0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGS6B60KDTRRP

IRGS6B60KDTRRP

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT404

  • 描述:

    IGBT 600V 13A 90W D2PAK

  • 数据手册
  • 价格&库存
IRGS6B60KDTRRP 数据手册
PD - 95229C IRGB6B60KDPbF IRGS6B60KDPbF IRGSL6B60KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10μs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Lead-Free VCES = 600V IC = 10A, TC=100°C G tsc > 10μs, TJ=150°C E n-channel VCE(on) typ. = 1.8V Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB IRGB6B60KDPbF D 2Pak IRGS6B60KDPbF TO-262 IRGSL6B60KDPbF Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current„ Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 600 18 10 26 26 18 10 26 ± 20 90 36 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state)‚ Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– ––– 0.50 ––– ––– 1.44 1.4 4.4 ––– 62 40 ––– Units °C/W g 1 01/07/13 IRGB/S/SL6B60KDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ΔV(BR)CES/ΔTJ VCE(on) VGE(th) ΔVGE(th)/ΔTJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage Min. 600 ––– 1.5 ––– Gate Threshold Voltage 3.5 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance ––– Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.3 1.80 2.20 4.5 -10 3.0 1.0 200 1.25 1.20 ––– Max. Units Conditions ––– V VGE = 0V, IC = 500μA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 V IC = 5.0A, VGE = 15V 2.50 IC = 5.0A,VGE = 15V, TJ = 150°C 5.5 V VCE = VGE, IC = 250μA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 5.0A, PW=80μs 150 μA VGE = 0V, VCE = 600V 500 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 5.0A 1.40 V IC = 5.0A TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Erec trr Irr Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Ref.Fig. Max. Units Conditions ––– IC = 5.0A ––– nC VCC = 400V CT1 ––– VGE = 15V CT4 210 μJ IC = 5.0A, VCC = 400V 245 VGE = 15V,R G = 100Ω, L =1.4mH 455 Ls = 150nH TJ = 25°C ƒ CT4 34 IC = 5.0A, VCC = 400V 26 VGE = 15V, RG = 100Ω L =1.4mH 230 ns Ls = 150nH, TJ = 25°C 22 CT4 260 IC = 5.0A, VCC = 400V 13,15 300 μJ VGE = 15V,R G = 100Ω, L =1.4mH WF1WF2 560 Ls = 150nH TJ = 150°C ƒ 14, 16 37 IC = 5.0A, VCC = 400V CT4 26 VGE = 15V, RG = 100Ω L =1.4mH 255 ns Ls = 150nH, TJ = 150°C WF1 27 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 26A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 100Ω CT2 CT3 μs TJ = 150°C, Vp =600V, RG = 100Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 90 175 μJ TJ = 150°C 20, 21 ––– 70 80 ns VCC = 400V, IF = 5.0A, L = 1.4mH CT4,WF3 ––– 10 14 A VGE = 15V,RG = 100Ω, Ls = 150nH Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 18.2 1.9 9.2 110 135 245 25 17 215 13.2 150 190 340 28 17 240 18 290 34 10 Note:  to „ are on page 15 2 www.irf.com IRGB/S/SL6B60KDPbF 100 20 90 80 70 Ptot (W) IC (A) 15 10 60 50 40 30 5 20 10 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 10 IC A) IC (A) 10 μs 1 1 100 μs DC 1ms 0.1 0 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRGB/S/SL6B60KDPbF 20 20 18 VGE VGE VGE VGE VGE 16 12 18 VGE VGE VGE VGE VGE 16 14 ICE (A) ICE (A) 14 = 18V = 15V = 12V = 10V = 8.0V 10 8 12 10 8 6 6 4 4 2 2 0 = 18V = 15V = 12V = 10V = 8.0V 0 0 1 2 3 4 5 6 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs 5 6 30 18 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 16 14 12 -40°C 25°C 150°C 25 20 IF (A) ICE (A) 4 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 20 10 8 15 10 6 4 5 2 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80μs 4 3 VCE (V) 0 0.0 0.5 1.0 1.5 2.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80μs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A VCE (V) VCE (V) IRGB/S/SL6B60KDPbF 12 ICE = 3.0A 10 ICE = 5.0A 8 ICE = 10A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 20 40 18 35 16 T J = 25°C T J = 150°C 30 14 10 ICE = 3.0A ICE = 5.0A 8 ICE = 10A 25 ICE (A) VCE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 12 15 VGE (V) 20 15 6 10 4 T J = 150°C 5 2 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 T J = 25°C 0 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs 5 IRGB/S/SL6B60KDPbF 700 1000 600 tdOFF EON Swiching Time (ns) Energy (μJ) 500 400 EOFF 300 200 100 tF tdON tR 10 100 0 0 5 10 15 1 20 0 IC (A) 10 15 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=1.4mH; VCE= 400V RG= 100Ω; VGE= 15V 250 1000 tdOFF Swiching Time (ns) EOFF 200 Energy (μJ) 5 150 EON 100 100 tdON tR tF 10 50 1 0 0 50 100 150 R G (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V 6 200 0 50 100 150 200 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=1.4mH; VCE= 400V ICE= 5.0A; VGE= 15V www.irf.com IRGB/S/SL6B60KDPbF 20 25 RG = 22 Ω 20 16 IRR (A) IRR (A) RG = 47 Ω 15 RG = 100 Ω 10 12 8 RG = 150 Ω 4 5 0 0 0 5 10 15 0 20 50 100 200 RG (Ω) IF (A) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 5.0A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 1200 20 22Ω 1000 16 QRR (nC) 12 8 10A 47Ω 800 IRR (A) 150 100 Ω 600 5.0A 150Ω 3.0A 400 200 4 0 0 0 200 400 600 800 diF /dt (A/μs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 5.0A; TJ = 150°C www.irf.com 1000 0 200 400 600 800 1000 diF /dt (A/μs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRGB/S/SL6B60KDPbF 300 22Ω Energy (μJ) 250 200 47Ω 150 100 Ω 100 150 Ω 50 0 5 10 15 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 16 1000 14 Cies 300V 12 Capacitance (pF) 100 400V 10 VGE (V) Coes Cres 10 8 6 4 2 0 1 1 10 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 5 10 15 20 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 5.0A; L = 600μH www.irf.com IRGB/S/SL6B60KDPbF Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ R1 R1 τJ τ1 0.01 0.02 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ 0.447 0.219 τ3 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.708 0.00022 0.00089 0.01037 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 0.20 1 0.10 0.05 τJ 0.01 0.02 0.1 τJ τ1 τ1 R2 R2 τ2 R3 R3 τ3 τ2 τC τ τ3 Ri (°C/W) τi (sec) 1.194 0.000172 2.424 0.001517 0.753 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 R1 R1 0.080325 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRGB/S/SL6B60KDPbF L L VCC DUT 0 + - 80 V DUT Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC 480V Rg 1K DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRGB/S/SL6B60KDPbF 9 400 8 350 7 90% ICE 6 400 20 300 15 TEST CURRENT VCE (V) 200 150 4 3 5% V CE 100 50 1 0 0 Eof f Loss -50 -0.20 0.30 200 90% test current 100 2 5% ICE VCE (V) 5 tf I CE (A) 250 25 10% test current tr 0 0 Eon Loss -1 -100 16.00 0.80 16.10 50 500 50 400 40 -150 0 -200 -2 Peak IRR 10% Peak IRR -300 IC E 300 -4 30 200 20 100 10 -6 -350 -8 -400 -10 -450 -0.06 -12 0.14 VC E VCE (V) 2 IF (A) V F (V) 4 t RR 0.24 time (μS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com -5 16.40 6 QR R 0.04 16.30 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 8 -100 -250 16.20 time (μs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 -50 5 5% V CE time(μs) 0 10 ICE (A) 300 500 ICE (A) 450 0 -5.00 0.00 5.00 10.00 0 15.00 time (μS) Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3 11 IRGB/S/SL6B60KDPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 12 www.irf.com IRGB/S/SL6B60KDPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLE D ON WW 02, 2000 IN T HE AS S EMBL Y LINE "L" INT ERNAT IONAL R ECT IFIER LOGO Note: "P" in as sembly line pos ition indicates "L ead-F ree" PART NUMBER F530S AS S EMBLY L OT CODE DAT E CODE YEAR 0 = 2000 WE EK 02 LINE L OR INT E RNAT IONAL RE CT IF IER LOGO AS S EMBLY LOT CODE PART NUMBE R F 530S DAT E CODE P = DE SIGNAT ES LE AD-F RE E PRODUCT (OPT IONAL) YEAR 0 = 2000 WE EK 02 A = AS SE MBLY SIT E CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 13 IRGB/S/SL6B60KDPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMBLED ON WW 19, 1997 IN THE AS S EMBLY LINE "C" Note: "P" in ass embly line pos ition indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEE K 19 LINE C OR INTERNAT IONAL RECT IF IER LOGO AS S EMBLY LOT CODE PART NUMBER DAT E CODE P = DES IGNAT ES LEAD-F REE PRODUCT (OPTIONAL) YEAR 7 = 1997 WEE K 19 A = AS S EMBLY S ITE CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 14 www.irf.com IRGB/S/SL6B60KDPbF D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes:  This is only applied to TO-220AB package ‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ƒ Energy losses include "tail" and diode reverse recovery. „ VCC = 80% (VCES), VGE = 20V, L = 100 μH, RG = 100Ω. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 101N. Sepulveda, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/2013 www.irf.com 15
IRGS6B60KDTRRP 价格&库存

很抱歉,暂时无法提供与“IRGS6B60KDTRRP”相匹配的价格&库存,您可以联系我们找货

免费人工找货