PD - 97059B
IRGB4065PbF
IRGS4065PbF
PDP TRENCH IGBT
Features
Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
l
Key Parameters
VCE min
VCE(ON) typ. @ IC = 70A
IRP max @ TC= 25°C c
T J max
C
300
1.75
205
150
C
C
E
C
G
G
TO-220
IRGB4065DPbF
E
n-channel
V
V
A
°C
G
Gate
E
C
G
D2Pak
IRGS4065DPbF
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Max.
Units
±30
V
70
A
IC @ TC = 100°C
Continuous Collector, VGE @ 15V
40
IRP @ TC = 25°C
Repetitive Peak Current
205
PD @TC = 25°C
Power Dissipation
PD @TC = 100°C
Power Dissipation
71
Linear Derating Factor
1.4
W/°C
-40 to + 150
°C
TJ
TSTG
c
178
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
x
300
W
x
10lb in (1.1N m)
Mounting Torque, 6-32 or M3 Screw
N
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
RθJA
www.irf.com
d
Junction-to-Case
Case-to-Sink, Flat Greased Surface , TO-220
Junction-to-Ambient, TO-220
2
Junction-to-Ambient (PCB Mount) , D Pak
d
d
Typ.
Max.
–––
0.50
–––
–––
0.70
–––
62
40
Units
°C/W
1
09/05/06
IRGB/S4065PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVCES
Collector-to-Emitter Breakdown Voltage
300
–––
–––
∆ΒVCES/∆TJ
Breakdown Voltage Temp. Coefficient
–––
0.23
–––
–––
1.20
1.40
–––
1.35
–––
–––
1.75
2.10
–––
2.35
–––
–––
2.00
–––
VCE(on)
Static Collector-to-Emitter Voltage
VGE = 0V, ICE = 1.0 mA
V
V/°C Reference to 25°C, ICE = 1.0 mA
VGE = 15V, ICE = 25A e
VGE = 15V, ICE = 40A e
V
Gate Threshold Voltage
2.6
–––
5.0
V
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
Collector-to-Emitter Leakage Current
–––
2.0
25
µA
–––
50
–––
–––
–––
100
Gate-to-Emitter Reverse Leakage
–––
–––
-100
gfe
Forward Transconductance
–––
26
–––
S
Qg
Total Gate Charge
–––
62
–––
nC
Gate-to-Collector Charge
Turn-On delay time
–––
—
20
30
–––
—
tr
Rise time
—
26
—
td(off)
Turn-Off delay time
—
170
—
tf
Fall time
—
160
—
td(on)
Turn-On delay time
—
30
—
tr
Rise time
—
28
—
td(off)
Turn-Off delay time
—
250
—
tf
Fall time
—
310
—
tst
Shoot Through Blocking Time
100
–––
–––
EPULSE
Energy per Pulse
–––
875
–––
–––
975
–––
VCE = VGE, ICE = 500µA
VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 150°C
Gate-to-Emitter Forward Leakage
Qgc
td(on)
VGE = 15V, ICE = 70A e
VGE = 15V, ICE = 120A e
VGE = 15V, ICE = 70A, TJ = 150°C
VGE(th)
IGES
Conditions
Typ. Max. Units
nA
VGE = 30V
VGE = -30V
VCE = 25V, ICE = 25A
VCE = 200V, IC = 25A, VGE = 15V
See Fig. 14
IC = 25A, VCC = 180V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 25°C
IC = 25A, VCC = 180V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
Ciss
Input Capacitance
–––
2200
–––
Coss
Output Capacitance
–––
110
–––
Crss
Reverse Transfer Capacitance
–––
55
–––
ƒ = 1.0MHz,
LC
Internal Collector Inductance
–––
5.0
–––
Between lead,
LE
Internal Emitter Inductance
–––
13
–––
pF
nH
VCE = 30V
See Fig.13
6mm (0.25in.)
from package
and center of die contact
Notes:
Half sine wave with duty cycle = 0.25, ton=1µsec.
Rθ is measured at TJ of approximately 90°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRGB/S4065PbF
280
280
TOP
240
BOTTOM
TOP
200
160
120
BOTTOM
160
120
80
80
40
40
0
0
0
2
4
6
8
10
12
14
0
16
2
4
6
8
10
12
14
16
VCE (V)
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
Fig 2. Typical Output Characteristics @ 75°C
360
280
TOP
200
TOP
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
240
BOTTOM
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
320
280
BOTTOM
240
160
ICE (A)
ICE (A)
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
240
ICE (A)
ICE (A)
200
V
= 18V
GE
V
= 15V
GE
V
= 12V
GE
V
= 10V
GE
V
= 8.0V
GE
V
= 6.0V
GE
120
200
160
120
80
80
40
40
0
0
0
2
4
6
8
10
12
14
0
16
2
4
Fig 3. Typical Output Characteristics @ 125°C
8
10
12
14
16
Fig 4. Typical Output Characteristics @ 150°C
600
20
IC = 25A
500
15
400
T J = 25°C
T J = 125°C
VCE (V)
ICE, Collector-to-Emitter Current (A)
6
VCE (V)
VCE (V)
300
T J = 25°C
T J = 150°C
10
200
5
100
0
0
0
5
10
15
VGE, Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGB/S4065PbF
80
220
Repetitive Peak Current (A)
IC, Collector Current (A)
60
50
40
30
20
180
160
140
120
100
80
60
40
10
20
0
0
0
25
50
75
100
125
150
25
T C, Case Temperature (°C)
75
100
125
150
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1000
1000
V CC = 240V
L = 220nH
C = 0.4µF
900
L = 220nH
C = variable
100°C
Energy per Pulse (µJ)
900
800
25°C
700
600
500
100°C
800
700
25°C
600
500
400
300
200
400
160
170
180
190
200
210
220
150 160 170 180 190 200 210 220 230 240
230
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
1400
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
V CC = 240V
L = 220nH
t = 1µs half sine
1200
C= 0.4µF
1000
10µsec
100
800
IC (A)
Energy per Pulse (µJ)
50
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
Energy per Pulse (µJ)
ton= 1µs
Duty cycle = 0.25
Half Sine Wave
200
70
C= 0.3µF
600
100µsec
10
1msec
C= 0.2µF
400
200
1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRGB/S4065PbF
100000
VGE, Gate-to-Emitter Voltage (V)
IC = 25A
Coes = Cce + Cgc
10000
Capacitance (pF)
25
VGS = 0V,
f = 1 MHZ
C ies = C ge + C gd , C ce SHORTED
Cres = C gc
Cies
1000
100
Coes
Cres
20
VCE = 240V
VCE = 200V
VCE = 150V
15
10
5
0
10
0
50
100
150
200
250
0
300
10
20
30
40
50
60
70
80
Q G, Total Gate Charge (nC)
VCE, Collector-toEmitter-Voltage(V)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
1
Thermal Response ( Z thJC )
D = 0.50
0.20
0.1
0.10
R1
R1
0.05
0.01
0.001
1E-006
τJ
0.02
0.01
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
τJ
τ1
τ1
R2
R2
τ2
R3
R3
R4
R4
τC
τ
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
τ4
τ4
Ri (°C/W)
τi (sec)
0.0239
0.000011
0.1179
0.000047
0.3264
0.000922
0.2324
0.004889
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRGB/S4065PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGB/S4065PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/