0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRGSL10B60KDPBF

IRGSL10B60KDPBF

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT226

  • 描述:

    IGBT 600V 22A 156W TO220-3

  • 数据手册
  • 价格&库存
IRGSL10B60KDPBF 数据手册
PD - 94925C IRGB10B60KDPbF IRGS10B60KDPbF IRGSL10B60KDPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • Low VCE (on) Non Punch Through IGBT Technology. • Low Diode VF. • 10μs Short Circuit Capability. • Square RBSOA. • Ultrasoft Diode Reverse Recovery Characteristics. • Positive VCE (on) Temperature Coefficient. • Lead-Free VCES = 600V IC = 19A, TC=100°C G tsc > 10μs, TJ=150°C E n-channel VCE(on) typ. = 1.8V Benefits • Benchmark Efficiency for Motor Control. • Rugged Transient Performance. • Low EMI. • Excellent Current Sharing in Parallel Operation. TO-220AB D 2Pak TO-262 IRGB10B60KDPbF IRGS10B60KDPbF IRGSL10B60KDPbF Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current „ Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Max. Units 600 35 19 44 44 35 19 44 ± 20 156 62 -55 to +150 V A V W °C 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Junction-to-Ambient (PCB Mount, steady state)‚ Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– ––– 0.50 ––– ––– 1.44 0.8 3.4 ––– 62 40 ––– Units °C/W g 1 01/07/13 IRG/B/S/SL10B60KDPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ΔV(BR)CES/ΔTJ VCE(on) VGE(th) ΔVGE(th)/ΔTJ gfe ICES VFM IGES Parameter Collector-to-Emitter Breakdown Voltage Temperature Coeff. of Breakdown Voltage Collector-to-Emitter Saturation Voltage Min. 600 ––– 1.5 ––– Gate Threshold Voltage 3.5 Temperature Coeff. of Threshold Voltage ––– Forward Transconductance ––– Zero Gate Voltage Collector Current ––– ––– Diode Forward Voltage Drop ––– ––– Gate-to-Emitter Leakage Current ––– Typ. ––– 0.3 1.80 2.20 4.5 -10 7.0 3.0 300 1.30 1.30 ––– Max. Units Conditions ––– V VGE = 0V, IC = 500μA ––– V/°C VGE = 0V, IC = 1.0mA, (25°C-150°C) 2.20 IC = 10A, VGE = 15V 2.50 V IC = 10A, VGE = 15V TJ = 150°C 5.5 V VCE = VGE, IC = 250μA ––– mV/°C VCE = VGE, IC = 1.0mA, (25°C-150°C) ––– S VCE = 50V, IC = 10A, PW=80μs 150 μA VGE = 0V, VCE = 600V 700 VGE = 0V, VCE = 600V, TJ = 150°C 1.45 IC = 10A 1.45 V IC = 10A TJ = 150°C ±100 nA VGE = ±20V Ref.Fig. 5, 6,7 9,10,11 9,10,11 12 8 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc Eon Eoff Etot td(on) tr td(off) tf Eon Eoff Etot td(on) tr td(off) tf Cies Coes Cres Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operting Area SCSOA Short Circuit Safe Operting Area Erec trr Irr Reverse Recovery energy of the diode Diode Reverse Recovery time Diode Peak Reverse Recovery Current Ref.Fig. Max. Units Conditions ––– IC = 10A ––– nC VCC = 400V CT1 ––– VGE = 15V CT4 247 μJ IC = 10A, VCC = 400V 360 VGE = 15V,RG = 47Ω, L = 200μH 607 Ls = 150nH TJ = 25°C ƒ 39 IC = 10A, VCC = 400V 29 VGE = 15V, RG = 47Ω, L = 200μH CT4 262 ns Ls = 150nH, TJ = 25°C 32 CT4 340 IC = 10A, VCC = 400V 13,15 464 μJ VGE = 15V,RG = 47Ω, L = 200μH WF1WF2 804 Ls = 150nH TJ = 150°C ƒ 14, 16 39 IC = 10A, VCC = 400V CT4 28 VGE = 15V, RG = 47Ω, L = 200μH 274 ns Ls = 150nH, TJ = 150°C WF1 34 WF2 ––– VGE = 0V ––– pF VCC = 30V ––– f = 1.0MHz 4 TJ = 150°C, IC = 44A, Vp =600V FULL SQUARE VCC = 500V, VGE = +15V to 0V,RG = 47Ω CT2 CT3 μs TJ = 150°C, Vp =600V,RG = 47Ω 10 ––– ––– WF4 VCC = 360V, VGE = +15V to 0V 17,18,19 ––– 245 330 μJ TJ = 150°C 20, 21 ––– 90 105 ns VCC = 400V, IF = 10A, L = 200μH CT4,WF3 ––– 19 22 A VGE = 15V,RG = 47Ω, Ls = 150nH Min. ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. 38 4.3 16.3 140 250 390 30 20 230 23 230 350 580 30 20 250 26 620 62 22 Note  to „ are on page 15 2 www.irf.com IRG/B/S/SL10B60KDPbF 40 180 35 160 140 30 120 Ptot (W) IC (A) 25 20 15 100 80 60 10 40 5 20 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10 IC (A) 10 μs 10 1 DC IC A) 20 μs 100 μs 1 1ms 0.1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C; TJ ≤ 150°C www.irf.com 10000 0 10 100 1000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE =15V 3 IRG/B/S/SL10B60KDPbF 40 40 VGE VGE VGE VGE VGE 35 30 VGE VGE VGE VGE VGE 35 30 25 ICE (A) ICE (A) 25 = 18V = 15V = 12V = 10V = 8.0V 20 20 15 15 10 10 5 5 0 = 18V = 15V = 12V = 10V = 8.0V 0 0 1 2 3 4 5 6 0 1 2 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs 5 6 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 -40°C 25°C 150°C 35 30 25 IF (A) 25 ICE (A) 4 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 40 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 6 VCE (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 80μs 4 3 VCE (V) 0.0 0.5 1.0 1.5 2.0 2.5 3.0 VF (V) Fig. 8 - Typ. Diode Forward Characteristics tp = 80μs www.irf.com 20 20 18 18 16 16 14 14 12 ICE = 5.0A 10 ICE = 10A 8 ICE = 15A VCE (V) VCE (V) IRG/B/S/SL10B60KDPbF 12 ICE = 5.0A 10 ICE = 10A 8 ICE = 15A 6 6 4 4 2 2 0 0 5 10 15 20 5 10 VGE (V) 20 Fig. 10 - Typical VCE vs. VGE TJ = 25°C Fig. 9 - Typical VCE vs. VGE TJ = -40°C 20 80 18 T J = 25°C 70 16 T J = 150°C 60 14 12 10 ICE = 5.0A ICE = 10A 8 ICE = 15A 50 ICE (A) VCE (V) 15 VGE (V) 40 30 6 20 4 T J = 150°C 10 2 0 T J = 25°C 0 5 10 15 VGE (V) Fig. 11 - Typical VCE vs. VGE TJ = 150°C www.irf.com 20 0 5 10 15 20 VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs 5 IRG/B/S/SL10B60KDPbF 1000 800 700 tdOFF 500 Swiching Time (ns) Energy (μJ) 600 EOFF 400 300 EON 200 100 tdON tF 100 0 0 5 10 15 20 tR 10 25 0 5 10 IC (A) 15 Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L=200μH; VCE= 400V RG= 47Ω; VGE= 15V 500 1000 EOFF 450 tdOFF 400 300 Swiching Time (ns) 350 EON 250 200 150 100 tdON tR 100 tF 50 0 10 0 50 100 R G (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L=200μH; VCE= 400V ICE= 10A; VGE= 15V 6 25 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L=200μH; VCE= 400V RG= 47Ω; VGE= 15V Energy (μJ) 20 150 0 50 100 150 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L=200μH; VCE= 400V ICE= 10A; VGE= 15V www.irf.com IRG/B/S/SL10B60KDPbF 25 RG = 22 Ω 15 RG = 47 Ω 10 RG = 100 Ω 20 IRR (A) 20 IRR (A) 25 RG = 10 Ω 15 10 5 5 0 0 0 5 10 15 20 0 25 50 150 RG (Ω) IF (A) Fig. 18 - Typical Diode IRR vs. RG TJ = 150°C; IF = 10A Fig. 17 - Typical Diode IRR vs. IF TJ = 150°C 25 1200 10Ω 1100 20 22Ω 1000 QRR (nC) IRR (A) 100 15 10 47Ω 900 100 Ω 800 20A 700 10A 600 5 5.0A 500 400 0 0 500 1000 diF /dt (A/μs) Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 150°C www.irf.com 1500 0 500 1000 1500 diF /dt (A/μs) Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V;TJ = 150°C 7 IRG/B/S/SL10B60KDPbF 450 400 10Ω 350 22 Ω Energy (μJ) 300 250 47 Ω 200 100 Ω 150 100 50 0 0 5 10 15 20 25 IF (A) Fig. 21 - Typical Diode ERR vs. IF TJ = 150°C 1000 16 Cies 14 300V 400V 10 VGE (V) Capacitance (pF) 12 Coes 100 8 6 4 Cres 2 0 10 1 10 VCE (V) Fig. 22- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 8 100 0 10 20 30 40 Q G , Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 10A; L = 600μH www.irf.com IRG/B/S/SL10B60KDPbF 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.01 0.02 τJ R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ Ri (°C/W) 0.285 τi (sec) 0.000134 0.241 0.288 0.000565 0.0083 τ3 Ci= τi/Ri Ci i/Ri 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.1 0.05 0.01 0.02 0.10 τJ R1 R1 τJ τ1 τ1 R2 R2 τ2 τ3 τ2 Ci= τi/Ri Ci i/Ri 0.01 R3 R3 SINGLE PULSE ( THERMAL RESPONSE ) τC τ τ3 Ri (°C/W) τi (sec) 0.846 0.000149 1.830 1.143 0.001575 0.027005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-6 1E-5 1E-4 1E-3 1E-2 1E-1 1E+0 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 9 IRG/B/S/SL10B60KDPbF L L VCC DUT 0 + - 80 V DUT 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) diode clamp / DUT Driver L - 5V 360V DC 480V Rg DUT / DRIVER DUT VCC Rg Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.4 - Switching Loss Circuit R= DUT VCC ICM VCC Rg Fig.C.T.5 - Resistive Load Circuit 10 www.irf.com IRG/B/S/SL10B60KDPbF 600 12 600 30 500 10 500 25 8 400 20 6 300 90% ICE 200 4 15 90% test current 200 10% test current 5% V CE 5% ICE 0 0.00 0.20 0.40 100 0 0 tr 0.60 -100 15.90 -2 0.80 16.00 100 Fig. WF2- Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 15 400 QR R 0 100 V CE 350 10 tR R -100 300 5 ICE 0 10% Peak IRR -500 -600 -0.15 -5 0.05 0.15 -10 -20 0.25 time (μS) Fig. WF3- Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 200 50 150 -15 -0.05 V CE (V) -200 IF (A) VF (V) 250 -400 16.10 -5 16.20 time (μs) Fig. WF1- Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Peak IRR 5 0 time(μs) -300 5% V CE Eon Loss Eoff Loss -100 -0.20 2 ICE (A) 100 10 I CE (A) tf VCE (V) TEST CURRENT 300 ICE (A) V CE (V) 400 100 50 0 -5.00 0.00 5.00 10.00 0 15.00 time (μS) Fig. WF4- Typ. S.C Waveform @ TJ = 150°C using Fig. CT.3 11 IRG/B/S/SL10B60KDPbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information E XAMPL E : T HIS IS AN IR F 1010 L OT CODE 1789 AS S E MB L E D ON WW 19, 1997 IN T H E AS S E MB L Y L INE "C" Note: "P" in assembly line position indicates "Lead-Free" INT E R NAT IONAL R E CT IF IE R L OGO AS S E MB L Y L OT CODE 12 PAR T NU MB E R DAT E CODE YE AR 7 = 1997 WE E K 19 L INE C www.irf.com IRG/B/S/SL10B60KDPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS S EMBLED ON WW 02, 2000 IN T HE AS S EMBLY LINE "L" INT ERNAT IONAL RECTIFIER LOGO Note: "P" in as s embly line pos ition indicates "Lead-Free" OR INT ERNAT IONAL RECTIFIE R LOGO AS S E MBLY LOT CODE www.irf.com ASS EMBLY LOT CODE PART NUMBER F530S DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L PART NUMBER F 530S DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS S EMBLY S ITE CODE 13 IRG/B/S/SL10B60KDPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 ASS EMBLED ON WW 19, 1997 IN T HE ASS EMBLY LINE "C" Note: "P" in ass embly line position indicates "Lead-Free" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER DAT E CODE YEAR 7 = 1997 WEEK 19 LINE C OR INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE 14 PART NUMBER DAT E CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) YEAR 7 = 1997 WEEK 19 A = ASS EMBLY SITE CODE www.irf.com IRG/B/S/SL10B60KDPbF D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 24.30 (.957) 23.90 (.941) 15.42 (.609) 15.22 (.601) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. Notes: 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4  This is only applied to TO-220AB package ‚ This is applied to D2Pak, when mounted on 1" square PCB ( FR-4 or G-10 Material ). For recommended footprint and soldering techniques refer to application note #AN-994. ƒ Energy losses include "tail" and diode reverse recovery. „ VCC = 80% (VCES), VGE = 20V, L = 100μH, RG = 47Ω. TO-220 package is not recommended for Surface Mount Application Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 01/2013 www.irf.com 15
IRGSL10B60KDPBF 价格&库存

很抱歉,暂时无法提供与“IRGSL10B60KDPBF”相匹配的价格&库存,您可以联系我们找货

免费人工找货