0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SAF-XC164N-16F20FBB

SAF-XC164N-16F20FBB

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LQFP100

  • 描述:

    ICMCU16BIT128KBFLASH100TQFP

  • 数据手册
  • 价格&库存
SAF-XC164N-16F20FBB 数据手册
D at a S h e e t , V 1 . 0, J a n . 20 0 5 XC164N 1 6 - B i t S i n g l e - C h i p M i c r o c o n t r o l l er w i t h C 1 6 6 S V 2 C or e M i c r o c o n t r o l l er s N e v e r s t o p t h i n k i n g . Edition 2005-01 Published by Infineon Technologies AG, St.-Martin-Strasse 53, 81669 München, Germany © Infineon Technologies AG 2005. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as a guarantee of characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. D at a S h e e t , V 1 . 0, J a n . 20 0 5 XC164N 1 6 - B i t S i n g l e - C h i p M i c r o c o n t r o l l er w i t h C 1 6 6 S V 2 C or e M i c r o c o n t r o l l er s N e v e r s t o p t h i n k i n g . XC164N Revision History: 2005-01 Previous Version: None Page V1.0 Subjects (major changes since last revision) Controller Area Network (CAN): License of Robert Bosch GmbH We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com Template: mc_a5_ds_tmplt.fm / 4 / 2004-09-15 XC164-32 Derivatives Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2.1 2.2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Units (CAPCOM1/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . The Capture/Compare Unit CAPCOM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Asynchronous/Synchronous Serial Interfaces (ASC0/ASC1) . . . . . . . . . . High Speed Synchronous Serial Channels (SSC0/SSC1) . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 15 17 18 20 25 26 29 30 33 35 36 36 37 37 40 41 4 4.1 4.2 4.3 4.4 4.5 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 43 43 44 45 46 5 5.1 5.2 5.3 5.4 Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Clock Drive XTAL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 52 55 56 57 6 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Data Sheet 1 V1.0, 2005-01 XC164N Derivatives Summary of Features 1 • • • • • • • • • • • Summary of Features High Performance 16-bit CPU with 5-Stage Pipeline – 25 ns Instruction Cycle Time at 40 MHz CPU Clock (Single-Cycle Execution) – 1-Cycle Multiplication (16 × 16 bit), Background Division (32 / 16 bit) in 21 Cycles – 1-Cycle Multiply-and-Accumulate (MAC) Instructions – Enhanced Boolean Bit Manipulation Facilities – Zero-Cycle Jump Execution – Additional Instructions to Support HLL and Operating Systems – Register-Based Design with Multiple Variable Register Banks – Fast Context Switching Support with Two Additional Local Register Banks – 16 Mbytes Total Linear Address Space for Code and Data – 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible) 16-Priority-Level Interrupt System with up to 65 Sources, Sample-Rate down to 50 ns 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space Clock Generation via on-chip PLL (factors 1:0.15 … 1:10), or via Prescaler (factors 1:1 … 60:1) On-Chip Memory Modules – 2 Kbytes On-Chip Dual-Port RAM (DPRAM) – 2 Kbytes On-Chip Data SRAM (DSRAM) – 2 Kbytes On-Chip Program/Data SRAM (PSRAM) – up to 128 Kbytes On-Chip Program Memory (Flash Memory) On-Chip Peripheral Modules – Two 16-Channel General Purpose Capture/Compare Units (12 Input/Output Pins) – Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6) (3/6 Capture/Compare Channels and 1 Compare Channel) – Multi-Functional General Purpose Timer Unit with 5 Timers – Two Synchronous/Asynchronous Serial Channels (USARTs) – Two High-Speed-Synchronous Serial Channels – On-Chip Real Time Clock Idle, Sleep, and Power Down Modes with Flexible Power Management Programmable Watchdog Timer and Oscillator Watchdog Up to 12 Mbytes External Address Space for Code and Data – Programmable External Bus Characteristics for Different Address Ranges – Multiplexed or Demultiplexed External Address/Data Buses – Selectable Address Bus Width – 16-Bit or 8-Bit Data Bus Width – Four Programmable Chip-Select Signals Up to 79 General Purpose I/O Lines, partly with Selectable Input Thresholds and Hysteresis On-Chip Bootstrap Loader Data Sheet 1 V1.0, 2005-01 XC164N Derivatives Summary of Features • • • Supported by a Large Range of Development Tools like C-Compilers, Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers, Programming Boards On-Chip Debug Support via JTAG Interface 100-Pin TQFP Package, 0.5 mm (19.7 mil) pitch Ordering Information The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies: • • the derivative itself, i.e. its function set, the temperature range, and the supply voltage the package and the type of delivery. For the available ordering codes for the XC164N please refer to the “Product Catalog Microcontrollers”, which summarizes all available microcontroller variants. This document describes several derivatives of the XC164 group. Table 1 enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product. For simplicity all versions are referred to by the term XC164N throughout this document. Data Sheet 2 V1.0, 2005-01 XC164N Derivatives Summary of Features Table 1 XC164N Derivative Synopsis Derivative1) Program Memory On-Chip RAM Interfaces Clock SAF-XC164N-16F40F 128 Kbytes Flash 2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM ASC0, ASC1, SSC0, SSC1 40 MHz SAF-XC164N-16F20F 128 Kbytes Flash 2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM ASC0, ASC1, SSC0, SSC1 20 MHz SAF-XC164N-8F40F 64 Kbytes Flash 2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM ASC0, ASC1, SSC0, SSC1 40 MHz SAF-XC164N-8F20F 64 Kbytes Flash 2Kbytes DPRAM, 2Kbytes DSRAM, 2Kbytes PSRAM ASC0, ASC1, SSC0, SSC1 20 MHz 1) This Data Sheet is valid for devices starting with and including design step BA. Data Sheet 3 V1.0, 2005-01 XC164N Derivatives General Device Information 2 General Device Information 2.1 Introduction The XC164N derivatives are high-performance members of the Infineon XC166 Family of full featured single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 40 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program Flash, program RAM, and data RAM. VDDP VSSP VDDI/P VSSI/P XTAL1 XTAL2 PORT0 16 bit PORT1 16 bit NMI RSTIN RSTOUT EA Port 20 5 bit XC164N Port 3 14 bit Port 4 8 bit ALE RD WR/WRL Port 9 6 bit Port 5 14 bit TRST JTAG Debug Via Port 3 Figure 1 Data Sheet Logic Symbol 4 V1.0, 2005-01 XC164N Derivatives General Device Information 2.2 Pin Configuration and Definition 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 XTAL1 XTAL2 VSSI VDDI P1H.7/A15/CC27/EX7IN P1H.6/A14/CC26/EX6IN P1H.5/A13/CC25/EX5IN P1H.4/A12/CC24/EX4IN P1H.3/A11/T7IN/SCLK1/EX3IN/E*) P1H.2/A10/C6P2/MTSR1/EX2IN P1H.1/A9/C6P1/MRST1/EX1IN P1H.0/A8/C6P0/CC23/EX0IN VSSP VDDP P1L.7/A7/CTRAP/CC22 P1L.6/A6/COUT63 P1L.5/A5/COUT62 P1L.4/A4/CC62 P1L.3/A3/COUT61 P1L.2/A2/CC61 P1L.1/A1/COUT60 P1L.0/A0/CC60 P0H.7/AD15 P0H.6/AD14 P0H.5/AD13 The pins of the XC164N are described in detail in Table 2, including all their alternate functions. Figure 2 summarizes all pins in a condensed way, showing their location on the 4 sides of the package. E*) marks pins to be used as alternate external interrupt inputs. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 XC164N 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P0H.4/AD12 P0L.7/AD7 P0L.6/AD6 P0L.5/AD5 P0L.4/AD4 P0L.3/AD3 P0L.2/AD2 P0L.1/AD1 P0L.0/AD0 P20.5/EA P20.4/ALE P20.1/WR/WRL P20.0/RD VSSP VDDP P4.7/A23/C*) P4.6/A22/C*) P4.5/A21/C*) P4.4/A20/C*) P4.3/A19/CS0 P4.2/A18/CS1 P4.1/A17/CS2 P4.0/A16/CS3 P3.15/CLKOUT/FO P3.13/SCLK0/E*) P5.6 P5.7 VDDP VSSP P5.12/T6IN P5.13/T5IN P5.14/T4EUD P5.15/T2EUD VSSI VDDI TRST VSSP VDDP P3.1/T6OUT/RxD1/TCK/E*) P3.2/CAPIN/TDI P3.3/T3OUT/TDO P3.4/T3EUD/TMS P3.5/T4IN/TxD1/BRKOUT P3.6/T3IN P3.7/T2IN/BRKIN P3.8/MRST0 P3.9/MTSR0 P3.10/TxD0/E*) P3.11/RxD0/E*) P3.12/BHE/WRH/E*) 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 RSTIN P20.12/RSTOUT NMI P0H.0/AD8 P0H.1/AD9 P0H.2/AD10 P0H.3/AD11 VSSP VDDP P9.0/CC16IO P9.1/CC17IO P9.2/CC18IO P9.3/CC19IO P9.4/CC20IO P9.5/CC21IO VSSP VDDP P5.0 P5.1 P5.2 P5.3 P5.4 P5.5 P5.10/T6EUD P5.11/T5EUD Figure 2 Data Sheet Pin Configuration (top view) 5 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions Symbo Pin l Num. RSTIN 1 Input Outp. Function I Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the XC164N. A spike filter suppresses input pulses 100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. Note: The reset duration must be sufficient to let the hardware configuration signals settle. External circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached the operating range. P20.12 2 IO For details, please refer to the description of P20. NMI 3 I Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the XC164N into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally. P0H.0P0H.3 4…7 IO For details, please refer to the description of PORT0. Data Sheet 6 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbo Pin l Num. Input Outp. Function P9 IO 10 I/O Port 9 is a 6-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 9 is selectable (standard or special). The following Port 9 pins also serve for alternate functions: CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp., 11 I I/O EX7IN CC17IO Fast External Interrupt 7 Input (alternate pin B) CAPCOM2: CC17 Capture Inp./Compare Outp., P9.2 12 I I/O EX6IN CC18IO Fast External Interrupt 6 Input (alternate pin B) CAPCOM2: CC18 Capture Inp./Compare Outp., P9.3 13 I I/O EX7IN CC19IO Fast External Interrupt 7 Input (alternate pin A) CAPCOM2: CC19 Capture Inp./Compare Outp., 14 15 I I/O I/O EX6IN CC20IO CC21IO Fast External Interrupt 6 Input (alternate pin A) CAPCOM2: CC20 Capture Inp./Compare Outp. CAPCOM2: CC21 Capture Inp./Compare Outp. I Port 5 is a 14-bit input-only port. Some pins of Port 5 serve as timer inputs: I I I I I I I I I I I I I I No Alternate Function beside General Purpose Input No Alternate Function beside General Purpose Input No Alternate Function beside General Purpose Input No Alternate Function beside General Purpose Input No Alternate Function beside General Purpose Input T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp. T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp. P9.0 P9.1 P9.4 P9.5 P5 P5.0 P5.1 P5.2 P5.3 P5.4 P5.5 P5.10 P5.11 P5.6 P5.7 P5.12 P5.13 P5.14 P5.15 18 19 20 21 22 23 24 25 26 27 30 31 32 33 Data Sheet T6IN T5IN T4EUD T2EUD GPT2 Timer T6 Count/Gate Input GPT2 Timer T5 Count/Gate Input GPT1 Timer T4 Ext. Up/Down Ctrl. Inp. GPT1 Timer T2 Ext. Up/Down Ctrl. Inp. 7 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbo Pin l Num. Input Outp. Function TRST I Test-System Reset Input. A high level at this pin activates the XC164N’s debug system. For normal system operation, pin TRST should be held low. IO Port 3 is a 14-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 3 is selectable (standard or special). The following Port 3 pins also serve for alternate functions: T6OUT GPT2 Timer T6 Toggle Latch Output, RxD1 ASC1 Data Input (Async.) or Inp./Outp. (Sync.), EX1IN Fast External Interrupt 1 Input (alternate pin A), TCK Debug System: JTAG Clock Input CAPIN GPT2 Register CAPREL Capture Input, TDI Debug System: JTAG Data In T3OUT GPT1 Timer T3 Toggle Latch Output, TDO Debug System: JTAG Data Out T3EUD GPT1 Timer T3 External Up/Down Control Input, TMS Debug System: JTAG Test Mode Selection T4IN GPT1 Timer T4 Count/Gate/Reload/Capture Inp TxD1 ASC0 Clock/Data Output (Async./Sync.), BRKOUT Debug System: Break Out T3IN GPT1 Timer T3 Count/Gate Input T2IN GPT1 Timer T2 Count/Gate/Reload/Capture Inp BRKIN Debug System: Break In MRST0 SSC0 Master-Receive/Slave-Transmit In/Out. MTSR0 SSC0 Master-Transmit/Slave-Receive Out/In. TxD0 ASC0 Clock/Data Output (Async./Sync.), EX2IN Fast External Interrupt 2 Input (alternate pin B) RxD0 ASC0 Data Input (Async.) or Inp./Outp. (Sync.), EX2IN Fast External Interrupt 2 Input (alternate pin A) BHE External Memory High Byte Enable Signal, WRH External Memory High Byte Write Strobe, EX3IN Fast External Interrupt 3 Input (alternate pin B) SCLK0 SSC0 Master Clock Output / Slave Clock Input., EX3IN Fast External Interrupt 3 Input (alternate pin A) CLKOUT System Clock Output (=CPU Clock), FOUT Programmable Frequency Output 36 P3 P3.1 39 P3.2 40 P3.3 41 P3.4 42 P3.5 43 P3.6 P3.7 44 45 P3.8 P3.9 P3.10 46 47 48 P3.11 49 P3.12 50 P3.13 51 P3.15 52 Data Sheet O I/O I I I I O O I I I O O I I I I/O I/O O I I/O I O O I I/O I O O 8 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbo Pin l Num. Input Outp. Function P4 IO Port 4 is an 8-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 4 is selectable (standard or special). Port 4 can be used to output the segment address lines, the optional chip select lines, and for serial interface lines: A16 Least Significant Segment Address Line, CS3 Chip Select 3 Output A17 Segment Address Line, CS2 Chip Select 2 Output A18 Segment Address Line, CS1 Chip Select 1 Output A19 Segment Address Line, CS0 Chip Select 0 Output A20 Segment Address Line, P4.0 53 P4.1 54 P4.2 55 P4.3 56 P4.4 57 O O O O O O O O O P4.5 58 I O EX5IN A21 Fast External Interrupt 5 Input (alternate pin B) Segment Address Line, P4.6 59 I O EX4IN A22 Fast External Interrupt 4 Input (alternate pin B) Segment Address Line, 60 I O EX5IN A23 Fast External Interrupt 5 Input (alternate pin A) Most Significant Segment Address Line, I EX4IN Fast External Interrupt 4 Input (alternate pin A) P4.7 Data Sheet 9 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbo Pin l Num. Input Outp. Function P20 IO Port 20 is a 5-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output. The input threshold of Port 20 is selectable (standard or special). The following Port 20 pins also serve for alternate functions: RD External Memory Read Strobe, activated for every external instruction or data read access. WR/WRL External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. ALE Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes. EA External Access Enable pin. A low level at this pin during and after Reset forces the XC164N to latch the configuration from PORT0 and pin RD, and to begin instruction execution out of external memory. A high level forces the XC164N to latch the configuration from pins RD, ALE, and WR, and to begin instruction execution out of the internal program memory. "ROMless" versions must have this pin tied to ‘0’. RSTOUT Internal Reset Indication Output. Is activated asynchronously with an external hardware reset. It may also be activated (selectable) synchronously with an internal software or watchdog reset. Is deactivated upon the execution of the EINIT instruction, optionally at the end of reset, or at any time (before EINIT) via user software. P20.0 63 O P20.1 64 O P20.4 65 O P20.5 66 I P20.12 2 O Note: Port 20 pins may input configuration values (see EA). Data Sheet 10 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbo Pin l Num. Input Outp. Function PORT0 IO PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. Each pin can be programmed for input (output driver in high-impedance state) or output. In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes. Demultiplexed bus modes: Data Path Width: 8-bit 16-bit P0L.0 – P0L.7: D0 – D7 D0 - D7 P0H.0 – P0H.7: I/O D8 - D15 Multiplexed bus modes: Data Path Width: 8-bit 16-bit P0L.0 – P0L.7: AD0 – AD7 AD0 - AD7 P0H.0 – P0H.7: A8 - A15 AD8 - AD15 P0L.0 - 67 P0L.7 74 P0H.0 - 4 P0L.3 7 P0H.4 - 75 P0L.7 78 Note: At the end of an external reset (EA = 0) PORT0 also may input configuration values IO PORT1 P1L.0 P1L.1 P1L.2 P1L.3 P1L.4 P1L.5 P1L.6 P1L.7 79 80 81 82 83 84 85 86 P1H … I/O O I/O O I/O O O I I/O Data Sheet PORT1 consists of the two 8-bit bidirectional I/O ports P1L and P1H. Each pin can be programmed for input (output driver in high-impedance state) or output. PORT1 is used as the 16-bit address bus (A) in demultiplexed bus modes (also after switching from a demultiplexed to a multiplexed bus mode). The following PORT1 pins also serve for alt. functions: CC60 CAPCOM6: Input / Output of Channel 0 COUT60 CAPCOM6: Output of Channel 0 CC61 CAPCOM6: Input / Output of Channel 1 COUT61 CAPCOM6: Output of Channel 1 CC62 CAPCOM6: Input / Output of Channel 2 COUT62 CAPCOM6: Output of Channel 2 COUT63 Output of 10-bit Compare Channel CTRAP CAPCOM6: Trap Input CTRAP is an input pin with an internal pullup resistor. A low level on this pin switches the CAPCOM6 compare outputs to the logic level defined by software (if enabled). CC22IO CAPCOM2: CC22 Capture Inp./Compare Outp. …continued… 11 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbo Pin l Num. Input Outp. Function PORT1 (cont’d) P1H.0 89 IO …continued… I I I/O I I I/O I I I/O I I/O I I I/O I I/O I I/O I I/O I CC6POS0 EX0IN CC23IO CC6POS1 EX1IN MRST1 CC6POS2 EX2IN MTSR1 T7IN SCLK1 EX3IN EX0IN CC24IO EX4IN CC25IO EX5IN CC26IO EX6IN CC27IO EX7IN CAPCOM6: Position 0 Input, Fast External Interrupt 0 Input (default pin), CAPCOM2: CC23 Capture Inp./Compare Outp. CAPCOM6: Position 1 Input, Fast External Interrupt 1 Input (default pin), SSC1 Master-Receive/Slave-Transmit In/Out. CAPCOM6: Position 2 Input, Fast External Interrupt 2 Input (default pin), SSC1 Master-Transmit/Slave-Receive Out/Inp. CAPCOM2: Timer T7 Count Input, SSC1 Master Clock Output / Slave Clock Input, Fast External Interrupt 3 Input (default pin), Fast External Interrupt 0 Input (alternate pin A) CAPCOM2: CC24 Capture Inp./Compare Outp., Fast External Interrupt 4 Input (default pin) CAPCOM2: CC25 Capture Inp./Compare Outp., Fast External Interrupt 5 Input (default pin) CAPCOM2: CC26 Capture Inp./Compare Outp., Fast External Interrupt 6 Input (default pin) CAPCOM2: CC27 Capture Inp./Compare Outp., Fast External Interrupt 7 Input (default pin) P1H.1 90 P1H.2 91 P1H.3 92 P1H.4 93 P1H.5 94 P1H.6 95 P1H.7 96 XTAL2 XTAL1 99 100 O I XTAL2: XTAL1: res res VDDI 28 - pin is reserved and connected to VDDP 29 - pin is reserved and connected to VSSP 35, 97 - Digital Core Supply Voltage (On-Chip Modules): +2.5 V during normal operation and idle mode. Please refer to the Operating Conditions Data Sheet Output of the oscillator amplifier circuit Input to the oscillator amplifier and input to the internal clock generator To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed. 12 V1.0, 2005-01 XC164N Derivatives General Device Information Table 2 Pin Definitions and Functions (cont’d) Symbo Pin l Num. Input Outp. Function VDDP 9, 17, 38, 61, 87 Digital Pad Supply Voltage (Pin Output Drivers): +5 V during normal operation and idle mode. Please refer to the Operating Conditions VSSI VSSP 34, 98 Digital Ground. Connect decoupling capacitors to adjacent VDD/VSS pin pairs as close as possible to the pins. All VSS pins must be connected to the ground-line or groundplane. - 8, 16, 37, 62, 88 Data Sheet 13 V1.0, 2005-01 XC164N Derivatives Functional Description 3 Functional Description The architecture of the XC164N combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a very well-balanced way. In addition, the on-chip memory blocks allow the design of compact systems-on-silicon with maximum performance (computing, control, communication). The on-chip memory blocks (program code-memory and SRAM, dual-port RAM, data SRAM) and the set of generic peripherals are connected to the CPU via separate buses. Another bus, the LXBus, connects additional on-chip resoures as well as external resources (see Figure 3). This bus structure enhances the overall system performance by enabling the concurrent operation of several subsystems of the XC164N. The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the XC164N. PSRAM DPRAM DSRAM ProgMem Flash 128 KBytes DMU PMU EBC CPU XBUS Control External Bus Control C166SV2-Core OCDS Debug Support XTAL Osc / PLL RTC WDT Interrupt & PEC Clock Generation Interrupt Bus Peripheral Data Bus GPT T2 ASC0 ASC1 SSC0 (USART) (USART) SSC1 (SPI) (SPI) T3 CC1 CC2 CC6 T0 T7 T12 T1 T8 T13 T4 T5 T6 P 20 Port 9 5 BRGen BRGen Port 5 6 14 BRGen BRGen Port 4 Port 3 PORT1 PORT0 8 14 16 16 SAF-XC164N-16FxxF AC Figure 3 Data Sheet Block Diagram 14 V1.0, 2005-01 XC164N Derivatives Functional Description 3.1 Memory Subsystem and Organization The memory space of the XC164N is configured in a Von Neumann architecture, which means that all internal and external resources, such as code memory, data memory, registers and I/O ports, are organized within the same linear address space. This common memory space includes 16 Mbytes and is arranged as 256 segments of 64 Kbytes each, where each segment consists of four data pages of 16 Kbytes each. The entire memory space can be accessed bytewise or wordwise. Portions of the onchip DPRAM and the register spaces (E/SFR) have additionally been made directly bitaddressable. The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment. The Program Management Unit (PMU) handles all code fetches and, therefore, controls accesses to the program memories, such as Flash memory and PSRAM. The Data Management Unit (DMU) handles all data transfers and, therefore, controls accesses to the DSRAM and the on-chip peripherals. Both units (PMU and DMU) are connected via the high-speed system bus to exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources, including peripherals on the LXbus. The system bus allows concurrent two-way communication for maximum transfer performance. 128 Kbytes of on-chip Flash memory store code or constant data. The on-chip Flash memory is organized as four 8-Kbyte sectors, one 32-Kbyte sector, and one 64-Kbyte sectors. Each sector can be separately write protected1), erased and programmed (in blocks of 128 Bytes). The complete Flash area can be read-protected. A password sequence temporarily unlocks protected areas. The Flash module combines very fast 64-bit one-cycle read accesses with protected and efficient writing algorithms for programming and erasing. Thus, program execution out of the internal Flash results in maximum performance. Dynamic error correction provides extremely high read data security for all read accesses. Programming typically takes 2 ms per 128-byte block (5 ms max.), erasing a sector typically takes 200 ms (500 ms max.). 2 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is therefore optimized for code fetches. 2 Kbytes of on-chip Data SRAM (DSRAM) are provided as a storage for general user data.The DSRAM is accessed via the DMU and is therefore optimized for data accesses. 2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user defined variables, for the system stack, general purpose register banks. A register bank can consist of up to 16 wordwide (R0 to R15) and/or bytewide (RL0, RH0, …, RL7, RH7) 1) Each two 8-Kbyte sectors are combined for write-protection purposes. Data Sheet 15 V1.0, 2005-01 XC164N Derivatives Functional Description so-called General Purpose Registers (GPRs). The upper 256 bytes of the DPRAM are directly bitaddressable. When used by a GPR, any location in the DPRAM is bitaddressable. 1024 bytes (2 × 512 bytes) of the address space are reserved for the Special Function Register areas (SFR space and ESFR space). SFRs are wordwide registers which are used for controlling and monitoring functions of the different on-chip units. Unused SFR addresses are reserved for future members of the XC166 Family. Therefore, they should either not be accessed, or written with zeros, to ensure upward compatibility. In order to meet the needs of designs where more memory is required than is provided on chip, up to 12 Mbytes (approximately, see Table 3) of external RAM and/or ROM can be connected to the microcontroller. The External Bus Interface also provides access to external peripherals. Table 3 XC164N Memory Map1) Address Area Start Loc. End Loc. Area Size2) Flash register space FF’F000H FF’FFFFH 4 Kbytes Reserved (Acc. trap) F8’0000H FF’EFFFH 0 IOV < 0 IOV > 0 IOV < 0 Overload current coupling KOVD factor for digital I/O pins7) – 5.0 × 10-3 – – 1.0 × 10-2 – Absolute sum of overload currents Σ|IOV| – 50 mA 6) External Load Capacitance CL – 50 pF Pin drivers in default mode8) Ambient temperature TA 0 70 °C SAB-XC164N … -40 85 °C SAF-XC164N … -40 125 °C SAK-XC164N … 1) fCPUmax = 40 MHz for devices marked …40F, fCPUmax = 20 MHz for devices marked …20F. 2) External circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached the operating level. 3) The specified voltage range is allowed for operation. The range limits may be reached under extreme operating conditions. However, specified parameters, such as leakage currents, refer to the standard operating voltage range of VDDP = 4.75 V to 5.25 V. 4) This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down, and power-save modes. Data Sheet 44 V1.0, 2005-01 XC164N Derivatives Electrical Parameters 5) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: VOV > VDDP + 0.5 V (IOV > 0) or VOV < VSS - 0.5 V (IOV < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR, etc. 6) Not subject to production test - verified by design/characterization. 7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error current adds to the respective pin’s leakage current (IOZ). The amount of error current depends on the overload current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is |ITOT| = |IOZ| + (|IOV| × KOV). The additional error current may distort the input voltage on analog inputs. 8) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (CL). 4.4 Parameter Interpretation The parameters listed in the following partly represent the characteristics of the XC164N and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column “Symbol”: CC (Controller Characteristics): The logic of the XC164N will provide signals with the respective characteristics. SR (System Requirement): The external system must provide signals with the respective characteristics to the XC164N. Data Sheet 45 V1.0, 2005-01 XC164N Derivatives Electrical Parameters 4.5 DC Parameters DC Characteristics (Operating Conditions apply)1) Parameter Symbol Limit Values min. Unit Test Condition max. Input low voltage TTL (all except XTAL1) VIL SR -0.5 0.2×VDDP V - 0.1 – Input low voltage XTAL1 VILC SR -0.5 VILS SR -0.5 0.3 ×VDDI V – 0.45 × VDDP V 2) Input low voltage (Special Threshold) Input high voltage TTL (all except XTAL1) VIH SR 0.2×VDDP VDDP + 0.5 + 0.9 V – Input high voltage XTAL1 VIHC SR 0.7 VDDI × VDDI + 0.5 VIHS SR 0.8×VDDP VDDP V – V 2) V VDDP in [V], Input high voltage (Special Threshold) - 0.2 + 0.5 0.04 × VDDP – Input Hysteresis (Special Threshold) HYS Output low voltage VOL CC – – Output high voltage5) VOH CC VDDP Series resistance = 0 Ω2) 1.0 V 0.45 V – V IOL ≤ IOLmax3) IOL ≤ IOLnom3) 4) IOH ≥ IOHmax3) – V IOH ≥ IOHnom3) 4) ±300 nA 0 V < VIN < VDDP, TA ≤ 125 °C ±200 nA 0 V < VIN < VDDP, TA ≤ 85 °C12) ±500 nA 0.45 V < VIN < VDDP VIN = VIHmin VIN = VILmax - 1.0 VDDP - 0.45 Input leakage current (Port 5)6) Input leakage current (all other)6) IOZ1 CC – IOZ2 CC – Configuration pull-up current7) ICPUH8) ICPUL9) Data Sheet – -10 µA -100 – µA 46 V1.0, 2005-01 XC164N Derivatives Electrical Parameters DC Characteristics (cont’d) (Operating Conditions apply)1) Parameter Configuration pull-down current10) Level inactive hold current11) Level active hold current11) XTAL1 input current Pin capacitance12) (digital inputs/outputs) Symbol 8) ICPDL ICPDH9) ILHI8) Limit Values Unit Test Condition min. max. – 10 µA 120 – µA – -10 µA – µA ±20 µA 10 pF ILHA9) -100 IIL CC – CIO CC – VIN = VILmax VIN = VIHmin VOUT = 0.5 × VDDP VOUT = 0.45 V 0 V < VIN < VDDI 1) Keeping signal levels within the limits specified in this table, ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. 2) This parameter is tested for P2, P3, P4, P9. 3) The maximum deliverable output current of a port driver depends on the selected output driver mode, see Table 12, Current Limits for Port Output Drivers. The limit for pin groups must be respected. 4) As a rule, with decreasing output current the output levels approach the respective supply level (VOL→VSS, VOH→VDDP). However, only the levels for nominal output currents are guaranteed. 5) This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry. 6) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 7) This specification is valid during Reset for configuration on RD, WR, EA, PORT0. 8) The maximum current may be drawn while the respective signal line remains inactive. 9) The minimum current must be drawn to drive the respective signal line active. 10) This specification is valid during Reset for configuration on ALE. 11) This specification is valid during Reset for pins P4.3-0, which can act as CS outputs. 12) Not subject to production test - verified by design/characterization. Data Sheet 47 V1.0, 2005-01 XC164N Derivatives Electrical Parameters Table 12 Current Limits for Port Output Drivers Port Output Driver Mode Maximum Output Current (IOLmax, -IOHmax)1) Nominal Output Current (IOLnom, -IOHnom) Strong driver 10 mA 2.5 mA Medium driver 4.0 mA 1.0 mA Weak driver 0.5 mA 0.1 mA 1) An output current above |IOXnom| may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣIOL and Σ-IOH) must remain below 50 mA. Power Consumption XC164N (Operating Conditions apply) Parameter Symbol Limit Values Unit Test Condition min. max. 15 + 2.6 × fCPU mA Power supply current (active) with all peripherals active IDDI – Pad supply current IDDP IIDX – 5 mA – 15 + 1.2 × fCPU mA Sleep and Power-down mode supply current caused by leakage4) IPDL5) – 128,000 × e-α mA Sleep and Power-down mode supply current caused by leakage and the RTC running, clocked by the main oscillator4) IPDM7) 0.6 + 0.02×fOSC + IPDL mA Idle mode supply current with all peripherals active – 1) fCPU in [MHz]2) 3) fCPU in [MHz]2) VDDI=VDDImax6) TJ in [°C] α= 4670/(273+TJ) VDDI=VDDImax fOSC in [MHz] 1) During Flash programming or erase operations the supply current is increased by max. 5 mA. 2) The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at VDDImax and maximum CPU clock frequency with all outputs disconnected and all inputs at VIL or VIH. 3) The pad supply voltage pins (VDDP) mainly provides the current consumed by the pin output drivers. A small amount of current is consumed even though no outputs are driven, because the drivers’ input stages are switched and also the Flash module draws some power from the VDDP supply. 4) The total supply current in Sleep and Power-down mode is the sum of the temperature dependent leakage current and the frequency dependent current for RTC and main oscillator (if active). Data Sheet 48 V1.0, 2005-01 XC164N Derivatives Electrical Parameters 5) This parameter is determined mainly by the transistor leakage currents. This current heavily depends on the junction temperature (see Figure 12). The junction temperature TJ is the same as the ambient temperature TA if no current flows through the port output drivers. Otherwise, the resulting temperature difference must be taken into account. 6) All inputs (including pins configured as inputs) at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP, all outputs (including pins configured as outputs) disconnected. This parameter is tested at 25 °C and is valid for TJ ≥ 25 °C. 7) This parameter is determined mainly by the current consumed by the oscillator switched to low gain mode (see Figure 11). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The given values refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry. Data Sheet 49 V1.0, 2005-01 XC164N Derivatives Electrical Parameters I [mA] IDDImax 140 120 IDDItyp 100 80 IIDXmax 60 IIDXtyp 40 20 10 Figure 10 Data Sheet 20 30 40 fCPU [MHz] Supply/Idle Current as a Function of Operating Frequency 50 V1.0, 2005-01 XC164N Derivatives Electrical Parameters I [mA] 3.0 2.0 IPDMmax IPDMtyp 1.0 IPDAmax 0.1 32 kHz Figure 11 4 8 12 16 fOSC [MHz] Sleep and Power Down Supply Current due to RTC and Oscillator running, as a Function of Oscillator Frequency IPDO [mA] 1.5 1.0 0.5 -50 Figure 12 Data Sheet 0 50 100 150 TJ [°C] Sleep and Power Down Leakage Supply Current as a Function of Temperature 51 V1.0, 2005-01 XC164N Derivatives Timing Parameters 5 Timing Parameters 5.1 Definition of Internal Timing The internal operation of the XC164N is controlled by the internal master clock fMC. The master clock signal fMC can be generated from the oscillator clock signal fOSC via different mechanisms. The duration of master clock periods (TCMs) and their variation (and also the derived external timing) depend on the used mechanism to generate fMC. This influence must be regarded when calculating the timings for the XC164N. Phase Locked Loop Operation (1:N) fOSC fMC TCM Direct Clock Drive (1:1) fOSC fMC TCM Prescaler Operation (N:1) fOSC fMC TCM Figure 13 Generation Mechanisms for the Master Clock Note: The example for PLL operation shown in Figure 13 refers to a PLL factor of 1:4, the example for prescaler operation refers to a divider factor of 2:1. The used mechanism to generate the master clock is selected by register PLLCON. CPU and EBC are clocked with the CPU clock signal fCPU. The CPU clock can have the same frequency as the master clock (fCPU = fMC) or can be the master clock divided by two: fCPU = fMC / 2. This factor is selected by bit CPSYS in register SYSCON1. The specification of the external timing (AC Characteristics) depends on the period of the CPU clock, called “TCP”. The other peripherals are supplied with the system clock signal fSYS which has the same frequency as the CPU clock signal fCPU. Data Sheet 52 V1.0, 2005-01 XC164N Derivatives Timing Parameters Bypass Operation When bypass operation is configured (PLLCTRL = 0xB) the master clock is derived from the internal oscillator (input clock signal XTAL1) through the input- and outputprescalers: fMC = fOSC / ((PLLIDIV+1)×(PLLODIV+1)). If both divider factors are selected as ’1’ (PLLIDIV = PLLODIV = ’0’) the frequency of fMC directly follows the frequency of fOSC so the high and low time of fMC is defined by the duty cycle of the input clock fOSC. The lowest master clock frequency is achieved by selecting the maximum values for both divider factors: fMC = fOSC / ((3+1)×(14+1)) = fOSC / 60. Phase Locked Loop (PLL) When PLL operation is configured (PLLCTRL = 11B) the on-chip phase locked loop is enabled and provides the master clock. The PLL multiplies the input frequency by the factor F (fMC = fOSC × F) which results from the input divider, the multiplication factor, and the output divider (F = PLLMUL+1 / (PLLIDIV+1 × PLLODIV+1)). The PLL circuit synchronizes the master clock to the input clock. This synchronization is done smoothly, i.e. the master clock frequency does not change abruptly. Due to this adaptation to the input clock the frequency of fMC is constantly adjusted so it is locked to fOSC. The slight variation causes a jitter of fMC which also affects the duration of individual TCMs. The timing listed in the AC Characteristics refers to TCPs. Because fCPU is derived from fMC, the timing must be calculated using the minimum TCP possible under the respective circumstances. The actual minimum value for TCP depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCP is lower than for one single TCP (see formula and Figure 14). This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler (K = PLLODIV+1) to generate the master clock signal fMC. Therefore, the number of VCO cycles can be represented as K × N, where N is the number of consecutive fMC cycles (TCM). Data Sheet 53 V1.0, 2005-01 XC164N Derivatives Timing Parameters For a period of N × TCM the accumulated PLL jitter is defined by the deviation DN: DN [ns] = ±(1.5 + 6.32 × N / fMC); fMC in [MHz], N = number of consecutive TCMs. So, for a period of 3 TCMs @ 20 MHz and K = 12: D3 = ±(1.5 + 6.32 × 3 / 20) = 2.448 ns. This formula is applicable for K × N < 95. For longer periods the K×N=95 value can be used. This steady value can be approximated by: DNmax [ns] = ±(1.5 + 600 / (K × fMC)). A cc. jitter D N ns K =1 5 K =12 K =10 K =8 K =6 K =5 ±8 ±7 ±6 M Hz ±5 10 ±4 ±3 ±2 z MH 0 2 Hz 40 M ±1 0 1 5 15 10 20 25 N m c b 04 41 3 _x c .vs d Figure 14 Approximated Accumulated PLL Jitter Note: The bold lines indicate the minimum accumulated jitter which can be achieved by selecting the maximum possible output prescaler factor K. Different frequency bands can be selected for the VCO, so the operation of the PLL can be adjusted to a wide range of input and output frequencies: Table 13 VCO Bands for PLL Operation1) PLLCON.PLLVB VCO Frequency Range Base Frequency Range 00 100 … 150 MHz 20 … 80 MHz 01 150 … 200 MHz 40 … 130 MHz 10 200 … 250 MHz 60 … 180 MHz 11 Reserved 1) Not subject to production test - verified by design/characterization. Data Sheet 54 V1.0, 2005-01 XC164N Derivatives Timing Parameters 5.2 Table 14 External Clock Drive XTAL1 External Clock Drive Characteristics (Operating Conditions apply) Parameter Symbol tOSC t1 t2 t3 t4 Oscillator period High time2) Low time2) Rise time2) Fall time2) Limit Values Unit min. max. SR 20 2501) ns SR 6 – ns SR 6 – ns SR – 8 ns SR – 8 ns 1) The maximum limit is only relevant for PLL operation to ensure the minimum input frequency for the PLL. 2) The clock input signal must reach the defined levels VILC and VIHC. t1 t3 t4 VIHC 0.5 VDDI VILC t2 t OSC MCT05138 Figure 15 External Clock Drive XTAL1 Note: If the on-chip oscillator is used together with a crystal or a ceramic resonator, the oscillator frequency is limited to a range of 4 MHz to 16 MHz. It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier. When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is verified by design only (not subject to production test). Data Sheet 55 V1.0, 2005-01 XC164N Derivatives Timing Parameters 5.3 Testing Waveforms Input signal (driven by tester) Output signal (measured) 2.0 V 0.8 V 0.45 V Figure 16 Input Output Waveforms VLoad + 0.1 V VOH - 0.1 V Timing Reference Points VLoad - 0.1 V VOL + 0.1 V For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, but begins to float when a 100 mV change from the loaded VOH / VOL level occurs (I OH / I OL = 20 mA). MCA00763 Figure 17 Data Sheet Float Waveforms 56 V1.0, 2005-01 XC164N Derivatives Timing Parameters 5.4 AC Characteristics Table 15 CLKOUT Reference Signal Parameter Symbol Limits min. tc5 tc6 tc7 tc8 tc9 CLKOUT cycle time CLKOUT high time CLKOUT low time CLKOUT rise time CLKOUT fall time CC Unit max. 50/251) ns CC 8 – ns CC 6 – ns CC – 4 ns CC – 4 ns 1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to fCPU = 20/40 MHz). For longer periods the relative deviation decreases (see PLL deviation formula). tc7 tc5 tc6 tc9 tc8 CLKOUT MCT04415 Figure 18 Data Sheet CLKOUT Signal Timing 57 V1.0, 2005-01 XC164N Derivatives Timing Parameters Variable Memory Cycles External bus cycles of the XC164N are executed in five subsequent cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.). This table provides a summary of the phases and the respective choices for their duration. The specification of the external timing depends on the period of the CPU clock, which is called “TCP” and is used in Table 16 Table 16 Programmable Bus Cycle Phases (see timing diagrams) Bus Cycle Phase Parameter Address setup phase, the standard duration of this tpAB phase (1 … 2 TCP) can be extended by 0 … 3 TCP if the address window is changed tpC tpD tpE tpF Command delay phase Write Data setup / MUX Tristate phase Access phase Address / Write Data hold phase Valid Values Unit 1 … 2 (5) TCP 0…3 TCP 0…1 TCP 1 … 32 TCP 0…3 TCP Note: The bandwidth of a parameter (minimum and maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing). Data Sheet 58 V1.0, 2005-01 XC164N Derivatives Timing Parameters Table 17 External Bus Cycle Timing (Operating Conditions apply) Parameter Symbol Limits min. Unit max. Output valid delay for: RD, WR(L/H) tc10 CC 1 15 ns Output valid delay for: BHE, ALE tc11 CC -1 8 ns Output valid delay for: A23…A16, A15…A0 (on PORT1) tc12 CC 3 18 ns Output valid delay for: A15…A0 (on PORT0) tc13 CC 3 18 ns Output valid delay for: CS tc14 CC 3 16 ns Output valid delay for: D15…D0 (write data, mux-mode) tc15 CC 3 19 ns Output valid delay for: D15…D0 (write data, demux-mode) tc16 CC 2 16 ns Output hold time for: RD, WR(L/H) tc20 CC -3 4 ns Output hold time for: BHE, ALE tc21 CC 0 11 ns Output hold time for: A23…A16, A15…A0 (on PORT0) tc23 CC 1 13 ns Output hold time for: CS tc24 CC -2 4 ns Output hold time for: D15…D0 (write data) tc25 CC 1 13 ns Input setup time for: D15…D0 (read data) tc30 SR 29 – ns Input hold time D15…D0 (read data)1) tc31 SR -5 – ns 1) Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can be removed after the rising edge of RD Note: The shaded parameters have been verified by characterization. They are not subject to production test. Data Sheet 59 V1.0, 2005-01 XC164N Derivatives Timing Parameters tpAB tpC tc11 tc21 tpD tpE tpF CLKOUT ALE tc11|tc14 A23-A16, BHE, CSx High Address tc10 tc20 RD WR(L/H) tc13 AD15-AD0 (read) tc23 Low Address tc13 AD15-AD0 (write) Figure 19 Data Sheet tc30 tc31 Data In tc15 Low Address tc25 Data Out Multiplexed Bus Cycle 60 V1.0, 2005-01 XC164N Derivatives Timing Parameters tpAB tpC tc11 tc21 tpD tpE tpF CLKOUT ALE tc11|tc14 A23-A0, BHE, CSx Address tc10 tc20 RD WR(L/H) tc30 D15-D0 (read) Data In tc16 D15-D0 (write) Figure 20 Data Sheet tc31 tc25 Data Out Demultiplexed Bus Cycle 61 V1.0, 2005-01 XC164N Derivatives Packaging 6 Figure 21 Packaging Package Outlines P-TQFP-100-16 (Plastic Thin Quad Flat Package) Dimensions in mm. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products Data Sheet 62 V1.0, 2005-01 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
SAF-XC164N-16F20FBB 价格&库存

很抱歉,暂时无法提供与“SAF-XC164N-16F20FBB”相匹配的价格&库存,您可以联系我们找货

免费人工找货