Digital Absolute Pressure Sensor
KP254
dBAP
Digital Barometric Air Pressure Sensor IC
Data Sheet
Revision 1.1, 2015-07-29
Sense & Control
KP254
Digital Absolute Pressure Sensor
Table of Contents
1
1.1
1.2
Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
2.1
2.2
2.3
2.4
2.4.1
2.4.2
2.5
2.5.1
2.6
2.6.1
2.6.1.1
2.6.1.2
2.6.1.3
2.6.1.4
2.6.1.5
2.6.1.6
2.6.2
2.6.3
2.7
2.8
2.8.1
2.8.1.1
2.8.1.2
2.8.2
2.8.3
2.8.4
2.8.5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Transfer Function Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pressure Transfer Function Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Transfer Function Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Temperature Transfer Function Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Command Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Command Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Communication Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Identifier Response Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Single Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Daisy Chain Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Start-up Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Diagnostic Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Reset-bit C12 = ‘0‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Reset-bit C12 = ‘1‘ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Pressure out of Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Diag1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Diag2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
E2PROM Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3
3.1
3.2
3.3
3.4
Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Application Circuit Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4
4.1
4.2
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
PG-DSOF-8-16 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Identification Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Data Sheet
2
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
List of Tables
Table 1
Table 2
Table 3
Table 4
Table 5
Table 6
Table 7
Table 8
Table 9
Table 10
Data Sheet
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Pressure transfer function characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Temperature transfer function characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Diagnosis codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Component values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Transfer function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
List of Figures
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24
Figure 25
Figure 26
Figure 27
Data Sheet
Pin configuration (top view, figure not to scale) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Pressure transfer function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Accuracy for pressure acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Temperature transfer function (VDD = 5.0 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SPI timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SPI command structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SPI response structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
SPI response structure for identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Acquire pressure command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Acquire temperature command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Trigger diagnosis command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Acquire identifier command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Trigger test mode command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Response after a communication error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Identifier response definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Example for single device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Example for single device signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Example for daisy chain operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Example for daisy chain signal diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Example for reset strategy Reset-bit C12 = ‘0‘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Example for reset strategy Reset-bit C12 = ‘1‘. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Diag1 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Diag2 functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Application circuit example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Identification code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
1
Product Description
The KP254 is a miniaturized Digital Barometric Air Pressure Sensor IC
based on a capacitive principle. It is surface micromachined with a
monolithic integrated signal conditioning circuit implemented in
BiCMOS technology.
The sensor converts a pressure into a 10-bit digital value and sends the
information via the SPI interface. In addition, a temperature sensor is
integrated on chip. Based on the received SPI command, the 10-bit
temperature information will be transmitted via the SPI interface.
A special reliability feature is the integrated diagnostic mode, which
allows testing the sensor cells as well as the signal path. This diagnosis
can be simply triggered with a SPI command.
PG-DSOF-8-16
The chip is packaged in a “green” SMD housing. The sensor has been primarily developed for measuring
barometric air pressure, but can also be used in other application fields. The high accuracy, high sensitivity
and reliability features of the device makes it a perfect fit for advanced automotive applications as well as in
industrial and consumer applications.
1.1
Features
The following features are supported by the KP254:
•
High accuracy pressure sensing (± 1.5 kPa)
•
Real 10-bit pressure resolution
•
Integrated temperature sensor
•
Real 10-bit temperature resolution
•
Self diagnosis features
•
“Green” 8 pin SMD housing
•
Automotive qualified
1.2
Target Applications
The KP254 is designed for use in the following target applications:
•
Automotive applications
•
Industrial control
•
Consumer applications
•
Medical applications
•
Weather stations
•
Altimeters
Product Name
Product Type
Ordering Code
Package
Digital Absolute Pressure Sensor
KP254
SP001399094
PG-DSOF-8-16
Data Sheet
5
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2
Functional Description
2.1
Pin Configuration
Figure 1 shows the pin configuration.
NCS
1
8
GND
CLK
2
7
NC
SDI
3
6
VPROG
SDO
4
5
VDD
Figure 1
Pin configuration (top view, figure not to scale)
2.2
Pin Description
Table 1 shows the pin description.
Table 1
Pin description
Pin No.
Name
Function
Comment
1
NCS
Not-Chip-Select (active-low)
Communication is enabled when NCS is low
2
CLK
Serial Clock
External clock for serial communication
3
SDI
Serial Data In
Serial data input (e.g. from a controller)
4
SDO
Serial Data Out
Tri-state serial data output
5
VDD
Supply voltage
–
6
VPROG
Programming Voltage
Only required during E2PROM programming
7
NC
Not Connected
Pin is not bonded
8
GND
Ground
–
Data Sheet
6
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.3
Block Diagram
Figure 2 shows the functional block diagram.
Pressure
Cells
NCS
Normal Mode/
Diagnosis Mode
ADC
Digital
Signal
Temperature
Sensor
Digital Core
CLK
SPI
Interface
SDI
Processing
ADC
SDO
Temperature
Compensation
Voltage
Regulator
VDD
analog
digital
E²PROM
Interface
VDDA
VDDD
E²PROM
VPROG
Reset
GND
NC
Figure 2
Functional block diagram
2.4
Transfer Function Pressure
output signal [LSB]
The KP254 device is fully calibrated on delivery. The sensor has a linear transfer function between the applied
pressure and the digital output signal.
1023
Zo
o
511
m
0
0
20
40
60
80
100
120
140
160
180
200
pressure [kPa]
operating pressure range
maximum input pressure range
Figure 3
Data Sheet
Pressure transfer function
7
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.4.1
Pressure Transfer Function Characteristics
The following calibration is adjusted with the parameters Sp and offsp
pamb
Table 2
=
out p − offs p
Sp
Pressure transfer function characteristics
Pressure
Output Code
Gain and Offset
Symbol
Values
Unit
Symbol
Values
Unit
Symbol
Value
Unit
pIN,1
40
kPa
LSBOUT,1
0
LSB
Sp
13.64
LSB/kPa
pIN,2
115
kPa
LSBOUT,2
1023
LSB
offsp
-545.6
LSB
Note: The points pIN,1/LSBOUT,1 and pIN,2/LSBOUT,2 define the calibrated transfer function and not the operating
range. The operating pressure range is defined by the parameter 2.8 “Ambient operating pressure range”
on Page 22
Accuracy
2.0
3.0
1.8
2.5
1.6
1.4
1.2
absolute error [kPa]
error multiplier
2.4.2
1.5
1.0
0.8
0.6
0.4
0.2
0.0
-40
Figure 4
Data Sheet
0
85
125
temperature [°C]
Accuracy for pressure acquisition
8
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.5
Transfer Function Temperature
output signal [LSB]
Triggering the temperature command (see Section 2.6.1.4) the KP254 provides the ambient temperature.
1023
Zo
511
om
0
-40
-20
0
40
20
60
80
120
140
160
temperature [°C]
100
operating temperaturerange
Figure 5
Temperature transfer function (VDD = 5.0 V)
2.5.1
Temperature Transfer Function Characteristics
The following calibration is adjusted with the parameters ST and offsT:
Tamb
Table 3
=
outT − offsT
ST
Temperature transfer function characteristics
Temperature
Output Code
Gain and Offset
Symbol
Values
Unit
Symbol
Values
Unit
Symbol
TIN,1_5.01)
-40
°C
LSBOUT,1
0
LSB
ST
TIN,2_5.0
1)
160
°C
LSBOUT,2
1023
LSB
2)
offsT_3.3
offsT_5.01)
Value
Unit
5.115
LSB/°C
209.6
204.6
LSB
LSB
1) Valid for VDD = 5.0 V
2) Valid for VDD = 3.3 V
Note: The points TIN,1/LSBOUT,1 and TIN,2/LSBOUT,2 define the calibrated transfer function and not the operating
range. The operating temperature range is defined by the parameter 2.7 “Operating temperature” on
Page 22
Data Sheet
9
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.6
Serial Interface
The communication and data transmission is based on a standard 16 bit serial peripheral interface (SPI).
NCS
t sclch thclcl
tclh
t cll
t sclcl thclch
tonncs
SCLK
t csdv
t pcld
t pchdz
SDO
MSB
tscld
SDI
LSB
t hcld
MSB
Figure 6
SPI timing
2.6.1
Commands
LSB
The following Commands are defined:
•
Acquire identifier
•
Acquire pressure (incl. the diagnosis pressure out of range, E2PROM check and last updated Diag1 &
Diag2)1)
•
Acquire temperature (incl. the diagnosis pressure out of range, E2PROM check and last updated Diag1 &
Diag2)1)
•
Trigger diagnosis (triggers Diag1 and Diag2)
•
Trigger test mode (entry into test mode only occurs if this is the first command received after power up, in
conjunction with a high voltage level (>10V) on pin VPROG)
2.6.1.1
Command Behavior
The SPI command interpretation is based on following rules:
•
The response to command N is the result of the previous command (N-1)
•
The response to the first command is the identifier
•
When a command (N) is sent and the processing of the previous command (N-1) has not finalized, the last
command (N) will not interrupt the processing
•
Max. one command is stacked (during processing a command a new received command is stacked; further
received commands will overwrite the stack)
•
If a command has finished, the sensor takes the next command from the stack; if no command is in the
stack, the sensor goes into the pressure measurement mode
1) Last updated diagnosis information is only available if the Trigger diagnosis command was sent at any time before and the
diagnostic reset is not active (Reset-bit C12 = ‘1‘, see Chapter 2.8.1).
Data Sheet
10
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
•
The diagnosis command triggers the Diag1 and Diag2 measurement; during this time pressure values
(including out of range information) will not be updated
•
Pressure and temperature values can be updated continuously based on a parallel acquisition
2.6.1.2
Structure
The following structure is defined for an SPI command:
15
14
13
12
11
10
9
8
7
6
5
RESET ADDITIONAL
BIT
REQUEST
REQUEST
4
3
2
1
`0`
MSB
Figure 7
15
LSB
SPI command structure
14
13
12
11
10
9
8
7
6
5
4
3
2
1
MSB
15
0
PARIT
Y
DATA
DIAGNOSIS
Figure 8
0
LSB
SPI response structure
14
SUPPLIER
13
12
11
SILICON VERSION
10
9
8
7
METAL VERSION
6
5
4
3
2
1
0
ASIC NAME
MSB
LSB
Figure 9
SPI response structure for identifier
2.6.1.3
Parity
Except for the identifier response (see Section 2.6.1.6) every SPI response (including the Communication
Error response, see Section 2.6.1.5) includes an odd parity (LSB, [0]). The number of bits with the value one
in the 16 bit response is odd (including the parity bit).
Data Sheet
11
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.6.1.4
Command Definition
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
1
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 10
Acquire pressure command
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
1
0
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 11
Acquire temperature command
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1
0
0
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 12
Trigger diagnosis command
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1
1
1
X
0
0
0
0
0
0
0
0
0
0
0
0
Figure 13
Acquire identifier command
Note: The Reset-bit (C12) determines how the diagnostic reset is handled. For details about the function of the
Reset-bit refer to Chapter 2.8.1.
The “trigger test mode” command is only for information. The test mode is only for calibration and E2PROM
programming. Both are already done during the supplier’s back-end assembly. The information should serve
to avoid command for unintentional test mode operation.
Note:
Additional safeguards are provided to prevent unintentional test mode operation. For test mode
operation, the command must be the first command after power-up in combination with a high voltage
level at pin VPROG.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
0
0
Figure 14
Data Sheet
Trigger test mode command
12
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.6.1.5
Communication Error
In normal operation only the pressure, temperature, diagnosis and identifier commands are valid. Every
abnormality of these commands (e.g. unused command, other value of unused bits, number of clocks not
equal to 16n with n = 1, 2, 3...) will result in a communication error. The response to a detected communication
error is given below.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
Figure 15
Response after a communication error
2.6.1.6
Identifier Response Definition
The response to an Acquire identifier command is a fixed value as stated below. With this response, the
KP254 sensor can be indentified when operated in a bus system with several different parts.
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
1
0
1
0
0
0
1
0
0
1
1
0
1
1
1
Figure 16
Data Sheet
Identifier response definition
13
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.6.2
Single Device Operation
Figure 17 shows an example on how to connect a singe device to a microcontroller.
After NCS is pulled to low, the request command is sent to the sensor with the next 16 cycles of the CLK. The
response of the sensor for the previous request command is returned at the same time. The SPI signal timing
is shown in Figure 18.
MDI
MDO
NCS
CLK
µC
SDO
SDI
NCS
CLK
NCS low for 16 CLK pulses
KP25x
Figure 17
Example for single device operation
NCS
CLK
16 CLK cycles
...
16 CLK cycles
...
MDO
COMMAND_n
COMMAND_n+1
MDI
ANSWER_n-1
ANSWER_n
time
Figure 18
Data Sheet
Example for single device signal timing
14
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
2.6.3
Daisy Chain Operation
The sensors can be connected to one SPI connection in daisy chain operation to save microcontroller pins. The
number of sensors connected in daisy chain operation is unlimited.
MDI
NCS_S3
NCS_S2
NCS_S1
CLK
MDO
µC
SDI
NCS_S1
CLK
NCS_S1 low for 16 CLK pulses
SDO
KP25x_1.1
CLK
SDO
SDI
KP25x_2.1
NCS_S2
SDI
NCS_S2
CLK
NCS_S2 low for 32 CLK pulses
SDO
KP25x_2.2
KP25x_3.1
Figure 19
SDI
CLK
SDO
KP25x_3.2
SDI
NCS_S3
CLK
SDO
NCS_S3
SDI
NCS_S3
CLK
NCS_S3 low for 48 CLK pulses
SDO
KP25x_3.3
Example for daisy chain operation
Figure 19 shows an example of a combination of daisy chain mode and parallel operation.
Note:
Not all five sensors in this example could be addressed at once. Only one branch can be addressed at
once (e.g. the KP25x_2.x branch). Finally only one NCS line can be low at the same time (NCS_S1, NCS_S2
or NCS_S3).
The responding NCS line for the addressed sensor group must be low during the complete communication.
During this time the provided number of clock pulses must be the multiplication result of 16 times the number
of sensors in a daisy chain (e.g. 32 clock pulses for the KP25x_2.x branch in Figure 19)
Figure 20 shows the whole signal diagram. It is important that NCS_S2.1 and NCS_S2.2 stay at the low level
during the complete transmission. Therewith the sensor is able after receiving more than 16 clock pulses
without a change in the NCS signal to switch automatically in daisy chain mode (in this example the first
received 16 bit input data by the sensor S2.1 will be clocked to the output of sensor S2.1 with the last 16 clock
pulses).
Data Sheet
15
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
NCS_S2.1
CLK_S2.1
SDI_S2.1
SDO_S2.1
COMMAND_S2.2_n
COMMAND_S2.1_n
ANSWER_S2.1_n-1
COMMAND_S2.2_n
ANSWER_S2.1_n-1
COMMAND_S2.2_n
ANSWER_S2.2_n-1
ANSWER_S2.1_n-1
NCS_S2.2
CLK_S2.2
SDI_S2.2
SDO_S2.2
time
Figure 20
Example for daisy chain signal diagram
It is important that the number of clock pulses is a multiple of 16. Otherwise all commands for a daisy chain
branch will be identified as invalid commands and the response of all sensors on this branch will be 01H.
2.7
Start-up Behavior
During the start-up phase (tstart-up), there is no response on any commands.
2.8
Diagnosis
The sensor is able to detect automatically the following malfunctions:
•
Pressure out of range
•
Signal path check (Diag1)
•
Sensor cell check (Diag2)
•
E2PROM check
If a malfunction is detected, the responding diagnosis code is sent with the next response.
Note:
The Diag1 and Diag2 test can only be triggered by a separate SPI command.
If more than one test fails, only that diagnosis code with the highest priority will be sent.
Data Sheet
16
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
Table 4
Diagnosis codes
Failure
Priority Diagnosis Code
E2PROM: FEC error
1
1
0
0
0
0
Acquisition chain failure: Diag1
2
0
1
0
0
0
Sensor cell failure: Diag21)
3
0
0
1
0
0
Pressure out of range: High
4
0
0
0
1
0
Pressure out of range: Low
5
0
0
0
0
1
0
1
0
1
0
1)
No error
1) Note: This diagnosis code is not valid until a self diagnosis is triggered by sending the Trigger diagnosis command.
2.8.1
Diagnostic Reset
The Reset-bit (C12) of a SPI command allows using different reset strategies:
•
C12 = ‘0‘: All detected failures will be reset (with the exeption of FEC error
•
C12 = ‘1‘: A detected failure will not be reset
Reset of FEC error is not possible. Once FEC error is detected and transmitted it remains until supply
reset.
2.8.1.1
Reset-bit C12 = ‘0‘
A detected failure is only transmitted by the responding diagnosis code as long as the failure is present. The
diagnosis code will be reset after once transmitted. Only if the failure is detected again, the diagnosis code will
be transmitted again with the next response.
pressure sampling
e.g. pressure out of range: low
failure presence
command
diagnosis code response
01010
00001
00001
01010
time
Figure 21
Example for reset strategy Reset-bit C12 = ‘0‘
2.8.1.2
Reset-bit C12 = ‘1‘
Once a failure is detected the responding diagnosis code will be transmitted as long as:
•
A failure with a higher priority is not detected
•
The sensor is not reset (power down)
•
Independent of the presence of the failure
Data Sheet
17
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
pressure sampling
e.g. pressure out of range: low
failure presence
command
diagnosis code response
01010
00001
00001
00001
time
Figure 22
Example for reset strategy Reset-bit C12 = ‘1‘
2.8.2
Pressure out of Range
The measured pressure is internally checked. If the pressure value falls below the lower limit or exceeds the
higher limit the responding diagnosis code will be set. The limits are defined in Table 10 “Transfer function”
on Page 25
2.8.3
Diag1
The Diag1 test checks the functionality of the signal path. Therefore the inputs of the sigma delta ADC are
shorted. Afterwards, the system response is compared with the expected range (~ 50% of full scale range). If
the system response is out of range, the diagnosis code is set.
ΣΔ ADC
Figure 23
Diag1 functionality
2.8.4
Diag2
Decimation
Filter
The Diag2 test checks the functionality of the pressure sensor cells. Therefore a malfunction (e.g. broken
membrane) can be detected. The KP254 pressure sensing element is made of 2 measuring cells and 2
reference cells. In the normal mode these four cells are connected in a Wheatstone bridge configuration. In
the Diag2 mode, the connection of the cells is modified as shown in Figure 24.
Data Sheet
18
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Functional Description
Normal Operation
Diag2 Mode
p
U = f (p)
U = f (p)
p
p
Figure 24
Diag2 functionality
2.8.5
E2PROM Check
p
During the initialization phase, and after receiving a SPI command, the content of the E2PROM cells is copied
into the corresponding E2PROM registers. Thereby, a parity check is done based on the parity row and column.
A one bit error is corrected by the forward error correction. Any additional bit error results in an FECerror. In
that case the diagnosis code 1 will be transmitted with the next response
Data Sheet
19
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Specification
3
Specification
3.1
Application Circuit Example
SPI Interface
Microcontroller
GND
CS
NCS
CLK
CLK
NC
MOSI
SDI
VPROG
MISO
SDO
KP25x
V DD
3.3/5.0V
100nF
Figure 25
Application circuit example
Table 5
Component values
Component
Symbol
Values
Min.
1)
Supply Blocking Capacitor
C1
30
2)
Unit
Typ.
Max.
100
–
nF
1) The use of a blocking capacitor with a nominal value of 100nF is mandatory; any drift or tolerances in capacity of
standard capacitors are already considered. To avoid any measurement inaccuracy the supply blocking capacitor
has to be placed as close as possible to the VDD pin, at least the distance must be less than 10 mm.
2) The minimum capacity including any variations or drift over lifetime must not undershoot this value.
Data Sheet
20
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Specification
3.2
Absolute Maximum Ratings
Table 6
Absolute maximum ratings
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
V
V
–
Limited time:
Max. 300 s
1.1
Min.
Typ.
Max.
Voltage on any pin Vmax
-0.3
–
5.5
6.0
Voltage at output
pins
Vmax_out
-0.3
–
VDD + 0.3 V
–
1.2
Storage
temperature
TS
-40
–
125
°C
–
1.3
Thermal resistance Rthj-pin
–
–
180
K/W
Thermal resistance
between the die and
the pins
1.4
Maximum input
pressure
10
–
200
600
kPa
kPa
pamb_max
1.5
Limited time:
Max. 300 s
Attention: Stresses above the max. values listed in Table 6 “Absolute maximum ratings” may cause
permanent damage to the device. Exposure to absolute maximum rating conditions for
extended periods may affect device reliability. Maximum ratings are absolute ratings;
exceeding only one of these values may cause irreversible damage to the integrated circuit.
Data Sheet
21
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Specification
3.3
Operating Range
The following operating conditions must not be exceeded in order to ensure correct operation of the device.
All parameters specified in the following sections refer to these operating conditions, unless noted otherwise.
Table 7
Operating range
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note or
Test Condition
Number
Supply voltage
VDD3.3
VDD5.0
3.135
4.75
–
–
3.475
5.25
V
V
2.1
Supply voltage
power up/power
down gradient
Vgrad
1E-5
–
1E4
V/ms
2.2
Input voltage for
low level at pins
NCS, CLK & SDI
Vlow_in
-0.3
–
0.8
V
2.3
Input voltage for
high level at pins
NCS, CLK & SDI
Vhigh_in
2.0
–
5.5
V
Even with the supply 2.4
voltage of VDD3.3_min the
max. input voltage
Vhigh_in is allowed; back
biasing will not
happen
Output voltage for Vlow_out
low level at pin
SDO
–
–
0.4
V
Test current at pin
SDO is 2.0mA
2.5
Output voltage for Vhigh_out
high level at pin
SDO
VDDx.x 0.4
–
VDDx.x
V
Test current at pin
SDO is 1.5mA
2.6
Operating
temperature
-40
–
+125
°C
2.7
Ambient operating pamb
pressure range
40
–
115
kPa
2.8
Lifetime1)
15
–
–
years
2.9
Ta
tlive
1) The life time shall be considered as anticipation with regard to the product that shall not extend the agreed warranty
period.
Data Sheet
22
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Specification
3.4
Characteristics
Product characteristics involve the spread of values guaranteed within the specified voltage and ambient
temperature range. Typical characteristics are the median of the production.
Table 8
Electrical characteristics
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
Supply current into IVDD
VDD
–
–
10.0
mA
3.1
Internal pressure
update rate
fupdate
150
–
–
kHz
3.2
Pressure signal
path settling time
tpath_pres
–
–
5
ms
3.3a
Temperature
tpath_pres
signal path settling
time
–
–
15
ms
3.3b
Start-up time
tstart-up
–
–
10
ms
Resolution of
pressure
transmission
nres_pres
n.a.
10
n.a.
bits
3.5
Resolution of
temperature
transmission
nres_temp
n.a.
10
n.a.
bits
3.6
Capacitive load at
pins NCS, CLK &
SDI
Cload_in
–
–
14
pF
3.7
Capacitive load at
pin SDO
Cload_out
–
–
19
pF
3.8
Tri state leakage
current
ISDO
-5
–
5
µA
Hysteresis of input VSPI_Hys
voltage at pins
NCS, CLK & SDI
200
–
–
mV
Current sink for
NCS, CLK & SDI
(each pin)
-100
–
–
–
-5
5
µA
µA
Data Sheet
ISPI_in
23
no response on SPI
3.4
commands during the
start-up time
NCS = high
VDD = 5V
3.9
3.10
@ Vlow_in = 0 V
@ Vhigh_in = 5 V
no back biasing
3.11
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Specification
Table 9
SPI timing
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
Clock frequency of fSPI
SPI interface
0.1
–
5
MHz
No limitation with
4.1
lower frequencies, but
not subject to
production test
Transmission
tSDO_trans
speed at SDO (20%
- 80%)
5
–
30
ns
5
–
50
ns
VSDO = 5V &
Cload = 50pF
VSDO = 5V &
Cload = 150pF
Clock high time
tclh
75
–
–
ns
4.3
Clock low time
tcll
75
–
–
ns
4.4
tfNCS
10
–
60
ns
Pulses below the NCS 4.5
filter time will be
ignored
Delay between
tcsdv
NCS falling edge
and SDO changing
from tri-state to
low
–
–
75
ns
4.6
Delay between CLK tpcld
rising edge and
start SDO data
–
–
50
ns
Delay between CLK tsclch
low and start NCS
low
75
–
–
ns
4.8
thclcl
Delay between
NCS low and rising
edge 1st CLK pulse
75
–
–
ns
4.9
Time between
start SDI data and
falling edge CLK
tscld
15
–
–
ns
4.10
Time between
falling edge CLK
and end SDI data
thcld
15
–
–
ns
4.11
100
–
–
ns
4.12
1)
NCS filter time
Delay between
tsclcl
falling edge lst CLK
pulse and rising
edge NCS
Data Sheet
24
incl. tSDO_trans
4.2
4.7
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Specification
Table 9
SPI timing (cont’d)
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
100
–
–
ns
4.13
Delay between
tpchdz
rising edge NCS
and end SDO data
–
–
75
ns
4.14
Time between
rising edge NCS
and falling edge
next NCS
300
–
–
ns
4.15
Delay between
rising edge NCS
and rising edge
CLK pulse
thclch
tonncs
1) not subject to production test - verified by characterization/design
Table 10
Transfer function
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note or
Test Condition
Number
Sensitivity
pressure
Sp
–
13.64
–
LSB
/kPa
5.1
Offset pressure
offsp
–
-545.6
–
LSB
5.2
Sensitivity
temperature
ST
–
5.115
–
LSB
/°C
5.3
Offset temperature offsT_3.3 –
offsT_5.0 –
209.6
204.6
–
–
LSB
LSB
Accuracy pressure accp_Tmid
-1.5
central
temperature range
–
1.5
kPa
Accuracy pressure accp_Tlow
low temperature
range
–
3
kPa
-3
Accuracy pressure accp_Thigh
-2.5
high temperature
range
Accuracy
temperature
Data Sheet
accT
-5.0
–
2.5
kPa
–
5.0
°C
25
VDD = 3.3 V
VDD = 5.0 V
5.4
0°C - 85°C
5.5a
@-40°C
5.5b
@125°C
5.5c
-40°C - 125°C
5.6
accuracy is referenced
to the ambient
temperature
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Specification
Table 10
Transfer function (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Pressure out of
range: Low
plow
plow_d
–
–
40
0d
–
–
kPa
LSB
Accuracy not
5.7
considered;
below/equal the value
the diagnosis code is
set
Pressure out of
range: High
phigh
phigh_d
–
–
115
1023d
–
–
kPa
LSB
Accuracy not
5.8
considered;
above/equal the value
the diagnosis code is
set
Data Sheet
26
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Package Information
4
Package Information
For passivation the sensor is covered with a transparent gel.
4.1
PG-DSOF-8-16 Outline
OUTER DIMENSIONS DOES NOT INCLUDE PROTUSION
OR INTRUSION OF 0.2 MAX. PER SIDE
1)
VALID FOR THE WHOLE SEATING PLANE INCLUDED
TIE BAR AREA
Figure 26
Data Sheet
Package outline
27
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Package Information
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
4.2
Identification Code
Figure 27
Sales Code
B:
I P
K P 2 5 4
B Y Y W W
Data Matrix Code
8 x 18 Dots
Dot Size:
0.15 mm x 0.15 mm
Date Code
The identification code is provided in a machine readable format. The date and sales code are provided in
human readable format.
YY:
WW:
BE Location
´M´ = Malacca
´R´ = Regensburg
Year
Week
Identification code
The identification code for the KP254 is on the same side of the package as pin 8 (GND).
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
28
Dimensions in mm
Revision 1.1, 2015-07-29
KP254
Digital Absolute Pressure Sensor
Revision History
5
Revision History
KP254 Digital Absolute Pressure Sensor
Revision History: 2015-07-29, Revision 1.1
Previous Revision: Revision 1.0
Page
Subjects (major changes since last revision)
Design improvement, new ordering code and marking
Data Sheet
29
Revision 1.1 2015-07-29
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I2RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, myd™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,
SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
www.infineon.com
Edition 2015-07-29
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of noninfringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.