0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
IRLR3715ZCTRLP

IRLR3715ZCTRLP

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT428

  • 描述:

    MOSFET N-CH 20V 49A DPAK

  • 数据手册
  • 价格&库存
IRLR3715ZCTRLP 数据手册
PD - 96053 IRLR3715ZCPbF IRLU3715ZCPbF HEXFET® Power MOSFET Applications l l l High Frequency Synchronous Buck Converters for Computer Processor Power High Frequency Isolated DC-DC Converters with Synchronous Rectification for Telecom and Industrial Use Lead-Free VDSS RDS(on) max Qg 11m: 7.2nC D-Pak IRLR3715ZCPbF I-Pak IRLU3715ZCPbF 20V Benefits l l Ultra-Low Gate Impedance Fully Characterized Avalanche Voltage and Current Absolute Maximum Ratings Parameter Max. Units 20 V Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V ± 20 49 A 35 IDM Continuous Drain Current, VGS @ 10V Pulsed Drain Current PD @TC = 25°C Maximum Power Dissipation 40 PD @TC = 100°C Maximum Power Dissipation 20 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range VDS Drain-to-Source Voltage VGS ID @ TC = 25°C ID @ TC = 100°C c f f 200 W 0.27 -55 to + 175 Soldering Temperature, for 10 seconds W/°C °C 300 (1.6mm from case) Thermal Resistance Parameter RθJC RθJA Junction-to-Case Junction-to-Ambient (PCB Mount) RθJA Junction-to-Ambient g Typ. Max. Units °C/W ––– 3.75 ––– 50 ––– 110 Notes  through … are on page 11 www.irf.com 1 02/23/06 IRLR/U3715ZCPbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units BVDSS Drain-to-Source Breakdown Voltage 20 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 13 ––– RDS(on) Static Drain-to-Source On-Resistance V Conditions VGS = 0V, ID = 250µA ––– 8.8 11 mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A ––– 12.4 15.5 VGS = 4.5V, ID = 12A VGS(th) Gate Threshold Voltage 1.65 2.1 2.55 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -4.8 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 16V, VGS = 0V ––– ––– 150 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 gfs Qg Forward Transconductance 33 ––– ––– e e VDS = VGS, ID = 250µA VDS = 16V, VGS = 0V, TJ = 125°C VGS = -20V S VDS = 10V, ID = 12A Total Gate Charge ––– 7.2 11 Qgs1 Pre-Vth Gate-to-Source Charge ––– 2.3 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 0.90 ––– Qgd Gate-to-Drain Charge ––– 2.6 ––– ID = 12A Qgodr ––– 1.4 ––– See Fig. 16 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 3.5 ––– Qoss Output Charge ––– 3.8 ––– td(on) Turn-On Delay Time ––– 7.8 ––– VDD = 10V, VGS = 4.5V tr Rise Time ––– 13 ––– ID = 12A td(off) Turn-Off Delay Time ––– 10 ––– tf Fall Time ––– 4.3 ––– Ciss Input Capacitance ––– 810 ––– Coss Output Capacitance ––– 270 ––– Crss Reverse Transfer Capacitance ––– 150 ––– VDS = 10V nC nC ns VGS = 4.5V VDS = 10V, VGS = 0V e Clamped Inductive Load VGS = 0V pF VDS = 10V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy c d c Typ. Max. Units ––– 19 mJ ––– 12 A ––– 4.0 mJ Diode Characteristics Parameter Min. Typ. Max. Units f Conditions IS Continuous Source Current ––– ––– 49 ISM (Body Diode) Pulsed Source Current ––– ––– 200 showing the integral reverse VSD (Body Diode) Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V trr Reverse Recovery Time ––– 11 17 ns Qrr Reverse Recovery Charge ––– 3.5 5.3 nC ton Forward Turn-On Time 2 c MOSFET symbol A D G S e TJ = 25°C, IF = 12A, VDD = 10V di/dt = 100A/µs e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRLR/U3715ZCPbF 10000 1000 1000 100 BOTTOM VGS 10V 4.5V 3.7V 3.5V 3.3V 3.0V 2.7V 2.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 10 1 2.5V 0.1 100 BOTTOM VGS 10V 4.5V 3.7V 3.5V 3.3V 3.0V 2.7V 2.5V 10 2.5V 1 20µs PULSE WIDTH Tj = 175°C 20µs PULSE WIDTH Tj = 25°C 0.01 0.1 0.1 1 10 0.1 Fig 1. Typical Output Characteristics 10 Fig 2. Typical Output Characteristics 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current (Α) 1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) T J = 175°C 100 10 TJ = 25°C 1 ID = 30A VGS = 10V 1.5 1.0 0.5 0.1 0 2 4 6 8 10 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 12 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRLR/U3715ZCPbF VGS Ciss Crss Coss 1000 6.0 = 0V, f = 1 MHZ = C gs + Cgd , C ds SHORTED = C gd = C ds + Cgd ID= 12A VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) 10000 Ciss Coss Crss 100 VDS= 16V VDS= 10V 5.0 4.0 3.0 2.0 1.0 0.0 10 1 10 100 0 2 4 6 8 10 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 1000 1000.00 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100.00 T J = 175°C 10.00 1.00 TJ = 25°C 10 100µsec 1msec 1 10msec Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.10 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRLR/U3715ZCPbF 50 2.5 VGS(th) Gate threshold Voltage (V) Limited By Package ID, Drain Current (A) 40 30 20 10 2.0 ID = 250µA 1.5 1.0 0 25 50 75 100 125 150 -75 -50 -25 175 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) 10 D = 0.50 1 R1 R1 0.20 τJ 0.10 0.05 R3 R3 τC τ τ1 τ2 τ2 τ3 τ3 τ4 τi (sec) Ri (°C/W) R4 R4 τ4 Ci= τi/Ri Ci= i/Ri 0.02 0.01 0.1 τJ τ1 R2 R2 1.1512 0.000082 2.2284 0.000897 0.3256 0.053599 0.0448 0.074119 P DM t1 SINGLE PULSE ( THERMAL RESPONSE ) t2 Notes: 1. Duty factor D = 2. Peak T t 1/ t 2 J = P DM x Z thJC +T C 0.01 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRLR/U3715ZCPbF 15V D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS , Single Pulse Avalanche Energy (mJ) DRIVER L VDS 80 ID 4.2A 6.9A BOTTOM 12A 70 TOP 60 50 40 30 20 10 0 25 50 75 100 125 150 175 Starting T J , Junction Temperature (°C) Fig 12c. Maximum Avalanche Energy vs. Drain Current I AS LD VDS Fig 12b. Unclamped Inductive Waveforms VDD D.U.T Current Regulator Same Type as D.U.T. VGS Pulse Width < 1µs Duty Factor < 0.1% 50KΩ 12V .2µF .3µF D.U.T. + V - DS Fig 14a. Switching Time Test Circuit VDS 90% VGS 3mA IG ID Current Sampling Resistors Fig 13. Gate Charge Test Circuit 10% VGS td(on) tr td(off) tf Fig 14b. Switching Time Waveforms 6 www.irf.com IRLR/U3715ZCPbF D.U.T Driver Gate Drive P.W. + ƒ + - - „ * D.U.T. ISD Waveform Reverse Recovery Current +  RG • • • • dv/dt controlled by R G Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer ‚ D= Period V DD + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Vds Vgs Vgs(th) Qgs1 Qgs2 Qgd Qgodr Fig 16. Gate Charge Waveform www.irf.com 7 IRLR/U3715ZCPbF Power MOSFET Selection for Non-Isolated DC/DC Converters Control FET Synchronous FET Special attention has been given to the power losses in the switching elements of the circuit - Q1 and Q2. Power losses in the high side switch Q1, also called the Control FET, are impacted by the Rds(on) of the MOSFET, but these conduction losses are only about one half of the total losses. The power loss equation for Q2 is approximated by; * Ploss = Pconduction + Pdrive + Poutput ( 2 Ploss = Irms × Rds(on) ) Power losses in the control switch Q1 are given by; + (Qg × Vg × f ) Ploss = Pconduction+ Pswitching+ Pdrive+ Poutput ⎛Q ⎞ + ⎜ oss × Vin × f + (Qrr × Vin × f ) ⎝ 2 ⎠ This can be expanded and approximated by; *dissipated primarily in Q1. Ploss = (Irms 2 × Rds(on ) ) ⎛ Qgd +⎜I × × Vin × ig ⎝ ⎞ ⎞ ⎛ Qgs 2 f⎟ + ⎜ I × × Vin × f ⎟ ig ⎠ ⎝ ⎠ + (Qg × Vg × f ) + ⎛ Qoss × Vin × f ⎞ ⎝ 2 ⎠ This simplified loss equation includes the terms Qgs2 and Qoss which are new to Power MOSFET data sheets. Qgs2 is a sub element of traditional gate-source charge that is included in all MOSFET data sheets. The importance of splitting this gate-source charge into two sub elements, Qgs1 and Qgs2, can be seen from Fig 16. Qgs2 indicates the charge that must be supplied by the gate driver between the time that the threshold voltage has been reached and the time the drain current rises to Idmax at which time the drain voltage begins to change. Minimizing Q gs2 is a critical factor in reducing switching losses in Q1. Qoss is the charge that must be supplied to the output capacitance of the MOSFET during every switching cycle. Figure A shows how Qoss is formed by the parallel combination of the voltage dependant (nonlinear) capacitance’s Cds and Cdg when multiplied by the power supply input buss voltage. For the synchronous MOSFET Q2, Rds(on) is an important characteristic; however, once again the importance of gate charge must not be overlooked since it impacts three critical areas. Under light load the MOSFET must still be turned on and off by the control IC so the gate drive losses become much more significant. Secondly, the output charge Qoss and reverse recovery charge Qrr both generate losses that are transfered to Q1 and increase the dissipation in that device. Thirdly, gate charge will impact the MOSFETs’ susceptibility to Cdv/dt turn on. The drain of Q2 is connected to the switching node of the converter and therefore sees transitions between ground and Vin. As Q1 turns on and off there is a rate of change of drain voltage dV/dt which is capacitively coupled to the gate of Q2 and can induce a voltage spike on the gate that is sufficient to turn the MOSFET on, resulting in shoot-through current . The ratio of Qgd/Qgs1 must be minimized to reduce the potential for Cdv/dt turn on. Figure A: Qoss Characteristic 8 www.irf.com IRLR/U3715ZCPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information (;$03/( 7+,6,6$1,5)5 3$57180%(5 :,7+$66(0%/< ,17(51$7,21$/ /27&2'( ,5)5 $   5(&7,),(5 $66(0%/('21:: /2*2 ,17+($66(0%/
IRLR3715ZCTRLP 价格&库存

很抱歉,暂时无法提供与“IRLR3715ZCTRLP”相匹配的价格&库存,您可以联系我们找货

免费人工找货