PD - 96053
IRLR3715ZCPbF
IRLU3715ZCPbF
HEXFET® Power MOSFET
Applications
l
l
l
High Frequency Synchronous Buck
Converters for Computer Processor Power
High Frequency Isolated DC-DC
Converters with Synchronous Rectification
for Telecom and Industrial Use
Lead-Free
VDSS RDS(on) max
Qg
11m:
7.2nC
D-Pak
IRLR3715ZCPbF
I-Pak
IRLU3715ZCPbF
20V
Benefits
l
l
Ultra-Low Gate Impedance
Fully Characterized Avalanche Voltage
and Current
Absolute Maximum Ratings
Parameter
Max.
Units
20
V
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
± 20
49
A
35
IDM
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
PD @TC = 25°C
Maximum Power Dissipation
40
PD @TC = 100°C
Maximum Power Dissipation
20
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
VDS
Drain-to-Source Voltage
VGS
ID @ TC = 25°C
ID @ TC = 100°C
c
f
f
200
W
0.27
-55 to + 175
Soldering Temperature, for 10 seconds
W/°C
°C
300 (1.6mm from case)
Thermal Resistance
Parameter
RθJC
RθJA
Junction-to-Case
Junction-to-Ambient (PCB Mount)
RθJA
Junction-to-Ambient
g
Typ.
Max.
Units
°C/W
–––
3.75
–––
50
–––
110
Notes through
are on page 11
www.irf.com
1
02/23/06
IRLR/U3715ZCPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ. Max. Units
BVDSS
Drain-to-Source Breakdown Voltage
20
–––
–––
∆ΒVDSS/∆TJ
Breakdown Voltage Temp. Coefficient
–––
13
–––
RDS(on)
Static Drain-to-Source On-Resistance
V
Conditions
VGS = 0V, ID = 250µA
–––
8.8
11
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 15A
–––
12.4
15.5
VGS = 4.5V, ID = 12A
VGS(th)
Gate Threshold Voltage
1.65
2.1
2.55
V
∆VGS(th)/∆TJ
Gate Threshold Voltage Coefficient
–––
-4.8
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
1.0
µA
VDS = 16V, VGS = 0V
–––
–––
150
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
gfs
Qg
Forward Transconductance
33
–––
–––
e
e
VDS = VGS, ID = 250µA
VDS = 16V, VGS = 0V, TJ = 125°C
VGS = -20V
S
VDS = 10V, ID = 12A
Total Gate Charge
–––
7.2
11
Qgs1
Pre-Vth Gate-to-Source Charge
–––
2.3
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
0.90
–––
Qgd
Gate-to-Drain Charge
–––
2.6
–––
ID = 12A
Qgodr
–––
1.4
–––
See Fig. 16
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
3.5
–––
Qoss
Output Charge
–––
3.8
–––
td(on)
Turn-On Delay Time
–––
7.8
–––
VDD = 10V, VGS = 4.5V
tr
Rise Time
–––
13
–––
ID = 12A
td(off)
Turn-Off Delay Time
–––
10
–––
tf
Fall Time
–––
4.3
–––
Ciss
Input Capacitance
–––
810
–––
Coss
Output Capacitance
–––
270
–––
Crss
Reverse Transfer Capacitance
–––
150
–––
VDS = 10V
nC
nC
ns
VGS = 4.5V
VDS = 10V, VGS = 0V
e
Clamped Inductive Load
VGS = 0V
pF
VDS = 10V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
EAR
Repetitive Avalanche Energy
c
d
c
Typ.
Max.
Units
–––
19
mJ
–––
12
A
–––
4.0
mJ
Diode Characteristics
Parameter
Min. Typ. Max. Units
f
Conditions
IS
Continuous Source Current
–––
–––
49
ISM
(Body Diode)
Pulsed Source Current
–––
–––
200
showing the
integral reverse
VSD
(Body Diode)
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 12A, VGS = 0V
trr
Reverse Recovery Time
–––
11
17
ns
Qrr
Reverse Recovery Charge
–––
3.5
5.3
nC
ton
Forward Turn-On Time
2
c
MOSFET symbol
A
D
G
S
e
TJ = 25°C, IF = 12A, VDD = 10V
di/dt = 100A/µs
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRLR/U3715ZCPbF
10000
1000
1000
100
BOTTOM
VGS
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
2.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
1
2.5V
0.1
100
BOTTOM
VGS
10V
4.5V
3.7V
3.5V
3.3V
3.0V
2.7V
2.5V
10
2.5V
1
20µs PULSE WIDTH
Tj = 175°C
20µs PULSE WIDTH
Tj = 25°C
0.01
0.1
0.1
1
10
0.1
Fig 1. Typical Output Characteristics
10
Fig 2. Typical Output Characteristics
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current (Α)
1
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
T J = 175°C
100
10
TJ = 25°C
1
ID = 30A
VGS = 10V
1.5
1.0
0.5
0.1
0
2
4
6
8
10
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
12
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Junction Temperature (°C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRLR/U3715ZCPbF
VGS
Ciss
Crss
Coss
1000
6.0
= 0V,
f = 1 MHZ
= C gs + Cgd , C ds SHORTED
= C gd
= C ds + Cgd
ID= 12A
VGS, Gate-to-Source Voltage (V)
C, Capacitance(pF)
10000
Ciss
Coss
Crss
100
VDS= 16V
VDS= 10V
5.0
4.0
3.0
2.0
1.0
0.0
10
1
10
100
0
2
4
6
8
10
QG Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
1000
1000.00
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100.00
T J = 175°C
10.00
1.00
TJ = 25°C
10
100µsec
1msec
1
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.10
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRLR/U3715ZCPbF
50
2.5
VGS(th) Gate threshold Voltage (V)
Limited By Package
ID, Drain Current (A)
40
30
20
10
2.0
ID = 250µA
1.5
1.0
0
25
50
75
100
125
150
-75 -50 -25
175
0
25
50
75 100 125 150 175 200
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 9. Maximum Drain Current vs.
Case Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC )
10
D = 0.50
1
R1
R1
0.20
τJ
0.10
0.05
R3
R3
τC
τ
τ1
τ2
τ2
τ3
τ3
τ4
τi (sec)
Ri (°C/W)
R4
R4
τ4
Ci= τi/Ri
Ci= i/Ri
0.02
0.01
0.1
τJ
τ1
R2
R2
1.1512
0.000082
2.2284
0.000897
0.3256
0.053599
0.0448
0.074119
P DM
t1
SINGLE PULSE
( THERMAL RESPONSE )
t2
Notes:
1. Duty factor D =
2. Peak T
t 1/ t
2
J = P DM x Z thJC
+T C
0.01
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRLR/U3715ZCPbF
15V
D.U.T
RG
+
V
- DD
IAS
20V
VGS
A
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
DRIVER
L
VDS
80
ID
4.2A
6.9A
BOTTOM 12A
70
TOP
60
50
40
30
20
10
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
I AS
LD
VDS
Fig 12b. Unclamped Inductive Waveforms
VDD
D.U.T
Current Regulator
Same Type as D.U.T.
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
50KΩ
12V
.2µF
.3µF
D.U.T.
+
V
- DS
Fig 14a. Switching Time Test Circuit
VDS
90%
VGS
3mA
IG
ID
Current Sampling Resistors
Fig 13. Gate Charge Test Circuit
10%
VGS
td(on)
tr
td(off)
tf
Fig 14b. Switching Time Waveforms
6
www.irf.com
IRLR/U3715ZCPbF
D.U.T
Driver Gate Drive
P.W.
+
+
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
RG
•
•
•
•
dv/dt controlled by R G
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
D=
Period
V DD
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
Vgs(th)
Qgs1 Qgs2
Qgd
Qgodr
Fig 16. Gate Charge Waveform
www.irf.com
7
IRLR/U3715ZCPbF
Power MOSFET Selection for Non-Isolated DC/DC Converters
Control FET
Synchronous FET
Special attention has been given to the power losses
in the switching elements of the circuit - Q1 and Q2.
Power losses in the high side switch Q1, also called
the Control FET, are impacted by the Rds(on) of the
MOSFET, but these conduction losses are only about
one half of the total losses.
The power loss equation for Q2 is approximated
by;
*
Ploss = Pconduction + Pdrive + Poutput
(
2
Ploss = Irms × Rds(on)
)
Power losses in the control switch Q1 are given
by;
+ (Qg × Vg × f )
Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput
⎛Q
⎞
+ ⎜ oss × Vin × f + (Qrr × Vin × f )
⎝ 2
⎠
This can be expanded and approximated by;
*dissipated primarily in Q1.
Ploss = (Irms 2 × Rds(on ) )
⎛
Qgd
+⎜I ×
× Vin ×
ig
⎝
⎞
⎞ ⎛
Qgs 2
f⎟ + ⎜ I ×
× Vin × f ⎟
ig
⎠ ⎝
⎠
+ (Qg × Vg × f )
+
⎛ Qoss
× Vin × f ⎞
⎝ 2
⎠
This simplified loss equation includes the terms Qgs2
and Qoss which are new to Power MOSFET data sheets.
Qgs2 is a sub element of traditional gate-source
charge that is included in all MOSFET data sheets.
The importance of splitting this gate-source charge
into two sub elements, Qgs1 and Qgs2, can be seen from
Fig 16.
Qgs2 indicates the charge that must be supplied by
the gate driver between the time that the threshold
voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in
reducing switching losses in Q1.
Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the
parallel combination of the voltage dependant (nonlinear) capacitances Cds and Cdg when multiplied by
the power supply input buss voltage.
For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since
it impacts three critical areas. Under light load the
MOSFET must still be turned on and off by the control IC so the gate drive losses become much more
significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that
are transfered to Q1 and increase the dissipation in
that device. Thirdly, gate charge will impact the
MOSFETs’ susceptibility to Cdv/dt turn on.
The drain of Q2 is connected to the switching node
of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is
a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce
a voltage spike on the gate that is sufficient to turn
the MOSFET on, resulting in shoot-through current .
The ratio of Qgd/Qgs1 must be minimized to reduce the
potential for Cdv/dt turn on.
Figure A: Qoss Characteristic
8
www.irf.com
IRLR/U3715ZCPbF
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
(;$03/(
7+,6,6$1,5)5
3$57180%(5
:,7+$66(0%/<
,17(51$7,21$/
/27&2'(
,5)5
$
5(&7,),(5
$66(0%/('21::
/2*2
,17+($66(0%/