0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PSB21150HV1.4

PSB21150HV1.4

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    QFP64

  • 描述:

    IPAC-X ISDN PC ADAPTER CIRCUIT

  • 数据手册
  • 价格&库存
PSB21150HV1.4 数据手册
D at a Sh e e t , D S 1 , Ja n . 2 00 3 IPAC-X ISDN PC Adapter Circuit PSB/PSF 21150, V 1.4 Wired Communications N e v e r s t o p t h i n k i n g . ABM®, ACE®, AOP®, ARCOFI®, ASM®, ASP®, DigiTape®, DuSLIC®, EPIC®, ELIC®, FALC®, GEMINAX®, IDEC®, INCA®, IOM®, IPAT®-2, ISAC®, ITAC®, IWE®, IWORX®, MUSAC®, MuSLIC®, OCTAT®, OptiPort®, POTSWIRE®, QUAT®, QuadFALC®, SCOUT®, SICAT®, SICOFI®, SIDEC®, SLICOFI®, SMINT®, SOCRATES®, VINETIC®, 10BaseV®, 10BaseVX® are registered trademarks of Infineon Technologies AG. 10BaseS™, EasyPort™, VDSLite™ are trademarks of Infineon Technologies AG. Microsoft® is a registered trademark of Microsoft Corporation. Linux® is a registered trademark of Linus Torvalds. The information in this document is subject to change without notice. Edition 2003-01-30 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2003. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Data Sheet Revision History: 2003-01-30 Previous Version: Data Sheet, DS1, V1.3, 2000-07-21 Page Subjects (major changes since last revision) Chapter 1 Comparison IPAC/IPAC-X Chapter 3.3.7.2 S- Transceiver Synchronization New Chapter 3.3.11 Test Functions extended Chapter 3.7.1.1 CDA Handler Description extended Chapter 3.7.5.1 TIC Bus Access Control: Note added Chapter 5.6 IOM-2 Interface Timing: Explanation added Chapter 5.7.2 Parallel Microcontroller Interface Timing: Explanation added Chapter 5.10 S-Transceiver Chapter 5.11 Recommended Transformer Specificatio: Changed Chapter 5.12 Line Overload Protection added Chapter 5.13 EMC/ESD added DS1 IPAC-X PSB/PSF 21150 Table of Contents Page 1 1.1 1.2 1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 3.1 3.2 3.2.1 3.2.1.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.3.5 3.3.6 3.3.7 3.3.7.1 3.3.7.2 3.3.8 3.3.9 3.3.10 3.3.11 3.4 3.4.1 3.4.2 3.4.3 3.5 3.5.1 3.5.1.1 3.5.1.2 3.5.1.3 3.5.1.4 3.5.2 3.5.2.1 Description of Functional Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Functions and Device Architecture . . . . . . . . . . . . . . . . . . . . . . . Microcontroller Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Activation Indication via Pin ACL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T-Interface Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T-Interface Multiframing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiframe Synchronization (M-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Transfer and Delay between IOM-2 and S/T . . . . . . . . . . . . . . . . Transmitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Protection Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-Transceiver Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S/T Interface Delay Compensation (TE/LT-T Mode) . . . . . . . . . . . . . . . Level Detection Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transceiver Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description of the Receive PLL (DPLL) . . . . . . . . . . . . . . . . . . . . . . . . . Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Clock Output C768 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Control of Layer-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Machine TE and LT-T Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Transition Diagram (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . States (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C/I Codes (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infos on S/T (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Machine LT-S Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . State Transition Diagram (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 4 13 17 19 20 33 33 34 35 36 39 41 43 45 47 48 50 52 54 57 60 61 62 62 65 65 65 66 66 68 71 71 72 73 75 75 77 79 81 82 82 2003-01-30 IPAC-X PSB/PSF 21150 Table of Contents 3.5.2.2 3.5.2.3 3.5.2.4 3.5.3 3.5.3.1 3.5.3.2 3.5.3.3 3.5.4 3.6 3.6.1 3.6.2 3.6.3 3.7 3.7.1 3.7.1.1 3.7.1.2 3.7.2 3.7.2.1 3.7.2.2 3.7.3 3.7.3.1 3.7.3.2 3.7.3.3 3.7.3.4 3.7.3.5 3.7.3.6 3.7.4 3.7.5 3.7.5.1 3.7.5.2 3.7.5.3 3.7.5.4 3.7.6 3.8 3.8.1 3.9 3.9.1 3.9.2 3.9.2.1 3.9.2.2 3.9.3 3.9.3.1 Page States (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 C/I Codes (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 Infos on S/T (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 State Machine NT Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 State Transition Diagram (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 States (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 C/I Codes (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Command/Indicate Channel Codes (C/I0) - Overview . . . . . . . . . . . . . . 90 Control Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Example of Activation/Deactivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Activation Initiated by the Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Activation initiated by the Network Termination NT . . . . . . . . . . . . . . . . 93 IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 IOM-2 Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Controller Data Access (CDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 IDSL Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Serial Data Strobe Signal and Strobed Data Clock . . . . . . . . . . . . . . 112 Serial Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Strobed IOM-2 Bit Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 IOM-2 Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Error Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 MONITOR Channel Programming as a Master Device . . . . . . . . . . 122 MONITOR Channel Programming as a Slave Device . . . . . . . . . . . 123 Monitor Time-Out Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 MONITOR Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 C/I Channel Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 TIC Bus D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . 128 S-Bus Priority Mechanism for D-Channel . . . . . . . . . . . . . . . . . . . . 130 S-Bus D-Channel Control in LT-T . . . . . . . . . . . . . . . . . . . . . . . . . . 133 D-Channel Control in the Intelligent NT (TIC- and S-Bus) . . . . . . . . 133 Activation/Deactivation of IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . 137 Auxiliary Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 Mode Dependent Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 HDLC Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Message Transfer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 Structure and Control of the Receive FIFO . . . . . . . . . . . . . . . . . . . 146 Receive Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Structure and Control of the Transmit FIFO . . . . . . . . . . . . . . . . . . 154 Data Sheet 5 2003-01-30 IPAC-X PSB/PSF 21150 Table of Contents Page 3.9.3.2 3.9.4 3.9.5 3.9.6 3.10 Transmit Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Access to IOM-2 channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Extended Transparent Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HDLC Controller Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 159 159 161 162 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.1.7 4.1.8 4.1.9 4.1.10 4.1.11 4.1.12 4.1.13 4.1.14 4.1.15 4.1.16 4.1.17 4.1.18 4.1.19 4.1.20 4.1.21 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8 4.2.9 4.2.10 4.2.11 4.2.12 4.2.13 Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D-channel HDLC Control and C/I Registers . . . . . . . . . . . . . . . . . . . . . . RFIFOD - Receive FIFO D-Channel . . . . . . . . . . . . . . . . . . . . . . . . . XFIFOD - Transmit FIFO D-Channel . . . . . . . . . . . . . . . . . . . . . . . . . ISTAD - Interrupt Status Register D-Channel . . . . . . . . . . . . . . . . . . . MASKD - Mask Register D-Channel . . . . . . . . . . . . . . . . . . . . . . . . . . STARD - Status Register D-Channel . . . . . . . . . . . . . . . . . . . . . . . . . CMDRD - Command Register D-Channel . . . . . . . . . . . . . . . . . . . . . MODED - Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EXMD1- Extended Mode Register D-channel 1 . . . . . . . . . . . . . . . . . TIMR1 - Timer 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAP1 - SAPI1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SAP2 - SAPI2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RBCLD - Receive Frame Byte Count Low D-Channel . . . . . . . . . . . . RBCHD - Receive Frame Byte Count High D-Channel . . . . . . . . . . . TEI1 - TEI1 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEI2 - TEI2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSTAD - Receive Status Register D-Channel . . . . . . . . . . . . . . . . . . TMD -Test Mode Register D-Channel . . . . . . . . . . . . . . . . . . . . . . . . CIR0 - Command/Indication Receive 0 . . . . . . . . . . . . . . . . . . . . . . . CIX0 - Command/Indication Transmit 0 . . . . . . . . . . . . . . . . . . . . . . . CIR1 - Command/Indication Receive 1 . . . . . . . . . . . . . . . . . . . . . . . CIX1 - Command/Indication Transmit 1 . . . . . . . . . . . . . . . . . . . . . . . Transceiver Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TR_CONF0 - Transceiver Configuration Register 0 . . . . . . . . . . . . . . TR_CONF1 - Transceiver Configuration Register 1 . . . . . . . . . . . . . . TR_CONF2 - Transmitter Configuration Register 2 . . . . . . . . . . . . . . TR_STA - Transceiver Status Register . . . . . . . . . . . . . . . . . . . . . . . TR_CMD - Transceiver Command Register . . . . . . . . . . . . . . . . . . . . SQRR1 - S/Q-Channel Receive Register 1 . . . . . . . . . . . . . . . . . . . . SQXR1- S/Q-Channel TX Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . SQRR2 - S/Q-Channel Receive Register 2 . . . . . . . . . . . . . . . . . . . . . SQXR2 - S/Q-Channel TX Register 2 . . . . . . . . . . . . . . . . . . . . . . . . . SQRR3 - S/Q-Channel Receive Register 3 . . . . . . . . . . . . . . . . . . . . SQXR3 - S/Q-Channel TX Register 3 . . . . . . . . . . . . . . . . . . . . . . . . . ISTATR - Interrupt Status Register Transceiver . . . . . . . . . . . . . . . . . MASKTR - Mask Transceiver Interrupt . . . . . . . . . . . . . . . . . . . . . . . . 164 172 172 172 172 174 174 175 176 178 179 180 180 181 181 181 182 182 184 185 186 186 187 188 188 189 190 191 192 193 194 194 195 195 195 196 197 Data Sheet 6 2003-01-30 IPAC-X PSB/PSF 21150 Table of Contents 4.2.14 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 4.4.6 4.4.7 4.4.8 4.4.9 4.4.10 4.4.11 4.4.12 4.4.13 4.4.14 4.4.15 4.4.16 4.4.17 4.4.18 4.4.19 4.4.20 4.4.21 4.4.22 4.5 4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9 4.6 4.6.1 Page TR_MODE - Transceiver Mode Register 1 . . . . . . . . . . . . . . . . . . . . . 197 Auxiliary Interface Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 ACFG1 - Auxiliary Configuration Register 1 . . . . . . . . . . . . . . . . . . . . 198 ACFG2 - Auxiliary Configuration Register 2 . . . . . . . . . . . . . . . . . . . . 198 AOE - Auxiliary Output Enable Register . . . . . . . . . . . . . . . . . . . . . . . 200 ARX - Auxiliary Interface Receive Register . . . . . . . . . . . . . . . . . . . . 201 ATX - Auxiliary Interface Transmit Register . . . . . . . . . . . . . . . . . . . . 201 IOM-2 and MONITOR Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 CDAxy - Controller Data Access Register xy . . . . . . . . . . . . . . . . . . . 202 XXX_TSDPxy - Time Slot and Data Port Selection for CHxy . . . . . . . 203 CDAx_CR - Control Register Controller Data Access CH1x . . . . . . . 204 TR_CR - Control Register Transceiver Data (IOM_CR.CI_CS=0) . . . 205 TRC_CR - Control Register Transceiver C/I0 (IOM_CR.CI_CS=1) . . . 206 BCHx_CR - Control Register B-Channel Controller Data . . . . . . . . . . 206 DCI_CR - Control Register for D and CI1 Handler (IOM_CR.CI_CS=0) 207 DCIC_CR - Control Register for CI0 Handler (IOM_CR.CI_CS=1) . . . 208 MON_CR - Control Register Monitor Data . . . . . . . . . . . . . . . . . . . . . 209 SDSx_CR - Control Register Serial Data Strobe x . . . . . . . . . . . . . . . 210 IOM_CR - Control Register IOM Data . . . . . . . . . . . . . . . . . . . . . . . . 211 STI - Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . 213 ASTI - Acknowledge Synchronous Transfer Interrupt . . . . . . . . . . . . 214 MSTI - Mask Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . 214 SDS_CONF - Configuration Register for Serial Data Strobes . . . . . . 215 MCDA - Monitoring CDA Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 MOR - MONITOR Receive Channel . . . . . . . . . . . . . . . . . . . . . . . . . . 216 MOX - MONITOR Transmit Channel . . . . . . . . . . . . . . . . . . . . . . . . . 216 MOSR - MONITOR Interrupt Status Register . . . . . . . . . . . . . . . . . . . 216 MOCR - MONITOR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . 217 MSTA - MONITOR Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . 218 MCONF - MONITOR Configuration Register . . . . . . . . . . . . . . . . . . . 218 Interrupt and General Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 ISTA - Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 MASK - Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 AUXI - Auxiliary Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . 220 AUXM - Auxiliary Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 MODE1 - Mode1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 MODE2 - Mode2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 ID - Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 SRES - Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 TIMR2 - Timer 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 B-Channel Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 ISTAB - Interrupt Status Register B-Channels . . . . . . . . . . . . . . . . . . 226 Data Sheet 7 2003-01-30 IPAC-X PSB/PSF 21150 Table of Contents 4.6.2 4.6.3 4.6.4 4.6.5 4.6.6 4.6.7 4.6.8 4.6.9 4.6.10 4.6.11 4.6.12 4.6.13 4.6.14 4.6.15 4.6.16 Page MASKB - Mask Register B-Channels . . . . . . . . . . . . . . . . . . . . . . . . . STARB - Status Register B-Channels . . . . . . . . . . . . . . . . . . . . . . . . CMDRB - Command Register B-channels . . . . . . . . . . . . . . . . . . . . . MODEB - Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EXMB - Extended Mode Register B-Channels . . . . . . . . . . . . . . . . . . RAH1 - RAH1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RAH2 - RAH2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RBCLB - Receive Frame Byte Count Low B-Channels . . . . . . . . . . . RBCHB - Receive Frame Byte Count High B-Channels . . . . . . . . . . . RAL1 - RAL1 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RAL2 - RAL2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSTAB - Receive Status Register B-Channels . . . . . . . . . . . . . . . . . TMB -Test Mode Register B-Channels . . . . . . . . . . . . . . . . . . . . . . . . RFIFOB - Receive FIFO B-Channels . . . . . . . . . . . . . . . . . . . . . . . . XFIFOB - Transmit FIFO B-Channels . . . . . . . . . . . . . . . . . . . . . . . . 227 227 228 229 230 232 232 233 233 233 234 234 236 236 236 5 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.7.1 5.7.2 5.8 5.9 5.10 5.11 5.12 5.13 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IOM-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microcontroller Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serial Control Interface (SCI) Timing . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Microcontroller Interface Timing . . . . . . . . . . . . . . . . . . . . . . . Multiframe Synchronisation Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Recommended Transformer Specification . . . . . . . . . . . . . . . . . . . . . . . Line Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EMC / ESD Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 237 238 239 240 241 242 245 245 246 250 251 252 253 254 255 6 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 Data Sheet 8 2003-01-30 IPAC-X PSB/PSF 21150 List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Figure 24 Figure 25 Figure 26 Figure 27 Figure 28 Figure 29 Figure 30 Figure 31 Figure 32 Figure 33 Figure 34 Figure 35 Figure 36 Figure 37 Figure 38 Data Sheet Page Logic Symbol of the IPAC-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ISDN PC Adapter Card for S Interface . . . . . . . . . . . . . . . . . . . . . . . . 20 ISDN PC Adapter Card for U or S Interface. . . . . . . . . . . . . . . . . . . . . 21 ISDN Voice/Data Terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 ISDN Stand-Alone Terminal with POTS Interface . . . . . . . . . . . . . . . . 23 Pin Configuration of the IPAC-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Functional Block Diagram of the IPAC-X . . . . . . . . . . . . . . . . . . . . . . . 33 Serial Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Serial Control Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Direct/Indirect Register Address Mode . . . . . . . . . . . . . . . . . . . . . . . . 40 Interrupt Status and Mask Registers . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Reset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Timer Interrupt Status Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Timer 1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Timer 2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 ACL Indication of Activated Layer 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 ACL Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Wiring Configurations in User Premises . . . . . . . . . . . . . . . . . . . . . . . 49 S/T -Interface Line Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Frame Structure at Reference Points S and T (ITU I.430). . . . . . . . . . 51 Multiframe Synchronization using the M-Bit. . . . . . . . . . . . . . . . . . . . . 54 Sampling Time in LT-S / NT Mode (M-Bit input) . . . . . . . . . . . . . . . . . 55 Frame Relationship in LT-S / NT Mode (M-Bit input) . . . . . . . . . . . . . . 55 Frame Relationship in TE / LT-T Mode (M-Bit output) . . . . . . . . . . . . . 56 Data Delay Between IOM-2 and S/T Interface Transparent Mode (TE mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Data Delay Between IOM-2 and S/T Interface With S/G Bit Evaluation (TE mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Data Delay Between IOM-2 and S/T Interface With 8 IOM Channels (LT-S/NT mode only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Data Delay Between IOM-2 and S/T Interface With 3 IOM Channels a Maximum Receive Delay(LT-S/NT mode only). . . . . . . . . . . . . . . . . 59 Equivalent Internal Circuit of the Transmitter Stage . . . . . . . . . . . . . . 60 Equivalent Internal Circuit of the Receiver Stage . . . . . . . . . . . . . . . . 61 Connection of Line Transformers and Power Supply to the IPAC-X . . 62 External Circuitry for Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 External Circuitry for Symmetrical Receivers. . . . . . . . . . . . . . . . . . . . 64 External Circuitry for Symmetrical Receivers. . . . . . . . . . . . . . . . . . . . 65 Disabling of S/T Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 External Loop at the S/T-Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Clock System of the IPAC-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Phase Relationships of IPAC-X Clock Signals . . . . . . . . . . . . . . . . . . 71 9 2003-01-30 IPAC-X PSB/PSF 21150 List of Figures Figure 39 Figure 40 Figure 41 Figure 42 Figure 43 Figure 44 Figure 45 Figure 46 Figure 47 Figure 48 Figure 49 Figure 50 Figure 51 Figure 52 Figure 53 Figure 54 Figure 55 Figure 56 Figure 57 Figure 58 Figure 59 Figure 60 Figure 61 Figure 62 Figure 63 Figure 64 Figure 65 Figure 66 Figure 67 Figure 68 Figure 69 Figure 70 Figure 71 Figure 72 Figure 73 Figure 74 Figure 75 Data Sheet Page Buffered Oscillator Clock Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Layer-1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 State Diagram Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 State Transition Diagram (TE, LT-T) . . . . . . . . . . . . . . . . . . . . . . . . . . 76 State Transition Diagram of Unconditional Transitions (TE, LT-T) . . . 77 State Transition Diagram (LT-S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 State Transition Diagram (NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 Example of Activation/Deactivation Initiated by the Terminal . . . . . . . 91 Example of Activation/Deactivation initiated by the Terminal (TE). Activation/Deactivation Completely Under Software Control . . . . . . . . 92 Example of Activation/Deactivation Initiated by the Network Termination (NT). Activation/Deactivation Completely Under SoftwarControl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 IOMÒ-2 Frame Structure in Terminal Mode . . . . . . . . . . . . . . . . . . . . 95 Multiplexed Frame Structure of the IOM-2 Interface in Non-TE Timing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Architecture of the IOM Handler (Example Configuration). . . . . . . . . . 98 Data Access via CDAx1 and CDAx2 Register Pairs . . . . . . . . . . . . . 100 Examples for Data Access via CDAxy Registers . . . . . . . . . . . . . . . . 101 Data Access when Looping TSa from DU to DD . . . . . . . . . . . . . . . . 102 Data Access When Shifting TSa to TSb on DU (DD) . . . . . . . . . . . . 103 Example for Monitoring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Interrupt Structure of the Synchronous Data Transfer . . . . . . . . . . . . 106 Examples for the Synchronous Transfer Interrupt Control With One Enabled STIxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Timeslot Assignment on IOM-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Examples for HDLC Controller Access . . . . . . . . . . . . . . . . . . . . . . . 110 Timeslot Assignment on S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Mapping of Bits from IOM-2 to S . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Strobed IOM-2 Bit Clock. Register SDS_CONF Programmed to 01H 114 Examples of MONITOR Channel Applications in IOM -2 TE Mode . . 115 MONITOR Channel Protocol (IOM-2) . . . . . . . . . . . . . . . . . . . . . . . . 118 Monitor Channel, Transmission Abort Requested by the Receiver . . 121 Monitor Channel, Transmission Abort Requested by the Transmitter 121 Monitor Channel, Normal End of Transmission . . . . . . . . . . . . . . . . . 122 MONITOR Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 CIC Interrupt Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 Applications of TIC Bus in IOM-2 Bus Configuration . . . . . . . . . . . . . 129 Structure of Last Octet of Ch2 on DU . . . . . . . . . . . . . . . . . . . . . . . . 130 Structure of Last Octet of Ch2 on DD . . . . . . . . . . . . . . . . . . . . . . . . 131 D-Channel Access Control on the S-Interface . . . . . . . . . . . . . . . . . . 132 10 2003-01-30 IPAC-X PSB/PSF 21150 List of Figures Figure 76 Figure 77 Figure 78 Figure 79 Figure 80 Figure 81 Figure 82 Figure 83 Figure 84 Figure 85 Figure 86 Figure 87 Figure 88 Figure 89 Figure 90 Figure 91 Figure 92 Figure 93 Figure 94 Figure 95 Figure 96 Figure 97 Figure 98 Figure 99 Figure 100 Figure 101 Figure 102 Figure 103 Figure 104 Figure 105 Data Sheet Page Data Flow for Collision Resolution Procedure in Intelligent NT . . . . . Deactivation of the IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . Activation of the IOM-2 interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . RFIFO Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Reception Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reception Sequence Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Receive Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Transmission Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmission Sequence Example . . . . . . . . . . . . . . . . . . . . . . . . . . . Transmit Data Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt Status Registers of the HDLC Controllers . . . . . . . . . . . . . . Layer 2 Test Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Register Mapping of the IPAC-X . . . . . . . . . . . . . . . . . . . . . . . . . . . . Oscillator Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Input/Output Waveform for AC Tests . . . . . . . . . . . . . . . . . . . . . . . . . IOM-2 Timing (TE mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IOM-2 Timing (LT-S, LT-T, NT mode) . . . . . . . . . . . . . . . . . . . . . . . . Definition of Clock Period and Width . . . . . . . . . . . . . . . . . . . . . . . . . SCI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microprocessor Read Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microprocessor Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microprocessor Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Microprocessor Write Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-Multiplexed Address Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sampling Time in LT-S/NT Mode (M-Bit Input) . . . . . . . . . . . . . . . . . Reset Signal RES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Maximum Line Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transformer Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 136 137 138 148 150 151 152 157 158 159 161 162 164 240 241 242 243 244 245 246 246 247 247 248 248 248 250 251 254 255 2003-01-30 IPAC-X PSB/PSF 21150 List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Table 20 Data Sheet Page Comparison of the IPAC-X with the Previous Version IPAC: . . . . . . . 14 IPAC-X Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . 25 Host Interface Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Header Byte Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Bus Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Reset Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 IPAC-X Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 S/Q-Bit Position Identification and Multi-Frame Structure . . . . . . . . . . 52 Clock Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Examples for Synchronous Transfer Interrupts . . . . . . . . . . . . . . . . . 105 CDA Register Combinations with Correct Read/Write Access . . . . . 108 Transmit Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Receive Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 IPAC-X Configuration Settings in Intelligent NT Applications . . . . . . 134 AUX Pin Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 IOM-2 Channel Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 HDLC Controller Address Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 Receive Byte Count With RBC11...0 in the RBCHx/RBCLx Registers 147 Receive Information at RME Interrupt . . . . . . . . . . . . . . . . . . . . . . . . 153 XPR Interrupt (Availability of XFIFOx) After XTF, XME Commands . 155 12 2003-01-30 IPAC-X PSB/PSF 21150 Overview 1 Overview The ISDN PC Adapter Circuit Extended IPAC-X integrates all necessary functions for a host based ISDN access solution on a single chip. It is based on the IPAC PSB 2115, and provides enhanced features and functionality. It includes the S-transceiver (Layer 1), an HDLC controller for the D-channel and two protocol controllers for each B-channel. They can be used for HDLC protocol or transparent access. The system integration is simplified by several configurations of the parallel microcontroller interface selected via pin strapping. They include multiplexed and demultiplexed interface selection as well as the optional indirect register access mechanism which reduces the number of necessary registers in the address space to 2 locations. The IPAC-X also provides a serial control interface (SCI). The FIFO size of the cyclic B-channel buffers is 128 bytes per channel and per direction, with programmable block size (threshold). Besides TE mode the S-transceiver supports other terminal relevant operation modes like line termination subscriber side (LT-S) and line termination trunk side (LT-T). A multi-line ISDN solution to support both S and U line coding is simplified as well as multi-line solution with up to 3 S-interfaces. An auxiliary I/O port has been added with interrupt capabilities on two input lines. These programmable I/O lines may be used to connect peripheral components to the IPAC-X which need software control or have to forward status information to the host. Three programmable LED outputs can be used to indicate certain status information, one of them is capable to indicate the activation status of the S-interface automatically. The IPAC-X is produced in advanced CMOS technology. Data Sheet 13 2003-01-30 IPAC-X PSB/PSF 21150 Overview Table 1 Comparison of the IPAC-X with the Previous Version IPAC: IPAC-X PSB 21150 IPAC PSB 2115 Operating modes TE, LT-T, LT-S, NT, Int. NT TE, LT-T, LT-S, Int. NT Supply voltage 3.3 V ± 5 % 5V±5% Technology CMOS CMOS Package P-MQFP-64 / P-TQFP-64 P-MQFP-64 / P-TQFP-64 Transceiver Transformer ratio for the transmitter receiver 1:1 1:1 2:1 2:1 Test Functions - Dig. loop via Layer 2 (TLP) - Dig. loop via Layer 2(TLP) - Layer 1 disable (DIS_TR) - Layer 1 disable (TEM) - Analog loop - Analog loop (ARL) (LP_A-bit, EXLP-bit, ARL) Microcontroller Interface Serial interface (SCI) Not provided 8-bit parallel interface: Motorola Mux Siemens/Intel Mux Siemens/Intel Non-Mux direct/ indirect Addressing 8-bit parallel interface: Motorola Mux Siemens/Intel Mux Siemens/Intel Non-Mux Crystal 7.68 MHz 7.68 MHz Buffered 7.68 MHz output Provided Provided Controller data access to IOM-2 timeslots All timeslots; Restricted access to various possibilities of data B- and IC-channel access Data control and manipulation Various possibilities of data B- and IC-channel looping control and data manipulation (enable/ disable, shifting, looping, switching) IOM-2 IOM-2 Interface Data Sheet Double clock (DCL), Double clock (DCL), bit clock (BCL), bit clock pin (BCL), serial data strobe 1 (SDS1) serial data strobe (SDS) serial data strobe 2 (SDS2) 14 2003-01-30 IPAC-X PSB/PSF 21150 Overview IPAC-X PSB 21150 IPAC PSB 2115 Monitor channel programming Provided (MON0, 1, 2, ..., 7) Provided (MON0 or 1) C/I channels CI0 (4 bit), CI1 (4/6 bit) CI0 (4 bit), CI1 (6 bit) Layer 1 state machine With changes for correspondence with the actual ITU specification Layer 1 state machine in software Possible Not possible Support of IDSL (144kBit/s) Provided (HDLC controller access, SDS1/2 signals active) Not provided D-channel HDLC support D- and B-channel timeslots; non-auto mode, transparent mode 0-2, extended transparent mode D-channel timeslot; auto mode, non-auto mode, transparent mode 1-3 D-channel FIFO size 64 bytes cyclic buffer per direction with programmable FIFO thresholds 2x32 bytes buffer per direction B-channel HDLC support D- and B-channel timeslots; non-auto mode, transparent mode 0-2, extended transparent mode D-channel timeslot; non-auto mode, transparent mode 0,1 extended transparent mode B-channel FIFO size 128 bytes cyclic buffer per direction for each channel with programmable FIFO thresholds 2x64 bytes buffer per direction Reset Sources RES Input Watchdog C/I Code Change EAW Pin Software Reset RST Input Watchdog C/I Code Change EAW Pin Interrupt Output Signals INT Low active INT low active (open drain) by default, reprogrammable to high active (push-pull) Data Sheet 15 2003-01-30 IPAC-X PSB/PSF 21150 Overview IPAC-X PSB 21150 IPAC PSB 2115 8-bit Auxiliary Interface Provided Provided PCM Interface Not Provided Provided Functions FBOUT, INT0/1 Provided Provided Reset Signals RES input signal RSTO output signal RES input/output signal Pin SCLK 1.536 MHz 512 kHz Timeslots of arbitrary lenght not available Data Sheet 16 available (“Clock Mode 5”) 2003-01-30 IPAC-X ISDN PC Adapter Circuit PSB/PSF 21150 V 1.4 1.1 Features • Single chip host based ISDN solution • Based on IPAC PSB 2115, integrating ISAC-S and HSCX-TE functionality • 8-bit parallel microcontroller interface, Motorola and Siemens/Intel bus type P-MQFP-64-1, -2, -3, -8 multiplexed or non-multiplexed, direct-/indirect register addressing P-MQFP-64-1 • Serial control interface (SCI) • Microcontroller access to all IOM-2 timeslots • Various types of protocol support (Non-auto mode, transparent mode, extended transparent mode) • B-channel HDLC controllers with 128 byte FIFOs • Flexible access to 18-bit timeslots (2B+D) on IOM-2 for IDSL support • D-channel HDLC controller with 64 byte FIFOs • IOM-2 interface in TE, LT-T, LT-S and NT mode, P-TQFP-64-1 single/double clocks and two strobe signals • D-channel priority handler on IOM-2 for intelligent NT applications • Monitor channel handler (master/slave) • IOM-2 MONITOR and C/I-channel protocol to control peripheral devices • Full duplex 2B+D S/T-interface transceiver according to ITU-T I.430 • Conversion of the frame structure between the S/T-interface and IOM-2 • Receive timing recovery • D-channel access control • Activation and deactivation procedures with automatic activation from power down state • Access to S and Q bits of S/T-interface Type Package PSB/PSF 21150 H P-MQFP-64-1 PSB/PSF 21150 F P-TQFP-64-1 Data Sheet 17 2003-01-30 IPAC-X PSB/PSF 21150 Overview • • • • • • • • • Adaptively switched receive thresholds Auxiliary Interface with general purpose I/O pins and LED drivers Two programmable timers Watchdog timer Test loops Sophisticated power management for restricted power mode Power supply 3.3 V 3.3 V output drivers, inputs are 5 V safe Advanced CMOS technology Data Sheet 18 2003-01-30 IPAC-X PSB/PSF 21150 Overview 1.2 Logic Symbol The logic symbol gives an overview of the IPAC-X functions. It must be noted that not all functions are available simultaneously, but depend on the selected mode. Pins which are marked with a “ * “ are multiplexed and not available in all modes. IOM-2 Interface +3.3V 0V 0V 2 DU DD FSC DCL BCL/ SDS1/2 SCLK VDD VSS TP VDDA VSSA RD / DS C768 WR / R/W XTAL2 ALE XTAL1 7.68 MHz output 7.68 MHz ± 100ppm A0...7 SR1 AD0...4 Host Interface SR2 AD5 / SCL S Interface SX1 AD6 / SDR SX2 AD7 / SDX CS MODE0 INT MODE1 / EAW RES AMODE RSTO AUX0...7 * INT0/1 * 2 General purpose I/O Mode Setting External Interrupts CH0...2 * AUX6/7* / ACL 3 MBIT * 3 IOM channel select LED Output Multiframe Sync. 21150_17 Auxiliary Interface Figure 1 Data Sheet Logic Symbol of the IPAC-X 19 2003-01-30 IPAC-X PSB/PSF 21150 Overview 1.3 Typical Applications The IPAC-X can be used in a variety of applications like • • • • ISDN PC adapter card for S interface (Figure 2) ISDN PC adapter card for U or S interface (Figure 3) ISDN voice/data terminal (Figure 4) ISDN stand-alone terminal with POTS interface (Figure 5) An ISDN adapter card for a PC is built around the IPAC-X using a USB, PCI or ISA Plug and Play interface device depending on the required PC interface. The IPAC-X can be connected to any bus interface logic as it provides a standard 8-bit parallel µC interface and a serial control interface (SCI). S Interface IPAC-X PSB 21150 Interface Logic (USB, PCI, ISA PnP) Host Interface 21150_02 Figure 2 Data Sheet ISDN PC Adapter Card for S Interface 20 2003-01-30 IPAC-X PSB/PSF 21150 Overview An ISDN adapter card which supports both U and S interface may be realized using the IPAC-X together with the PSB 21911 IEC-Q TE. The S interface may be configured for TE or LT-S mode supporting intelligent NT applications. IOM-2 S* Interface IPAC-X PSB 21150 IEC-Q TE PSB 21911 U Interface Interface Logic (USB, PCI, ISA PnP) Host Interface *) optional for NT applications 21150_02 Figure 3 Data Sheet ISDN PC Adapter Card for U or S Interface 21 2003-01-30 IPAC-X PSB/PSF 21150 Overview The figure below shows a voice data terminal developed on a PC card where the IPACX provides its functionality as data controller and S interface within a two chip solution. During ISDN calls the PSB 2163 ARCOFI-SP provides speakerphone functions and includes a DTMF generator. Additionally, a DTMF generator of keypad may be connected to the auxiliary interfce of the IPAC-X. The fir ARCOFI-SP PSB 2163 IOM-2 DTMF Receiver or Keypad IPAC-X PSB 21150 S Interface Interface Logic (USB, PCI, ISA PnP) Host Interface 21150_02 Figure 4 Data Sheet ISDN Voice/Data Terminal 22 2003-01-30 IPAC-X PSB/PSF 21150 Overview The IPAC-X can be integrated in a microcontroller based stand-alone terminal that is connected to the communications interface of a PC. The SICOFI2-TE PSB 2132 enables connection of analog terminals (e.g. telephone or fax) to the dual channel POTS interface. DuSLIC SLICOFI-2 PEB 3265 SLIC-X PEB 4265 SLIC-X PEB 4265 POTS IPAC-X PSB 21150 S Interface µC USB, V.24, ... PC Interface 21150_02 Figure 5 Data Sheet ISDN Stand-Alone Terminal with POTS Interface 23 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration 2 Pin Configuration P-MQFP-64-1 VSS VDD XTAL1 RD / DS AMODE VSS XTAL2 WR / R/W SX2 SX1 n.c. ALE VDDA VSSA SR2 SR1 P-TQFP-64-1 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 AUX2 BCL / SCLK DU 49 50 32 31 DD FSC 51 52 30 29 DCL VSS VSS VDD 53 28 54 55 56 27 26 25 C768 A7 MODE0 MODE1 / EAW 57 58 24 23 A5 ACL AUX7 59 60 61 62 63 64 AUX6 AUX5 AUX4 AUX3 IPAC-X PSB 21150 22 21 20 19 18 17 AUX1 AUX0 SDS1 SDS2 A6 A4 A3 A2 A1 A0 VDD VSS Figure 6 Data Sheet SDR / AD6 SDX / AD7 AD4 SCL / AD5 AD3 AD1 AD2 AD0 VDD VSS RES RSTO CS TP INT n.c. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21550_22 Pin Configuration of the IPAC-X 24 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 Pin No. MQFP-64 TQFP-64 IPAC-X Pin Definitions and Functions Symbol Input (I) Function Output (O) Open Drain (OD) Host Interface 19 20 21 22 23 24 25 26 A0 A1 A2 A3 A4 A5 A6 A7 I I I I I I I I • Non-Multiplexed Bus Mode: Address Bus Address bus transfers addresses from the microcontroller to the IPAC-X. For indirect address mode only A0 is valid (A1-A7 to be connected to VDD). • Multiplexed Bus Mode: Not used in multiplexed bus mode. In this case A0A7 should directly be connected to VDD. 9 10 11 12 13 AD0 AD1 AD2 AD3 AD4 I/O I/O I/O I/O I/O • Multiplexed Bus Mode: Address/data bus Transfers addresses from the microcontroller to the IPAC-X and data between the microcontroller and the IPAC-X. • Non-Multiplexed Bus Mode: Data bus Transfers data between the microcontroller and the IPAC-X. 14 AD5 I/O • Multiplexed Bus Mode: Address/data bus Address/data line AD5 if the parallel interface is selected. • Non-Multiplexed Bus Mode: Data bus Data line D5 if the parallel interface is selected. SCL I SCI - Serial Clock Clock signal of the SCI interface if a serial interface is selected. Data Sheet 25 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 Pin No. IPAC-X Pin Definitions and Functions (cont’d) MQFP-64 TQFP-64 Symbol Input (I) Function Output (O) Open Drain (OD) 15 AD6 I/O • Multiplexed Bus Mode: Address/data bus Address/data line AD6 if the parallel interface is selected. • Non-Multiplexed Bus Mode: Data bus Data line D6 if the parallel interface is selected. SDR I SCI - Serial Data Receive Receive data line of the SCI interface if a serial interface is selected. AD7 I/O • Multiplexed Bus Mode: Address/data bus Address/data line AD7 if the parallel interface is selected. • Non-Multiplexed Bus Mode: Data bus Data line D7 if the parallel interface is selected. SDX OD SCI - Serial Data Transmit Transmit data line of the SCI interface if a serial interface is selected. RD I DS I Read Indicates a read access to the registers (Siemens/ Intel bus mode). Data Strobe The rising edge marks the end of a valid read or write operation (Motorola bus mode). WR I R/W I 16 39 40 Data Sheet Write Indicates a write access to the registers (Siemens/ Intel bus mode). Read/Write A HIGH identifies a valid host access as a read operation and a LOW identifies a valid host access as a write operation (Motorola bus mode). 26 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 IPAC-X Pin Definitions and Functions (cont’d) MQFP-64 TQFP-64 Symbol Input (I) Function Output (O) Open Drain (OD) 41 ALE I Address Latch Enable A HIGH on this line indicates an address on the external address/data bus (multiplexed bus type only). ALE also selects the microcontroller interface bus type (multiplexed or non multiplexed). 3 CS I Chip Select A low level indicates a microcontroller access to the IPAC-X. 1 INT OD (O) Interrupt Request INT becomes active low (open drain) if the IPAC-X requests an interrupt. The polarity can be reprogrammed to high active with push-pull chracteristic. 5 RES I Reset A LOW on this input forces the IPAC-X into a reset state. 38 AMODE I Address Mode Selects between direct (0) and indirect (1) register access mode. Pin No. IOM-2 Interface 52 FSC I/O Frame Sync 8-kHz frame synchronization signal. 53 DCL I/O Data Clock IOM-2 interface clock signal (double clock) (e.g 1.536 MHz in TE mode). Data Sheet 27 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 Pin No. MQFP-64 TQFP-64 IPAC-X Pin Definitions and Functions (cont’d) Symbol Input (I) Function Output (O) Open Drain (OD) 49 BCL/ SCLK O Bit Clock/S-Clock TE-Mode: Bit clock output, identical to IOM-2 data rate (DCL/ 2). LT-T Mode: 1.536 MHz output synchronous to S-interface. NT / LT-S Mode: Bit clock output derived from the DCL input clock divided by 2. 51 DD I/O (OD) Data Downstream IOM-2 data signal in downstream direction. 50 DU I/O (OD) Data Upstream IOM-2 data signal in upstream direction. 29 SDS1 O Serial Data Strobe 1 Programmable strobe signal for time slot and/or Dchannel indication on IOM-2. 28 SDS2 O Serial Data Strobe 2 Programmable strobe signal for time slot and/or Dchannel indication on IOM-2. Auxiliary Interface 30 31 32 AUX0 AUX1 AUX2 I/O (OD) I/O (OD) I/O (OD) • TE-Mode: Auxiliary Port 0 - 2 (input/output) These pins are individually programmable as general input/output. The state of the pin can be read from (input) / written to (output) a register. • LT-T/LT-S/NT Mode: CH0-2 - IOM-2 Channel Select (input) These pins select one of eight channels on the IOM2 interface. 64 AUX3 I/O (OD) Auxiliary Port 3 (input/output) This pin is programmable as general input/output. The state of the pin can be read from (input) / written to (output) a register. Data Sheet 28 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 Pin No. IPAC-X Pin Definitions and Functions (cont’d) MQFP-64 TQFP-64 Symbol Input (I) Function Output (O) Open Drain (OD) 63 AUX4 I/O (OD) • Auxiliary Port 4 (input/output) This pin is programmable as general input/output. The state of the pin can be read from (input) / written to (output) a register. • MBIT (input/output) If ACFG2.A4SEL is set to ’1’, pin AUX4 is used as M-bit input (LT-S / NT / Int. NT mode) or as M-bit output (TE / LT-T mode) for multiframe synchronization. 62 AUX5 I/O (OD) • Auxiliary Port 5 (input/output) This pin is programmable as general input/output. The state of the pin can be read from (input) / written to (output) a register. • FBOUT - FSC/BCL output If ACFG2.A5SEL is set to ’1’, pin AUX5 outputs either an FSC signal or a BCL signal selected via ACFG2.FBS. 61 AUX6 I/O (OD) INT0 This pin is programmable as general input/output. The state of the pin can be read from (input) / written to (output) a register. Additionally, as input it can generate a maskable interrupt to the host, which is either edge or level triggered. An internal pull up resistor is connected to this pin (open drain mode only), if push pull characteristic is selected no pull up is available. As output an LED can directly be connected to this pin. Data Sheet 29 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 IPAC-X Pin Definitions and Functions (cont’d) MQFP-64 TQFP-64 Symbol Input (I) Function Output (O) Open Drain (OD) 60 AUX7 Pin No. I/O (OD) INT1 This pin is programmable as general input/output. The state of the pin can be read from (input) / written to (output) a register. Additionally, as input it can generate a maskable interrupt to the host, which is either edge or level triggered. An internal pull up resistor is connected to this pin (open drain mode only), if push pull characteristic is selected no pull up is available. As output an LED can directly be connected to this pin. SGO Instead of the above described function, AUX7 can also be programmed to output the S/G bit signal from the IOM-2 DD line. Miscellaneous 43 44 SX1 SX2 O O S-Bus Transmitter Output (positive) S-Bus Transmitter Output (negative) 47 48 SR1 SR2 I I S-Bus Receiver Input S-Bus Receiver Input 35 XTAL1 I 36 XTAL2 O Crystal 1 Connection for a crystal or used as external clock input. 7.68 MHz clock or crystal required. Crystal 2 Connection for a crystal. Not connected if an external clock is supplied to XTAL1 57 MODE0 I Data Sheet Mode 0 Select A LOW selects TE-mode and a HIGH selects LT-T / LT-S mode (see MODE1/EAW). 30 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 Pin No. MQFP-64 TQFP-64 IPAC-X Pin Definitions and Functions (cont’d) Symbol Input (I) Function Output (O) Open Drain (OD) 58 MODE1 I The pin function depends on the setting of MODE0. If MODE0=1: Mode 1 Select A LOW selects LT-T mode and a HIGH selects LTS mode. If MODE0=0: External Awake If a falling edge on this input is detected, the IPACX generates an interrupt and, if enabled, a reset pulse. EAW I 59 ACL O Activation LED This pin can either function as a programmable output or it can automatically indicate the activated state of the S interface by a logic ’0’. An LED with pre-resistance may directly be connected to ACL. 27 C768 O Clock Output A 7.68 MHz clock is output to support other devices. This clock is not synchronous to the S interface. 6 RSTO OD Reset Output Low active reset output, either from a watchdog timeout or programmed by the host. 4 TP I Test Pin Must be connected to VSS. 2, 42 n.c. I not connected – Digital Power Supply Voltage (3.3 V ± 5 %) – Analog Power Supply Voltage (3.3 V ± 5 %) Power Supply 8, 18, 33, VDD 56 46 Data Sheet VDDA 31 2003-01-30 IPAC-X PSB/PSF 21150 Pin Configuration Table 2 Pin No. MQFP-64 TQFP-64 IPAC-X Pin Definitions and Functions (cont’d) Symbol Input (I) Function Output (O) Open Drain (OD) 7, 17, 34, VSS 37, 54, 55 45 Data Sheet VSSA – Digital ground (0 V) – Analog ground (0 V) 32 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3 Description of Functional Blocks 3.1 General Functions and Device Architecture Figure 7 shows the architecture of the IPAC-X containing the following functions: • S/T-interface transceiver • Serial or parallel microcontroller interface • Two B-channel HDLC-controller with 128 byte FlFOs per channel and per direction with programmable FIFO block size (threshold) • One D-channel HDLC-controller with 64 byte FlFOs per direction with programmable FIFO block size (threshold) • IOM-2 interface for terminal (TE mode), linecard (LT-T or LT-S) or NT applications • D-channel access mechanism in all modes • D-channel priority handler on IOM-2 for intelligent NT applications • C/I- and Monitor channel handler • Auxiliary interface with interrupt and general purpose I/O lines and LED drivers • Clock and timing generation • Digital PLL to synchronize the transceiver to the S/T interface • Reset generation (watchdog timer) The functional blocks are described in the following chapters. Peripheral Devices IOM-2 Interface IOM-2 Handler S Transceiver I/O- and Interrupt Lines B-channel HDLC B-channel HDLC D-channel HDLC RX/TX FIFOs RX/TX FIFOs RX/TX FIFOs MON Handler TIC C/I Auxiliary Interface DPLL Host Interface 8-bit parallel SCI Reset Interrupt -generation OSC 21150_18 Host Figure 7 Data Sheet Functional Block Diagram of the IPAC-X 33 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.2 Microcontroller Interfaces The IPAC-X supports a serial or a parallel microcontroller interface. For applications where no controller is connected to the IPAC-X microcontroller interface programming is done via the IOM-2 MONITOR channel from a master device. In such applications the IPAC-X operates in the IOM-2 slave mode (refer to the corresponding chapter of the IOM-2 MONITOR handler). This mode is suitable for control functions (e.g. programming registers of the S/T transceiver), but the band width is not sufficient for access to the HDLC controllers. The interface selections are all done by pinstrapping (see Table 3). The selection pins are evaluated when the reset input RES is active. For the pin levels stated in the tables the following is defined: ’High’, ’Low’:dynamic pin; value must be ’High’ or ’Low’ only during reset VDD, VSS: static pin; pin must statically be strapped to ’High’ or ’Low’ level edge: dynamic pin; any transition (’High’ to ’Low’, ’Low’ to ’High’) has occured. Table 3 Host Interface Selection PINS WR (R/W) RD (DS) Serial /Parallel PINS Interface CS ALE VDD ’High’ ’High’ Parallel ‘High’ VSS edge VSS VSS Serial ’High’ VSS No Host Interface VSS VSS Interface Type/Mode Motorola Siemens/Intel Non-Mux Siemens/Intel Mux Serial Control Interface(SCI) IOM-2 MONITOR Channel (Slave Mode) Note: For a selected interface mode which doesn’t need all input selection and address pins the unused pins must be tied to VDD or VSS. The interfaces contain all circuitry necessary for the access to programmable registers, status registers and HDLC FIFOs. The mapping of all these registers can be found in Chapter 4. The microcontroller interface also provides an interrupt request at pin INT which is low active by default but can be reprogrammed to high active, a reset input pin RES and a reset output pin RSTO. The interrupt request pin INT becomes active if the IPAC-X requests an interrupt and this can occur at any time. Data Sheet 34 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.2.1 Serial Control Interface (SCI) The serial control interface (SCI) is compatible to the SPI interface of Motorola or Siemens C510 family of microcontrollers. The SCI consists of 4 lines: SCL, SDX, SDR and CS. Data is transferred via the lines SDR and SDX at the rate given by SCL. The falling edge of CS indicates the beginning of a serial access to the registers. The IPAC-X latches incoming data at the rising edge of SCL and shifts out at the falling edge of SCL. Each access must be terminated by a rising edge of CS. Data is transferred in groups of 8 bits with the MSB first. Figure 8 shows the timing of a one byte read/write access via the serial control interface. Write Access CS SCL Header SDR Address Data 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 '0' write SDX Read Access CS SCL Header SDR Address 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 '1' read Data 7 6 5 4 3 2 1 0 SDX 21150_19 Figure 8 Data Sheet Serial Control Interface Timing 35 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.2.1.1 Programming Sequences The basic structure of a read/write access to the IPAC-X registers via the serial control interface is shown in Figure 9. write sequence: write byte 2 0 header SDR 7 address 0 7 6 read sequence: byte 3 write data 0 7 0 read byte 2 header SDR 7 1 address 0 7 6 0 7 SDX Figure 9 byte 3 0 read data Serial Control Interface Timing A new programming sequence starts with the transfer of a header byte. The header byte specifies different programming sequences allowing a flexible and optimized access to the individual functional blocks of the IPAC-X. The possible sequences for access to the complete address range 00H-7FH are listed in Table 4 and described after that. Table 4 Header Byte Header Byte Code Sequence 40H/44H 48H/4CH Alternating Read/Write (non-interleaved) Adr-Data-Adr-Data 43H/47H 41H/45H 49H/4DH Sequence Type Alternating Read/Write (interleaved) Read-only/Write-only (constant address) Adr-Data-Data-Data Read and following Write-only (non-interleaved) Read and following Write-only (interleaved) Note: In order to access the address range 00H-7FH bit 2 of the header byte must be set to ’0’ (header bytes 40H, 48H, 43H, 41H, 49H), and for the addresses 80H-FFH bit 2 must be set to ’1’ (header bytes 44H, 4CH, 47H, 45H, 4DH). Data Sheet 36 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Header 40H: Non-interleaved A-D-A-D Sequences The non-interleaved A-D-A-D sequence gives direct read/write access to the complete address range and can have any length. In this mode SDX and SDR can be connected together allowing data transmission on one line. Example for a read/write access with header 40H: SDR header wradr wrdata rdadr SDX rdadr rddata wradr wrdata rdata Header 48H: Interleaved A-D-A-D Sequences The interleaved A-D-A-D sequence gives direct read/write access to the complete address range and can have any length. This mode allows a time optimized access to the registers by interleaving the data on SDX and SDR (SDR and SDX must not be connected together). Example for a read/write access with header 48H: SDR header wradr wrdata rdadr SDX rdadr wradr wrdata rddata rddata Header 43H: Read-/Write- only A-D-D-D Sequence (Constant Address) This mode can be used for a fast access to the HDLC FIFO data. Any address (rdadr, wradr) in the range 00H-1FH and 6AH/7AH gives access to the current FIFO location selected by an internal pointer which is automatically incremented with every data byte following the first address byte. The sequence can have any length and is terminated by the rising edge of CS. Example for a write access with header 43H: SDR header wradr wrdata wrdata wrdata wrdata wrdata wrdata wrdata (wradr) (wradr) (wradr) (wradr) (wradr) (wradr) (wradr) SDX Example for a read access with header 43H: SDR header rdadr SDX rddata rddata rddata rddata rddata rddata rddata (rdadr) Data Sheet (rdadr) (rdadr) 37 (rdadr) (rdadr) (rdadr) (rdadr) 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Header 41H: Non-interleaved A-D-D-D Sequence This sequence allows in front of the A-D-D-D write access a non-interleaved A-D-A-D read access. This mode is useful for reading status information before writing to the HDLC XFIFO. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of CS. Example for a read/write access with header 41H: SDR header rdadr wradr wrdata wrdata wrdata rdadr (wradr) SDX rddata (wradr) (wradr) rddata Header 49H: Interleaved A-D-D-D Sequence This sequence allows in front of the A-D-D-D write access an interleaved A-D-A-D read access. This mode is useful for reading status information before writing to the HDLC XFIFO. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of the CS line. Example for a read/write access with header 49H: SDR header rdadr rdadr wradr wrdata wrdata wrdata (wradr) SDX Data Sheet (wradr) (wradr) rddata rddata 38 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.2.2 Parallel Microcontroller Interface The 8-bit parallel microcontroller interface with address decoding on chip allows easy and fast microcontroller access. The parallel interface of the IPAC-X provides three types of mP buses which are selected via pin ALE. The bus operation modes with corresponding pins are listed in Table 5. Table 5 Bus Operation Modes Bus Mode Pin ALE Control Pins (1) Motorola VDD CS, R/W, DS (2) Siemens/Intel non-multiplexed VSS CS, WR, RD (3) Siemens/Intel multiplexed Edge CS, WR, RD, ALE The occurrence of an edge on ALE, either positive or negative, at any time during the operation immediately selects the interface type (3). A return to one of the other interface types is possible only if a hardware reset is issued. Note: If the multiplexed address/data bus type (3) is selected, the unused address pins A0-A7 must be tied to VDD. A read/write access to the IPAC-X registers can be done in multiplexed or nonmultiplexed mode: • In non-multiplexed mode the register address must be applied to the address bus (A0A7) for the data access via the data bus (AD0-AD7). • In multiplexed mode the address on the address/data bus (AD0-AD7) is latched in by ALE before a data read/write access via the same bus is performed. The IPAC-X provides two different ways to address the register contents which is selected with the AMOD pin (’0’ = direct mode, ’1’ = indirect mode). Figure 10 illustrates both register addressing modes. Direct address mode (AMOD = ’0’): The register address to be read or written is directly set in the way described above. Indirect address mode (AMOD = ’1’): Only the LSB of the address is used to select either the address register (A0 = ’0’) or the data register (A0 = ’1’). The microcontroller writes the register address to the ADDRESS register before it reads/writes data from/to the corresponding DATA register. In indirect address mode the IPAC-X evaluates no address line except the least significant address bit. The remaining address lines must not be left open but have to be tied to logical ’1’. Data Sheet 39 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Indirect Address Mode MODE2:AMOD=1 Address A0 Direct Address Mode MODE2:AMOD=0 Data AD0-7 Address A0-7 Data AD0-7 8Fh 8Eh Address 1h 0h Data : : 01h 00h DATA ADDRESS 21150_11 Figure 10 Data Sheet Direct/Indirect Register Address Mode 40 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.2.3 Interrupt Structure Special events in the device are indicated by means of a single interrupt output, which requests the host to read status information from the device or transfer data from/to the device. Since only one interrupt request pin (INT) is provided, the cause of an interrupt must be determined by the host reading the interrupt status registers of the device. The structure of the interrupt status registers is shown in Figure 11. B-channel A MASKB RME B-channel B ISTAB RME MASKB RME ISTAB RME RPF RPF RPF RPF RFO RFO RFO RFO XPR XPR XPR XPR XDU XDU XDU XDU ASTI MSTI STI STOV21 STOV21 STOV20 STOV20 STOV11 STOV11 STOV10 STOV10 MASK ICA ISTA ICA STI21 STI21 ACK21 STI20 STI20 ACK20 ICB ICB STI11 STI11 ACK11 ST ST STI10 STI10 ACK10 CIC CIC AUX AUX TRAN TRAN MOS MOS ICD ICD Interrupt Data Sheet CIR0 CIC0 CI1E CIC1 EAW EAW LD WOV WOV RIC RIC TIN2 TIN2 SQC SQC TIN1 TIN1 SQW ISTATR INT1 INT1 INT0 AUXM INT0 AUXI LD RME RME RPF RPF RFO RFO XPR XPR XMR XMR MRE XDU MASKD XDU ISTAD MIE MDA MOCR MAB MOSR SQW MASKTR MDR MER D-channel Figure 11 CIX1 21150_16.vsd Interrupt Status and Mask Registers 41 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks All eight interrupt bits in the ISTA register point at interrupt sources in the D-channel HDLC Controller (ICD), B-channel HDLC controllers (ICA, ICB), Monitor- (MOS) and C/ I- (CIC) handler, the transceiver (TRAN), the synchronous transfer (ST) and the auxiliary interrupts (AUXI). All these interrupt sources are described in the corresponding chapters. After the device has requested an interrupt activating the interrupt pin (INT), the host must read first the device interrupt status register (ISTA) in the associated interrupt service routine. The interrupt pin of the device remains active until all interrupt sources are cleared by reading the corresponding interrupt register. Therefore it is possible that the interrupt pin is still active when the interrupt service routine is finished. Each interrupt indication of the interrupt status registers can selectively be masked by setting the respective bit in the MASK register. For some interrupt controllers or hosts it might be necessary to generate a new edge on the interrupt line to recognize pending interrupts. This can be done by masking all interrupts at the end of the interrupt service routine (writing FFH into the MASK register) and write back the old mask to the MASK register. Data Sheet 42 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.2.4 Reset Generation Figure 12 shows the organization of the reset generation of the device. . C/I Code Change (Exchange Awake) RSS1 125µs £ t £ 250µs ³1 EAW (Subscriber Awake) 125µs £ t £ 250µs '0' '1x' '1' '01' '00' ³1 Software Reset Register (SRES) ' 01 ' RSS2,1 125µs £ t £ 250µs Watchdog (reserved) RSS2,1 ³1 Pin RSTO 125µs £ t £ 250µs D, C/I-channel (00H-2FH) Transceiver (30H-3FH) Reset IOM-2 (40H-5BH) Functional MON-channel (5CH-5FH) Block General Config (60H-6FH) B-channels (70H-8FH) Reset MODE1 Register Pin RES Internal Reset of all Registers 21150_21 Figure 12 Reset Generation Reset Source Selection The internal reset sources C/I code change, EAW and Watchdog can be output at the low active reset pin RSTO. The selection of these reset sources can be done with the RSS2,1 bits in the MODE1 register according Table 6. The setting RSS2,1 = ’01’ is reserved for further use. In this case no reset is output at RSTO. The internal reset sources sets the MODE1 register to its reset value. Data Sheet 43 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Table 6 Reset Source Selection RSS2 Bit 1 RSS1 Bit 0 C/I Code Change EAW Watchdog Timer 0 0 -- -- -- 0 1 1 0 x x -- 1 1 -- -- x reserved • C/I Code Change (Exchange Awake) A change in the downstream C/I channel (C/I0) generates an external reset pulse of 125 µs £ t £ 250 µs. • EAW (Subscriber Awake) A low level on the EAW input starts the oscillator from the power down state and generates a reset pulse of 125 µs £ t £ 250 µs. • Watchdog Timer After the selection of the watchdog timer (RSS = ’11’) an internal timer is reset and started. During every time period of 128 ms the microcontroller has to program the WTC1- and WTC2 bits in the following sequence to reset and restart the watchdog timer: 1. 2. WTC1 WTC2 1 0 0 1 If not, the timer expires and a WOV-interrupt (ISTA Register) together with a reset pulse of 125 µs is generated. Deactivation of the watchdog timer is only possible with a hardware reset. External Reset Input At the RES input an external reset can be applied forcing the device in the reset state. This external reset signal is additionally fed to the RSTO output. The length of the reset signal is specified in Chapter 5.9. After an external reset from the RES pin all registers of the device are set to its reset values (see register description in Chapter 4). Software Reset Register (SRES) Every main functional block of the device can be reset separately by software setting the corresponding bit in the SRES register. A reset to external devices can also be controlled in this way. The reset state is activated by setting the corresponding bit to ’1’ and onchip Data Sheet 44 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks logic resets this bit again automatically after 4 BCL clock cycles. The address range of the registers which will be reset at each SRES bit is listed in Figure 12. 3.2.5 Timer Modes The IPAC-X provides two timers which can be used for various purposes. Each of them provides two modes (Table 7), a count down timer interrupt, i.e. an interrupt is generated only once after expiration of the selected period, and a periodic timer interrupt, which means an interrupt is generated continuously after every expiration of that period. Table 7 Address 24H 65H IPAC-X Timers Register TIMR1 TIMR2 Modes Period Periodic 64 ... 2048 ms Count Down 64 ms ... 14.336 s Periodic 1 ... 63 ms Count Down 1 ... 63 ms When the programmed period has expired an interrupt is generated and indicated in the auxiliary interrupt status ISTA.AUX. The source of the interrupt can be read from AUXI (TIN1, TIN2) and each of the interrupt sources can be masked in AUXM. MASK ICA ICB ST CIC AUX TRAN MOS ICD ISTA ICA ICB ST CIC AUX TRAN MOS ICD AUXM EAW WOV TIN2 TIN1 INT1 INT0 AUXI EAW WOV TIN2 TIN1 INT1 INT0 Interrupt Figure 13 Data Sheet Timer Interrupt Status Registers 45 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Timer 1 The host controls the timer 1 by setting bit CMDRD.STI to start the timer and by writing register TIMR1 to stop the timer. After time period T1 an interrupt (AUXI.TIN1) is generated continuously if CNT=7 or a single interrupt is generated after timer period T if CNT TE) F D E D M E B1 B2 B1 B1 B2 D E B1 B2 D D E B2 D F E D E D E B1 B2 B1 B1 B2 D E B1 B2 D D E D B2 FSC DD (o) MBIT (o) E M i-1 E M 21150_30 Figure 24 Data Sheet Frame Relationship in TE / LT-T Mode (M-Bit output) 56 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.3.4 Data Transfer and Delay between IOM-2 and S/T TE Mode In the state F7 (Activated) or if the internal layer-1 state machine is disabled and XINF of register TR_CMD is programmed to ’011’ the B1, B2, D and E bits are transferred transparently from the S/T to the IOM-2 interface. In all other states ’1’s are transmitted to the IOM-2 interface. To transfer data transparently to the S/T interface any activation request C/I command (AR8, AR10 or ARL) is additionally necessary or if the internal layer-1 statemachine is disabled, bit TDDIS of register TR_CMD has additionally to be programmed to ’0’. Figure 25 shows the data delay between the IOM-2 and the S/T interface and vice versa. For the D channel the delay from the IOM-2 to the S/T interface is only valid if S/G evaluation is disabled (MODED:DIM0=0). If S/G evaluation is enabled (MODED.DIM2-0=0x1) the delay depends on the selected priority and the relation between the echo bits on S and the D channel bits on the IOM-2, e.g. for priority 8 the timing relation between the 8th D-bit on S bus and the D-channel on IOM-2. E NT -> TE F D E B1 B2 D TE -> NT F B1 B2 D E D E B1 B2 D D B1 D E F E B1 D B2 D F B2 D B1 B2 D E D E B1 B2 D D B1 D D B2 FSC DU B1 B2 D B1 B2 D B1 B2 D B1 B2 D DD B1 B2 D Figure 25 Data Sheet E B1 B2 D E B1 B2 D E B1 B2 D E line_iom_s.vsd Data Delay Between IOM-2 and S/T Interface Transparent Mode (TE mode only) 57 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks E NT -> TE F D E B1 B2 D TE -> NT F B1 B2 D E D E B1 B2 D D B1 D E F E B1 D B2 D F B2 D B1 D E D E B1 B2 D D B2 B1 D D B2 FSC DU B1 B2 D B1 B2 D B1 B2 D B1 B2 D DD B1 B2 D E B1 B2 D E B1 B2 D E B1 B2 D Mapping of B-Channel Timeslots Mapping of a 4-bit group of D-bits on S and IOM depends on prehistory (e.g. priority control): 1. Possibility 2. Possibility Figure 26 E line_iom_s_dch.vsd Data Delay Between IOM-2 and S/T Interface With S/G Bit Evaluation (TE mode only) LT-T Mode In this mode the frame relation between S/T interface and IOM-2 is flexible. LT-S/NT Mode In the state F7 (Activated) or if the internal layer-1 statemachine is disabled and XINF of register TR_CMD is programmed to ’011’ the B1, B2 and D bits are transferred transparently from the S/T to the IOM-2 interface. In all other states ’1’s are transmitted to the IOM-2 interface. Note: In intelligent NT the D-channel access can be blocked by the IOM-2 D-channel handler. Data Sheet 58 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks E NT -> TE F D E B1 D B2 D F TE -> NT B1 E D E B1 B2 D D B2 B1 D E F D B1 D B2 D B2 E D F B1 E D E B1 B2 D D B2 B1 D D B2 FSC DD B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D B1 B2 D DU Figure 27 Data Delay Between IOM-2 and S/T Interface With 8 IOM Channels (LT-S/NT mode only) E NT -> TE F D E B1 D B2 D F TE -> NT line_iom_s4nt.vsd B1 B2 E F B1 E B1 B2 D D B1 D TE -> NT (42µs) D E F D B2 F D B2 D B1 B2 D D D B1 E B1 D D B2 D B2 F B1 E D E B1 B2 D D B1 D B2 D B2 D D B1 D B2 FSC DU B1 B2 D B1 B2 D B1 B2 D B1 B2 D DD B1 B2 D Figure 28 Data Sheet E B1 B2 D E B1 B2 D E B1 B2 D E line_iom_s4nt_dly.vsd Data Delay Between IOM-2 and S/T Interface With 3 IOM Channels and Maximum Receive Delay(LT-S/NT mode only) 59 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.3.5 Transmitter Characteristics The full-bauded pseudo-ternary pulse shaping is achieved with the integrated transmitter which is realized as a symmetrical current limited voltage source (VSX1/SX2 = +/-1.0 V; Imax = 26 mA). The equivalent circuit of the transmitter is shown in Figure 29. The nominal pulse amplitude on the S-interface 750 mV (zero-peak) is adjusted with external resistors (see Chapter 3.3.7.1). VCM+0.525V VCM VCM-0.525V '+0' '1' '-0' + SX1 V=1 - Level VCM-0.525V VCM VCM+0.525V Figure 29 Data Sheet '+0' '1' VCM TR_CONF2.DIS_TX '+0' '1' '-0' - SX2 V=1 + '-0' 21150_28 Equivalent Internal Circuit of the Transmitter Stage 60 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.3.6 Receiver Characteristics The receiver consists of a differential input stage, a peak detector and a set of comparators. Additional noise immunity is achieved by digital oversampling after the comparators. A simplified equivalent circuit of the receiver is shown in Figure 30. 100 kW 10 kW SR1 40 kW VrefLD Level detected Vrefmin 10 kW SR2 40 kW VCM Vref+ Positive detected Peak Detector Vref- Negative detected reccirc Figure 30 Equivalent Internal Circuit of the Receiver Stage The input stage works together with external 10 kW resistors to match the input voltage to the internal thresholds. The data detection threshold Vref is continiously adapted between a maximal (Vrefmax) and a minimal (Vrefmin) reference level related to the line level. The peak detector requires maximum 2 ms to reach the peak value while storing the peak level for at least 250 ms (RC > 1 ms). The additional level detector for power up/down control works with a fixed thresholds VrefLD. The level detector monitors the line input signals to detect whether an INFO is present. When closing an analog loop it is therefore possible to indicate an incoming signal during activated loop. Data Sheet 61 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.3.7 S/T Interface Circuitry For both the receive and transmit direction a 1:1 transformer is used to connect the IPAC-X transceiver to the 4 wire S/T interface. Typical transformer characteristics can be found in the chapter on electrical characteristics. The connections of the line transformers is shown in Figure 31. 3.3 V 1:1 SX1 VDD Protection Circuit Transmit Pair SX2 10 µF IPAC-X 1:1 SR1 Protection Circuit VSS GND Receive Pair SR2 21150_05 Figure 31 Connection of Line Transformers and Power Supply to the IPAC-X For the transmit direction an external transformer is required to provide isolation and pulse shape according to the ITU-T recommendations. 3.3.7.1 External Protection Circuitry The ITU-T I.430 specification for both transmitter and receiver impedances in TEs results in a conflict with respect to external S-protection circuitry requirements: – To avoid destruction or malfunction of the S-device it is desirable to drain off even small overvoltages reliably. – To meet the 96 kHz impedance test specified for transmitters and receivers (for TEs only, ITU-T I.430 sections 8.5.1.2a and 8.6.1.1) the protection circuit must be dimensioned such that voltages below 1.2 V (ITU-T I.430 amplitude) x transformer ratio are not affected. This requirement results from the fact that this test is also to be performed with no supply voltage being connected to the TE. Therefore the second reference point for overvoltages VDD, is tied to GND. Then, if the amplitude of the 96 kHz test signal is greater than the combined forward voltages of the diodes, a current exceeding the specified one may pass the protection circuit. The following recommendations aim at achieving the highest possible device protection against overvoltages while still fulfilling the 96 kHz impedance tests. Data Sheet 62 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Protection Circuit for Transmitter SX1 5 ...10 Ohm 1:1 S Bus SX2 Vdd 5 ... 10 Ohm 21150_23 Figure 32 External Circuitry for Transmitter Figure 32 illustrates the secondary protection circuit recommended for the transmitter. The external resistors (5 ... 10 W) are required in order to adjust the output voltage to the pulse mask on the one hand and in order to meet the output impedance of minimum 20 W (transmission of a binary zero according to ITU-T I.430) on the other hand. Two mutually reversed diode paths protect the device against positive or negative overvoltages on both lines. An ideal protection circuit should limit the voltage at the SX pins from – 0.4 V to VDD + 0.4 V. With the circuit In Figure 32 the pin voltage range is increased from – 0.7 V to VDD + 1.4 V. The resulting forward voltage of 1.4 V will prevent the protection circuit from becoming active if the 96 kHz test signal is applied while no supply voltage is present. Protection Circuit for Receiver Figure 33 illustrates the external circuitry used in combination with a symmetrical receiver. Protection of symmetrical receivers is rather simple. Data Sheet 63 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 1:1 S Bus Note: up to 10 pF capacitors are optional for noise reduction Figure 33 External Circuitry for Symmetrical Receivers Between each receive line and the transformer a 10 kW resistor is used. This value is split into two resistors: one between transformer and protection diodes for current limiting during the 96 kHz test, and the second one between input pin and protection diodes to limit the maximum input current of the chip. With symmetrical receivers no difficulties regarding LCL measurements are observed; compensation networks thus are obsolete. In order to comply to the physical requirements of ITU-T recommendation I.430 and considering the national requirements concerning overvoltage protection and electromagnetic compatibility (EMC), the IPAC-X may need additional circuitry. Data Sheet 64 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.3.7.2 S-Transceiver Synchronization Synchronization problems can occur on a S-Bus that is not terminated properly. Therefore, it is recommended to change the resistor values in the receive path. The sum of both resistors is increased from 10 kW (1.8 + 8.2) to e.g. 34 kW (6.8 + 27) for either receiver line. This change is possible but not necessary for a S-Bus that is terminated properly. R1 R2 SR2 GND 1:1 S Bus VDD SR1 R1 R2 21150_33 Note: Capacitors (up to 10 pF) are optional for noise reduction. Figure 34 External Circuitry for Symmetrical Receivers Note: Lower or higher values than 34 kW may be used as well, however for values above 34 kW the additional delay must be compensated by setting TR_CONF2.PDS=1 (compensates 260 ns) so the allowed input phase delay is not violated. 3.3.8 S/T Interface Delay Compensation (TE/LT-T Mode) The S/T transmitter is shifted by two S/T bits minus 7 oscillator periods (plus analog delay plus delay of the external circuitry) with respect to the received frame. To compensate additional delay introduced into the receive and transmit path by the external circuit the delay of the transmit data can be reduced by another two oscillator periods (2 x 130 ns). Therefore PDS of the TR_CONF2 register must be programmed to ’1’. This delay compensation might be necessary in order to comply with the "total phase deviation input to output" requirement of ITU-T recommendation I.430 which specifies a phase deviation in the range of – 7% to + 15% of a bit period. 3.3.9 Level Detection Power Down If MODE1.CFS is set to ’0’, the clocks are also provided in power down state, whereas if CFS is set to ’1’ only the analog level detector is active in power down state. All clocks, including the IOM-2 interface, are stopped (DD, DU are ’high’, DCL and BCL are ’low’). Data Sheet 65 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks An activation initiated from the exchange side will have the consequence that a clock signal is provided automatically if TR_CONF0.LDD is set to ’0’. If TR_CONF0.LDD is set to ’1’ the microcontroller has to take care of an interrupt caused by the level detect circuit (ISTATR.LD) From the terminal side an activation must be started by setting and resetting the SPUbit in the IOM_CR register and writing TIM to the CIX0 register or by resetting MODE1.CFS=0. 3.3.10 Transceiver Enable/Disable The layer-1 part of the IPAC-X can be enabled/disabled by configuration (see Figure 35) with the two bits TR_CONF0.DIS_TR and TR_CONF2.DIS_TX . By default all layer-1 functions with the exception of the transmitter buffer is enabled (DIS_TR = ’0’, DIS_TX = ’1’). With several terminals connected to the S/T interface, another terminal may keep the interface activated although the IPAC-X does not establish a connection. The receiver will monitor for incoming calls in this configuration. If the transceiver is disabled (DIS_TR = ’1’) all layer-1 functions are disabled including the level detection circuit of the receiver. In this case the power consumption of the Layer-1 is reduced to a minimum. The HDLC controller can still operate via IOM-2. The DCL and FSC pins become input. TR_CONF0.DIS_TR TR_CONF2.DIS_TX ’1’ ’0’ Figure 35 3.3.11 Disabling of S/T Transmitter Test Functions The IPAC-X provides test and diagnostic functions for the S/T interface: Note: For more details please refer to the application note “Test Function of new STransceiver family” – The internal local loop (internal Loop A) is activated by a C/I command ARL or by setting the bit LP_A (Loop Analog) in the TR_CMD register if the layer-1 statemachine Data Sheet 66 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks is disabled. The transmit data of the transmitter is looped back internally to the receiver. The data of the IOM-2 input B- and D-channels are looped back to the output B- and Dchannels. The S/T interface level detector is enabled, i.e. if a level is detected this will be reported by the Resynchronization Indication (RSY) but the loop function is not affected. Depending on the DIS_TX bit in the TR_CONF2 register the internal local loop can be transparent or non transparent to the S/T line. – The external local loop (external Loop A) is activated in the same way as the internal local loop described above. Additionally the EXLP bit in the TR_CONF0 register has to be programmed and the loop has to be closed externally as described in Figure 36. The S/T interface level detector is disabled. This allows complete system diagnostics. – In remote line loop (RLP) received data is looped back to the S/T interface. The Dchannel information received from the line card is transparently forwarded to the output IOM-2 D-channel. The output B-channel information on IOM-2 is fixed to ‘FF’H while this test loop is active. The remote loop is programmable in TR_CONF2.RLP. SX1 100 W SX2 SCOUT-S(X) SR1 100 W SR2 Figure 36 External Loop at the S/T-Interface – Transmission of special test signals on the S/T interface according to the modified AMI code are initiated via a C/I command written in CIX0 register (see Chapter 3.5.4). Two kinds of test signals may be transmitted by the IPAC-X: – The single pulses are of alternating polarity. One pulse is transmitted in each frame resulting in a frequency of the fundamental mode of 2 kHz. The corresponding C/I command is SSP (Send Single Pulses). Data Sheet 67 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks – The continuous pulses are of alternating polarity. 48 pulses are transmitted in each frame resulting in a frequency of the fundamental mode of 96 kHz. The corresponding C/I command is SCP (Send Continuous Pulses). 3.4 Clock Generation Figure 37 shows the clock system of the IPAC-X. The oscillator is used to generate a 7.68 MHz clock signal (fXTAL). In TE mode the DPLL generates the IOM-2 clocks FSC (8 kHz), DCL (1536 kHz) and BCL (768 kHz) synchronous to the received S/T frames. In LT modes these pins are input and in LT-T mode an 1536 kHz clock synchronous to S is output at SCLK which can be used for DCL input. An internal clock divider provides an FSC (ACFG2.FBS=0) or BCL (ACFG2.FBS=1) output on pin AUX5/FBOUT derived from the DCL clock. The output can be enabled via ACFG2.A5SEL=1. The FSC signal is used to generate the pulse lengths of the different reset sources C/I Code, EAW pin and Watchdog (see Chapter 3.2.4). FSC (TE mode) XTAL f XTAL 7.68 MHz OSC DCL (TE mode) DPLL BCL (TE mode) SCLK (LT-T mode) SW Reset C/I EAW Watchdog ACFG2.FBS Pin RSTO Reset Generation 125 µs £ t £ 250 µs 125 µs £ t £ 250 µs 125 µs £ t £ 250 µs 125 µs £ t £ 250 µs ACFG2.A5SEL FBOUT (FSC/BCL output) 21150_06 Figure 37 Clock System of the IPAC-X Data Sheet 68 2003-01-30 Data Sheet o:1536 kHz (SCLK) *5) i o:1536 kHz (DIS_TR=0) i:1536/768 kHz (DIS_TR=1) *2) o:768 kHz (BCL) i o DCL BCL/SCLK DU *6) DD 69 CH0-2: strap pins for IOM channel select *4) AUX0-2 general purpose I/O pins o:FSC (FBS=0) or BCL (FBS=1) AUX5/FBOUT o:FSC (FBS=0) or (A5SEL=1) *3) BCL (FBS=1) o i:1536 kHz (from SCLK) or 4096 kHz (from ext. PLL) i:8 kHz o:8 kHz (DIS_TR=0) i:8 kHz (DIS_TR=1) *2) FSC pin:MODE1=0 MODE0=1 LT-T pin: MODE0=0 TE Clock Modes Selected via Table 9 o:FSC (FBS=0) or BCL (FBS=1) CH0-2: strap pins for IOM channel select *4) CH0-2: strap pins for IOM channel select *4) i o o:256 kHz or 768 kHz or 2048 kHz (derived from DCL/2) i:512 kHz or 1536 kHz or 4096 kHz o:FSC (FBS=0) or BCL (FBS=1) i o o:256 kHz or 768 kHz or 2048 kHz (derived from DCL/2) i:512 kHz or 1536 kHz or 4096 kHz i:8 kHz bit:MODE2=0 MODE1=1 MODE0=0 pin:MODE1=1 MODE0=1 i:8 kHz NT LT-S general purpose I/O pins o:FSC (FBS=0) or BCL (FBS=1) i o o:768 kHz (derived from DCL/2) i:1536 kHz i:8 kHz bit:MODE2=1 MODE1=1 MODE0=1 or MODE0=0 *1) Int. NT IPAC-X PSB/PSF 21150 Description of Functional Blocks 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Note: The IOM-2 interface is adaptive. This means in LT-S/NT and LT-T mode other frequencies for BCL and DCL are possible in the range of 512-4096 kHz (DCL) and 256-2048 kHz (BCL). For details please refer to the application note “Reconfigurable PBX”. Note: i = input; o = output; For all input clocks typical values are given although other clock frequencies may be used, too. 1) The modes TE, LT-T and LT-S can directly be selected by strapping the pins MODE1 and MODE0. The mode can be reprogrammed in TR_MODE.MODE2-0 where NT and Intelligent NT can be selected additionally. In Int. NT mode MODE0 selects between NT state machine (0) and LT-S state machine (1). 2) In TE mode the S transceiver can be disabled (TR_CONF0.DIS_TR=1) so the IOM clocks become inputs and with IOM_CR.CLKM the DCL input can be selected to double clock (0) or single bit clock (1). 3) ACFG2.A5SEL=1 selects the FBOUT function (derived from IOM clocks) which provides an FSC/BCL output clock if clocks are present on IOM. 4) The number of IOM channels depends on the DCL clock, e.g. with DCL=1536 kHz 3 IOM channels and with DCL=4096 kHz 8 channels are available. 5) In LT-T mode the 1536 kHz output clock on SCLK is synchronous to the S interface and can be used as input for the DCL clock.< 6) The direction input/output refers to the direction of the B- and D-channel data stream across the S-transceiver. Due to the capabilites of the IOM-2 handler the direction of some other timeslots may be different if this is programmed by the host (e.g. for data exchange between different devices connected to IOM-2). Data Sheet 70 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.4.1 Description of the Receive PLL (DPLL) The receive PLL performs phase tracking between the F/L transition of the receive signal and the recovered clock. Phase adjustment is done by adding or subtracting 0.5 or 1 XTAL period to or from a 1.536-MHz clock cycle. The 1.536-MHz clock is than used to generate any other clock synchronized to the line. During (re)synchronization an internal reset condition may effect the 1.536-MHz clock to have high or low times as short as 130 ns. After the S/T interface frame has achieved the synchronized state (after three consecutive valid pairs of code violations) the FSC output in TE mode is set to a specific phase relationship, thus causing once an irregular FSC timing. The phase relationships of the clocks are shown in Figure 38. 7.68 MHz F-bit 1536 kHz * * Synchronous to receive S/T. Duty Ratio 1:1 Normally 768 kHz ITD09664 FSC Figure 38 3.4.2 Phase Relationships of IPAC-X Clock Signals Jitter The timing extraction jitter of the IPAC-X conforms to ITU-T Recommendation I.430 (– 7% to + 7% of the S-interface bit period). Data Sheet 71 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.4.3 Oscillator Clock Output C768 The IPAC-X derives its system clocks from an external clock connected to XTAL1 (while XTAL2 is not connected) or from a 7.68 MHz crystal connected across XTAL1 and XTAL2. At pin C768 a buffered 7.68 MHz output clock is provided to drive further devices, which is suitable in multiline applications for example (see Figure 39). This clock is not synchronized to the S-interface. In power down mode the C768 output is disabled (low signal). 7.68 MHz XTAL1 XTAL2 IPAC-X C768 XTAL1 n.c. n.c. XTAL2 C768 IPAC-X XTAL1 n.c. n.c. XTAL2 C768 IPAC-X 21150_12 Figure 39 Data Sheet Buffered Oscillator Clock Output 72 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5 Control of Layer-1 The layer-1 activation/ deactivation can be controlled by an internal state machine via the IOM-2 C/I0 channel or by software via the microcontroller interface directly. In the default state the internal layer-1 state machine of the IPAC-X is used. By setting the L1SW bit in the TR_CONF0 register the internal state machine can be disabled and the layer-1 commands, which are normally generated by the internal state machine are written directly in the TR_CMD register or indications read from the TR_STA register respectively. The IPAC-X layer-1 control flow is shown in Figure 40. Figure 40 Layer-1 Control In the following sections the layer-1 control by the IPAC-X state machine will be described. For the description of the IOM-2 C/I0 channel see also Chapter 3.7.4. The layer-1 functions are controlled by commands issued via the CIX0 register. These commands, sent over the IOM-2 C/I channel 0 to layer 1, trigger certain procedures, such as activation/deactivation, switching of test loops and transmission of special pulse patterns. These procedures are governed by layer-1 state diagrams. Responses from layer 1 are obtained by reading the CIR0 register after a CIC interrupt (ISTA). The state diagrams of the IPAC-X are shown in Figure 42 and Figure 43. The activation/ deactivation implemented by the IPAC-X agrees with the requirements set forth in ITU recommendations. State identifiers F1-F8 are in accordance with ITU I.430. Data Sheet 73 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks State machines are the key to understanding the transceiver part of the IPAC-X. They include all information relevant to the user and enable him to understand and predict the behaviour of the IPAC-X. The state diagram notation is given in Figure 41. The informations contained in the state diagrams are: – – – – – state name (based on ITU I.430) S/T signal transmitted (INFO) C/I code received C/I code transmitted transition criteria The coding of the C/I commands and indications are described in detail in Chapter 3.5.4. IPAC-X IPAC IPAC OUT IN IOM-2 Interface C /Ι Ind. Cmd. Unconditional Transition State S / T Interface INFO ix ir ITD09657 Figure 41 State Diagram Notation The following example illustrates the use of a state diagram with an extract of the TE state diagram. The state explained is “F3 deactivated”. The state may be entered: – from the unconditional states (ARL, RES, TM) – from state “F3 pending deactivation”, “F3 power up”, “F4 pending activation” or “F5 unsynchronized” after the C/I command “DI” has been received. The following informations are transmitted: – INFO 0 (no signal) is sent on the S/T-interface. C/I message “DC” is issued on the IOM-2 interface. The state may be left by either of the following methods: – Leave for the state “F3 power up” in case C/I = “TIM” code is received. – Leave for state “F4 pending activation” in case C/I = AR8 or AR10 is received. Data Sheet 74 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks – Leave for the state “F6 synchronized” after INFO 2 has been recognized on the S/Tinterface. – Leave for the state “F7 activated” after INFO 4 has been recognized on the S/Tinterface. – Leave for any unconditional state if any unconditional C/I command is received. As can be seen from the transition criteria, combinations of multiple conditions are possible as well. A “*” stands for a logical AND combination. And a “+” indicates a logical OR combination. The sections following the state diagram contain detailed information on all states and signals used. 3.5.1 State Machine TE and LT-T Mode 3.5.1.1 State Transition Diagram (TE, LT-T) Figure 42 shows the state transition diagram of the IPAC-X state machine. Figure 43 shows this for the unconditional transitions (Reset, Loop, Test Mode i). Data Sheet 75 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks DC i4 DI F3 Deactivated i0 TIM i0 AR i2 DI PU AR2) AR F4 Pending Act. i1 DI TIM i0 TIM F3 Power Up i0 i2 i0 i0 i4 X RSY i4 PU TIM F5 Unsynchronized DI i0 X DI Uncond. State TIM ix i2 AR X X4) F6 Synchronized i0*TO1 i2 i3 ix i4 RSY i2 i4 X F8 Lost Framing i2 i0 i0 DI TIM i0*TO1 i2 DI*TO2 ix AI3) AR2) F7 Activated i3 TO1: TO2: i4 i0*TO1 i4 DR1) X F3 Pending Deact. i0 TIM*TO2 i0 16 ms 0.5 ms 1) DR for transition from F7 or F8 DR6 for transition from F6 AR stands for AR8 or AR10 3) AI stands for AI8 or AI10 4) X stands for commands initiating unconditional transitions (RES, ARL, SSP or SCP) 2) Figure 42 Data Sheet statem_te_s.vsd State Transition Diagram (TE, LT-T) 76 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks SSP SCP ARL TIM SSP TMA SCP TIM ARL ARL DI Test Mode i DI iti RST * Loop A Closed i3 TIM DI RES RES Reset i0 * * i3 i3 RES TIM DI AIL ARL RSY Any State Loop A Activated i3 * statem_te_aloop_s.vsd Figure 43 3.5.1.2 State Transition Diagram of Unconditional Transitions (TE, LT-T) States (TE, LT-T) F3 Pending Deactivation State after deactivation from the S/T interface by info 0. Note that no activation from the terminal side is possible starting from this state. A ’DI’ command has to be issued to enter the state ’Deactivated State’. F3 Deactivated State The S/T interface is deactivated and the clocks are deactivated 500 µs after entering this state and receiving info 0 if the CFS bit of the IPAC-X Configuration Register is set to “0“. Activation is possible from the S/T interface and from the IOM-2 interface. The bit TR_CMD.PD is set and the analog part is powered down. F3 Power Up The S/T interface is deactivated (info 0 on the line) and the clocks are running. F4 Pending Activation The IPAC-X transmits info 1 towards the network, waiting for info 2. F5 Unsynchronized Data Sheet 77 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Any signal except info 2 or 4 detected on the S/T interface. F6 Synchronized The receiver has synchronized and detects info 2. Info 3 is transmitted to synchronize the NT. F7 Activated The receiver has synchronized and detects info 4. All user channels are now conveyed transparently to the IOM-2 interface. To transfer user channels transparently to the S/T interface either the command AR8 or AR10 has to be issued and TR_STA.FSYN must be “1” (signal from remote side must be synchronous). F8 Lost Framing The receiver has lost synchronization in the states F6 or F7 respectively. Unconditional States Loop A Closed (internal or external) The IPAC-X loops back the transmitter to the receiver and activates by transmission of info 3. The receiver has not yet synchronized. For a non transparent internal loop the DIS_TX bit of register TR_CONF2 has to be set to ’1’. Loop A Activated (internal or external) The receiver has synchronized to info 3. Data may be sent. The indication “AIL” is output to indicate the activated state. If the loop is closed internally and the S/T line awake detector detects any signal on the S/T interface, this is indicated by “RSY”. Test Mode - SSP Single alternating pulses are transmitted to the S/T-interface resulting in a frequency of the fundamental mode of 2 kHz. Test Mode - SCP Continuous alternating pulses are transmitted to the S/T-interface resulting in a frequency of the fundamental mode of 96 kHz. Data Sheet 78 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5.1.3 C/I Codes (TE, LT-T) Command Abbr. Code Remark Activation Request with priority class 8 AR8 Activation Request with priority class 10 AR10 1001 Activation requested by the IPAC-X, Dchannel priority set to 10 (see note). Activation Request Loop ARL 1010 Activation requested for the internal or external Loop A (see note). For a non transparent internal loop bit DIS_TX of register TR_CONF2 has to be set to ’1’ additionally. Deactivation Indication DI 1111 Deactivation Indication. Reset RES 0001 Reset of the layer-1 state machine. Timing TIM 0000 Layer-2 device requires clocks to be activated. Test mode SSP SSP 0010 One AMI-coded pulse transmitted in each frame, resulting in a frequency of the fundamental mode of 2 kHz. Test mode SCP SCP 0011 AMI-coded pulses transmitted continuously, resulting in a frequency of the fundamental mode of 96 kHz. 1000 Activation requested by the IPAC-X, Dchannel priority set to 8 (see note). Note: In the activated states (AI8, AI10 or AIL indication) the 2B+D channels are only transferred transparently to the S/T interface if one of the three “Activation Request” commands is permanently issued. Data Sheet 79 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Indication Abbr. Code Remark Deactivation Request DR 0000 Deactivation request via S/T-interface if left from F7/F8. Reset RES 0001 Reset acknowledge. Test Mode Acknowledge TMA 0010 Acknowledge for both SSP and SCP. Slip Detected SLD 0011 Resynchronization during level detect RSY 0100 Signal received, receiver not synchronous. Deactivation Request from F6 DR6 0101 Deactivation Request from state F6. Power up PU 0111 IOM-2 interface clocking is provided. Activation request AR 1000 Info 2 received. Activation request loop ARL 1010 Internal or external loop A closed. Illegal Code Violation CVR 1011 Illegal code violation received. This function has to be enabled by setting the EN_ICV bit of register TR_CONF0. Activation indication loop AIL 1110 Internal or external loop A activated. Activation indication with priority class 8 AI8 1100 Info 4 received, D-channel priority is 8 or 9. Activation indication with priority class 10 AI10 1101 Info 4 received, D-channel priority is 10 or 11. Deactivation confirmation DC 1111 Clocks are disabled if CFS bit of register MODE1 is set to ’1’, quiescent state. Data Sheet 80 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5.1.4 Infos on S/T (TE, LT-T) Receive Infos on S/T (Downstream) Name Abbr. Description info 0 i0 No signal on S/T info 2 i2 4 kHz frame A=’0’ info 4 i4 4 kHz frame A=’1’ info X ix Any signal except info 2 or info 4 Transmit Infos on S/T (Upstream) Name Abbr. Description info 0 i0 No signal on S/T info 1 i1 Continuous bit sequence of the form ’00111111’ info 3 i3 4 kHz frame Test info 1 it1 SSP - Send Single Pulses Test info 2 it2 SCP - Send Continuous Pulses Data Sheet 81 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5.2 State Machine LT-S Mode 3.5.2.1 State Transition Diagram (LT-S) RST TIM RES TIM DR Reset i0 RES DR G4 Pend. Deact. 1) ARD * DR i0 DC DI ARD1) Test Mode i i0 it (i0*16ms)+32ms Any State SSP TIM SCP DC * SSP SCP Any State DR G4 Wait for DR i0 * DC DI DC TIM 2) DR G1 Deactivated i0 i0 (i0*8ms)+ARD1) DC AR ARD G2 Pend. Act. i2 DR i3 i3 DC RSY ARD G2 Lost Framing S/T i2 i3 i3 AI i3 DC ARD G3 Activated i4 DR i3 DR 1) ARD = AR or ARL 2) DI if i0 TIM if i0 s tatem_lts _ s .v s d Figure 44 State Transition Diagram (LT-S) Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’ itself , i.e. C/I-code ’SSP/SCP’ must not be followed by C/I-code ’SCP/SSP’ directly. Data Sheet 82 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5.2.2 States (LT-S) G1 Deactivated The transceiver is not transmitting. There is no signal detected on the S/T-interface, and no activation command is received in the C/I channel. The clocks are deactivated if MODE1-CFS is set to 1. Activation is possible from the S/T interface and from the IOM-2 interface. G2 Pending Activation As a result of an INFO 0 detected on the S/T line or an ARD command, the transceiver begins transmitting INFO 2 and waits for reception of INFO 3. The timer to supervise reception of INFO 3 is to be implemented in software. In case of an ARL command, loop 2 is closed. G3 Activated Normal state where INFO 4 is transmitted to the S/T-interface. The transceiver remains in this state as long as neither a deactivation nor a test mode is requested, nor the receiver looses synchronism. When receiver synchronism is lost, INFO 2 is sent automatically. After reception of INFO 3, the transmitter keeps on sending INFO 4. G2 Lost Framing This state is reached when the transceiver has lost synchronism in the state G3 activated. G4 Pending Deactivation This state is triggered by a deactivation request DR. It is an unstable state: indication DI (state “G4 wait for DR.”) is issued by the transceiver when: either INFO0 is received for a duration of 16 ms, or an internal timer of 32 ms expires. G4 Wait for DR Final state after a deactivation request. The transceiver remains in this state until DC is issued. Unconditional States Test Mode - SSP Single alternating pulses are sent on the S/T-interface. Data Sheet 83 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Test Mode - SCP Continuous alternating pulses are sent on the S/T-interface. 3.5.2.3 C/I Codes (LT-S) Command Abbr. Code Remark Deactivation Request DR 0000 DR - Deactivation Request. Initiates a complete deactivation from the exchange side by transmitting INFO 0. Reset RES 0001 Reset of state machine. Transmission of Info0. No reaction to incoming infos. RES is an unconditional command. Send Single Pulses SSP 0010 Send Single Pulses. Send Continuous Pulses SCP 0011 Send Continuous Pulses. Activation Request AR 1000 Activation Request. This command is used to start an exchange initiated activation. Activation Request Loop ARL 1010 Activation request loop. The transceiver is requested to operate an analog loop-back close to the S/T-interface. Activation Indication AIL Loop 1110 Activation Indication Loop. Deactivation Confirmation DC 1111 Deactivation Confirmation. Transfers the transceiver into a deactivated state in which it can be activated from a terminal (detection of INFO 0 enabled). Indication Abbr. Code Remark Timing TIM 0000 Interim indication during activation procedure in G1. Receiver not Synchronous RSY 0100 Receiver is not synchronous Activation Request AR 1000 INFO 0 received from terminal. Activation proceeds. Illegal Code Ciolation CVR 1011 Illegal code violation received. This function has to be enabled in TR_CONF0.EN_ICV. Data Sheet 84 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Indication Code Remark Activation Indication AI 1100 Synchronous receiver, i.e. activation completed. Deactivation Indication 1111 Timer (32 ms) expired or INFO 0 received for a duration of 16 ms after deactivation request 3.5.2.4 Abbr. DI Infos on S/T (LT-S) Receive Infos on S/T (Downstream) I0 INFO 0 detected I0 Level detected (signal different to I0) I3 INFO 3 detected I3 Any INFO other than INFO 3 Transmit Infos on S/T (Upstream) I0 INFO 0 I2 INFO 2 I4 INFO 4 It Send Single Pulses (SSP). Send Continuous Pulses (SCP). Data Sheet 85 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5.3 State Machine NT Mode 3.5.3.1 State Transition Diagram (NT) RST TIM RES TIM DR Reset i0 DR G4 Pend. Deact. 1) ARD * i0 DI Any State Test Mode i it DC DR 1) ARD SSP TIM SCP i0 (i0*16ms)+32ms DC RES DR * SSP SCP Any State G4 Wait for DR i0 * DC DR DI DC TIM 3) G1 Deactivated ARD1) i0 i0 (i0*8ms) AR DC G1 i0 Detected i0 DR * ARD1) AR ARD G2 Pend. Act i2 DR i3 i3 AID RSY ARD G2 Lost Framing S/T i2 i3 i3*ARD AI i3*ARD1) 2) i3*AID ARD G2 Wait for AID RSY i2 DR i3 1) AID2) RSY DR RSY RSY G3 Lost Framing U i2 * ARD1) AID2) 2) 3) i3*AID2) ARD1) AI ARD = AR or ARL AID =AI or AIL DI if i0 TIM if i0 AID DR G3 Activated RSY i4 i3 s ta tem_ nt_s .v s d Figure 45 State Transition Diagram (NT) Note: State ’Test Mode’ can be entered from any state except from state ’Test Mode’ itself , i.e. C/I-code ’SSP/SCP’ must not be followed by C/I-code ’SCP/SSP’ directly. Data Sheet 86 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5.3.2 States (NT) G1 Deactivated The transceiver is not transmitting. There is no signal detected on the S/T-interface, and no activation command is received in the C/I channel. The clocks are deactivated if the bit MODE1.CFS to 1. Activation is possible from the S/T interface and from the IOM-2 interface. G1 I0 Detected An INFO 0 is detected on the S/T-interface, translated to an “Activation Request” indication in the C/I channel. The transceiver is waiting for an AR command, which normally indicates that the transmission line upstream (usually a two-wire U interface) is synchronized. G2 Pending Activation As a result of the ARD command, an INFO 2 is sent on the S/T-interface. INFO 3 is not yet received. In case of ARL command, loop 2 is closed. G2 Wait for AID INFO 3 was received, INFO 2 continues to be transmitted while the transceiver waits for a “switch-through” command AID from the device upstream. G3 Activated INFO 4 is sent on the S/T-interface as a result of the “switch through” command AID: the B and D-channels are transparent. On the command AIL, loop 2 is closed. G2 Lost Framing S/T This state is reached when the transceiver has lost synchronism in the state G3 activated. G3 Lost Framing U On receiving an RSY command which usually indicates that synchronization has been lost on the two-wire U interface, the transceiver transmits INFO 2. G4 Pending Deactivation This state is triggered by a deactivation request DR, and is an unstable state. Indication DI (state “G4 wait for DR”) is issued by the transceiver when: either INFO0 is received for a duration of 16 ms or an internal timer of 32 ms expires. Data Sheet 87 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks G4 Wait for DR Final state after a deactivation request. The transceiver remains in this state until DC is issued. Unconditional States Test Mode SSP Send Single Pulses Test Mode SCP Send Continuous Pulses 3.5.3.3 C/I Codes (NT) Command Abbr. Code Remark Deactivation Request DR 0000 DR - Deactivation Request. Initiates a complete deactivation from the exchange side by transmitting INFO 0. Unconditional command. Reset RES 0001 Reset of state machine. Transmission of Info0. No reaction to incoming infos. RES is an unconditional command. Send Single Pulses SSP 0010 Send Single Pulses. Send Continuous Pulses SCP 0011 Send Continuous Pulses. Receiver not Synchronous RSY 0100 Receiver is not synchronous Activation Request AR 1000 Activation Request. This command is used to start an exchange initiated activation. Activation Request Loop ARL 1010 Activation request loop. The transceiver is requested to operate an analog loop-back close to the S/T-interface. 1100 Synchronous receiver, i.e. activation completed. Activation Indication AI Data Sheet 88 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Command Code Remark Activation Indication AIL Loop 1110 Activation Indication Loop Deactivation Confirmation DC 1111 Deactivation Confirmation. Transfers the transceiver into a deactivated state in which it can be activated from a terminal (detection of INFO 0 enabled). Indication Abbr. Code Remark Timing TIM 0000 Receiver not Synchronous RSY 0100 Receiver is not synchronous. Activation Request AR 1000 INFO 0 received from terminal. Activation proceeds. Illegal Code Ciolation CVR 1011 Illegal code violation received. This function has to be enabled in TR_CONF0.EN_ICV. Activation Indication AI 1100 Synchronous receiver, i.e. activation completed. Deactivation Indication 1111 Timer (32 ms) expired or INFO 0 received for a duration of 16 ms after deactivation request. Data Sheet Abbr. DI Interim indication during deactivation procedure. 89 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.5.4 Command/Indicate Channel Codes (C/I0) - Overview The table below presents all defined C/I0 codes. A command needs to be applied continuously until the desired action has been initiated. Indications are strictly state orientated. Refer to the state diagrams in the previous sections for commands and indications applicable in various states. TE/LT-T Code LT-S NT Cmd Ind Cmd Ind Cmd Ind 0 0 0 0 TIM DR DR TIM DR TIM 0 0 0 1 RES RES RES – RES – 0 0 1 0 SSP TMA SSP – SSP – 0 0 1 1 SCP SLD SCP – SCP – 0 1 0 0 – RSY – RSY RSY RSY 0 1 0 1 – DR6 – – – – 0 1 1 0 – – – – – – 0 1 1 1 – PU – – – – 1 0 0 0 AR8 AR AR AR AR AR 1 0 0 1 AR10 – – – – – 1 0 1 0 ARL ARL ARL – ARL – 1 0 1 1 – CVR – CVR – CVR 1 1 0 0 – AI8 – AI AI AI 1 1 0 1 – AI10 – – – – 1 1 1 0 – AIL – – AIL – 1 1 1 1 DI DC DC DI DC DI Data Sheet 90 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.6 Control Procedures 3.6.1 Example of Activation/Deactivation An example of an activation/deactivation of the S/T interface initiated by the terminal with the time relationships mentioned in the previous chapters is shown in figure 46. NT/Linecard TE INFO 0 INFO 1 RSY max. 6 ms AR INFO 2 INFO 3 AR 0.5 ms INFO 4 AI DR 16 ms INFO 0 INFO 0 A_DEACT.DRW Figure 46 Data Sheet Example of Activation/Deactivation Initiated by the Terminal 91 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.6.2 Activation Initiated by the Terminal INFO 1 has to be transmitted as long as INFO 0 is received. INFO 0 has to be transmitted thereafter as long as no valid INFO (INFO 2 or INFO 4) is received. After reception of INFO 2 or INFO 4 transmission of INFO 3 has to be started. Data can be transmitted if INFO 4 has been received. µC Interface TE S/T Interface NT INFO 0 TDDIS='1', XINF='010' INFO 1 INFO 2 RINF='01' XINF='000' T1TE INFO 0 RINF='10' INFO 3 XINF='011' INFO 4 RINF='11' T2TE TDDIS='0' INFO 0 RINF='00' TDDIS='1', XINF='000' T3TE INFO 0 INFO 0 T1TE: 2 to 6 frames (0.5 ms to 1.5 ms) T2TE: 2 frames (0.5 ms) 4 frames (1 ms) T3TE: act_deac_te-ext_s.vsd Figure 47 Example of Activation/Deactivation initiated by the Terminal (TE). Activation/Deactivation Completely Under Software Control Note: RINF and XINF are Receive- and Transmit-INFOs of register TR_STA. Data Sheet 92 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.6.3 Activation initiated by the Network Termination NT INFO 0 has to be transmitted as long as no valid INFO (INFO 2 or INFO 4) is received. After reception of INFO 2 or INFO 4 transmission of INFO 3 has to be started. Data can be transmitted if INFO 4 has been received. µC Interface TE S/T Interface NT INFO 0 RINF='01' INFO 2 T1TE RINF='10' TDDIS='1', XINF='011' INFO 3 INFO 4 RINF='11' T2TE TDDIS='0' INFO 0 RINF='00' T3TE TDDIS='1', XINF='000' INFO 0 INFO 0 T1TE: 2 to 6 S/T frames (0.5 ms to 1.5 ms) 2 S/T frames (0.5 ms) T2TE: 4 S/T frames (1 ms) T3TE: act_deac_lt_ext_s.vsd Figure 48 Example of Activation/Deactivation Initiated by the Network Termination (NT). Activation/Deactivation Completely Under Software Control Note: RINF and XINF are Receive- and Transmit-INFOs of register TR_STA. Data Sheet 93 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.7 IOM-2 Interface The IPAC-X supports the IOM-2 interface in linecard mode and in terminal mode with single clock and double clock. The IOM-2 interface consists of four lines: FSC, DCL, DD and DU. The rising edge of FSC indicates the start of an IOM-2 frame. The DCL and the BCL clock signals synchronize the data transfer on both data lines DU and DD. The DCL is twice the bit rate, the BCL rate is equal to the bit rate. The bits are shifted out with the rising edge of the first DCL clock cycle and sampled at the falling edge of the second clock cycle. The IOM-2 interface can be enabled/disabled with the DIS_IOM bit in the IOM_CR register. TE Mode A DCL signal and BCL signal (pin BCL/SCLK) output is provided and the FSC signal is generated by the receive DPLL which synchronizes it to the received S/T frame. The BCL clock together with the two serial data strobe signals (SDS1, SDS2) can be used to connect time slot oriented standard devices to the IOM-2 interface. If the transceiver is disabled (TR_CON.DIS_TR) the DCL and FSC pins become input and the HDLC part can still work via IOM-2. In this case the clock mode bit (IOM_CR.CLKM) selects between a double clock and a single clock input for DCL. The clock rate/frequency of the IOM-2 signals in TE mode are: DD, DU: 768 kbit/s FSC (o): 8 kHz DCL (o): 1536 kHz (double clock rate) BCL (o):768 kHz (single clock rate) Option - Transceiver disabled (DIS_TR = ’1’): FSC (i): 8 kHz DCL (i): 1536 ... 4096 kHz, in steps of 512 kHz (double clock rate) LT-S, LT-T, NT, iNT Mode The IOM-2 clock signals FSC and BCL are input. In LT-T mode a 1536 kHz output clock synchronous to S is provided at pin SCLK which can directly be connected to the DCL input. Internal clock dividers provide for generation of an FSC or BCL output clock at pin FBOUT derived from DCL (see Chapter 3.4). DD, DU: data rate = DCL/2 kbit/s (LT-T mode) FSC (i): 8 kHz DCL (i): 512 ... 4096 kHz, in steps of 512 kHz (double clock rate) SCLK (o):1536 kHz (LT-T mode), BCL derived via DCL/2 (LT-S/NT mode) Note: In all modes the direction of the data lines DU and DD is not fix but depending on the timeslot which can be seen in the figures below. Data Sheet 94 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks IOM-2 Frame Structure (TE Mode) The frame structure on the IOM-2 data ports (DU,DD) of a master device in IOM-2 terminal mode is shown in Figure 49. Figure 49 IOMÒ-2 Frame Structure in Terminal Mode The frame is composed of three channels: • Channel 0 contains 144-kbit/s of user and signaling data (2B + D), a MONITOR programming channel (MON0) and a command/indication channel (CI0) for control and programming of the layer-1 transceiver. • Channel 1 contains two 64-kbit/s intercommunication channels (IC) plus a MONITOR and command/indicate channel (MON1, CI1) to program or transfer data to other IOM2 devices. • Channel 2 is used for the TlC-bus access. Only the command/indicate bits are specified in this channel. Data Sheet 95 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks IOM-2 Frame Structure (LT-S, LT-T Modes) This mode is used in LT-S and LT-T applications. The frame is a multiplex of up to eight IOM-2 channels (DCL = 4096 kHz, Figure 50), each of which has the structure described above. The reset value for assignment to one of the eight channels (0 to 7) is done via pin strapping (CH0-2), however the host can reprogram the selected timeslot in DCH_TSDP.TSS. 125 µ s FSC DCL DD IOM R CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH0 DU IOM CH0 R CH1 CH2 CH3 CH4 CH5 CH6 CH7 CH0 B1 Figure 50 B2 MONITOR D C/I MM RX ITD09635 Multiplexed Frame Structure of the IOM-2 Interface in Non-TE Timing Mode IOM-2 Frame Structure (NT Mode) In NT mode one IOM-2 channel is used (DCL=512 kHz). The channel structure is the same as described above. Data Sheet 96 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.7.1 IOM-2 Handler The IOM-2 handler offers a great flexibility for handling the data transfer between the different functional units of the IPAC-X and voice/data devices connected to the IOM-2 interface. Additionally it provides a microcontroller access to all timeslots of the IOM-2 interface via the four controller data access registers (CDA). Figure 51 shows the architecture of the IOM-2 handler. For illustrating the functional description it contains all configuration and control registers of the IOM-2 handler. A detailed register description can be found in Chapter 4.4. The PCM data of the functional units • Transceiver (TR) and the • Controller data access (CDA) • B-channel HDLC controllers can be configured by programming the time slot and data port selection registers (TSDP). With the TSS bits (Time Slot Selection) the PCM data of the functional units can be assigned to each of the 32 PCM time slots of the IOM-2 frame. With the DPS bit (Data Port Selection) the output of each functional unit is assigned to DU or DD respectively. The input is assigned vice versa. With the data control registers (xxx_CR) the access to the data of the functional units can be controlled by setting the corresponding control bits (EN, SWAP). The IOM-2 handler also provides access to the • • • • MONITOR channel (MON) C/I channels (C/I0,C/I1) TIC bus (TIC) and HDLC control The access to these channels is controlled by the registers MON_CR, DCI_CR and BCHx_CR. The IOM-2 interface with the two Serial Data Strobes (SDS1,2) is controlled by the control registers IOM_CR, SDS1_CR and SDS2_CR. The reset configuration of the IPAC-X IOM-2 handler corresponds to the defined frame structure and data ports of a master device in IOM-2 terminal mode (see Figure 49). Data Sheet 97 2003-01-30 98 CDA_TSDPxy CDAx_CRx MCDA STI MSTI ASTI ( DPS, TSS, EN_TBM, SWAP, EN_I1/0, EN_O1/0, MCDAxy, STIxy, STOVxy, ACKxy ) CDA Control CDA Data BCL/SCLK FSC DD DU MON Handler TIC IOM-2 Interface C/I0 Data DCIC_CR (CS2-0) C/I1 SDS2 SDS1 B2 Data D-ch (DPS, TSS, DPS_D, EN_D, EN_BC1, EN_BC2, CS2-0) B2 B1-ch FIFOs B2-ch BCHA_TSDP BCHB_TSDP _B1/2, _B1/2, BCHA_CR BCHB_CR (DPS, TSS, DPS_D, EN_D, EN_BC1, EN_BC2, CS2-0) B1 Control HDLC Channel Data (CS2-0, D_EN_D, D_EN_B1, D_EN_B2) D ( ENS_TSS, ENS_TSS+1, ENS_TSS+3, TSS, SDSx_BCL DCI_CR (DPS_CI1, EN_CI1) C/I1 Control C/I Data C/I0 Microcontroller Interface IOM_CR (TIC_DIS) (DPS, CS2-0, EN_MON) MON_CR TIC Bus Disable Monitor Data EN_BCL, CLKM, DIS_OD, DIS_IOM, DIOM_INV, DIOM_SDS C/I0 Data DCL TIC Bus Data Control Monitor Data Note: The registers shown above are used to control the corresponding functional block (e.g. programming of timeslot, data port, enabling/disabling, etc.) CDA10 CDA11 CDA20 CDA21 CDA Registers Controller Data Access (CDA) IOM_CR SDS1/2_CR SDS1/2_CR C/I1 Data Data Sheet D Data Figure 51 B1 Data IOM-2 Handler D, B1, B2, C/I0 Data TR_TSDP_BC1 TR_TSDP_BC2 TRC_CR (DPS, TSS, CS2-0, EN_D, EN_B1R, EN_B1X, EN_B2R, EN_B2X ) Control Transceiver Data Access 21150_07 D-channel RX/TX B1-channel RX B1-channel TX B2-channel RX B2-channel TX Transceiver Data TR IPAC-X PSB/PSF 21150 Description of Functional Blocks . Architecture of the IOM Handler (Example Configuration) 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks 3.7.1.1 Controller Data Access (CDA) With its four controller data access registers (CDA10, CDA11, CDA20, CDA21) the IPAC-X IOM-2 handler provides a very flexible solution for the host access to up to 32 IOM-2 time slots. The functional unit CDA (controller data access) allows with its control and configuration registers • Looping of up to four independent PCM channels from DU to DD or vice versa over the four CDA registers • Shifting of two independent PCM channels to another two independent PCM channels on both data ports (DU, DD). Between reading and writing the data can be manipulated (processed with an algorithm) by the microcontroller. If this is not the case a switching function is performed • Monitoring of up to four time slots on the IOM-2 interface simultaneously • Microcontroller read and write access to each PCM timeslot The access principle which is identical for the two channel register pairs CDA10/11 and CDA20/21 is illustrated in Figure 52. Each of the index variables x,y used in the following description can be 1 or 2 for x and 0 or 1 for y. The prefix ’CDA_’ from the register names has been omitted for simplification. To each of the four CDAxy data registers a TSDPxy register is assigned by which the time slot and the data port can be determined. With the TSS (Time Slot Selection) bits a time slot from 0...31 can be selected. With the DPS (Data Port Selection) bit the output of the CDAxy register can be assigned to DU or DD respectively. The time slot and data port for the output of CDAxy is always defined by its own TSDPxy register. The input of CDAxy depends on the SWAP bit in the control registers CRx. • If the SWAP bit = ’0’ (swap is disabled) the time slot and data port for the input and output of the CDAxy register is defined by its own TSDPxy register. • If the SWAP bit = ’1’ (swap is enabled) the input port and timeslot of the CDAx0 is defined by the TSDP register of CDAx1 and the input port and timeslot of CDAx1 is defined by the TSDP register of CDAx0. The input definition for timeslot and data port CDAx0 are thus swapped to CDAx1 and for CDAx1 swapped to CDAx0. The output timeslots are not affected by SWAP. The input and output of every CDAxy register can be enabled or disabled by setting the corresponding EN (-able) bit in the control register CDAx_CR. If the input of a register is disabled the output value in the register is retained. Usually one input and one output of a functional unit (transceiver, HDLC controllers, CDA register) is programmed to a timeslot on IOM-2 (e.g. for B-channel transmission in upstream direction the HDLC controller writes data onto IOM and the transceiver reads data from IOM). For monitoring data in such cases a CDA register is programmed as described below under “Monitoring Data”. Besides that none of the IOM timeslots must be assigned more than one input and output of any functional unit. Data Sheet 99 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks . TSa TSb DU Control Register 1 CDAx0 0 1 1 1 1 1 CDAx1 1 1 0 CDA_TSDPx2 Enable input * output (EN_I1) (EN_O1) Input Swap (SWAP) input * (EN_I0) 1 Time Slot Selection (TSS) 0 Data Port Selection (DPS) Time Slot Selection (TSS) CDA_CRx 0 Enable output (EN_O0) Data Port Selection (DPS) CDA_TSDPx1 1 DD TSa TSb IOM_HAND.FM4 x = 1 or 2; a,b = 0...11 *) In the normal mode (SWAP=0) the input of CDAx0 and CDAx1 is enabled via EN_I0 and EN_I1, respectively. If SWAP=1 EN_I0 controls the input of CDAx1 and EN_I1 controls the input of CDAx0. The output control (EN_O0 and EN_O1) is not affected by SWAP. Figure 52 Data Access via CDAx1 and CDAx2 Register Pairs Looping and Shifting Data Figure 53 gives examples for typical configurations with the above explained control and configuration possibilities with the bits TSS, DPS, EN and SWAP in the registers TSDPxy or CDAx_CR: a) Looping IOM-2 time slot data from DU to DD or vice versa (SWAP = 0) b) Shifting data from TSa to TSb and TSc to TSd in both transmission directions (SWAP = 1) c) Switching data from TSa to TSb and looping from DU to DD or TSc to TSd and looping from DD to DU respectively TSa is programmed in TSDP10, TSb in TSDP11, TSc in TSDP20 and TSd in TSDP21. It should also be noted that the input control of CDA registers is swapped if SWAP=1 while the output control is not affected (e.g. for CDA11 in example a: EN_I1=1 and EN_O1=1, whereas for CDA11 in example b: EN_I0=1 and EN_O1=1). Data Sheet 100 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks a) Looping Data TSa TSb TSc TSd CDA10 CDA11 CDA20 CDA21 TSc ’1’ TSd ’1’ DU DD .TSS: TSa TSb .DPS ’0’ ’0’ .SWAP ’0’ ’0’ b) Shifting Data TSa TSb TSc TSd CDA10 CDA11 CDA20 CDA21 DU DD .TSS: TSa TSb .DPS ’0’ ’1’ .SWAP ’1’ c) Switching Data TSa TSb CDA10 CDA11 TSc ’0’ TSd ’1’ ’1’ TSc TSd CDA20 CDA21 DU DD .TSS: TSa TSb .DPS ’0’ ’0’ .SWAP ’1’ Figure 53 TSc ’1’ TSd ’1’ ’1’ Examples for Data Access via CDAxy Registers a) Looping Data b) Shifting (Switching) Data c) Switching and Looping Data Data Sheet 101 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks Figure 54 shows the timing of looping TSa from DU to DD (a = 0...11) via CDAxy register. TSa is read in the CDAxy register from DU and is written one frame later on DD. . a = 0...11 FSC DU TSa TSa µC *) DD TSa STOV ACK WR RD STI CDAxy TSa *) if access by the µC is required Figure 54 Data Access when Looping TSa from DU to DD Figure 55 shows the timing of shifting data from TSa to TSb on DU(DD). In Figure 55a) shifting is done in one frame because TSa and TSb didn’t succeed direct one another (a,b = 0...9 and b ³ a+2. In Figure 55b) shifting is done from one frame to the following frame. This is the case when the time slots succeed one other (b = a+1) or b is smaller than a (b < a). At looping and shifting the data can be accessed by the controller between the synchronous transfer interrupt (STI) and the status overflow interrupt (STOV). STI and STOV are explained in the section ’Synchronous Transfer’. If there is no controller intervention the looping and shifting is done autonomous. Data Sheet 102 2003-01-30 IPAC-X PSB/PSF 21150 Description of Functional Blocks a) Shifting TSa ® TSb within one frame (a,b: 0...11 and b ³ a+2) FSC DU (DD) TSa TSa TSb µC *) STI STOV ACK WR RD STI CDAxy b) Shifting TSa ® TSb in the next frame (a,b: 0...11 and (b = a+1 or b
PSB21150HV1.4 价格&库存

很抱歉,暂时无法提供与“PSB21150HV1.4”相匹配的价格&库存,您可以联系我们找货

免费人工找货