––– ––– 705 ––– ––– 915 ––– Input Capacitance ––– 4280 ––– Output Capacitance Reverse Transfer Capacitance ––– ––– 200 125 ––– ––– Internal Collector Inductance ––– 5.0 ––– IGES gfe Qg Qgc td(on) tr td(off) tf td(on) tr td(off) tf tst Shoot Through Blocking Time EPULSE Energy per Pulse Ciss Coss Crss LC V V V Internal Emitter Inductance ––– 13 ––– e e = 200A e VGE = 15V, ICE VGE = 15V, ICE = 110A, TJ = 150°C VCE = VGE, ICE = 1mA mV/°C µA VCE = 300V, VGE = 0V VCE = 300V, VGE = 0V, TJ = 150°C nA VGE = 30V VGE = -30V S VCE = 25V, ICE = 35A VCE = 200V, IC = 35A, VGE = 15V e IC = 35A, VCC = 180V RG = 10Ω, L=250µH, LS= 150nH TJ = 25°C IC = 35A, VCC = 180V ns RG = 10Ω, L=250µH, LS= 150nH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V pF VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V VCE = 30V ƒ = 1.0MHz, nH LE Conditions Typ. Max. Units See Fig.13 Between lead, 6mm (0.25in.) from package and center of die contact Notes:  Half sine wave with duty cycle = 0.25, ton=1µsec. ‚ Rθ is measured at TJ of approximately 90°C. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. „ Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 70A. 2 www.irf.com IRGB/S4055PbF 200 200 Top 150 V = 18V GE V = 15V GE VGE = 12V 150 V = 8.0V GE V = 6.0V GE Bottom ICE (A) Bottom ICE (A) Top VGE = 18V V = 15V GE V = 12V GE VGE = 10V 100 V = 10V GE VGE = 8.0V V = 6.0V GE 100 50 50 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 3.5 0.5 1.0 Fig 1. Typical Output Characteristics @ 25°C 2.5 3.0 3.5 200 Top Top VGE = 18V V = 15V GE V = 12V GE VGE = 10V 150 V = 18V GE V = 15V GE VGE = 12V 150 V = 8.0V GE VGE = 6.0V Bottom ICE (A) Bottom ICE (A) 2.0 Fig 2. Typical Output Characteristics @ 75°C 200 100 VGE = 10V V = 8.0V GE V = 6.0V GE 100 50 50 0 0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 3.5 0.5 1.0 1.5 2.0 2.5 3.0 3.5 V CE (V) V CE (V) Fig 3. Typical Output Characteristics @ 125°C Fig 4. Typical Output Characteristics @ 150°C 20 300 IC = 35A T J = 25°C 250 15 T J = 150°C 200 V CE (V) IC, Collector-to-Emitter Current (A) 1.5 V CE (V) V CE (V) 150 TJ = 25°C TJ = 150°C 10 100 5 50 10µs PULSE WIDTH 0 0 0 5 10 VGE, Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 15 5 10 15 20 V GE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRGB/S4055PbF 120 300 ton= 1µs Duty cycle = 0.25 Half Sine Wave 280 Limited By Package 240 Repetitive Peak Current (A) 100 IC, Collector Current (A) 260 80 60 40 220 200 180 160 140 120 100 80 60 20 40 20 0 0 0 25 50 75 100 125 25 150 100 125 150 Fig 8. Typical Repetitive Peak Current vs. Case Temperature Fig 7. Maximum Collector Current vs. Case Temperature 1000 1000 V CC = 240V 900 800 700 L = 220nH C = 0.4µF 900 L = 220nH C = variable Energy per Pulse (µJ) Energy per Pulse (µJ) 75 Case Temperature (°C) TC , Case Temperature (°C) 100°C 600 25°C 500 400 800 700 100°C 600 500 25°C 400 300 300 200 160 170 180 190 200 210 220 230 150 160 170 180 190 200 210 220 230 240 Ic , Peak Collector Current (A) V CE, Collector-to-Emitter Voltage (V) Fig 9. Typical EPULSE vs. Collector Current 1200 Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 OPERATION IN THIS AREA LIMITED BY V CE(on) V CC = 240V L = 220nH t = 1µs half sine 1000 C= 0.4µF 100 1µsec 800 10µsec IC (A) Energy Pulse (µJ) 50 C= 0.3µF 600 100µsec 10 C= 0.2µF 400 200 1 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRGB/S4055PbF 100000 VGE, Gate-to-Emitter Voltage (V) C oes = C ce + Cgc 10000 Capacitance (pF) 16 VGS = 0V, f = 1 MHZ C ies = C ge + Cgd , C ce SHORTED C res = C gc Cies 1000 Coes Cres 100 IC = 35A 14 200V 12 240V 10 8 6 4 2 0 10 0 50 100 150 0 200 25 50 75 100 125 150 Q G, Total Gate Charge (nC) V CE, Collector-toEmitter-Voltage(V) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage Thermal Response ( Z thJC ) °C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 0.001 0.0001 1E-006 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ1 τ2 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 R4 R4 τ4 τ4 Ri (°C/W) τi (sec) 0.00773 0.000009 0.05408 0.000120 0.23564 0.002452 0.20216 0.022464 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRGB/S4055PbF A RG C DRIVER PULSE A L VCC B RG PULSE B Ipulse DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRGB/S4055PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/
IRGS4055PBF 价格&库存

很抱歉,暂时无法提供与“IRGS4055PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货