0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGS4065PBF

IRGS4065PBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT404

  • 描述:

    IGBT 300V 70A 178W D2PAK

  • 数据手册
  • 价格&库存
IRGS4065PBF 数据手册
PD - 97059B IRGB4065PbF IRGS4065PbF PDP TRENCH IGBT Features Advanced Trench IGBT Technology l Optimized for Sustain and Energy Recovery circuits in PDP applications TM) l Low VCE(on) and Energy per Pulse (EPULSE for improved panel efficiency l High repetitive peak current capability l Lead Free package l Key Parameters VCE min VCE(ON) typ. @ IC = 70A IRP max @ TC= 25°C c T J max C 300 1.75 205 150 C C E C G G TO-220 IRGB4065DPbF E n-channel V V A °C G Gate E C G D2Pak IRGS4065DPbF C Collector E Emitter Description This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP applications. Absolute Maximum Ratings Parameter VGE IC @ TC = 25°C Gate-to-Emitter Voltage Continuous Collector Current, VGE @ 15V Max. Units ±30 V 70 A IC @ TC = 100°C Continuous Collector, VGE @ 15V 40 IRP @ TC = 25°C Repetitive Peak Current 205 PD @TC = 25°C Power Dissipation PD @TC = 100°C Power Dissipation 71 Linear Derating Factor 1.4 W/°C -40 to + 150 °C TJ TSTG c 178 Operating Junction and Storage Temperature Range Soldering Temperature for 10 seconds x 300 W x 10lb in (1.1N m) Mounting Torque, 6-32 or M3 Screw N Thermal Resistance Parameter RθJC RθCS RθJA RθJA www.irf.com d Junction-to-Case Case-to-Sink, Flat Greased Surface , TO-220 Junction-to-Ambient, TO-220 2 Junction-to-Ambient (PCB Mount) , D Pak d d Typ. Max. ––– 0.50 ––– ––– 0.70 ––– 62 40 Units °C/W 1 09/05/06 IRGB/S4065PbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. BVCES Collector-to-Emitter Breakdown Voltage 300 ––– ––– ∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.23 ––– ––– 1.20 1.40 ––– 1.35 ––– ––– 1.75 2.10 ––– 2.35 ––– ––– 2.00 ––– VCE(on) Static Collector-to-Emitter Voltage VGE = 0V, ICE = 1.0 mA V V/°C Reference to 25°C, ICE = 1.0 mA VGE = 15V, ICE = 25A e VGE = 15V, ICE = 40A e V Gate Threshold Voltage 2.6 ––– 5.0 V ∆VGE(th)/∆TJ ICES Gate Threshold Voltage Coefficient ––– -11 ––– mV/°C Collector-to-Emitter Leakage Current ––– 2.0 25 µA ––– 50 ––– ––– ––– 100 Gate-to-Emitter Reverse Leakage ––– ––– -100 gfe Forward Transconductance ––– 26 ––– S Qg Total Gate Charge ––– 62 ––– nC Gate-to-Collector Charge Turn-On delay time ––– — 20 30 ––– — tr Rise time — 26 — td(off) Turn-Off delay time — 170 — tf Fall time — 160 — td(on) Turn-On delay time — 30 — tr Rise time — 28 — td(off) Turn-Off delay time — 250 — tf Fall time — 310 — tst Shoot Through Blocking Time 100 ––– ––– EPULSE Energy per Pulse ––– 875 ––– ––– 975 ––– VCE = VGE, ICE = 500µA VCE = 300V, VGE = 0V VCE = 300V, VGE = 0V, TJ = 150°C Gate-to-Emitter Forward Leakage Qgc td(on) VGE = 15V, ICE = 70A e VGE = 15V, ICE = 120A e VGE = 15V, ICE = 70A, TJ = 150°C VGE(th) IGES Conditions Typ. Max. Units nA VGE = 30V VGE = -30V VCE = 25V, ICE = 25A VCE = 200V, IC = 25A, VGE = 15V See Fig. 14 IC = 25A, VCC = 180V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 25°C IC = 25A, VCC = 180V ns RG = 10Ω, L=200µH, LS= 150nH TJ = 150°C ns VCC = 240V, VGE = 15V, RG= 5.1Ω L = 220nH, C= 0.40µF, VGE = 15V µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C L = 220nH, C= 0.40µF, VGE = 15V VCC = 240V, RG= 5.1Ω, TJ = 100°C VGE = 0V Ciss Input Capacitance ––– 2200 ––– Coss Output Capacitance ––– 110 ––– Crss Reverse Transfer Capacitance ––– 55 ––– ƒ = 1.0MHz, LC Internal Collector Inductance ––– 5.0 ––– Between lead, LE Internal Emitter Inductance ––– 13 ––– pF nH VCE = 30V See Fig.13 6mm (0.25in.) from package and center of die contact Notes:  Half sine wave with duty cycle = 0.25, ton=1µsec. ‚ Rθ is measured at TJ of approximately 90°C. ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRGB/S4065PbF 280 280 TOP 240 BOTTOM TOP 200 160 120 BOTTOM 160 120 80 80 40 40 0 0 0 2 4 6 8 10 12 14 0 16 2 4 6 8 10 12 14 16 VCE (V) VCE (V) Fig 1. Typical Output Characteristics @ 25°C Fig 2. Typical Output Characteristics @ 75°C 360 280 TOP 200 TOP V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 240 BOTTOM V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 320 280 BOTTOM 240 160 ICE (A) ICE (A) V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 240 ICE (A) ICE (A) 200 V = 18V GE V = 15V GE V = 12V GE V = 10V GE V = 8.0V GE V = 6.0V GE 120 200 160 120 80 80 40 40 0 0 0 2 4 6 8 10 12 14 0 16 2 4 Fig 3. Typical Output Characteristics @ 125°C 8 10 12 14 16 Fig 4. Typical Output Characteristics @ 150°C 600 20 IC = 25A 500 15 400 T J = 25°C T J = 125°C VCE (V) ICE, Collector-to-Emitter Current (A) 6 VCE (V) VCE (V) 300 T J = 25°C T J = 150°C 10 200 5 100 0 0 0 5 10 15 VGE, Gate-to-Emitter Voltage (V) Fig 5. Typical Transfer Characteristics www.irf.com 20 0 5 10 15 20 VGE (V) Fig 6. VCE(ON) vs. Gate Voltage 3 IRGB/S4065PbF 80 220 Repetitive Peak Current (A) IC, Collector Current (A) 60 50 40 30 20 180 160 140 120 100 80 60 40 10 20 0 0 0 25 50 75 100 125 150 25 T C, Case Temperature (°C) 75 100 125 150 Fig 8. Typical Repetitive Peak Current vs. Case Temperature 1000 1000 V CC = 240V L = 220nH C = 0.4µF 900 L = 220nH C = variable 100°C Energy per Pulse (µJ) 900 800 25°C 700 600 500 100°C 800 700 25°C 600 500 400 300 200 400 160 170 180 190 200 210 220 150 160 170 180 190 200 210 220 230 240 230 VCE, Collector-to-Emitter Voltage (V) IC, Peak Collector Current (A) Fig 9. Typical EPULSE vs. Collector Current 1400 Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage 1000 OPERATION IN THIS AREA LIMITED BY V CE(on) V CC = 240V L = 220nH t = 1µs half sine 1200 C= 0.4µF 1000 10µsec 100 800 IC (A) Energy per Pulse (µJ) 50 Case Temperature (°C) Fig 7. Maximum Collector Current vs. Case Temperature Energy per Pulse (µJ) ton= 1µs Duty cycle = 0.25 Half Sine Wave 200 70 C= 0.3µF 600 100µsec 10 1msec C= 0.2µF 400 200 1 25 50 75 100 125 TJ, Temperature (ºC) Fig 11. EPULSE vs. Temperature 4 150 1 10 100 1000 VCE (V) Fig 12. Forrward Bias Safe Operating Area www.irf.com IRGB/S4065PbF 100000 VGE, Gate-to-Emitter Voltage (V) IC = 25A Coes = Cce + Cgc 10000 Capacitance (pF) 25 VGS = 0V, f = 1 MHZ C ies = C ge + C gd , C ce SHORTED Cres = C gc Cies 1000 100 Coes Cres 20 VCE = 240V VCE = 200V VCE = 150V 15 10 5 0 10 0 50 100 150 200 250 0 300 10 20 30 40 50 60 70 80 Q G, Total Gate Charge (nC) VCE, Collector-toEmitter-Voltage(V) Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 R1 R1 0.05 0.01 0.001 1E-006 τJ 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 0.0001 τJ τ1 τ1 R2 R2 τ2 R3 R3 R4 R4 τC τ τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri τ4 τ4 Ri (°C/W) τi (sec) 0.0239 0.000011 0.1179 0.000047 0.3264 0.000922 0.2324 0.004889 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRGB/S4065PbF A RG C DRIVER PULSE A L VCC B RG PULSE B Ipulse DUT tST Fig 16b. tst Test Waveforms Fig 16a. tst and EPULSE Test Circuit VCE Energy L IC Current DUT 0 VCC 1K Fig 16c. EPULSE Test Waveforms 6 Fig. 17 - Gate Charge Circuit (turn-off) www.irf.com IRGB/S4065PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information (;$03/( 7+,6,6$1,5) /27&2'( $66(0%/('21:: ,17+($66(0%/
IRGS4065PBF 价格&库存

很抱歉,暂时无法提供与“IRGS4065PBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货