32-Bit
Microcontroller
TC260 / 264 / 265 / 267
32-Bit Single-Chip Microcontroller
BC-Step
32-Bit Single-Chip Microcontroller
Data Sheet
V 1.0, 2017-06
Microcontrollers
Edition 2017-06
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2017 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com)
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TC 260 / 264 / 265 / 267
Revision History
Page or Item
Subjects (major changes since previous revision)
V 1.0, 2017-06
The history is documented in the last chapter
Data Sheet
3
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Table of Contents
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2
Package and Pinning Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
TC264x Pin Definition and Functions: LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TC264 LQFP144 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
TC265x Pin Definition and Functions: LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
TC265 LQFP176 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
TC267x Pin Definition and Functions: BGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
TC267 BGA292 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
TC260 Bare Die Pad Definition: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
TC 260 / 264 / 265 / 267 Bare Die Pad Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.14.1
3.15
3.15.1
3.15.2
3.15.3
3.15.4
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 V / 3.3 V switchable Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3 V only Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High performance LVDS Pads (LVDSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Medium performance LVDS Pads (LVDSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DSADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Back-up Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
TOC-1
177
177
178
179
182
184
202
204
208
209
215
221
222
223
224
228
229
229
231
233
235
237
239
245
246
247
248
250
252
255
259
V 1.0, 2017-06
TC 260 / 264 / 265 / 267
3.26
3.27
3.28
3.29
3.29.1
3.29.2
3.29.3
3.29.4
3.30
3.31
3.32
3.33
3.33.1
3.33.2
3.33.3
3.34
3.35
3.36
3.36.1
3.36.2
3.37
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MSC Timing 5 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MSC Timing 3.3 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet Interface (ETH) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ETH Measurement Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) . . . . . . . . . . . . . . . . . . . . . . . . .
ETH MII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ETH RMII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E-Ray Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HSCT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inter-IC (I2C) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SCR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Timing 5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
WCAN Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CIF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC260 Carrier Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Data Sheet
2
265
271
276
281
281
282
283
284
285
287
290
293
293
295
295
297
303
306
308
308
310
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes
Zetex Limited.
Last Trademarks Update 2011-11-11
Data Sheet
3
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Summary of Features
1
Summary of Features
The TC26x product family has the following features:
•
High Performance Microcontroller with two CPU cores
•
One 32-bit super-scalar TriCore CPUs (TC1.6P), having the following features:
•
–
Superior real-time performance
–
Strong bit handling
–
Fully integrated DSP capabilities
–
Multiply-accumulate unit able to sustain 2 MAC operations per cycle
–
up to 200 MHz operation at full temperature range
–
up to 120 Kbyte Data Scratch-Pad RAM (DSPR)
–
up to 32 Kbyte Instruction Scratch-Pad RAM (PSPR)
–
16 Kbyte Instruction Cache (ICACHE)
–
8 Kbyte Data Cache (DCACHE)
Power Efficient scalar TriCore CPU (TC1.6E), having the following features:
–
Binary code compatibility with TC1.6P
–
up to 200 MHz operation at full temperature range
–
up to 72 Kbyte Data Scratch-Pad RAM (DSPR)
–
up to 16 Kbyte Instruction Scratch-Pad RAM (PSPR)
–
8 Kbyte Instruction Cache (ICACHE)
–
0.125Kbyte Data Read Buffer (DRB)
•
Lockstepped shadow core for TC1.6P
•
Multiple on-chip memories
–
All embedded NVM and SRAM are ECC protected
–
up to 2.5 Mbyte Program Flash Memory (PFLASH)
–
up to 96 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
–
0 Kbyte Memory (LMU)
–
BootROM (BROM)
•
48-Channel DMA Controller with safe data transfer
•
Sophisticated interrupt system (ECC protected)
•
High performance on-chip bus structure
–
64-bit Cross Bar Interconnect (SRI) giving fast parallel access between busmasters, CPUs and memories
–
32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
–
One bus bridge (SFI Bridge)
•
Safety Management Unit (SMU) handling safety monitor alarms
•
Memory Test Unit with ECC, Memory Initialization and MBIST functions (MTU)
•
Hardware I/O Monitor (IOM) for checking of digital I/O
•
Versatile On-chip Peripheral Units
–
Four Asynchronous/Synchronous Serial Channels (ASCLIN) with hardware LIN support (V1.3, V2.0, V2.1
and J2602) up to 50 MBaud
–
Four Queued SPI Interface Channels (QSPI) with master and slave capability upto 50 Mbit/s
–
High Speed Serial Link (HSSL) for serial inter-processor communication up to 320Mbit/s
Data Sheet
1-1
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Summary of Features
•
•
•
–
Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices
–
One MultiCAN+ Module with 5 CAN nodes and 256 free assignable messageobjects for high efficiency data
handling via FIFO buffering and gateway data transfer
–
6 Single Edge Nibble Transmission (SENT) channels for connection to sensors
–
One FlexRayTMmodule with 2 channels (E-Ray) supporting V2.1
–
One Generic Timer Module (GTM) providing a powerful set of digital signal filteringand timer functionality
to realize autonomous and complex Input/Output management
–
One Capture / Compare 6 module (Two kernels CCU60 and CCU61)
–
One General Purpose 12 Timer Unit (GPT120)
–
Three channel Peripheral Sensor Interface conforming to V1.3 (PSI5)
–
Peripheral Sensor Interface with Serial PHY (PSI5-S)
–
Inter-Integrated Circuit Bus Interface (I2C) conforming to V2.1
–
IEEE802.3 Ethernet MAC with RMII and MII interfaces (ETH)
8-bit Standby Controller (TC2x_SCR)
–
Two 8-bit timers
–
One 16-bit timer
–
Timer 2 Capture Compare Unit
–
Real Time Clock
–
Universal Asynchronous Receiver/Transmitter
–
High Speed Synchronous Serial Interface
–
Wake-up CAN Filter
Versatile Successive Approximation ADC (VADC)
–
Cluster of 4 independent ADC kernels
–
Input voltage range from 0 V to 5.5V (ADC supply)
Delta-Sigma ADC (DSADC)
–
Three/Four channels
•
Digital programmable I/O ports
•
On-chip debug support for OCDS Level 1 (CPUs , DMA, On Chip Buses)
•
Dedicated Emulation Device chip available (ED)
–
multi-core debugging, real time tracing, and calibration
–
Aurora Gigabit Trace Port (AGBT) on some variants (See below)
–
four/five wire JTAG (IEEE 1149.1) or DAP (Device Access Port) interface
•
Power Management System and on-chip regulators
•
Clock Generation Unit with System PLL and Flexray PLL
•
Embedded Voltage Regulator
The support of the Feature 8-bit Standby Controller (TC2x_SCR) is discontinued.
Data Sheet
1-2
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Summary of Features
Ordering Information
The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering
code identifies:
•
The derivative itself, i.e. its function set, the temperature range, and the supply voltage
•
The package and the type of delivery.
For the available ordering codes for the TC 260 / 264 / 265 / 267 please refer to the
“AURIX™ TC2x Data Sheet Addendum”, which summarizes all available variants.
Table 1-1
Feature
Overview of TC 260 / 264 / 265 / 267 Functions
Type
TC1.6P / TC1.6E
P Cores /
Checker Cores /
E Cores /
Checker Cores
1/
1/
1/
0
Max. Freq.
200 MHz
FPU
yes
Program
Flash
Size
2.5 Mbyte
Data Flash
Size
96 Kbyte
Instruction
16 Kbyte / 8 Kbyte
Data
8 Kbyte / -
Size TC1.6P
(DPSR/PSPR)
120 Kbyte / 32 Kbyte2)
Size TC1.6E
(DPSR/PSPR)
72 Kbyte / 16 Kbyte1) 2)
Size LMU
0 Kbyte
DMA
Channels
48
ADC
Channels
38 + 12
Converter
4
Channels
3/4
TIM
3
TOM
2
ATOM / MCS
4/3
CMU / ICM
1/1
PSM
1
TBU
1
SPE
2
CMP / MON
1/1
BRC / DPLL
0/1
GPT12
2
CCU6
2
CPU Core
Cache
SRAM
DSADC
GTM
Timer
Data Sheet
1-3
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Summary of Features
Table 1-1
Overview of TC 260 / 264 / 265 / 267 Functions
Feature
STM
Modules
2
FlexRay
Modules
1
Channels
2
Nodes
5
Message
Objects
256
QSPI
Channels
4
ASCLIN
Interfaces
4
I2C
Interfaces
1
SENT
Modules
6
PSI5
Channels
3
PSI5-S
Modules
1
HSSL
Channels
1
MSC
Channels
2
Ethernet
Channels
1
ASIL
Level
up to ASIL-D
FCE
Modules
1
SMU
1
IOM
1
ADAS
No
Standby-Controller
8-bit
Yes
DCDC from 5 V/ 3.3 V to 1.3 V
Yes
LDO from 5 V / 3.3 V to 1.3 V
Yes
LDO from 5 V to 3.3 V
Yes
Standby RAM
Yes
Packages
Type
PG-LQFP-144-22 / PG-LQFP-17622 / PG-LFBGA-292-6
I/O
Type
5 V CMOS / 3.3 V CMOS / LVDS
Range
-40 ... + 150°C
CAN
Safety
Support
Feature Discontinued
Embedded Voltage Regulator
Low Power Features
Tambient
1) Address range starts at lowest address defined in the User’s Manual. For reference see the Memory Maps chapter of the
User’s Manual.
2) To ensure the processor cores are provided with a constant stream of instructions the Instruction Fetch Units will
speculatively fetch instructions from the up to 64 bytes ahead of the current PC.
If the current PC is within 64 bytes of the top of an instruction memory the Instruction Fetch Unit may attempt to
speculatively fetch instruction from beyond the physical range. This may then lead to error conditions and alarms being
triggered by the bus and memory systems.
It is therefore recommended that the upper 64 bytes of any memory be unused for instruction storage.
Data Sheet
1-4
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning Definitions
2
Package and Pinning Definitions
This chapter gives a pinning of the different packages of the TC 260 / 264 / 265 / 267.
Data Sheet
2-5
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
2.1
TC264x Pin Definition and Functions: LQFP144
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
TC26x
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
P20. 14
P20. 13
P20. 12
P20. 11
P20. 10
P20. 9
P20. 8
P20. 7
P20. 6
VDD
ESR0
PORST
ESR1
P20. 3
P20. 2 / TESTMODE
P20. 0
TCK
TRST
P21. 7 / TDO
TMS
P21. 6 / TDI
P21. 5
P21. 4
P21. 3
P21. 2
VDDP3
XTAL2
XTAL1
VSS
VDD
VEXT
P22. 3
P22. 2
P22. 1
P22. 0
P23. 1
A N21
A N20
A N17
A N16
VAGND 1
VA REF1
VSSM
VD DM
A N13
A N12
A N11
A N10
AN8
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
VDD
VEX T
P33. 4
P33. 5
P33. 6
P33. 7
P33. 8
P33. 9
P33.10
P33.11
P33.12
P33.13
VG ATE1 N / P32. 0
VG ATE1P
P32. 4
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
P02.0
P02.1
P02.2
P02.3
P02.4
P02.5
P02.6
P02.7
P02.8
VDD/ VDDSB
P00.0
P00.1
P00.2
P00.3
P00.4
P00.5
P00.6
P00.7
P00.8
P00.9
P 00.12
VDD
V EXT
AN49
AN48
AN47
AN46
AN45
AN44
AN39
AN38
AN37
AN36
AN35
AN25
AN24
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
P10.6
P10.5
P10.3
P10.2
P10.1
P11.12
P11.11
P11.10
VFL EX
P11.9
P11.6
P11.3
P11.2
P13.3
P13.2
P13.1
P13.0
VD DFL3
VD DP3
VEXT
P14.6
P14.5
P14.4
P14.3
P14.2
P14.1
P14.0
P15.8
P15.7
P15.6
P15.5
P15.4
P15.3
P15.2
P15.1
P15.0
Figure 2-1 is showing the TC264x Logic Symbol for the package variant: QFP144.
Figure 2-1 TC264x Logic Symbol for the package variant LQFP144.
Data Sheet
2-6
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
2.1.1
TC264 LQFP144 Package Variant Pin Configuration
Table 2-1
Port 00 Functions
Pin
Symbol
Ctrl
Type
Function
11
P00.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN9
CTRAPA
12
GTM input
CCU61 input
T12HRE
CCU60 input
INJ00
MSC0 input
CIFD9
CIF input
P00.0
O0
General-purpose output
TOUT9
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
COUT63
O7
CCU60 output
ETHMDIOA
I/O
ETH input/output
P00.1
I
TIN10
ARX3E
General-purpose input
LP /
PU1 /
VEXT
GTM input
ASCLIN3 input
RXDCAN1D
CAN node 1 input
PSIRX0A
PSI5 input
SENT0B
SENT input
CC60INB
CCU60 input
CC60INA
CCU61 input
DSCIN0A
DSADC channel 0 input A
VADCG3.11
VADC analog input channel 11 of group 3
CIFD10
CIF input
P00.1
O0
General-purpose output
TOUT10
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
SPC0
O6
SENT output
CC60
O7
CCU61 output
Data Sheet
2-7
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
13
P00.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN11
SENT1B
14
GTM input
SENT input
DSDIN0A
DSADC channel 0 input A
VADCG3.10
VADC analog input channel 10 of group 3 (MD)
CIFD11
CIF input
P00.2
O0
General-purpose output
TOUT11
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
PSITX0
O4
PSI5 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
COUT60
O7
CCU61 output
P00.3
I
TIN12
RXDCAN3A
General-purpose input
LP /
PU1 /
VEXT
GTM input
CAN node 3 input
PSIRX1A
PSI5 input
PSISRXA
PSI5-S input
SENT2B
SENT input
CC61INB
CCU60 input
CC61INA
CCU61 input
DSCIN3A
DSADC channel 3 input A
VADCG3.9
VADC analog input channel 9 of group 3 (MD)
CIFD12
CIF input
P00.3
O0
General-purpose output
TOUT12
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT3
O4
DSADC channel 3 output
–
O5
Reserved
SPC2
O6
SENT output
CC61
O7
CCU61 output
Data Sheet
2-8
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
15
P00.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN13
REQ7
16
GTM input
SCU input
SENT3B
SENT input
DSDIN3A
DSADC channel 3 input A
DSSGNA
DSADC input
VADCG3.8
VADC analog input channel 8 of group 3
CIFD13
CIF input
P00.4
O0
General-purpose output
TOUT13
O1
GTM output
PSISTX
O2
PSI5-S output
TXDCAN4
O3
CAN node 4 output
PSITX1
O4
PSI5 output
VADCG2BFL0
O5
VADC output
SPC3
O6
SENT output
COUT61
O7
CCU61 output
P00.5
I
TIN14
PSIRX2A
General-purpose input
LP /
PU1 /
VEXT
GTM input
PSI5 input
SENT4B
SENT input
RXDCAN4A
CAN node 4 input
CC62INB
CCU60 input
CC62INA
CCU61 input
DSCIN2A
DSADC channel 2 input A
VADCG3.7
VADC analog input channel 7 of group 3
CIFD14
CIF input
P00.5
O0
General-purpose output
TOUT14
O1
GTM output
DSCGPWMN
O2
DSADC output
–
O3
Reserved
DSCOUT2
O4
DSADC channel 2 output
VADCG2BFL1
O5
VADC output
SPC4
O6
SENT output
CC62
O7
CCU61 output
Data Sheet
2-9
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
17
P00.6
I
LP /
PU1 /
VEXT
General-purpose input
TIN15
SENT5B
18
GTM input
SENT input
DSDIN2A
DSADC channel 2 input A
VADCG3.6
VADC analog input channel 6 of group 3
CIFD15
CIF input
P00.6
O0
General-purpose output
TOUT15
O1
GTM output
DSCGPWMP
O2
DSADC output
VADCG2BFL2
O3
VADC output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
SPC5
O6
SENT output
COUT62
O7
CCU61 output
P00.7
I
TIN16
CC60INC
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
CCPOS0A
CCU61 input
T12HRB
CCU60 input
T2INA
GPT120 input
VADCG3.5
VADC analog input channel 5 of group 3
CIFCLK
CIF input
P00.7
O0
General-purpose output
TOUT16
O1
GTM output
–
O2
Reserved
VADCG2BFL3
O3
VADC output
–
O4
Reserved
VADCEMUX11
O5
VADC output
–
O6
Reserved
CC60
O7
CCU61 output
Data Sheet
2-10
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
19
P00.8
I
LP /
PU1 /
VEXT
General-purpose input
TIN17
CC61INC
20
GTM input
CCU61 input
CCPOS1A
CCU61 input
T13HRB
CCU60 input
T2EUDA
GPT120 input
VADCG3.4
VADC analog input channel 4 of group 3
CIFVSNC
CIF input
P00.8
O0
General-purpose output
TOUT17
O1
GTM output
SLSO36
O2
QSPI3 output
–
O3
Reserved
–
O4
Reserved
VADCEMUX12
O5
VADC output
–
O6
Reserved
CC61
O7
CCU61 output
P00.9
I
TIN18
CC62INC
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
CCPOS2A
CCU61 input
T13HRC
CCU60 input
T12HRC
CCU60 input
T4EUDA
GPT120 input
VADCG3.3
VADC analog input channel 3 of group 3
DSITR3F
DSADC channel 3 input F
CIFHSNC
CIF input
P00.9
O0
General-purpose output
TOUT18
O1
GTM output
SLSO37
O2
QSPI3 output
ARTS3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
Data Sheet
2-11
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
21
P00.12
I
LP /
PU1 /
VEXT
General-purpose input
TIN21
ACTS3A
VADCG3.0
GTM input
ASCLIN3 input
VADC analog input channel 0 of group 3
P00.12
O0
General-purpose output
TOUT21
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
Table 2-2
Port 02 Functions
Pin
Symbol
Ctrl
Type
Function
1
P02.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN0
ARX2G
GTM input
ASCLIN2 input
REQ6
SCU input
CC60INA
CCU60 input
CC60INB
CCU61 input
CIFD0
CIF input
P02.0
O0
General-purpose output
TOUT0
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
DSCGPWMN
O4
DSADC output
TXDCAN0
O5
CAN node 0 output
TXDA
O6
ERAY output
CC60
O7
CCU60 output
Data Sheet
2-12
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
2
P02.1
I
LP / PU1 General-purpose input
/ VEXT
GTM input
TIN1
3
Function
REQ14
SCU input
ARX2B
ASCLIN2 input
RXDCAN0A
CAN node 0 input
RXDA2
ERAY input
CIFD1
CIF input
P02.1
O0
General-purpose output
TOUT1
O1
GTM output
–
O2
Reserved
SLSO32
O3
QSPI3 output
DSCGPWMP
O4
DSADC output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P02.2
I
TIN2
CC61INA
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
CCU60 input
CC61INB
CCU61 input
CIFD2
CIF input
P02.2
O0
General-purpose output
TOUT2
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO33
O3
QSPI3 output
PSITX0
O4
PSI5 output
TXDCAN2
O5
CAN node 2 output
TXDB
O6
ERAY output
CC61
O7
CCU60 output
Data Sheet
2-13
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
4
P02.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN3
ARX1G
5
GTM input
ASCLIN1 input
RXDCAN2B
CAN node 2 input
RXDB2
ERAY input
PSIRX0B
PSI5 input
SDI11
MSC1 input
CIFD3
CIF input
P02.3
O0
General-purpose output
TOUT3
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO34
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
P02.4
I
TIN4
SLSI3A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
ECTT1
TTCAN input
RXDCAN0D
CAN node 0 input
CC62INA
CCU60 input
CC62INB
CCU61 input
SDA0A
I2C0 input
CIFD4
CIF input
P02.4
O0
General-purpose output
TOUT4
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO30
O3
QSPI3 output
PSISCLK
O4
PSI5-S output
SDA0
O5
I2C0 output
TXENA
O6
ERAY output
CC62
O7
CCU60 output
Data Sheet
2-14
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
6
P02.5
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN5
MRST3A
7
GTM input
QSPI3 input
ECTT2
TTCAN input
PSIRX1B
PSI5 input
PSISRXB
PSI5-S input
SENT3C
SENT input
SCL0A
I2C0 input
CIFD5
CIF input
P02.5
O0
General-purpose output
TOUT5
O1
GTM output
TXDCAN0
O2
CAN node 0 output
MRST3
O3
QSPI3 output
–
O4
Reserved
SCL0
O5
I2C0 output
TXENB
O6
ERAY output
COUT62
O7
CCU60 output
P02.6
I
TIN6
MTSR3A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
SENT2C
SENT input
CC60INC
CCU60 input
CCPOS0A
CCU60 input
T12HRB
CCU61 input
T3INA
GPT120 input
CIFD6
CIF input
P02.6
O0
General-purpose output
TOUT6
O1
GTM output
PSISTX
O2
PSI5-S output
MTSR3
O3
QSPI3 output
PSITX1
O4
PSI5 output
VADCEMUX00
O5
VADC output
–
O6
Reserved
CC60
O7
CCU60 output
Data Sheet
2-15
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
8
P02.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN7
SCLK3A
9
GTM input
QSPI3 input
PSIRX2B
PSI5 input
SENT1C
SENT input
CC61INC
CCU60 input
CCPOS1A
CCU60 input
T13HRB
CCU61 input
T3EUDA
GPT120 input
CIFD7
CIF input
DSCIN3B
DSADC channel 3 input B
P02.7
O0
General-purpose output
TOUT7
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
DSCOUT3
O4
DSADC channel 3 output
VADCEMUX01
O5
VADC output
SPC1
O6
SENT output
CC61
O7
CCU60 output
P02.8
I
SENT0C
LP / PU1 General-purpose input
/
GTM input
VEXT
SENT input
CC62INC
CCU60 input
CCPOS2A
CCU60 input
T12HRC
CCU61 input
T13HRC
CCU61 input
T4INA
GPT120 input
CIFD8
CIF input
DSDIN3B
DSADC channel 3 input B
DSITR3E
DSADC channel 3 input E
TIN8
P02.8
O0
General-purpose output
TOUT8
O1
GTM output
SLSO35
O2
QSPI3 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX02
O5
VADC output
ETHMDC
O6
ETH output
CC62
O7
CCU60 output
Data Sheet
2-16
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-3
Port 10 Functions
Pin
Symbol
Ctrl
Type
Function
140
P10.1
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN103
MRST1A
GTM input
QSPI1 input
T5EUDB
141
GPT120 input
P10.1
O0
General-purpose output
TOUT103
O1
GTM output
MTSR1
O2
QSPI1 output
MRST1
O3
QSPI1 output
EN01
O4
MSC0 output
VADCG3BFL1
O5
VADC output
END03
O6
MSC0 output
–
O7
Reserved
P10.2
I
TIN104
SCLK1A
General-purpose input
MP /
PU1 /
VEXT
GTM input
QSPI1 input
T6INB
GPT120 input
REQ2
SCU input
RXDCAN2E
CAN node 2 input
SDI01
MSC0 input
P10.2
O0
General-purpose output
TOUT104
O1
GTM output
–
O2
Reserved
SCLK1
O3
QSPI1 output
EN00
O4
MSC0 output
VADCG3BFL2
O5
VADC output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
2-17
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 10 Functions (cont’d)
Table 2-3
Pin
142
Symbol
Ctrl
Type
Function
P10.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN105
MTSR1A
143
GTM input
QSPI1 input
REQ3
SCU input
T5INB
GPT120 input
P10.3
O0
General-purpose output
TOUT105
O1
GTM output
VADCG3BFL3
O2
VADC output
MTSR1
O3
QSPI1 output
EN00
O4
MSC0 output
END02
O5
MSC0 output
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P10.5
I
TIN107
HWCFG4
General-purpose input
LP /
PU1 /
VEXT
GTM input
SCU input
RXDCAN4B
CAN node 4 input
INJ01
MSC0 input
P10.5
O0
General-purpose output
TOUT107
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO38
O3
QSPI3 output
SLSO19
O4
QSPI1 output
T6OUT
O5
GPT120 output
ASLSO2
O6
ASCLIN2 output
–
O7
Reserved
Data Sheet
2-18
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 10 Functions (cont’d)
Table 2-3
Pin
144
Symbol
Ctrl
Type
Function
P10.6
I
LP /
PU1 /
VEXT
General-purpose input
TIN108
ARX2D
132
QSPI3 input
HWCFG5
SCU input
P10.6
O0
General-purpose output
TOUT108
O1
GTM output
ASCLK2
O2
ASCLIN2 output
MTSR3
O3
QSPI3 output
T3OUT
O4
GPT120 output
TXDCAN4
O5
CAN node 4 output
MRST1
O6
QSPI1 output
VADCG3BFL0
O7
VADC output
Port 11 Functions
Symbol
Ctrl
Type
Function
P11.2
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN95
133
ASCLIN2 input
MTSR3B
Table 2-4
Pin
GTM input
GTM input
P11.2
O0
TOUT95
O1
GTM output
END03
O2
MSC0 output
SLSO05
O3
QSPI0 output
SLSO15
O4
QSPI1 output
EN01
O5
MSC0 output
ETHTXD1
O6
ETH output
COUT63
O7
CCU60 output
P11.3
I
TIN96
MRST1B
MPR /
PU1 /
VFLEX
SDI03
General-purpose output
General-purpose input
GTM input
QSPI1 input
MSC0 input
P11.3
O0
General-purpose output
TOUT96
O1
GTM output
–
O2
Reserved
MRST1
O3
QSPI1 output
TXDA
O4
ERAY output
–
O5
Reserved
ETHTXD0
O6
ETH output
COUT62
O7
CCU60 output
Data Sheet
2-19
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-4
Pin
134
Symbol
Ctrl
Type
Function
P11.6
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN97
SCLK1B
135
GTM input
QSPI1 input
P11.6
O0
General-purpose output
TOUT97
O1
GTM output
TXENB
O2
ERAY output
SCLK1
O3
QSPI1 output
TXENA
O4
ERAY output
FCLP0
O5
MSC0 output
ETHTXEN
O6
ETH output
COUT61
O7
CCU60 output
P11.9
I
TIN98
MTSR1B
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
QSPI1 input
RXDA1
ERAY input
ETHRXD1
ETH input
P11.9
O0
General-purpose output
TOUT98
O1
GTM output
–
O2
Reserved
MTSR1
O3
QSPI1 output
–
O4
Reserved
SOP0
O5
MSC0 output
–
O6
Reserved
COUT60
O7
CCU60 output
Data Sheet
2-20
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-4
Pin
137
Symbol
Ctrl
Type
Function
P11.10
I
LP /
PU1 /
VFLEX
General-purpose input
TIN99
REQ12
138
GTM input
SCU input
ARX1E
ASCLIN1 input
SLSI1A
QSPI1 input
RXDCAN3D
CAN node 3 input
RXDB1
ERAY input
ETHRXD0
ETH input
SDI00
MSC0 input
P11.10
O0
General-purpose output
TOUT99
O1
GTM output
–
O2
Reserved
SLSO03
O3
QSPI0 output
SLSO13
O4
QSPI1 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
P11.11
I
TIN100
ETHCRSDVA
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.11
O0
General-purpose output
TOUT100
O1
GTM output
END02
O2
MSC0 output
SLSO04
O3
QSPI0 output
SLSO14
O4
QSPI1 output
EN00
O5
MSC0 output
TXENB
O6
ERAY output
CC61
O7
CCU60 output
Data Sheet
2-21
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-4
Pin
139
Symbol
Ctrl
Type
Function
P11.12
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN101
ETHREFCLK
GTM input
ETH input
ETHTXCLKB
ETH input
(Not for productive purposes)
ETHRXCLKA
ETH input
(Not for productive purposes)
P11.12
O0
General-purpose output
TOUT101
O1
GTM output
ATX1
O2
ASCLIN1 output
GTMCLK2
O3
GTM output
TXDB
O4
ERAY output
TXDCAN3
O5
CAN node 3 output
EXTCLK1
O6
SCU output
CC60
O7
CCU60 output
Table 2-5
Port 13 Functions
Pin
Symbol
Ctrl
Type
Function
128
P13.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91
Data Sheet
GTM input
P13.0
O0
TOUT91
O1
GTM output
END03
O2
MSC0 output
SCLK2N
O3
QSPI2 output (LVDS)
EN01
O4
MSC0 output
FCLN0
O5
MSC0 output (LVDS)
FCLND0
O6
MSC0 output (LVDS)
TXDCAN4
O7
CAN node 4 output
2-22
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-5
Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
P13.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
129
TIN92
SCL0B
RXDCAN4C
130
P13.1
O0
General-purpose output
TOUT92
O1
GTM output
–
O2
Reserved
SCLK2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
FCLP0
O5
MSC0 output (LVDS)
SCL0
O6
I2C0 output
–
O7
Reserved
P13.2
I
CAPINA
LVDSM_N /
PU1 /
VEXT
SDA0B
General-purpose input
GTM input
GPT120 input
I2C0 input
P13.2
O0
General-purpose output
TOUT93
O1
GTM output
–
O2
Reserved
MTSR2N
O3
QSPI2 output (LVDS)
FCLP0
O4
MSC0 output
SON0
O5
MSC0 output (LVDS)
SDA0
O6
I2C0 output
SOND0
O7
MSC0 output (LVDS)
P13.3
I
TIN94
Data Sheet
I2C0 input
CAN node 4 input
TIN93
131
GTM input
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.3
O0
TOUT94
O1
GTM output
–
O2
Reserved
MTSR2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
SOP0
O5
MSC0 output (LVDS)
–
O6
Reserved
–
O7
Reserved
2-23
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-6
Port 14 Functions
Pin
Symbol
Ctrl
Type
Function
118
P14.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN80
119
P14.0
O0
TOUT80
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
TXDA
O3
ERAY output
TXDB
O4
ERAY output
TXDCAN1
O5
CAN node 1 output
Used for single pin DAP (SPD) function.
ASCLK0
O6
ASCLIN0 output
COUT62
O7
CCU60 output
P14.1
I
TIN81
REQ15
Data Sheet
GTM input
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
SCU input
ARX0A
ASCLIN0 input
RXDCAN1B
CAN node 1 input
Used for single pin DAP (SPD) function.
RXDA3
ERAY input
RXDB3
ERAY input
EVRWUPA
SCU input
P14.1
O0
General-purpose output
TOUT81
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU60 output
2-24
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-6
Pin
120
Port 14 Functions (cont’d)
Symbol
Ctrl
Type
Function
P14.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN82
HWCFG2
EVR13
121
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2
O0
General-purpose output
TOUT82
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO21
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK2
O6
ASCLIN2 output
–
O7
Reserved
P14.3
I
TIN83
ARX2A
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
REQ10
SCU input
HWCFG3_BMI
SCU input
SDI02
MSC0 input
P14.3
O0
General-purpose output
TOUT83
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO23
O3
QSPI2 output
ASLSO1
O4
ASCLIN1 output
ASLSO3
O5
ASCLIN3 output
–
O6
Reserved
–
O7
Reserved
2-25
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-6
Pin
122
Port 14 Functions (cont’d)
Symbol
Ctrl
Type
Function
P14.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN84
HWCFG6
123
O0
General-purpose output
TOUT84
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.5
I
HWCFG1
MP+ /
PU1 /
VEXT
EVR33
General-purpose input
GTM input
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5
O0
General-purpose output
TOUT85
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXDB
O6
ERAY output
–
O7
Reserved
P14.6
I
TIN86
HWCFG0
DCLDO
Data Sheet
SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4
TIN85
124
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6
O0
General-purpose output
TOUT86
O1
GTM output
–
O2
Reserved
SLSO22
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
TXENB
O6
ERAY output
–
O7
Reserved
2-26
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-7
Port 15 Functions
Pin
Symbol
Ctrl
Type
Function
109
P15.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN71
110
P15.0
O0
TOUT71
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO013
O3
QSPI0 output
–
O4
Reserved
TXDCAN2
O5
CAN node 2 output
ASCLK1
O6
ASCLIN1 output
–
O7
Reserved
P15.1
I
TIN72
REQ16
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
SCU input
ARX1A
ASCLIN1 input
RXDCAN2A
CAN node 2 input
SLSI2B
QSPI2 input
EVRWUPB
111
GTM input
SCU input
P15.1
O0
General-purpose output
TOUT72
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO25
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P15.2
I
TIN73
SLSI2A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
MRST2E
QSPI2 input
HSIC2INA
QSPI2 input
P15.2
O0
General-purpose output
TOUT73
O1
GTM output
ATX0
O2
ASCLIN0 output
SLSO20
O3
QSPI2 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
ASCLK0
O6
ASCLIN0 output
–
O7
Reserved
Data Sheet
2-27
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-7
Pin
112
Symbol
Ctrl
Type
Function
P15.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN74
ARX0B
113
GTM input
ASCLIN0 input
SCLK2A
QSPI2 input
RXDCAN1A
CAN node 1 input
HSIC2INB
QSPI2 input
P15.3
O0
General-purpose output
TOUT74
O1
GTM output
ATX0
O2
ASCLIN0 output
SCLK2
O3
QSPI2 output
END03
O4
MSC0 output
EN01
O5
MSC0 output
–
O6
Reserved
–
O7
Reserved
P15.4
I
TIN75
MRST2A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
REQ0
SCU input
SCL0C
I2C0 input
P15.4
O0
General-purpose output
TOUT75
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
SCL0
O6
I2C0 output
CC62
O7
CCU60 output
Data Sheet
2-28
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-7
Pin
114
Symbol
Ctrl
Type
Function
P15.5
I
MP /
PU1 /
VEXT
General-purpose input
TIN76
ARX1B
115
ASCLIN1 input
MTSR2A
QSPI2 input
SDA0C
I2C0 input
REQ13
SCU input
P15.5
O0
General-purpose output
TOUT76
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR2
O3
QSPI2 output
END02
O4
MSC0 output
EN00
O5
MSC0 output
SDA0
O6
I2C0 output
CC61
O7
CCU60 output
P15.6
I
TIN77
MTSR2B
116
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P15.6
O0
General-purpose output
TOUT77
O1
GTM output
ATX3
O2
ASCLIN3 output
MTSR2
O3
QSPI2 output
–
O4
Reserved
SCLK2
O5
QSPI2 output
ASCLK3
O6
ASCLIN3 output
CC60
O7
CCU60 output
P15.7
I
TIN78
ARX3A
MRST2B
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
QSPI2 input
P15.7
O0
General-purpose output
TOUT78
O1
GTM output
ATX3
O2
ASCLIN3 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
Data Sheet
2-29
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-7
Pin
117
Symbol
Ctrl
Type
Function
P15.8
I
MP /
PU1 /
VEXT
General-purpose input
TIN79
SCLK2B
REQ1
GTM input
QSPI2 input
SCU input
P15.8
O0
General-purpose output
TOUT79
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK3
O6
ASCLIN3 output
COUT61
O7
CCU60 output
Table 2-8
Port 20 Functions
Pin
Symbol
Ctrl
Type
Function
93
P20.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN59
RXDCAN3C
GTM input
CAN node 3 input
T6EUDA
GPT120 input
REQ9
SCU input
SYSCLK
HSCT input
TGI0
OCDS input
P20.0
O0
General-purpose output
TOUT59
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
–
O7
Reserved
TGO0
HWOU
T
OCDS; ENx
Data Sheet
2-30
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 20 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
94
P20.2
I
LP /
PU /
VEXT
General-purpose input
This pin is latched at power on reset release to enter
test mode.
TESTMODE
95
OCDS input
P20.2
O0
Output function not available
–
O1
Output function not available
–
O2
Output function not available
–
O3
Output function not available
–
O4
Output function not available
–
O5
Output function not available
–
O6
Output function not available
–
O7
Output function not available
P20.3
I
TIN61
T6INA
LP /
PU1 /
VEXT
ARX3C
100
General-purpose input
GTM input
GPT120 input
ASCLIN3 input
P20.3
O0
General-purpose output
TOUT61
O1
GTM output
ATX3
O2
ASCLIN3 output
SLSO09
O3
QSPI0 output
SLSO29
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
–
O7
Reserved
P20.6
I
TIN62
LP /
PU1 /
VEXT
General-purpose input
GTM input
P20.6
O0
TOUT62
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO08
O3
QSPI0 output
SLSO28
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
2-31
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 20 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
101
P20.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN63
ACTS1A
RXDCAN0B
102
ASCLIN1 input
CAN node 0 input
P20.7
O0
General-purpose output
TOUT63
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
WDT1LCK
O6
SCU output
COUT63
O7
CCU61 output
P20.8
I
TIN64
103
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
P20.8
O0
TOUT64
O1
GTM output
ASLSO1
O2
ASCLIN1 output
SLSO00
O3
QSPI0 output
SLSO10
O4
QSPI1 output
TXDCAN0
O5
CAN node 0 output
WDT0LCK
O6
SCU output
CC60
O7
CCU61 output
P20.9
I
TIN65
ARX1C
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN1 input
RXDCAN3E
CAN node 3 input
REQ11
SCU input
SLSI0B
QSPI0 input
P20.9
O0
General-purpose output
TOUT65
O1
GTM output
–
O2
Reserved
SLSO01
O3
QSPI0 output
SLSO11
O4
QSPI1 output
–
O5
Reserved
WDTSLCK
O6
SCU output
CC61
O7
CCU61 output
Data Sheet
2-32
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 20 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
104
P20.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN66
105
O0
TOUT66
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO06
O3
QSPI0 output
SLSO27
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
ASCLK1
O6
ASCLIN1 output
CC62
O7
CCU61 output
P20.11
I
TIN67
SCLK0A
106
GTM input
P20.10
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI0 input
P20.11
O0
General-purpose output
TOUT67
O1
GTM output
–
O2
Reserved
SCLK0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU61 output
P20.12
I
TIN68
MRST0A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.12
O0
General-purpose output
TOUT68
O1
GTM output
–
O2
Reserved
MRST0
O3
QSPI0 output
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU61 output
Data Sheet
2-33
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 20 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
107
P20.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN69
SLSI0A
108
GTM input
QSPI0 input
P20.13
O0
General-purpose output
TOUT69
O1
GTM output
–
O2
Reserved
SLSO02
O3
QSPI0 output
SLSO12
O4
QSPI1 output
SCLK0
O5
QSPI0 output
–
O6
Reserved
COUT62
O7
CCU61 output
P20.14
I
TIN70
MTSR0A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.14
O0
General-purpose output
TOUT70
O1
GTM output
–
O2
Reserved
MTSR0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-34
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-9
Port 21 Functions
Pin
Symbol
Ctrl
Type
Function
84
P21.2
I
LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN53
MRST2CN
85
GTM input
QSPI2 input (LVDS)
MRST3FN
QSPI3 input (LVDS)
EMGSTOPB
SCU input
RXDN
HSCT input (LVDS)
P21.2
O0
General-purpose output
TOUT53
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
ETHMDC
O5
ETH output
–
O6
Reserved
–
O7
Reserved
P21.3
I
TIN54
MRST2CP
LVDSH_P/
PU1 /
VDDP3
General-purpose input
GTM input
QSPI2 input (LVDS)
MRST3FP
QSPI3 input (LVDS)
RXDP
HSCT input (LVDS)
P21.3
O0
General-purpose output
TOUT54
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
ETHMDIOD
HWOU
T
ETH input/output
Data Sheet
2-35
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 21 Functions (cont’d)
Table 2-9
Pin
86
Symbol
Ctrl
Type
Function
P21.4
I
LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN55
87
O0
TOUT55
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TXDN
O
HSCT output (LVDS)
P21.5
I
TIN56
1)
88
GTM input
P21.4
LVDSH_P/
PU1 /
VDDP3
General-purpose output
General-purpose input
GTM input
P21.5
O0
TOUT56
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TXDP
O
HSCT output (LVDS)
P21.6
I
TIN57
ARX3F
A2 /
PU /
VDDP3
General-purpose output
General-purpose input
GTM input
ASCLIN3 input
TGI2
OCDS input
TDI
OCDS (JTAG) input
T5EUDA
GPT120 input
P21.6
O0
General-purpose output
TOUT57
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
T3OUT
O7
GPT120 output
TGO2
HWOU
T
OCDS; ENx
Data Sheet
2-36
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Port 21 Functions (cont’d)
Table 2-9
Pin
90
Symbol
Ctrl
Type
Function
P21.7
I
A2 /
PU /
VDDP3
General-purpose input
TIN58
DAP2
GTM input
OCDS (3-Pin DAP) input
In the 3-Pin DAP mode this pin is used as DAP2.
In the 2-PIN DAP mode this pin is used as P21.7
and controlled by the related port control logic.
TGI3
OCDS input
ETHRXERB
ETH input
T5INA
GPT120 input
P21.7
O0
General-purpose output
TOUT58
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
T6OUT
O7
GPT120 output
TGO3
HWOU
T
OCDS; ENx
TDO
OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ.
DAP2
OCDS (DAP2); ENx
In the 3-Pin DAP mode this pin is used as DAP2.
1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V)
Table 2-10 Port 22 Functions
Pin
Symbol
Ctrl
Type
Function
74
P22.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47
MTSR3E
GTM input
QSPI3 input
P22.0
O0
General-purpose output
TOUT47
O1
GTM output
–
O2
Reserved
MTSR3
O3
QSPI3 output
SCLK3N
O4
QSPI3 output (LVDS)
FCLN1
O5
MSC1 output (LVDS)
FCLND1
O6
MSC1 output (LVDS)
–
O7
Reserved
Data Sheet
2-37
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-10 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
75
P22.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN48
MRST3E
76
QSPI3 input
P22.1
O0
General-purpose output
TOUT48
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
SCLK3P
O4
QSPI3 output (LVDS)
FCLP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P22.2
I
TIN49
SLSI3D
77
GTM input
LVDSM_N /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P22.2
O0
General-purpose output
TOUT49
O1
GTM output
–
O2
Reserved
SLSO312
O3
QSPI3 output
MTSR3N
O4
QSPI3 output (LVDS)
SON1
O5
MSC1 output (LVDS)
SOND1
O6
MSC1 output (LVDS)
–
O7
Reserved
P22.3
I
TIN50
SCLK3E
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P22.3
O0
General-purpose output
TOUT50
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
MTSR3P
O4
QSPI3 output (LVDS)
SOP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-38
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-11 Port 23 Functions
Pin
Symbol
Ctrl
Type
Function
73
P23.1
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN42
SDI10
GTM input
MSC1 input
P23.1
O0
General-purpose output
TOUT42
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO313
O3
QSPI3 output
GTMCLK0
O4
GTM output
–
O5
Reserved
EXTCLK0
O6
SCU output
–
O7
Reserved
Table 2-12 Port 32 Functions
Pin
Symbol
Ctrl
Type
Function
70
P32.0
I
LP /
PX/
VEXT
General-purpose input
TIN36
FDEST
GTM input
PMU input
VGATE1N
Data Sheet
SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0
O0
General-purpose output
TOUT36
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
2-39
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-12 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
72
P32.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN40
ACTS1B
GTM input
ASCLIN1 input
SDI12
MSC1 input
P32.4
O0
General-purpose output
TOUT40
O1
GTM output
–
O2
Reserved
END12
O3
MSC1 output
GTMCLK1
O4
GTM output
EN10
O5
MSC1 output
EXTCLK1
O6
SCU output
COUT63
O7
CCU60 output
Table 2-13 Port 33 Functions
Pin
Symbol
Ctrl
Type
Function
60
P33.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN26
CTRAPC
DSITR0F
Data Sheet
GTM input
CCU61 input
DSADC channel 0 input F
P33.4
O0
General-purpose output
TOUT26
O1
GTM output
ARTS2
O2
ASCLIN2 output
–
O3
Reserved
PSITX1
O4
PSI5 output
VADCEMUX12
O5
VADC output
VADCG0BFL0
O6
VADC output
–
O7
Reserved
2-40
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-13 Port 33 Functions (cont’d)
Pin
61
Symbol
Ctrl
Type
Function
P33.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN27
ACTS2B
62
ASCLIN2 input
PSIRX2C
PSI5 input
PSISRXC
PSI5-S input
SENT5C
SENT input
CCPOS2C
CCU61 input
T4EUDB
GPT120 input
DSCIN0B
DSADC channel 0 input B
P33.5
O0
General-purpose output
TOUT27
O1
GTM output
SLSO07
O2
QSPI0 output
SLSO17
O3
QSPI1 output
DSCOUT0
O4
DSADC channel 0 output
VADCEMUX11
O5
VADC output
VADCG0BFL1
O6
VADC output
–
O7
Reserved
P33.6
I
TIN28
SENT4C
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CCPOS1C
CCU61 input
T2EUDB
GPT120 input
DSDIN0B
DSADC channel 0 input B
DSITR2F
DSADC channel 2 input F
P33.6
O0
General-purpose output
TOUT28
O1
GTM output
ASLSO2
O2
ASCLIN2 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
VADCG0BFL2
O6
VADC output
PSISTX
O7
PSI5-S output
2-41
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-13 Port 33 Functions (cont’d)
Pin
63
Symbol
Ctrl
Type
Function
P33.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN29
RXDCAN0E
64
SCU input
CCPOS0C
CCU61 input
T2INB
GPT120 input
P33.7
O0
General-purpose output
TOUT29
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO37
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
VADCG0BFL3
O6
VADC output
–
O7
Reserved
P33.8
I
ARX2E
MP /
HighZ/
VEXT
EMGSTOPA
General-purpose input
GTM input
ASCLIN2 input
SCU input
P33.8
O0
General-purpose output
TOUT30
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO32
O3
QSPI3 output
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
COUT62
O7
CCU61 output
SMUFSP
HWOU
T
SMU
P33.9
I
TIN31
HSIC3INA
Data Sheet
CAN node 0 input
REQ8
TIN30
65
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.9
O0
General-purpose output
TOUT31
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
ASCLK2
O4
ASCLIN2 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
2-42
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-13 Port 33 Functions (cont’d)
Pin
66
Symbol
Ctrl
Type
Function
P33.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN32
SLSI3C
HSIC3INB
67
P33.10
O0
General-purpose output
TOUT32
O1
GTM output
SLSO16
O2
QSPI1 output
SLSO311
O3
QSPI3 output
ASLSO1
O4
ASCLIN1 output
PSISCLK
O5
PSI5-S output
–
O6
Reserved
COUT61
O7
CCU61 output
P33.11
I
SCLK3D
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.11
O0
General-purpose output
TOUT33
O1
GTM output
ASCLK1
O2
ASCLIN1 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
DSCGPWMN
O6
DSADC output
CC61
O7
CCU61 output
P33.12
I
TIN34
MTSR3D
Data Sheet
QSPI3 input
QSPI3 input
TIN33
68
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.12
O0
General-purpose output
TOUT34
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR3
O3
QSPI3 output
ASCLK1
O4
ASCLIN1 output
–
O5
Reserved
DSCGPWMP
O6
DSADC output
COUT60
O7
CCU61 output
2-43
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-13 Port 33 Functions (cont’d)
Pin
69
Symbol
Ctrl
Type
Function
P33.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN35
ARX1F
GTM input
ASCLIN1 input
MRST3D
QSPI3 input
DSSGNB
DSADC input
INJ11
MSC1 input
P33.13
O0
General-purpose output
TOUT35
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST3
O3
QSPI3 output
SLSO26
O4
QSPI2 output
–
O5
Reserved
DCDCSYNC
O6
SCU output
CC60
O7
CCU61 output
Table 2-14 Port 40 Functions
Pin
36
Symbol
Ctrl
Type
Function
P40.0
I
S/
HighZ /
VDDM
General-purpose input
VADCG1.8
CCPOS0D
SENT0A
35
P40.1
I
CCPOS1B
S/
HighZ /
VDDM
SENT1A
P40.6
I
DS3PA
VADC analog input channel 9 of group 1 (MD)
CCU60 input
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 4 of group 2
DSADC: positive analog input of channel 3, pin A
CCPOS1B
CCU61 input
SENT2D
SENT input
P40.7
VADCG2.5
DS3NA
Data Sheet
General-purpose inpu.t
SENT input
VADCG2.4
32
CCU60 input
SENT input
VADCG1.9
33
VADC analog input channel 8 of group 1
I
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 5 of group 2
DSADC: negative analog input channel of DSADC 3,
pin A
CCPOS1D
CCU61 input
SENT3D
SENT input
2-44
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-14 Port 40 Functions (cont’d)
Pin
31
Symbol
Ctrl
Type
Function
P40.8
I
S/
HighZ /
VDDM
General-purpose input
VADCG2.6
DS3PB
30
VADC analog input channel 6 of group 2
DSADC: positive analog input of channel 3, pin B
CCPOS2B
CCU61 input
SENT4A
SENT input
P40.9
I
VADCG2.7
DS3NB
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 7 of group 2
DSADC: negative analog input channel of DSADC 3,
pin B
CCPOS2D
CCU61 input
SENT5A
SENT input
Table 2-15 Analog Inputs
Pin
Symbol
Ctrl
Type
Function
57
AN0
I
D/
HighZ /
VDDM
Analog input 0
D/
HighZ /
VDDM
Analog input 1
D/
HighZ /
VDDM
Analog input 2
D/
HighZ /
VDDM
Analog input 3
D/
HighZ /
VDDM
Analog input 4
D/
HighZ /
VDDM
Analog input 5
D/
HighZ /
VDDM
Analog input 6
D/
HighZ /
VDDM
Analog input 7
VADCG0.0
DS0PB
56
AN1
I
VADCG0.1
DS0NB
55
AN2
I
VADCG0.2
DS0PA
54
AN3
I
VADCG0.3
DS0NA
53
AN4
I
VADCG0.4
52
AN5
I
VADCG0.5
51
AN6
I
VADCG0.6
50
AN7
VADCG0.7
Data Sheet
I
VADC analog input channel 0 of group 0
DSADC: positive analog input of channel 0, pin B
VADC analog input channel 1 of group 0 (MD)
DSADC: negative analog input channel of DSADC 0,
pin B
VADC analog input channel 2 of group 0 (MD)
DSADC: positive analog input of channel 0, pin A
VADC analog input channel 3 of group 0
DSADC: negative analog input channel of DSADC 0,
pin A
VADC analog input channel 4 of group 0
VADC analog input channel 5 of group 0
VADC analog input channel 6 of group 0
VADC analog input channel 7 of group 0 (with pull
down diagnostics)
2-45
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-15 Analog Inputs (cont’d)
Pin
49
Symbol
Ctrl
Type
Function
AN8
I
D/
HighZ /
VDDM
Analog input 8
VADCG0.8
AN10
48
I
VADCG0.10
AN11
47
I
VADCG0.11
AN12
46
I
VADCG0.12
AN13
45
I
VADCG0.13
AN16
40
I
VADCG1.0
AN17
39
I
VADCG1.1
AN20
38
I
VADCG1.4
DS2PA
AN21
37
I
VADCG1.5
DS2NA
AN24
36
I
VADCG1.8
SENT0A
AN25
35
I
VADCG1.9
SENT1A
34
AN35
I
VADCG2.3
33
AN36
VADCG2.4
DS3PA
SENT2D
Data Sheet
I
VADC analog input channel 8 of group 0
D/
HighZ /
VDDM
Analog input 10
D/
HighZ /
VDDM
Analog input 11
D/
HighZ /
VDDM
Analog input 12
D/
HighZ /
VDDM
Analog input 13
D/
HighZ /
VDDM
Analog input 16
D/
HighZ /
VDDM
Analog input 17
D/
HighZ /
VDDM
Analog input 20
D/
HighZ /
VDDM
Analog input 21
S/
HighZ /
VDDM
Analog input 24
S/
HighZ /
VDDM
Analog input 24
VADC analog input channel 10 of group 0 (MD)
VADC analog input channel 11 of group 0
VADC analog input channel 12 of group 0
VADC analog input channel 13 of group 0
VADC analog input channel 0 of group 1
VADC analog input channel 1 of group 1 (MD)
VADC analog input channel 4 of group 1
DSADC: positive analog input of channel 2, pin A
VADC analog input channel 5 of group 1
DSADC: negative analog input channel of DSADC 2,
pin A
VADC analog input channel 8 of group 1
SENT input channel 0, pin A
VADC analog input channel 9of group 1 (MD)
SENT input channel 1, pin A
D/
HighZ /
VDDM
Analog input 35
S/
HighZ /
VDDM
Analog input 34
VADC analog input channel 3 of group 2 (with pull
down diagnostics)
VADC analog input channel 4 of group 2
DSADC: positive analog input of channel 3, pin A
SENT input channel 2, pin D
2-46
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-15 Analog Inputs (cont’d)
Pin
32
Symbol
Ctrl
Type
Function
AN37
I
S/
HighZ /
VDDM
Analog input 37
VADCG2.5
DS3NA
SENT3D
31
AN38
I
DS3PB
S/
HighZ /
VDDM
SENT4A
AN39
I
DS3NB
S/
HighZ /
VDDM
SENT5A
AN44
I
DS3PC
AN45
I
VADCG2.11
DS3NC
27
AN46
I
VADCG2.12
DS3PD
26
AN47
I
VADCG2.13
DS3ND
25
AN48
I
VADCG2.14
24
AN49
VADCG2.15
Data Sheet
VADC analog input channel 6 of group 2
DSADC: positive analog input of channel 3, pin B
Analog input 39
VADC analog input channel 7 of group 2
DSADC: negative analog input channel of DSADC 3,
pin B
SENT input channel 5, pin A
VADCG2.10
28
Analog input 38
SENT input channel 4, pin A
VADCG2.7
29
DSADC: negative analog input channel of DSADC 3,
pin A
SENT input channel 3, pin D
VADCG2.6
30
VADC analog input channel 5 of group 2
I
D/
HighZ /
VDDM
Analog input 44
D/
HighZ /
VDDM
Analog input 45
D/
HighZ /
VDDM
Analog input 46
D/
HighZ /
VDDM
Analog input 47
D/
HighZ /
VDDM
Analog input 48
D/
HighZ /
VDDM
Analog input 49
VADC analog input channel 10 of group 2 (MD)
DSADC: positive analog input of channel 3, pin C
VADC analog input channel 11 of group 2
DSADC: negative analog input channel of DSADC 3,
pin C
VADC analog input channel 12 of group 24
DSADC: positive analog input of channel 3, pin D
VADC analog input channel 13 of group 2
DSADC: negative analog input channel of DSADC 3,
pin D
VADC analog input channel 14 of group 2
VADC analog input channel 15 of group 2
2-47
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-16 System I/O
Pin
Symbol
Ctrl
Type
Function
97
PORST
I
PORST /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
98
ESR0
I/O
MP / OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is opendrain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished.
See also SCU chapter for details.
Default after power-on can be different. See also
SCU chapter ´Reset Control Unit´ and SCU_IOCR
register description.
EVRWUP
I
ESR1
I/O
EVRWUP
I
71
VGATE1P
O
VGATE1P / External Pass Device gate control for EVR13
-/
VEXT
89
TMS
I
DAP1
I/O
A2 /
PD /
VDDP3
91
TRST
I
A2 /
PD /
VDDP3
JTAG Module Reset/Enable Input
92
TCK
I
JTAG Module Clock Input
DAP0
I
A2 /
PD /
VDDP3
81
XTAL1
I
XTAL1 /
-/-
Main Oscillator/PLL/Clock Generator Input
82
XTAL2
O
XTAL2 /
-/-
Main Oscillator/PLL/Clock Generator Output
96
EVR Wakeup Pin
External System Request Reset 1
Default NMI function. See also SCU chapter ´Reset
Control Unit´ and SCU_IOCR register description.
MP /
PU1 /
VEXT
EVR Wakeup Pin
JTAG Module State Machine Control Input
Device Access Port Line 1
Device Access Port Line 0
Table 2-17 Supply
Pin
Symbol
Ctrl
Type
Function
42
VAREF1
I
Vx
Positive Analog Reference Voltage 1
41
VAGND1
I
Vx
Negative Analog Reference Voltage 1
44
VDDM
I
Vx
ADC Analog Power Supply (3.3V / 5V)
Data Sheet
2-48
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
Table 2-17 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
10
VDD / VDDSB
I
Vx
Emulation Device: Emulation SRAM Standby Power
Supply (1.3V) (Emulation Device only).
Production Device: VDD (1.3V).
99, 58, 22 VDD
I
Vx
Digital Core Power Supply (1.3V)
79
VDD
I
Vx
Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (1.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
125, 78,
59, 23
VEXT
I
Vx
External Supply (5V / 3.3V)
126
VDDP3
I
Vx
Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power Supply for
VFLEX.
83
VDDP3
I
Vx
Digital Power Supply for Oscillator, LVDSH and A2
pads (3.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (3.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
127
VDDFL3
I
Vx
Flash Power Supply (3.3V)
136
VFLEX
I
Vx
Digital Power Supply for Flex Port Pads
(5V / 3.3V)
80
VSS
I
Vx
Digital Ground
43
VSSM
I
Vx
Analog Ground for VDDM
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
LP = Pad class LP (5V/3.3V, LVTTL)
MP = Pad class MP (5V/3.3V, LVTTL)
MP+ = Pad class MP (5V/3.3V, LVTTL)
A2 = Pad class A2 (3.3V, LVTTL)
Data Sheet
2-49
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)
S = Pad class S (ADC overlay with General Purpose Input)
D = Pad class D (ADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST = PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground)
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
2.1.2
Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
•
Input state and
•
PU or High-Z depending on HWCFG[6] level latched during PORST active
Control of the Emergency Stop function:
•
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
•
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
•
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
•
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
•
Not available for P40.x (analoge input ANx overlayed with GPI)
•
Not available for P32.0 EVR13 SMPS mode.
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.
Data Sheet
2-50
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC264x Pin Definition and Functions:
•
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
•
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O
Ports and Peripheral I/O Lines”, P00 / P01)
•
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
•
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
•
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
•
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
•
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
2.1.3
Pull-Up/Pull-Down Reset Behavior of the Pins
Table 2-18 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Data Sheet
2-51
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
2.2
TC265x Pin Definition and Functions: LQFP176
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
TC26x
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
P20. 14
P20. 13
P20. 12
P20. 11
P20. 10
P20. 9
P20. 8
P20. 7
P20. 6
VDD
ESR0
PORST
ESR1
P20. 3
P20. 2 / TESTMODE
P20. 1
P20. 0
TCK
TRST
P21. 7 / TDO
TMS
P21. 6 / TDI
P21. 5
P21. 4
P21. 3
P21. 2
P21. 1
P21. 0
VDDP 3
XTAL2
XTAL1
VSS
VDD
VEXT
P22. 3
P22. 2
P22. 1
P22. 0
P23. 5
P23. 4
P23. 3
P23. 2
P23. 1
P23. 0
AN21
AN20
AN19
AN18
AN17
AN16
VAG ND1
VAREF1
VSSM
VDDM
AN13
AN12
AN11
AN10
AN8
AN7
AN6
AN5
AN4
AN3
AN2
AN1
AN0
VD D
VEXT
P 33.0
P 33.1
P 33.2
P 33.3
P 33.4
P 33.5
P 33.6
P 33.7
P 33.8
P 33.9
P33. 10
P33. 11
P33. 12
P33. 13
VGATE1 N / P 32.0
V GATE1 P
P 32.2
P 32.3
P 32.4
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
P02.0
P02.1
P02.2
P02.3
P02.4
P02.5
P02.6
P02.7
P02.8
VDD/ VDDSB
P00.0
P00.1
P00.2
P00.3
P00.4
P00.5
P00.6
P00.7
P00.8
P00.9
P 00.10
P 00.11
P 00.12
VDD
V EXT
AN49
AN48
AN47
AN46
AN45
AN44
AN39
AN38
AN37
AN36
AN35
AN33
AN32
AN29
AN28
AN27
AN26
AN25
AN24
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
P10.8
P10.7
P10.6
P10.5
P10.4
P10.3
P10.2
P10.1
P10.0
P11.12
P11.11
P11.10
VFL EX
P11.9
P11.6
P11.3
P11.2
P13.3
P13.2
P13.1
P13.0
VD DFL3
VD DP3
VEXT
P14.10
P14.9
P14.8
P14.7
P14.6
P14.5
P14.4
P14.3
P14.2
P14.1
P14.0
P15.8
P15.7
P15.6
P15.5
P15.4
P15.3
P15.2
P15.1
P15.0
Figure 2-1 is showing the TC265x Logic Symbol for the package variant: QFP176.
Figure 2-2 TC265x Logic Symbol for the package variant LQFP176.
Data Sheet
2-52
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
2.2.1
TC265 LQFP176 Package Variant Pin Configuration
Table 2-19 Port 00 Functions
Pin
Symbol
Ctrl
Type
Function
11
P00.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN9
CTRAPA
12
GTM input
CCU61 input
T12HRE
CCU60 input
INJ00
MSC0 input
CIFD9
CIF input
P00.0
O0
General-purpose output
TOUT9
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
COUT63
O7
CCU60 output
ETHMDIOA
I/O
ETH input/output
P00.1
I
TIN10
ARX3E
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
RXDCAN1D
CAN node 1 input
PSIRX0A
PSI5 input
SENT0B
SENT input
CC60INB
CCU60 input
CC60INA
CCU61 input
DSCIN0A
DSADC channel 0 input A
VADCG3.11
VADC analog input channel 11 of group 3
CIFD10
CIF input
P00.1
O0
General-purpose output
TOUT10
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
SPC0
O6
SENT output
CC60
O7
CCU61 output
Data Sheet
2-53
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-19 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
13
P00.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN11
SENT1B
14
GTM input
SENT input
DSDIN0A
DSADC channel 0 input A
VADCG3.10
VADC analog input channel 10 of group 3 (MD)
CIFD11
CIF input
P00.2
O0
General-purpose output
TOUT11
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
PSITX0
O4
PSI5 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
COUT60
O7
CCU61 output
P00.3
I
TIN12
RXDCAN3A
LP /
PU1 /
VEXT
General-purpose input
GTM input
CAN node 3 input
PSIRX1A
PSI5 input
PSISRXA
PSI5-S input
SENT2B
SENT input
CC61INB
CCU60 input
CC61INA
CCU61 input
DSCIN3A
DSADC channel 3 input A
VADCG3.9
VADC analog input channel 9 of group 3 (MD)
CIFD12
CIF input
P00.3
O0
General-purpose output
TOUT12
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT3
O4
DSADC channel 3 output
–
O5
Reserved
SPC2
O6
SENT output
CC61
O7
CCU61 output
Data Sheet
2-54
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-19 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
15
P00.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN13
REQ7
16
GTM input
SCU input
SENT3B
SENT input
DSDIN3A
DSADC channel 3 input A
DSSGNA
DSADC input
VADCG3.8
VADC analog input channel 8 of group 3
CIFD13
CIF input
P00.4
O0
General-purpose output
TOUT13
O1
GTM output
PSISTX
O2
PSI5-S output
TXDCAN4
O3
CAN node 4 output
PSITX1
O4
PSI5 output
VADCG2BFL0
O5
VADC output
SPC3
O6
SENT output
COUT61
O7
CCU61 output
P00.5
I
TIN14
PSIRX2A
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
SENT4B
SENT input
RXDCAN4A
CAN node 4 input
CC62INB
CCU60 input
CC62INA
CCU61 input
DSCIN2A
DSADC channel 2 input A
VADCG3.7
VADC analog input channel 7 of group 3
CIFD14
CIF input
P00.5
O0
General-purpose output
TOUT14
O1
GTM output
DSCGPWMN
O2
DSADC output
–
O3
Reserved
DSCOUT2
O4
DSADC channel 2 output
VADCG2BFL1
O5
VADC output
SPC4
O6
SENT output
CC62
O7
CCU61 output
Data Sheet
2-55
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-19 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
17
P00.6
I
LP /
PU1 /
VEXT
General-purpose input
TIN15
SENT5B
18
GTM input
SENT input
DSDIN2A
DSADC channel 2 input A
VADCG3.6
VADC analog input channel 6 of group 3
CIFD15
CIF input
P00.6
O0
General-purpose output
TOUT15
O1
GTM output
DSCGPWMP
O2
DSADC output
VADCG2BFL2
O3
VADC output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
SPC5
O6
SENT output
COUT62
O7
CCU61 output
P00.7
I
TIN16
CC60INC
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
CCPOS0A
CCU61 input
T12HRB
CCU60 input
T2INA
GPT120 input
VADCG3.5
VADC analog input channel 5 of group 3
CIFCLK
CIF input
P00.7
O0
General-purpose output
TOUT16
O1
GTM output
–
O2
Reserved
VADCG2BFL3
O3
VADC output
–
O4
Reserved
VADCEMUX11
O5
VADC output
–
O6
Reserved
CC60
O7
CCU61 output
Data Sheet
2-56
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-19 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
19
P00.8
I
LP /
PU1 /
VEXT
General-purpose input
TIN17
CC61INC
20
GTM input
CCU61 input
CCPOS1A
CCU61 input
T13HRB
CCU60 input
T2EUDA
GPT120 input
VADCG3.4
VADC analog input channel 4 of group 3
CIFVSNC
CIF input
P00.8
O0
General-purpose output
TOUT17
O1
GTM output
SLSO36
O2
QSPI3 output
–
O3
Reserved
–
O4
Reserved
VADCEMUX12
O5
VADC output
–
O6
Reserved
CC61
O7
CCU61 output
P00.9
I
TIN18
CC62INC
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
CCPOS2A
CCU61 input
T13HRC
CCU60 input
T12HRC
CCU60 input
T4EUDA
GPT120 input
VADCG3.3
VADC analog input channel 3 of group 3
DSITR3F
DSADC channel 3 input F
CIFHSNC
CIF input
P00.9
O0
General-purpose output
TOUT18
O1
GTM output
SLSO37
O2
QSPI3 output
ARTS3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
Data Sheet
2-57
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-19 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
21
P00.10
I
LP /
PU1 /
VEXT
General-purpose input
TIN19
VADCG3.2
22
VADC analog input channel 2 of group 3 (MD)
P00.10
O0
General-purpose output
TOUT19
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
P00.11
I
TIN20
CTRAPA
23
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU60 input
T12HRE
CCU61 input
VADCG3.1
VADC analog input channel of group 3
P00.11
O0
General-purpose output
TOUT20
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P00.12
I
TIN21
ACTS3A
VADCG3.0
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
VADC analog input channel 0 of group 3
P00.12
O0
General-purpose output
TOUT21
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
Data Sheet
2-58
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-20 Port 02 Functions
Pin
Symbol
Ctrl
Type
Function
1
P02.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN0
ARX2G
2
GTM input
ASCLIN2 input
REQ6
SCU input
CC60INA
CCU60 input
CC60INB
CCU61 input
CIFD0
CIF input
P02.0
O0
General-purpose output
TOUT0
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
DSCGPWMN
O4
DSADC output
TXDCAN0
O5
CAN node 0 output
TXDA
O6
ERAY output
CC60
O7
CCU60 output
P02.1
I
TIN1
LP / PU1 General-purpose input
/ VEXT
GTM input
REQ14
SCU input
ARX2B
ASCLIN2 input
RXDCAN0A
CAN node 0 input
RXDA2
ERAY input
CIFD1
CIF input
P02.1
O0
General-purpose output
TOUT1
O1
GTM output
–
O2
Reserved
SLSO32
O3
QSPI3 output
DSCGPWMP
O4
DSADC output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
Data Sheet
2-59
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-20 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
3
P02.2
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN2
CC61INA
4
GTM input
CCU60 input
CC61INB
CCU61 input
CIFD2
CIF input
P02.2
O0
General-purpose output
TOUT2
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO33
O3
QSPI3 output
PSITX0
O4
PSI5 output
TXDCAN2
O5
CAN node 2 output
TXDB
O6
ERAY output
CC61
O7
CCU60 output
P02.3
I
TIN3
ARX1G
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
RXDCAN2B
CAN node 2 input
RXDB2
ERAY input
PSIRX0B
PSI5 input
SDI11
MSC1 input
CIFD3
CIF input
P02.3
O0
General-purpose output
TOUT3
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO34
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
Data Sheet
2-60
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-20 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
5
P02.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN4
SLSI3A
6
GTM input
QSPI3 input
ECTT1
TTCAN input
RXDCAN0D
CAN node 0 input
CC62INA
CCU60 input
CC62INB
CCU61 input
SDA0A
I2C0 input
CIFD4
CIF input
P02.4
O0
General-purpose output
TOUT4
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO30
O3
QSPI3 output
PSISCLK
O4
PSI5-S output
SDA0
O5
I2C0 output
TXENA
O6
ERAY output
CC62
O7
CCU60 output
P02.5
I
TIN5
MRST3A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
ECTT2
TTCAN input
PSIRX1B
PSI5 input
PSISRXB
PSI5-S input
SENT3C
SENT input
SCL0A
I2C0 input
CIFD5
CIF input
P02.5
O0
General-purpose output
TOUT5
O1
GTM output
TXDCAN0
O2
CAN node 0 output
MRST3
O3
QSPI3 output
–
O4
Reserved
SCL0
O5
I2C0 output
TXENB
O6
ERAY output
COUT62
O7
CCU60 output
Data Sheet
2-61
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-20 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
7
P02.6
I
MP /
PU1 /
VEXT
General-purpose input
TIN6
MTSR3A
8
GTM input
QSPI3 input
SENT2C
SENT input
CC60INC
CCU60 input
CCPOS0A
CCU60 input
T12HRB
CCU61 input
T3INA
GPT120 input
CIFD6
CIF input
P02.6
O0
General-purpose output
TOUT6
O1
GTM output
PSISTX
O2
PSI5-S output
MTSR3
O3
QSPI3 output
PSITX1
O4
PSI5 output
VADCEMUX00
O5
VADC output
–
O6
Reserved
CC60
O7
CCU60 output
P02.7
I
TIN7
SCLK3A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
PSIRX2B
PSI5 input
SENT1C
SENT input
CC61INC
CCU60 input
CCPOS1A
CCU60 input
T13HRB
CCU61 input
T3EUDA
GPT120 input
CIFD7
CIF input
DSCIN3B
DSADC channel 3 input B
P02.7
O0
General-purpose output
TOUT7
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
DSCOUT3
O4
DSADC channel 3 output
VADCEMUX01
O5
VADC output
SPC1
O6
SENT output
CC61
O7
CCU60 output
Data Sheet
2-62
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-20 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
9
P02.8
I
SENT0C
LP / PU1 General-purpose input
/
GTM input
VEXT
SENT input
CC62INC
CCU60 input
CCPOS2A
CCU60 input
T12HRC
CCU61 input
T13HRC
CCU61 input
T4INA
GPT120 input
CIFD8
CIF input
DSDIN3B
DSADC channel 3 input B
DSITR3E
DSADC channel 3 input E
TIN8
Function
P02.8
O0
General-purpose output
TOUT8
O1
GTM output
SLSO35
O2
QSPI3 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX02
O5
VADC output
ETHMDC
O6
ETH output
CC62
O7
CCU60 output
Table 2-21 Port 10 Functions
Pin
Symbol
Ctrl
Type
Function
168
P10.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN102
T6EUDB
GTM input
GPT120 input
P10.0
O0
General-purpose output
TOUT102
O1
GTM output
–
O2
Reserved
SLSO110
O3
QSPI1 output
–
O4
Reserved
VADCG3BFL0
O5
VADC output
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-63
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-21 Port 10 Functions (cont’d)
Pin
169
Symbol
Ctrl
Type
Function
P10.1
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN103
MRST1A
GTM input
QSPI1 input
T5EUDB
170
GPT120 input
P10.1
O0
General-purpose output
TOUT103
O1
GTM output
MTSR1
O2
QSPI1 output
MRST1
O3
QSPI1 output
EN01
O4
MSC0 output
VADCG3BFL1
O5
VADC output
END03
O6
MSC0 output
–
O7
Reserved
P10.2
I
TIN104
SCLK1A
General-purpose input
MP /
PU1 /
VEXT
GTM input
QSPI1 input
T6INB
GPT120 input
REQ2
SCU input
RXDCAN2E
CAN node 2 input
SDI01
MSC0 input
P10.2
O0
General-purpose output
TOUT104
O1
GTM output
–
O2
Reserved
SCLK1
O3
QSPI1 output
EN00
O4
MSC0 output
VADCG3BFL2
O5
VADC output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
2-64
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-21 Port 10 Functions (cont’d)
Pin
171
Symbol
Ctrl
Type
Function
P10.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN105
MTSR1A
172
GTM input
QSPI1 input
REQ3
SCU input
T5INB
GPT120 input
P10.3
O0
General-purpose output
TOUT105
O1
GTM output
VADCG3BFL3
O2
VADC output
MTSR1
O3
QSPI1 output
EN00
O4
MSC0 output
END02
O5
MSC0 output
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P10.4
I
TIN106
MTSR1C
General-purpose input
MP+ /
PU1 /
VEXT
GTM input
QSPI1 input
CCPOS0C
CCU60 input
T3INB
GPT120 input
P10.4
O0
General-purpose output
TOUT106
O1
GTM output
–
O2
Reserved
SLSO18
O3
QSPI1 output
MTSR1
O4
QSPI1 output
EN00
O5
MSC0 output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
2-65
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-21 Port 10 Functions (cont’d)
Pin
173
Symbol
Ctrl
Type
Function
P10.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN107
HWCFG4
174
GTM input
SCU input
RXDCAN4B
CAN node 4 input
INJ01
MSC0 input
P10.5
O0
General-purpose output
TOUT107
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO38
O3
QSPI3 output
SLSO19
O4
QSPI1 output
T6OUT
O5
GPT120 output
ASLSO2
O6
ASCLIN2 output
–
O7
Reserved
P10.6
I
TIN108
ARX2D
General-purpose input
LP /
PU1 /
VEXT
GTM input
ASCLIN2 input
MTSR3B
QSPI3 input
HWCFG5
SCU input
P10.6
O0
General-purpose output
TOUT108
O1
GTM output
ASCLK2
O2
ASCLIN2 output
MTSR3
O3
QSPI3 output
T3OUT
O4
GPT120 output
TXDCAN4
O5
CAN node 4 output
MRST1
O6
QSPI1 output
VADCG3BFL0
O7
VADC output
Data Sheet
2-66
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-21 Port 10 Functions (cont’d)
Pin
175
Symbol
Ctrl
Type
Function
P10.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN109
ACTS2A
176
GTM input
ASCLIN2 input
MRST3B
QSPI3 input
REQ4
SCU input
CCPOS1C
CCU60 input
T3EUDB
GPT120 input
P10.7
O0
General-purpose output
TOUT109
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
VADCG3BFL1
O4
VADC output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.8
I
TIN110
SCLK3B
General-purpose input
LP /
PU1 /
VEXT
GTM input
QSPI3 input
REQ5
SCU input
CCPOS2C
CCU60 input
T4INB
GPT120 input
P10.8
O0
General-purpose output
TOUT110
O1
GTM output
ARTS2
O2
ASCLIN2 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-67
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-22 Port 11 Functions
Pin
Symbol
Ctrl
Type
Function
160
P11.2
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN95
161
P11.2
O0
TOUT95
O1
GTM output
END03
O2
MSC0 output
SLSO05
O3
QSPI0 output
SLSO15
O4
QSPI1 output
EN01
O5
MSC0 output
ETHTXD1
O6
ETH output
COUT63
O7
CCU60 output
P11.3
I
TIN96
MRST1B
MPR /
PU1 /
VFLEX
SDI03
162
GTM input
General-purpose output
General-purpose input
GTM input
QSPI1 input
MSC0 input
P11.3
O0
General-purpose output
TOUT96
O1
GTM output
–
O2
Reserved
MRST1
O3
QSPI1 output
TXDA
O4
ERAY output
–
O5
Reserved
ETHTXD0
O6
ETH output
COUT62
O7
CCU60 output
P11.6
I
TIN97
SCLK1B
MPR /
PU1 /
VFLEX
General-purpose input
GTM input
QSPI1 input
P11.6
O0
General-purpose output
TOUT97
O1
GTM output
TXENB
O2
ERAY output
SCLK1
O3
QSPI1 output
TXENA
O4
ERAY output
FCLP0
O5
MSC0 output
ETHTXEN
O6
ETH output
COUT61
O7
CCU60 output
Data Sheet
2-68
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-22 Port 11 Functions (cont’d)
Pin
163
Symbol
Ctrl
Type
Function
P11.9
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN98
MTSR1B
165
GTM input
QSPI1 input
RXDA1
ERAY input
ETHRXD1
ETH input
P11.9
O0
General-purpose output
TOUT98
O1
GTM output
–
O2
Reserved
MTSR1
O3
QSPI1 output
–
O4
Reserved
SOP0
O5
MSC0 output
–
O6
Reserved
COUT60
O7
CCU60 output
P11.10
I
TIN99
REQ12
LP /
PU1 /
VFLEX
General-purpose input
GTM input
SCU input
ARX1E
ASCLIN1 input
SLSI1A
QSPI1 input
RXDCAN3D
CAN node 3 input
RXDB1
ERAY input
ETHRXD0
ETH input
SDI00
MSC0 input
P11.10
O0
General-purpose output
TOUT99
O1
GTM output
–
O2
Reserved
SLSO03
O3
QSPI0 output
SLSO13
O4
QSPI1 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
Data Sheet
2-69
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-22 Port 11 Functions (cont’d)
Pin
166
Symbol
Ctrl
Type
Function
P11.11
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN100
ETHCRSDVA
167
GTM input
ETH input
P11.11
O0
General-purpose output
TOUT100
O1
GTM output
END02
O2
MSC0 output
SLSO04
O3
QSPI0 output
SLSO14
O4
QSPI1 output
EN00
O5
MSC0 output
TXENB
O6
ERAY output
CC61
O7
CCU60 output
P11.12
I
TIN101
ETHREFCLK
MPR /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHTXCLKB
ETH input
(Not for productive purposes)
ETHRXCLKA
ETH input
(Not for productive purposes)
P11.12
O0
General-purpose output
TOUT101
O1
GTM output
ATX1
O2
ASCLIN1 output
GTMCLK2
O3
GTM output
TXDB
O4
ERAY output
TXDCAN3
O5
CAN node 3 output
EXTCLK1
O6
SCU output
CC60
O7
CCU60 output
Table 2-23 Port 13 Functions
Pin
Symbol
Ctrl
Type
Function
156
P13.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91
Data Sheet
GTM input
P13.0
O0
TOUT91
O1
GTM output
END03
O2
MSC0 output
SCLK2N
O3
QSPI2 output (LVDS)
EN01
O4
MSC0 output
FCLN0
O5
MSC0 output (LVDS)
FCLND0
O6
MSC0 output (LVDS)
TXDCAN4
O7
CAN node 4 output
2-70
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-23 Port 13 Functions (cont’d)
Pin
157
Symbol
Ctrl
Type
Function
P13.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN92
SCL0B
RXDCAN4C
158
P13.1
O0
General-purpose output
TOUT92
O1
GTM output
–
O2
Reserved
SCLK2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
FCLP0
O5
MSC0 output (LVDS)
SCL0
O6
I2C0 output
–
O7
Reserved
P13.2
I
CAPINA
LVDSM_N /
PU1 /
VEXT
SDA0B
General-purpose input
GTM input
GPT120 input
I2C0 input
P13.2
O0
General-purpose output
TOUT93
O1
GTM output
–
O2
Reserved
MTSR2N
O3
QSPI2 output (LVDS)
FCLP0
O4
MSC0 output
SON0
O5
MSC0 output (LVDS)
SDA0
O6
I2C0 output
SOND0
O7
MSC0 output (LVDS)
P13.3
I
TIN94
Data Sheet
I2C0 input
CAN node 4 input
TIN93
159
GTM input
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.3
O0
TOUT94
O1
GTM output
–
O2
Reserved
MTSR2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
SOP0
O5
MSC0 output (LVDS)
–
O6
Reserved
–
O7
Reserved
2-71
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-24 Port 14 Functions
Pin
Symbol
Ctrl
Type
Function
142
P14.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN80
143
P14.0
O0
TOUT80
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
TXDA
O3
ERAY output
TXDB
O4
ERAY output
TXDCAN1
O5
CAN node 1 output
Used for single pin DAP (SPD) function.
ASCLK0
O6
ASCLIN0 output
COUT62
O7
CCU60 output
P14.1
I
TIN81
REQ15
Data Sheet
GTM input
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
SCU input
ARX0A
ASCLIN0 input
RXDCAN1B
CAN node 1 input
Used for single pin DAP (SPD) function.
RXDA3
ERAY input
RXDB3
ERAY input
EVRWUPA
SCU input
P14.1
O0
General-purpose output
TOUT81
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU60 output
2-72
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-24 Port 14 Functions (cont’d)
Pin
144
Symbol
Ctrl
Type
Function
P14.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN82
HWCFG2
EVR13
145
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2
O0
General-purpose output
TOUT82
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO21
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK2
O6
ASCLIN2 output
–
O7
Reserved
P14.3
I
TIN83
ARX2A
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
REQ10
SCU input
HWCFG3_BMI
SCU input
SDI02
MSC0 input
P14.3
O0
General-purpose output
TOUT83
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO23
O3
QSPI2 output
ASLSO1
O4
ASCLIN1 output
ASLSO3
O5
ASCLIN3 output
–
O6
Reserved
–
O7
Reserved
2-73
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-24 Port 14 Functions (cont’d)
Pin
146
Symbol
Ctrl
Type
Function
P14.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN84
HWCFG6
147
O0
General-purpose output
TOUT84
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.5
I
HWCFG1
MP+ /
PU1 /
VEXT
EVR33
General-purpose input
GTM input
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5
O0
General-purpose output
TOUT85
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXDB
O6
ERAY output
–
O7
Reserved
P14.6
I
TIN86
HWCFG0
DCLDO
Data Sheet
SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4
TIN85
148
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6
O0
General-purpose output
TOUT86
O1
GTM output
–
O2
Reserved
SLSO22
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
TXENB
O6
ERAY output
–
O7
Reserved
2-74
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-24 Port 14 Functions (cont’d)
Pin
149
Symbol
Ctrl
Type
Function
P14.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN87
RXDB0
150
O0
General-purpose output
TOUT87
O1
GTM output
ARTS0
O2
ASCLIN0 output
SLSO24
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.8
I
ARX1D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
RXDCAN2D
CAN node 2 input
RXDA0
ERAY input
P14.8
O0
General-purpose output
TOUT88
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.9
I
TIN89
ACTS0A
Data Sheet
ERAY input
P14.7
TIN88
151
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
P14.9
O0
General-purpose output
TOUT89
O1
GTM output
END03
O2
MSC0 output
EN01
O3
MSC0 output
–
O4
Reserved
TXENB
O5
ERAY output
TXENA
O6
ERAY output
–
O7
Reserved
2-75
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-24 Port 14 Functions (cont’d)
Pin
152
Symbol
Ctrl
Type
Function
P14.10
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN90
GTM input
P14.10
O0
TOUT90
O1
GTM output
END02
O2
MSC0 output
EN00
O3
MSC0 output
ATX1
O4
ASCLIN1 output
TXDCAN2
O5
CAN node 2 output
TXDA
O6
ERAY output
–
O7
Reserved
General-purpose output
Table 2-25 Port 15 Functions
Pin
Symbol
Ctrl
Type
Function
133
P15.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN71
134
GTM input
P15.0
O0
TOUT71
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO013
O3
QSPI0 output
–
O4
Reserved
TXDCAN2
O5
CAN node 2 output
ASCLK1
O6
ASCLIN1 output
–
O7
Reserved
P15.1
I
TIN72
REQ16
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
SCU input
ARX1A
ASCLIN1 input
RXDCAN2A
CAN node 2 input
SLSI2B
QSPI2 input
EVRWUPB
SCU input
P15.1
O0
General-purpose output
TOUT72
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO25
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-76
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-25 Port 15 Functions (cont’d)
Pin
135
Symbol
Ctrl
Type
Function
P15.2
I
MP /
PU1 /
VEXT
General-purpose input
TIN73
SLSI2A
136
GTM input
QSPI2 input
MRST2E
QSPI2 input
HSIC2INA
QSPI2 input
P15.2
O0
General-purpose output
TOUT73
O1
GTM output
ATX0
O2
ASCLIN0 output
SLSO20
O3
QSPI2 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
ASCLK0
O6
ASCLIN0 output
–
O7
Reserved
P15.3
I
TIN74
ARX0B
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
SCLK2A
QSPI2 input
RXDCAN1A
CAN node 1 input
HSIC2INB
QSPI2 input
P15.3
O0
General-purpose output
TOUT74
O1
GTM output
ATX0
O2
ASCLIN0 output
SCLK2
O3
QSPI2 output
END03
O4
MSC0 output
EN01
O5
MSC0 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-77
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-25 Port 15 Functions (cont’d)
Pin
137
Symbol
Ctrl
Type
Function
P15.4
I
MP /
PU1 /
VEXT
General-purpose input
TIN75
MRST2A
138
QSPI2 input
REQ0
SCU input
SCL0C
I2C0 input
P15.4
O0
General-purpose output
TOUT75
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
SCL0
O6
I2C0 output
CC62
O7
CCU60 output
P15.5
I
TIN76
ARX1B
139
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
MTSR2A
QSPI2 input
SDA0C
I2C0 input
REQ13
SCU input
P15.5
O0
General-purpose output
TOUT76
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR2
O3
QSPI2 output
END02
O4
MSC0 output
EN00
O5
MSC0 output
SDA0
O6
I2C0 output
CC61
O7
CCU60 output
P15.6
I
TIN77
MTSR2B
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P15.6
O0
General-purpose output
TOUT77
O1
GTM output
ATX3
O2
ASCLIN3 output
MTSR2
O3
QSPI2 output
–
O4
Reserved
SCLK2
O5
QSPI2 output
ASCLK3
O6
ASCLIN3 output
CC60
O7
CCU60 output
Data Sheet
2-78
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-25 Port 15 Functions (cont’d)
Pin
140
Symbol
Ctrl
Type
Function
P15.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN78
ARX3A
MRST2B
141
GTM input
ASCLIN3 input
QSPI2 input
P15.7
O0
General-purpose output
TOUT78
O1
GTM output
ATX3
O2
ASCLIN3 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P15.8
I
TIN79
SCLK2B
REQ1
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
SCU input
P15.8
O0
General-purpose output
TOUT79
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK3
O6
ASCLIN3 output
COUT61
O7
CCU60 output
Data Sheet
2-79
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-26 Port 20 Functions
Pin
Symbol
Ctrl
Type
Function
116
P20.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN59
RXDCAN3C
117
GTM input
CAN node 3 input
T6EUDA
GPT120 input
REQ9
SCU input
SYSCLK
HSCT input
TGI0
OCDS input
P20.0
O0
General-purpose output
TOUT59
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
–
O7
Reserved
TGO0
HWOU
T
OCDS; ENx
P20.1
I
TIN60
TGI1
LP /
PU1 /
VEXT
General-purpose input
GTM input
OCDS input
P20.1
O0
General-purpose output
TOUT60
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO1
HWOU
T
OCDS; ENx
Data Sheet
2-80
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-26 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
118
P20.2
I
LP /
PU /
VEXT
General-purpose input
This pin is latched at power on reset release to enter
test mode.
TESTMODE
119
OCDS input
P20.2
O0
Output function not available
–
O1
Output function not available
–
O2
Output function not available
–
O3
Output function not available
–
O4
Output function not available
–
O5
Output function not available
–
O6
Output function not available
–
O7
Output function not available
P20.3
I
TIN61
T6INA
LP /
PU1 /
VEXT
ARX3C
124
General-purpose input
GTM input
GPT120 input
ASCLIN3 input
P20.3
O0
General-purpose output
TOUT61
O1
GTM output
ATX3
O2
ASCLIN3 output
SLSO09
O3
QSPI0 output
SLSO29
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
–
O7
Reserved
P20.6
I
TIN62
LP /
PU1 /
VEXT
General-purpose input
GTM input
P20.6
O0
TOUT62
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO08
O3
QSPI0 output
SLSO28
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
2-81
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-26 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
125
P20.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN63
ACTS1A
RXDCAN0B
126
ASCLIN1 input
CAN node 0 input
P20.7
O0
General-purpose output
TOUT63
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
WDT1LCK
O6
SCU output
COUT63
O7
CCU61 output
P20.8
I
TIN64
127
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
P20.8
O0
TOUT64
O1
GTM output
ASLSO1
O2
ASCLIN1 output
SLSO00
O3
QSPI0 output
SLSO10
O4
QSPI1 output
TXDCAN0
O5
CAN node 0 output
WDT0LCK
O6
SCU output
CC60
O7
CCU61 output
P20.9
I
TIN65
ARX1C
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN1 input
RXDCAN3E
CAN node 3 input
REQ11
SCU input
SLSI0B
QSPI0 input
P20.9
O0
General-purpose output
TOUT65
O1
GTM output
–
O2
Reserved
SLSO01
O3
QSPI0 output
SLSO11
O4
QSPI1 output
–
O5
Reserved
WDTSLCK
O6
SCU output
CC61
O7
CCU61 output
Data Sheet
2-82
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-26 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
128
P20.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN66
129
O0
TOUT66
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO06
O3
QSPI0 output
SLSO27
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
ASCLK1
O6
ASCLIN1 output
CC62
O7
CCU61 output
P20.11
I
TIN67
SCLK0A
130
GTM input
P20.10
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI0 input
P20.11
O0
General-purpose output
TOUT67
O1
GTM output
–
O2
Reserved
SCLK0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU61 output
P20.12
I
TIN68
MRST0A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.12
O0
General-purpose output
TOUT68
O1
GTM output
–
O2
Reserved
MRST0
O3
QSPI0 output
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU61 output
Data Sheet
2-83
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-26 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
131
P20.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN69
SLSI0A
132
GTM input
QSPI0 input
P20.13
O0
General-purpose output
TOUT69
O1
GTM output
–
O2
Reserved
SLSO02
O3
QSPI0 output
SLSO12
O4
QSPI1 output
SCLK0
O5
QSPI0 output
–
O6
Reserved
COUT62
O7
CCU61 output
P20.14
I
TIN70
MTSR0A
General-purpose input
MP /
PU1 /
VEXT
GTM input
QSPI0 input
P20.14
O0
General-purpose output
TOUT70
O1
GTM output
–
O2
Reserved
MTSR0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-27 Port 21 Functions
Pin
105
Symbol
Ctrl
Type
Function
P21.0
I
A2 /
PU1 /
VDDP3
General-purpose input
TIN51
GTM input
P21.0
O0
TOUT51
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
–
O7
Reserved
Data Sheet
2-84
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-27 Port 21 Functions (cont’d)
Pin
106
Symbol
Ctrl
Type
Function
P21.1
I
A2 /
PU1 /
VDDP3
General-purpose input
TIN52
ETHMDIOB
107
GTM input
ETH input
(Not for production purposes)
P21.1
O0
General-purpose output
TOUT52
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDIO
O6
ETH output
(Not for production purposes)
–
O7
Reserved
P21.2
I
TIN53
MRST2CN
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
QSPI2 input (LVDS)
MRST3FN
QSPI3 input (LVDS)
EMGSTOPB
SCU input
RXDN
HSCT input (LVDS)
P21.2
O0
General-purpose output
TOUT53
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
ETHMDC
O5
ETH output
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-85
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-27 Port 21 Functions (cont’d)
Pin
108
Symbol
Ctrl
Type
Function
P21.3
I
LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN54
MRST2CP
109
QSPI2 input (LVDS)
MRST3FP
QSPI3 input (LVDS)
RXDP
HSCT input (LVDS)
P21.3
O0
General-purpose output
TOUT54
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
ETHMDIOD
HWOU
T
ETH input/output
P21.4
I
TIN55
110
GTM input
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
P21.4
O0
TOUT55
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TXDN
O
HSCT output (LVDS)
P21.5
I
TIN56
LVDSH_P/
PU1 /
VDDP3
General-purpose output
General-purpose input
GTM input
P21.5
O0
TOUT56
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TXDP
O
HSCT output (LVDS)
Data Sheet
2-86
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-27 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
1111)
P21.6
I
A2 /
PU /
VDDP3
General-purpose input
TIN57
ARX3F
GTM input
ASCLIN3 input
TGI2
OCDS input
TDI
OCDS (JTAG) input
T5EUDA
GPT120 input
P21.6
O0
General-purpose output
TOUT57
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
T3OUT
O7
GPT120 output
TGO2
HWOU
T
OCDS; ENx
Data Sheet
2-87
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-27 Port 21 Functions (cont’d)
Pin
113
Symbol
Ctrl
Type
Function
P21.7
I
A2 /
PU /
VDDP3
General-purpose input
TIN58
DAP2
GTM input
OCDS (3-Pin DAP) input
In the 3-Pin DAP mode this pin is used as DAP2.
In the 2-PIN DAP mode this pin is used as P21.7
and controlled by the related port control logic.
TGI3
OCDS input
ETHRXERB
ETH input
T5INA
GPT120 input
P21.7
O0
General-purpose output
TOUT58
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
T6OUT
O7
GPT120 output
TGO3
HWOU
T
OCDS; ENx
TDO
OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ.
DAP2
OCDS (DAP2); ENx
In the 3-Pin DAP mode this pin is used as DAP2.
1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V)
Table 2-28 Port 22 Functions
Pin
Symbol
Ctrl
Type
Function
95
P22.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47
MTSR3E
GTM input
QSPI3 input
P22.0
O0
General-purpose output
TOUT47
O1
GTM output
–
O2
Reserved
MTSR3
O3
QSPI3 output
SCLK3N
O4
QSPI3 output (LVDS)
FCLN1
O5
MSC1 output (LVDS)
FCLND1
O6
MSC1 output (LVDS)
–
O7
Reserved
Data Sheet
2-88
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-28 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
96
P22.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN48
MRST3E
97
QSPI3 input
P22.1
O0
General-purpose output
TOUT48
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
SCLK3P
O4
QSPI3 output (LVDS)
FCLP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P22.2
I
TIN49
SLSI3D
98
GTM input
LVDSM_N /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P22.2
O0
General-purpose output
TOUT49
O1
GTM output
–
O2
Reserved
SLSO312
O3
QSPI3 output
MTSR3N
O4
QSPI3 output (LVDS)
SON1
O5
MSC1 output (LVDS)
SOND1
O6
MSC1 output (LVDS)
–
O7
Reserved
P22.3
I
TIN50
SCLK3E
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P22.3
O0
General-purpose output
TOUT50
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
MTSR3P
O4
QSPI3 output (LVDS)
SOP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-89
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-29 Port 23 Functions
Pin
Symbol
Ctrl
Type
Function
89
P23.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN41
90
P23.0
O0
TOUT41
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.1
I
TIN42
SDI10
91
GTM input
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC1 input
P23.1
O0
General-purpose output
TOUT42
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO313
O3
QSPI3 output
GTMCLK0
O4
GTM output
–
O5
Reserved
EXTCLK0
O6
SCU output
–
O7
Reserved
P23.2
I
TIN43
LP /
PU1 /
VEXT
General-purpose input
GTM input
P23.2
O0
TOUT43
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
2-90
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-29 Port 23 Functions (cont’d)
Pin
92
Symbol
Ctrl
Type
Function
P23.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN44
INJ10
93
MSC1 input
P23.3
O0
General-purpose output
TOUT44
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.4
I
TIN45
94
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P23.4
O0
TOUT45
O1
GTM output
–
O2
Reserved
SLSO35
O3
QSPI3 output
END12
O4
MSC1 output
EN10
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
P23.5
I
TIN46
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P23.5
O0
TOUT46
O1
GTM output
–
O2
Reserved
SLSO34
O3
QSPI3 output
END13
O4
MSC1 output
EN11
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
2-91
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-30 Port 32 Functions
Pin
Symbol
Ctrl
Type
Function
84
P32.0
I
LP /
PX/
VEXT
General-purpose input
TIN36
FDEST
GTM input
PMU input
VGATE1N
86
SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0
O0
General-purpose output
TOUT36
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P32.2
I
TIN38
ARX3D
General-purpose input
LP /
PU1 /
VEXT
GTM input
ASCLIN3 input
RXDCAN3B
87
CAN node 3 input
P32.2
O0
General-purpose output
TOUT38
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
DCDCSYNC
O6
SCU output
–
O7
Reserved
P32.3
I
TIN39
Data Sheet
General-purpose input
LP /
PU1 /
VEXT
GTM input
P32.3
O0
TOUT39
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
ASCLK3
O4
ASCLIN3 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
–
O7
Reserved
General-purpose output
2-92
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-30 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
88
P32.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN40
ACTS1B
GTM input
ASCLIN1 input
SDI12
MSC1 input
P32.4
O0
General-purpose output
TOUT40
O1
GTM output
–
O2
Reserved
END12
O3
MSC1 output
GTMCLK1
O4
GTM output
EN10
O5
MSC1 output
EXTCLK1
O6
SCU output
COUT63
O7
CCU60 output
Table 2-31 Port 33 Functions
Pin
Symbol
Ctrl
Type
Function
70
P33.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN22
DSITR0E
71
DSADC channel 0 input E
P33.0
O0
General-purpose output
TOUT22
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
VADCG1BFL0
O6
VADC output
–
O7
Reserved
P33.1
I
TIN23
PSIRX0C
DSCIN2B
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
DSADC channel 2 input B
P33.1
O0
General-purpose output
TOUT23
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT2
O4
DSADC channel 2 output
VADCEMUX02
O5
VADC output
VADCG1BFL1
O6
VADC output
–
O7
Reserved
2-93
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-31 Port 33 Functions (cont’d)
Pin
72
Symbol
Ctrl
Type
Function
P33.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN24
DSDIN2B
DSITR2E
73
P33.2
O0
General-purpose output
TOUT24
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
PSITX0
O4
PSI5 output
VADCEMUX01
O5
VADC output
VADCG1BFL2
O6
VADC output
–
O7
Reserved
P33.3
I
PSIRX1C
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
P33.3
O0
General-purpose output
TOUT25
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
VADCEMUX00
O5
VADC output
VADCG1BFL3
O6
VADC output
–
O7
Reserved
P33.4
I
TIN26
CTRAPC
DSITR0F
Data Sheet
DSADC channel 2 input B
DSADC channel 2 input E
TIN25
74
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
DSADC channel 0 input F
P33.4
O0
General-purpose output
TOUT26
O1
GTM output
ARTS2
O2
ASCLIN2 output
–
O3
Reserved
PSITX1
O4
PSI5 output
VADCEMUX12
O5
VADC output
VADCG0BFL0
O6
VADC output
–
O7
Reserved
2-94
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-31 Port 33 Functions (cont’d)
Pin
75
Symbol
Ctrl
Type
Function
P33.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN27
ACTS2B
76
ASCLIN2 input
PSIRX2C
PSI5 input
PSISRXC
PSI5-S input
SENT5C
SENT input
CCPOS2C
CCU61 input
T4EUDB
GPT120 input
DSCIN0B
DSADC channel 0 input B
P33.5
O0
General-purpose output
TOUT27
O1
GTM output
SLSO07
O2
QSPI0 output
SLSO17
O3
QSPI1 output
DSCOUT0
O4
DSADC channel 0 output
VADCEMUX11
O5
VADC output
VADCG0BFL1
O6
VADC output
–
O7
Reserved
P33.6
I
TIN28
SENT4C
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CCPOS1C
CCU61 input
T2EUDB
GPT120 input
DSDIN0B
DSADC channel 0 input B
DSITR2F
DSADC channel 2 input F
P33.6
O0
General-purpose output
TOUT28
O1
GTM output
ASLSO2
O2
ASCLIN2 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
VADCG0BFL2
O6
VADC output
PSISTX
O7
PSI5-S output
2-95
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-31 Port 33 Functions (cont’d)
Pin
77
Symbol
Ctrl
Type
Function
P33.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN29
RXDCAN0E
78
SCU input
CCPOS0C
CCU61 input
T2INB
GPT120 input
P33.7
O0
General-purpose output
TOUT29
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO37
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
VADCG0BFL3
O6
VADC output
–
O7
Reserved
P33.8
I
ARX2E
MP /
HighZ/
VEXT
EMGSTOPA
General-purpose input
GTM input
ASCLIN2 input
SCU input
P33.8
O0
General-purpose output
TOUT30
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO32
O3
QSPI3 output
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
COUT62
O7
CCU61 output
SMUFSP
HWOU
T
SMU
P33.9
I
TIN31
HSIC3INA
Data Sheet
CAN node 0 input
REQ8
TIN30
79
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.9
O0
General-purpose output
TOUT31
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
ASCLK2
O4
ASCLIN2 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
2-96
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-31 Port 33 Functions (cont’d)
Pin
80
Symbol
Ctrl
Type
Function
P33.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN32
SLSI3C
HSIC3INB
81
P33.10
O0
General-purpose output
TOUT32
O1
GTM output
SLSO16
O2
QSPI1 output
SLSO311
O3
QSPI3 output
ASLSO1
O4
ASCLIN1 output
PSISCLK
O5
PSI5-S output
–
O6
Reserved
COUT61
O7
CCU61 output
P33.11
I
SCLK3D
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.11
O0
General-purpose output
TOUT33
O1
GTM output
ASCLK1
O2
ASCLIN1 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
DSCGPWMN
O6
DSADC output
CC61
O7
CCU61 output
P33.12
I
TIN34
MTSR3D
Data Sheet
QSPI3 input
QSPI3 input
TIN33
82
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.12
O0
General-purpose output
TOUT34
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR3
O3
QSPI3 output
ASCLK1
O4
ASCLIN1 output
–
O5
Reserved
DSCGPWMP
O6
DSADC output
COUT60
O7
CCU61 output
2-97
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-31 Port 33 Functions (cont’d)
Pin
83
Symbol
Ctrl
Type
Function
P33.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN35
ARX1F
GTM input
ASCLIN1 input
MRST3D
QSPI3 input
DSSGNB
DSADC input
INJ11
MSC1 input
P33.13
O0
General-purpose output
TOUT35
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST3
O3
QSPI3 output
SLSO26
O4
QSPI2 output
–
O5
Reserved
DCDCSYNC
O6
SCU output
CC60
O7
CCU61 output
Table 2-32 Port 40 Functions
Pin
44
Symbol
Ctrl
Type
Function
P40.0
I
S/
HighZ /
VDDM
General-purpose input
VADCG1.8
CCPOS0D
SENT0A
43
P40.1
I
CCPOS1B
S/
HighZ /
VDDM
SENT1A
P40.2
I
CCPOS1D
S/
HighZ /
VDDM
SENT2A
P40.3
I
CCPOS2B
S/
HighZ /
VDDM
SENT3A
P40.6
VADCG2.4
DS3PA
Data Sheet
VADC analog input channel 9 of group 1 (MD)
CCU60 input
General-purpose inpu.t
VADC analog input channel 10 of group 1 (MD)
CCU60 input
SENT input
VADCG1.11
35
General-purpose inpu.t
SENT input
VADCG1.10
41
CCU60 input
SENT input
VADCG1.9
42
VADC analog input channel 8 of group 1
General-purpose input
VADC analog input channel 11 of group 1
CCU60 input
SENT input
I
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 4 of group 2
DSADC: positive analog input of channel 3, pin A
CCPOS1B
CCU61 input
SENT2D
SENT input
2-98
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-32 Port 40 Functions (cont’d)
Pin
34
Symbol
Ctrl
Type
Function
P40.7
I
S/
HighZ /
VDDM
General-purpose input
VADCG2.5
DS3NA
33
DSADC: negative analog input channel of DSADC 3,
pin A
CCPOS1D
CCU61 input
SENT3D
SENT input
P40.8
I
VADCG2.6
DS3PB
32
VADC analog input channel 5 of group 2
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 6 of group 2
DSADC: positive analog input of channel 3, pin B
CCPOS2B
CCU61 input
SENT4A
SENT input
P40.9
I
VADCG2.7
DS3NB
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 7 of group 2
DSADC: negative analog input channel of DSADC 3,
pin B
CCPOS2D
CCU61 input
SENT5A
SENT input
Table 2-33 Analog Inputs
Pin
Symbol
Ctrl
Type
Function
67
AN0
I
D/
HighZ /
VDDM
Analog input 0
D/
HighZ /
VDDM
Analog input 1
D/
HighZ /
VDDM
Analog input 2
D/
HighZ /
VDDM
Analog input 3
D/
HighZ /
VDDM
Analog input 4
D/
HighZ /
VDDM
Analog input 5
VADCG0.0
DS0PB
66
AN1
I
VADCG0.1
DS0NB
65
AN2
I
VADCG0.2
DS0PA
64
AN3
I
VADCG0.3
DS0NA
63
AN4
I
VADCG0.4
62
AN5
VADCG0.5
Data Sheet
I
VADC analog input channel 0 of group 0
DSADC: positive analog input of channel 0, pin B
VADC analog input channel 1 of group 0 (MD)
DSADC: negative analog input channel of DSADC 0,
pin B
VADC analog input channel 2 of group 0 (MD)
DSADC: positive analog input of channel 0, pin A
VADC analog input channel 3 of group 0
DSADC: negative analog input channel of DSADC 0,
pin A
VADC analog input channel 4 of group 0
VADC analog input channel 5 of group 0
2-99
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-33 Analog Inputs (cont’d)
Pin
61
Symbol
Ctrl
Type
Function
AN6
I
D/
HighZ /
VDDM
Analog input 6
VADCG0.6
60
AN7
I
VADCG0.7
59
AN8
I
VADCG0.8
58
AN10
I
VADCG0.10
57
AN11
I
VADCG0.11
56
AN12
I
VADCG0.12
55
AN13
I
VADCG0.13
50
AN16
I
VADCG1.0
49
AN17
I
VADCG1.1
48
AN18
I
VADCG1.2
47
AN19
I
VADCG1.3
46
AN20
I
VADCG1.4
DS2PA
45
AN21
I
VADCG1.5
DS2NA
44
AN24
VADCG1.8
SENT0A
Data Sheet
I
VADC analog input channel 6 of group 0
D/
HighZ /
VDDM
Analog input 7
D/
HighZ /
VDDM
Analog input 8
D/
HighZ /
VDDM
Analog input 10
D/
HighZ /
VDDM
Analog input 11
D/
HighZ /
VDDM
Analog input 12
D/
HighZ /
VDDM
Analog input 13
D/
HighZ /
VDDM
Analog input 16
D/
HighZ /
VDDM
Analog input 17
D/
HighZ /
VDDM
Analog input 18
D/
HighZ /
VDDM
Analog input 19
D/
HighZ /
VDDM
Analog input 20
D/
HighZ /
VDDM
Analog input 21
S/
HighZ /
VDDM
Analog input 24
VADC analog input channel 7 of group 0 (with pull
down diagnostics)
VADC analog input channel 8 of group 0
VADC analog input channel 10 of group 0 (MD)
VADC analog input channel 11 of group 0
VADC analog input channel 12 of group 0
VADC analog input channel 13 of group 0
VADC analog input channel 0 of group 1
VADC analog input channel 1 of group 1 (MD)
VADC analog input channel 2 of group 1 (MD)
VADC analog input channel 3 of group 1 (with pull
down diagnostics)
VADC analog input channel 4 of group 1
DSADC: positive analog input of channel 2, pin A
VADC analog input channel 5 of group 1
DSADC: negative analog input channel of DSADC 2,
pin A
VADC analog input channel 8 of group 1
SENT input channel 0, pin A
2-100
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-33 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
Function
43
AN25
I
S/
HighZ /
VDDM
Analog input 24
VADCG1.9
SENT1A
42
AN26
I
VADCG1.10
SENT2A
41
AN27
I
VADCG1.11
SENT3A
40
AN28
I
VADCG1.12
39
AN29
I
VADCG1.13
38
AN32
I
VADCG2.0
37
AN33
I
VADCG2.1
36
AN35
I
VADCG2.3
35
AN36
I
VADCG2.4
DS3PA
S/
HighZ /
VDDM
AN37
I
DS3NA
VADCG2.6
DS3PB
SENT4A
Data Sheet
VADC analog input channel 10 of group 1 (MD)
SENT input channel 2, pin A
Analog input 27
D/
HighZ /
VDDM
Analog input 28
D/
HighZ /
VDDM
Analog input 29
D/
HighZ /
VDDM
Analog input 32
D/
HighZ /
VDDM
Analog input 33
D/
HighZ /
VDDM
Analog input 35
S/
HighZ /
VDDM
Analog input 34
S/
HighZ /
VDDM
SENT3D
AN38
Analog input 26
VADC analog input channel 11 of group 1
SENT input channel 3, pin A
VADC analog input channel 12 of group 1
VADC analog input channel 13 of group 1
VADC analog input channel 0 of group 2
VADC analog input channel 1 of group 2 (MD)
VADC analog input channel 3 of group 2 (with pull
down diagnostics)
VADC analog input channel 4 of group 2
DSADC: positive analog input of channel 3, pin A
SENT input channel 2, pin D
VADCG2.5
33
SENT input channel 1, pin A
S/
HighZ /
VDDM
SENT2D
34
VADC analog input channel 9of group 1 (MD)
Analog input 37
VADC analog input channel 5 of group 2
DSADC: negative analog input channel of DSADC 3,
pin A
SENT input channel 3, pin D
I
S/
HighZ /
VDDM
Analog input 38
VADC analog input channel 6 of group 2
DSADC: positive analog input of channel 3, pin B
SENT input channel 4, pin A
2-101
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-33 Analog Inputs (cont’d)
Pin
32
Symbol
Ctrl
Type
Function
AN39
I
S/
HighZ /
VDDM
Analog input 39
VADCG2.7
DS3NB
VADC analog input channel 7 of group 2
DSADC: negative analog input channel of DSADC 3,
pin B
SENT5A
31
AN44
SENT input channel 5, pin A
I
VADCG2.10
DS3PC
30
AN45
I
VADCG2.11
DS3NC
29
AN46
I
VADCG2.12
DS3PD
28
AN47
I
VADCG2.13
DS3ND
27
AN48
I
VADCG2.14
26
AN49
I
VADCG2.15
D/
HighZ /
VDDM
Analog input 44
D/
HighZ /
VDDM
Analog input 45
D/
HighZ /
VDDM
Analog input 46
D/
HighZ /
VDDM
Analog input 47
D/
HighZ /
VDDM
Analog input 48
D/
HighZ /
VDDM
Analog input 49
VADC analog input channel 10 of group 2 (MD)
DSADC: positive analog input of channel 3, pin C
VADC analog input channel 11 of group 2
DSADC: negative analog input channel of DSADC 3,
pin C
VADC analog input channel 12 of group 24
DSADC: positive analog input of channel 3, pin D
VADC analog input channel 13 of group 2
DSADC: negative analog input channel of DSADC 3,
pin D
VADC analog input channel 14 of group 2
VADC analog input channel 15 of group 2
Table 2-34 System I/O
Pin
Symbol
Ctrl
Type
Function
121
PORST
I
PORST /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
122
ESR0
I/O
MP / OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is opendrain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished.
See also SCU chapter for details.
Default after power-on can be different. See also
SCU chapter ´Reset Control Unit´ and SCU_IOCR
register description.
EVRWUP
I
Data Sheet
EVR Wakeup Pin
2-102
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-34 System I/O (cont’d)
Pin
Symbol
Ctrl
Type
Function
120
ESR1
I/O
MP /
PU1 /
VEXT
External System Request Reset 1
Default NMI function. See also SCU chapter ´Reset
Control Unit´ and SCU_IOCR register description.
EVRWUP
I
85
VGATE1P
O
VGATE1P / External Pass Device gate control for EVR13
-/
VEXT
112
TMS
I
DAP1
I/O
A2 /
PD /
VDDP3
114
TRST
I
A2 /
PD /
VDDP3
JTAG Module Reset/Enable Input
115
TCK
I
JTAG Module Clock Input
DAP0
I
A2 /
PD /
VDDP3
102
XTAL1
I
XTAL1 /
-/-
Main Oscillator/PLL/Clock Generator Input
103
XTAL2
O
XTAL2 /
-/-
Main Oscillator/PLL/Clock Generator Output
EVR Wakeup Pin
JTAG Module State Machine Control Input
Device Access Port Line 1
Device Access Port Line 0
Table 2-35 Supply
Pin
Symbol
Ctrl
Type
Function
52
VAREF1
I
Vx
Positive Analog Reference Voltage 1
51
VAGND1
I
Vx
Negative Analog Reference Voltage 1
54
VDDM
I
Vx
ADC Analog Power Supply (3.3V / 5V)
10
VDD / VDDSB
I
Vx
Emulation Device: Emulation SRAM Standby Power
Supply (1.3V) (Emulation Device only).
Production Device: VDD (1.3V).
123, 68,
24
VDD
I
Vx
Digital Core Power Supply (1.3V)
100
VDD
I
Vx
Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (1.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
153, 99,
69, 25
VEXT
I
Vx
External Supply (5V / 3.3V)
Data Sheet
2-103
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
Table 2-35 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
154
VDDP3
I
Vx
Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power Supply for
VFLEX.
104
VDDP3
I
Vx
Digital Power Supply for Oscillator, LVDSH and A2
pads (3.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (3.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
155
VDDFL3
I
Vx
Flash Power Supply (3.3V)
164
VFLEX
I
Vx
Digital Power Supply for Flex Port Pads
(5V / 3.3V)
101
VSS
I
Vx
Digital Ground
53
VSSM
I
Vx
Analog Ground for VDDM
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
LP = Pad class LP (5V/3.3V, LVTTL)
MP = Pad class MP (5V/3.3V, LVTTL)
MP+ = Pad class MP (5V/3.3V, LVTTL)
A2 = Pad class A2 (3.3V, LVTTL)
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)
S = Pad class S (ADC overlayed with General Purpose Input)
D = Pad class D (ADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
Data Sheet
2-104
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST = PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground)
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
2.2.2
Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
•
Input state and
•
PU or High-Z depending on HWCFG[6] level latched during PORST active
Control of the Emergency Stop function:
•
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
•
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
•
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
•
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
•
Not available for P40.x (analoge input ANx overlayed with GPI)
•
Not available for P32.0 EVR13 SMPS mode.
•
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
•
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O
Ports and Peripheral I/O Lines”, P00 / P01)
•
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
•
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
2)
If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1/PU1 pins are predominantly in HighZ during and after reset.
Data Sheet
2-105
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC265x Pin Definition and Functions:
•
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
•
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
•
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
2.2.3
Pull-Up/Pull-Down Reset Behavior of the Pins
Table 2-36 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Data Sheet
2-106
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
2.3
TC267x Pin Definition and Functions: BGA292
Figure 2-3 is showing the TC267x Logic Symbol for the package variant: BGA292.
Y
20
19
18
17
16
15
14
13
12
11
10
9
8
VSS
P32.3
P32.2
P32.0
P33.13
P33.11
P33.9
P33.7
P33.5
P33.3
P33.1
AN5
AN10
VGATE1
P33.12
P
P33.10
P33.8
P33.6
P33.4
P33.2
P33.0
AN2
AN8
AN11
W
VEXT
VSS
V
P23.0
VEXT
P32.4
4
3
2
1
VSSM
AN20
AN21
NC
Y
AN13
AN16
AN18
AN19
AN24
AN25
W
AN26
AN27
V
AN28
AN29
U
15
14
13
12
11
10
9
8
7
6
5
4
VSS
P32.7
P32.6
P33.15
P34.5
P34.3
P34.1
AN1
AN3
AN7
AN9
AN14
AN17
NC
U
P32.5
P33.14
P34.4
P34.2
VEVRSB
AN0
AN4
AN6
AN12
AN15
AN22
AN30
T
AN23
AN31
R
AN35
AN33
R
AN34
AN32
P
AN37
AN39
P
VDD
AN38
AN36
N
AN45
AN44
N
VSS
AN40
AN41
M
AN47
AN46
M
AN42
AN43
L
P00.12
P00.11 L
P00.10
P00.8 K
P00.9
P00.7
K
VSS
P01.7
P00.6 J
P00.5
P00.4
J
VDD
(VDDSB)
P01.5
P01.6 H
P00.3
P00.2
H
P01.3
P01.4 G
P00.1
P00.0
G
P02.10
P02.11 F
P02.7
P02.8
F
P02.9 E
P02.5
P02.6
E
D
P02.3
P02.4
D
P02.1
P02.2
C
P23.1
U
T
P23.4
P23.3
T P23.5
VSS
R
P22.2
P22.3
R P23.6
P23.7
Top-View
VSS
VSS
(AGBT
TX0P)
VSS
(AGBT
TX0N)
VSS
VSS
VSS
VSS
VSS
VSS
VSS
P
P22.0
P22.1
P P22.5
P22.4
N
VDDP3
VDD
N P22.7
P22.6
VDD
M
XTAL1
XTAL2
M P22.9
P22.8
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VSS
L
VSS
TRST
L P22.11
P22.10
VSS
(AGBT
ERR)
K
P21.4
P21.2
K P21.0
TMS
NC
(VDDPSB)
VSS
J
P21.5
P21.3
J P21.1
TCK
VSS
VSS
H P21.6
P20.2
5
VDDM
16
P23.2
P20.0
6
17
U
H
7
VAGND1 VAREF1
P21.7
VDD
VSS
VSS
VSS
VDD
VSS
VSS
VSS
VSS
(AGBT
CLKN)
VSS
(AGBT
CLKP)
VDD
(VDDSB)
G
P20.3
P20.1
G PORST
ESR1
F
P20.8
P20.7
F P20.6
ESR0
E
P20.11
P20.10
E P20.9
VSS
VDDFL3
P15.5
P14.2
P12.0
P12.1
P11.0
P11.1
P11.7
P11.8
P11.13
VSS
D
P20.13
P20.12
D
VSS
VDDFL3
P15.7
P15.8
P14.7
P14.9
P14.10
P11.4
P11.6
P11.5
P11.14
P11.15
VFLEX
VSS
17
16
15
14
13
12
11
10
9
8
7
6
5
4
VDD
VSS
VSS
VSS
VSS
VAGND2 VAREF2 T
C
P20.14
P15.2
B
P15.0
VSS
VDDP3
P15.3
P14.0
P14.4
P14.3
P14.6
P13.0
P13.2
P11.3
P11.10
P11.12
P10.1
P10.4
P10.5
P10.8
VEXT
VSS
P02.0
B
A
VSS
VDDP3
P15.1
P15.4
P15.6
P14.1
P14.5
P14.8
P13.1
P13.3
P11.2
P11.9
P11.11
P10.0
P10.3
P10.2
P10.6
P10.7
VEXT
NC
A
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Figure 2-3 TC267x Logic Symbol for the package variant BGA292.
Data Sheet
2-107
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
2.3.1
TC267 BGA292 Package Variant Pin Configuration
Table 2-37 Port 00 Functions
Pin
Symbol
Ctrl
Type
Function
G1
P00.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN9
CTRAPA
G2
GTM input
CCU61 input
T12HRE
CCU60 input
INJ00
MSC0 input
CIFD9
CIF input
P00.0
O0
General-purpose output
TOUT9
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
COUT63
O7
CCU60 output
ETHMDIOA
I/O
ETH input/output
P00.1
I
TIN10
ARX3E
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
RXDCAN1D
CAN node 1 input
PSIRX0A
PSI5 input
SENT0B
SENT input
CC60INB
CCU60 input
CC60INA
CCU61 input
DSCIN0A
DSADC channel 0 input A
VADCG3.11
VADC analog input channel 11 of group 3
CIFD10
CIF input
P00.1
O0
General-purpose output
TOUT10
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
SPC0
O6
SENT output
CC60
O7
CCU61 output
Data Sheet
2-108
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-37 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
H1
P00.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN11
SENT1B
H2
GTM input
SENT input
DSDIN0A
DSADC channel 0 input A
VADCG3.10
VADC analog input channel 10 of group 3 (MD)
CIFD11
CIF input
P00.2
O0
General-purpose output
TOUT11
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
PSITX0
O4
PSI5 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
COUT60
O7
CCU61 output
P00.3
I
TIN12
RXDCAN3A
LP /
PU1 /
VEXT
General-purpose input
GTM input
CAN node 3 input
PSIRX1A
PSI5 input
PSISRXA
PSI5-S input
SENT2B
SENT input
CC61INB
CCU60 input
CC61INA
CCU61 input
DSCIN3A
DSADC channel 3 input A
VADCG3.9
VADC analog input channel 9 of group 3 (MD)
CIFD12
CIF input
P00.3
O0
General-purpose output
TOUT12
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT3
O4
DSADC channel 3 output
–
O5
Reserved
SPC2
O6
SENT output
CC61
O7
CCU61 output
Data Sheet
2-109
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-37 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J1
P00.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN13
REQ7
J2
GTM input
SCU input
SENT3B
SENT input
DSDIN3A
DSADC channel 3 input A
DSSGNA
DSADC input
VADCG3.8
VADC analog input channel 8 of group 3
CIFD13
CIF input
P00.4
O0
General-purpose output
TOUT13
O1
GTM output
PSISTX
O2
PSI5-S output
TXDCAN4
O3
CAN node 4 output
PSITX1
O4
PSI5 output
VADCG2BFL0
O5
VADC output
SPC3
O6
SENT output
COUT61
O7
CCU61 output
P00.5
I
TIN14
PSIRX2A
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
SENT4B
SENT input
RXDCAN4A
CAN node 4 input
CC62INB
CCU60 input
CC62INA
CCU61 input
DSCIN2A
DSADC channel 2 input A
VADCG3.7
VADC analog input channel 7 of group 3
CIFD14
CIF input
P00.5
O0
General-purpose output
TOUT14
O1
GTM output
DSCGPWMN
O2
DSADC output
–
O3
Reserved
DSCOUT2
O4
DSADC channel 2 output
VADCG2BFL1
O5
VADC output
SPC4
O6
SENT output
CC62
O7
CCU61 output
Data Sheet
2-110
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-37 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J4
P00.6
I
LP /
PU1 /
VEXT
General-purpose input
TIN15
SENT5B
K1
GTM input
SENT input
DSDIN2A
DSADC channel 2 input A
VADCG3.6
VADC analog input channel 6 of group 3
CIFD15
CIF input
P00.6
O0
General-purpose output
TOUT15
O1
GTM output
DSCGPWMP
O2
DSADC output
VADCG2BFL2
O3
VADC output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
SPC5
O6
SENT output
COUT62
O7
CCU61 output
P00.7
I
TIN16
CC60INC
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
CCPOS0A
CCU61 input
T12HRB
CCU60 input
T2INA
GPT120 input
VADCG3.5
VADC analog input channel 5 of group 3
CIFCLK
CIF input
P00.7
O0
General-purpose output
TOUT16
O1
GTM output
–
O2
Reserved
VADCG2BFL3
O3
VADC output
–
O4
Reserved
VADCEMUX11
O5
VADC output
–
O6
Reserved
CC60
O7
CCU61 output
Data Sheet
2-111
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-37 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
K4
P00.8
I
LP /
PU1 /
VEXT
General-purpose input
TIN17
CC61INC
K2
GTM input
CCU61 input
CCPOS1A
CCU61 input
T13HRB
CCU60 input
T2EUDA
GPT120 input
VADCG3.4
VADC analog input channel 4 of group 3
CIFVSNC
CIF input
P00.8
O0
General-purpose output
TOUT17
O1
GTM output
SLSO36
O2
QSPI3 output
–
O3
Reserved
–
O4
Reserved
VADCEMUX12
O5
VADC output
–
O6
Reserved
CC61
O7
CCU61 output
P00.9
I
TIN18
CC62INC
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
CCPOS2A
CCU61 input
T13HRC
CCU60 input
T12HRC
CCU60 input
T4EUDA
GPT120 input
VADCG3.3
VADC analog input channel 3 of group 3
DSITR3F
DSADC channel 3 input F
CIFHSNC
CIF input
P00.9
O0
General-purpose output
TOUT18
O1
GTM output
SLSO37
O2
QSPI3 output
ARTS3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
Data Sheet
2-112
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-37 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
K5
P00.10
I
LP /
PU1 /
VEXT
General-purpose input
TIN19
VADCG3.2
L1
VADC analog input channel 2 of group 3 (MD)
P00.10
O0
General-purpose output
TOUT19
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
P00.11
I
TIN20
CTRAPA
L2
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU60 input
T12HRE
CCU61 input
VADCG3.1
VADC analog input channel of group 3
P00.11
O0
General-purpose output
TOUT20
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P00.12
I
TIN21
ACTS3A
VADCG3.0
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
VADC analog input channel 0 of group 3
P00.12
O0
General-purpose output
TOUT21
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
Data Sheet
2-113
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-38 Port 02 Functions
Pin
Symbol
Ctrl
Type
Function
B1
P02.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN0
ARX2G
C2
GTM input
ASCLIN2 input
REQ6
SCU input
CC60INA
CCU60 input
CC60INB
CCU61 input
CIFD0
CIF input
P02.0
O0
General-purpose output
TOUT0
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
DSCGPWMN
O4
DSADC output
TXDCAN0
O5
CAN node 0 output
TXDA
O6
ERAY output
CC60
O7
CCU60 output
P02.1
I
TIN1
LP / PU1 General-purpose input
/ VEXT
GTM input
REQ14
SCU input
ARX2B
ASCLIN2 input
RXDCAN0A
CAN node 0 input
RXDA2
ERAY input
CIFD1
CIF input
P02.1
O0
General-purpose output
TOUT1
O1
GTM output
–
O2
Reserved
SLSO32
O3
QSPI3 output
DSCGPWMP
O4
DSADC output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
Data Sheet
2-114
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-38 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
C1
P02.2
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN2
CC61INA
D2
GTM input
CCU60 input
CC61INB
CCU61 input
CIFD2
CIF input
P02.2
O0
General-purpose output
TOUT2
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO33
O3
QSPI3 output
PSITX0
O4
PSI5 output
TXDCAN2
O5
CAN node 2 output
TXDB
O6
ERAY output
CC61
O7
CCU60 output
P02.3
I
TIN3
ARX1G
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
RXDCAN2B
CAN node 2 input
RXDB2
ERAY input
PSIRX0B
PSI5 input
SDI11
MSC1 input
CIFD3
CIF input
P02.3
O0
General-purpose output
TOUT3
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO34
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
Data Sheet
2-115
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-38 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D1
P02.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN4
SLSI3A
E2
GTM input
QSPI3 input
ECTT1
TTCAN input
RXDCAN0D
CAN node 0 input
CC62INA
CCU60 input
CC62INB
CCU61 input
SDA0A
I2C0 input
CIFD4
CIF input
P02.4
O0
General-purpose output
TOUT4
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO30
O3
QSPI3 output
PSISCLK
O4
PSI5-S output
SDA0
O5
I2C0 output
TXENA
O6
ERAY output
CC62
O7
CCU60 output
P02.5
I
TIN5
MRST3A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
ECTT2
TTCAN input
PSIRX1B
PSI5 input
PSISRXB
PSI5-S input
SENT3C
SENT input
SCL0A
I2C0 input
CIFD5
CIF input
P02.5
O0
General-purpose output
TOUT5
O1
GTM output
TXDCAN0
O2
CAN node 0 output
MRST3
O3
QSPI3 output
–
O4
Reserved
SCL0
O5
I2C0 output
TXENB
O6
ERAY output
COUT62
O7
CCU60 output
Data Sheet
2-116
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-38 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E1
P02.6
I
MP /
PU1 /
VEXT
General-purpose input
TIN6
MTSR3A
F2
GTM input
QSPI3 input
SENT2C
SENT input
CC60INC
CCU60 input
CCPOS0A
CCU60 input
T12HRB
CCU61 input
T3INA
GPT120 input
CIFD6
CIF input
P02.6
O0
General-purpose output
TOUT6
O1
GTM output
PSISTX
O2
PSI5-S output
MTSR3
O3
QSPI3 output
PSITX1
O4
PSI5 output
VADCEMUX00
O5
VADC output
–
O6
Reserved
CC60
O7
CCU60 output
P02.7
I
TIN7
SCLK3A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
PSIRX2B
PSI5 input
SENT1C
SENT input
CC61INC
CCU60 input
CCPOS1A
CCU60 input
T13HRB
CCU61 input
T3EUDA
GPT120 input
CIFD7
CIF input
DSCIN3B
DSADC channel 3 input B
P02.7
O0
General-purpose output
TOUT7
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
DSCOUT3
O4
DSADC channel 3 output
VADCEMUX01
O5
VADC output
SPC1
O6
SENT output
CC61
O7
CCU60 output
Data Sheet
2-117
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-38 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
F1
P02.8
I
SENT0C
LP / PU1 General-purpose input
/
GTM input
VEXT
SENT input
CC62INC
CCU60 input
CCPOS2A
CCU60 input
T12HRC
CCU61 input
T13HRC
CCU61 input
T4INA
GPT120 input
CIFD8
CIF input
DSDIN3B
DSADC channel 3 input B
DSITR3E
DSADC channel 3 input E
TIN8
Function
P02.8
O0
General-purpose output
TOUT8
O1
GTM output
SLSO35
O2
QSPI3 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX02
O5
VADC output
ETHMDC
O6
ETH output
CC62
O7
CCU60 output
Table 2-39 Port 10 Functions
Pin
Symbol
Ctrl
Type
Function
A7
P10.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN102
T6EUDB
GTM input
GPT120 input
P10.0
O0
General-purpose output
TOUT102
O1
GTM output
–
O2
Reserved
SLSO110
O3
QSPI1 output
–
O4
Reserved
VADCG3BFL0
O5
VADC output
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-118
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-39 Port 10 Functions (cont’d)
Pin
B7
Symbol
Ctrl
Type
Function
P10.1
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN103
MRST1A
T5EUDB
A5
GTM input
QSPI1 input
GPT120 input
P10.1
O0
General-purpose output
TOUT103
O1
GTM output
MTSR1
O2
QSPI1 output
MRST1
O3
QSPI1 output
EN01
O4
MSC0 output
VADCG3BFL1
O5
VADC output
END03
O6
MSC0 output
–
O7
Reserved
P10.2
I
TIN104
SCLK1A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
T6INB
GPT120 input
REQ2
SCU input
RXDCAN2E
CAN node 2 input
SDI01
MSC0 input
P10.2
O0
General-purpose output
TOUT104
O1
GTM output
–
O2
Reserved
SCLK1
O3
QSPI1 output
EN00
O4
MSC0 output
VADCG3BFL2
O5
VADC output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
2-119
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-39 Port 10 Functions (cont’d)
Pin
A6
Symbol
Ctrl
Type
Function
P10.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN105
MTSR1A
B6
GTM input
QSPI1 input
REQ3
SCU input
T5INB
GPT120 input
P10.3
O0
General-purpose output
TOUT105
O1
GTM output
VADCG3BFL3
O2
VADC output
MTSR1
O3
QSPI1 output
EN00
O4
MSC0 output
END02
O5
MSC0 output
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P10.4
I
TIN106
MTSR1C
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
CCPOS0C
CCU60 input
T3INB
GPT120 input
P10.4
O0
General-purpose output
TOUT106
O1
GTM output
–
O2
Reserved
SLSO18
O3
QSPI1 output
MTSR1
O4
QSPI1 output
EN00
O5
MSC0 output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
2-120
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-39 Port 10 Functions (cont’d)
Pin
B5
Symbol
Ctrl
Type
Function
P10.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN107
HWCFG4
A4
GTM input
SCU input
RXDCAN4B
CAN node 4 input
INJ01
MSC0 input
P10.5
O0
General-purpose output
TOUT107
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO38
O3
QSPI3 output
SLSO19
O4
QSPI1 output
T6OUT
O5
GPT120 output
ASLSO2
O6
ASCLIN2 output
–
O7
Reserved
P10.6
I
TIN108
ARX2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
MTSR3B
QSPI3 input
HWCFG5
SCU input
P10.6
O0
General-purpose output
TOUT108
O1
GTM output
ASCLK2
O2
ASCLIN2 output
MTSR3
O3
QSPI3 output
T3OUT
O4
GPT120 output
TXDCAN4
O5
CAN node 4 output
MRST1
O6
QSPI1 output
VADCG3BFL0
O7
VADC output
Data Sheet
2-121
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-39 Port 10 Functions (cont’d)
Pin
A3
Symbol
Ctrl
Type
Function
P10.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN109
ACTS2A
B4
GTM input
ASCLIN2 input
MRST3B
QSPI3 input
REQ4
SCU input
CCPOS1C
CCU60 input
T3EUDB
GPT120 input
P10.7
O0
General-purpose output
TOUT109
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
VADCG3BFL1
O4
VADC output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.8
I
TIN110
SCLK3B
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
REQ5
SCU input
CCPOS2C
CCU60 input
T4INB
GPT120 input
P10.8
O0
General-purpose output
TOUT110
O1
GTM output
ARTS2
O2
ASCLIN2 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-122
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-40 Port 11 Functions
Pin
Symbol
Ctrl
Type
Function
A10
P11.2
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN95
B10
P11.2
O0
TOUT95
O1
GTM output
END03
O2
MSC0 output
SLSO05
O3
QSPI0 output
SLSO15
O4
QSPI1 output
EN01
O5
MSC0 output
ETHTXD1
O6
ETH output
COUT63
O7
CCU60 output
P11.3
I
TIN96
MRST1B
MPR /
PU1 /
VFLEX
SDI03
D9
GTM input
General-purpose output
General-purpose input
GTM input
QSPI1 input
MSC0 input
P11.3
O0
General-purpose output
TOUT96
O1
GTM output
–
O2
Reserved
MRST1
O3
QSPI1 output
TXDA
O4
ERAY output
–
O5
Reserved
ETHTXD0
O6
ETH output
COUT62
O7
CCU60 output
P11.6
I
TIN97
SCLK1B
MPR /
PU1 /
VFLEX
General-purpose input
GTM input
QSPI1 input
P11.6
O0
General-purpose output
TOUT97
O1
GTM output
TXENB
O2
ERAY output
SCLK1
O3
QSPI1 output
TXENA
O4
ERAY output
FCLP0
O5
MSC0 output
ETHTXEN
O6
ETH output
COUT61
O7
CCU60 output
Data Sheet
2-123
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-40 Port 11 Functions (cont’d)
Pin
A9
Symbol
Ctrl
Type
Function
P11.9
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN98
MTSR1B
B9
GTM input
QSPI1 input
RXDA1
ERAY input
ETHRXD1
ETH input
P11.9
O0
General-purpose output
TOUT98
O1
GTM output
–
O2
Reserved
MTSR1
O3
QSPI1 output
–
O4
Reserved
SOP0
O5
MSC0 output
–
O6
Reserved
COUT60
O7
CCU60 output
P11.10
I
TIN99
REQ12
LP /
PU1 /
VFLEX
General-purpose input
GTM input
SCU input
ARX1E
ASCLIN1 input
SLSI1A
QSPI1 input
RXDCAN3D
CAN node 3 input
RXDB1
ERAY input
ETHRXD0
ETH input
SDI00
MSC0 input
P11.10
O0
General-purpose output
TOUT99
O1
GTM output
–
O2
Reserved
SLSO03
O3
QSPI0 output
SLSO13
O4
QSPI1 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
Data Sheet
2-124
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-40 Port 11 Functions (cont’d)
Pin
A8
Symbol
Ctrl
Type
Function
P11.11
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN100
ETHCRSDVA
B8
GTM input
ETH input
P11.11
O0
General-purpose output
TOUT100
O1
GTM output
END02
O2
MSC0 output
SLSO04
O3
QSPI0 output
SLSO14
O4
QSPI1 output
EN00
O5
MSC0 output
TXENB
O6
ERAY output
CC61
O7
CCU60 output
P11.12
I
TIN101
ETHREFCLK
MPR /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHTXCLKB
ETH input
(Not for productive purposes)
ETHRXCLKA
ETH input
(Not for productive purposes)
P11.12
O0
General-purpose output
TOUT101
O1
GTM output
ATX1
O2
ASCLIN1 output
GTMCLK2
O3
GTM output
TXDB
O4
ERAY output
TXDCAN3
O5
CAN node 3 output
EXTCLK1
O6
SCU output
CC60
O7
CCU60 output
Table 2-41 Port 13 Functions
Pin
Symbol
Ctrl
Type
Function
B12
P13.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91
Data Sheet
GTM input
P13.0
O0
TOUT91
O1
GTM output
END03
O2
MSC0 output
SCLK2N
O3
QSPI2 output (LVDS)
EN01
O4
MSC0 output
FCLN0
O5
MSC0 output (LVDS)
FCLND0
O6
MSC0 output (LVDS)
TXDCAN4
O7
CAN node 4 output
2-125
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-41 Port 13 Functions (cont’d)
Pin
A12
Symbol
Ctrl
Type
Function
P13.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN92
SCL0B
RXDCAN4C
B11
P13.1
O0
General-purpose output
TOUT92
O1
GTM output
–
O2
Reserved
SCLK2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
FCLP0
O5
MSC0 output (LVDS)
SCL0
O6
I2C0 output
–
O7
Reserved
P13.2
I
CAPINA
LVDSM_N /
PU1 /
VEXT
SDA0B
General-purpose input
GTM input
GPT120 input
I2C0 input
P13.2
O0
General-purpose output
TOUT93
O1
GTM output
–
O2
Reserved
MTSR2N
O3
QSPI2 output (LVDS)
FCLP0
O4
MSC0 output
SON0
O5
MSC0 output (LVDS)
SDA0
O6
I2C0 output
SOND0
O7
MSC0 output (LVDS)
P13.3
I
TIN94
Data Sheet
I2C0 input
CAN node 4 input
TIN93
A11
GTM input
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.3
O0
TOUT94
O1
GTM output
–
O2
Reserved
MTSR2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
SOP0
O5
MSC0 output (LVDS)
–
O6
Reserved
–
O7
Reserved
2-126
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-42 Port 14 Functions
Pin
Symbol
Ctrl
Type
Function
B16
P14.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN80
A15
P14.0
O0
TOUT80
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
TXDA
O3
ERAY output
TXDB
O4
ERAY output
TXDCAN1
O5
CAN node 1 output
Used for single pin DAP (SPD) function.
ASCLK0
O6
ASCLIN0 output
COUT62
O7
CCU60 output
P14.1
I
TIN81
REQ15
Data Sheet
GTM input
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
SCU input
ARX0A
ASCLIN0 input
RXDCAN1B
CAN node 1 input
Used for single pin DAP (SPD) function.
RXDA3
ERAY input
RXDB3
ERAY input
EVRWUPA
SCU input
P14.1
O0
General-purpose output
TOUT81
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU60 output
2-127
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-42 Port 14 Functions (cont’d)
Pin
E13
Symbol
Ctrl
Type
Function
P14.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN82
HWCFG2
EVR13
B14
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2
O0
General-purpose output
TOUT82
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO21
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK2
O6
ASCLIN2 output
–
O7
Reserved
P14.3
I
TIN83
ARX2A
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
REQ10
SCU input
HWCFG3_BMI
SCU input
SDI02
MSC0 input
P14.3
O0
General-purpose output
TOUT83
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO23
O3
QSPI2 output
ASLSO1
O4
ASCLIN1 output
ASLSO3
O5
ASCLIN3 output
–
O6
Reserved
–
O7
Reserved
2-128
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-42 Port 14 Functions (cont’d)
Pin
B15
Symbol
Ctrl
Type
Function
P14.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN84
HWCFG6
A14
O0
General-purpose output
TOUT84
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.5
I
HWCFG1
MP+ /
PU1 /
VEXT
EVR33
General-purpose input
GTM input
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5
O0
General-purpose output
TOUT85
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXDB
O6
ERAY output
–
O7
Reserved
P14.6
I
TIN86
HWCFG0
DCLDO
Data Sheet
SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4
TIN85
B13
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6
O0
General-purpose output
TOUT86
O1
GTM output
–
O2
Reserved
SLSO22
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
TXENB
O6
ERAY output
–
O7
Reserved
2-129
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-42 Port 14 Functions (cont’d)
Pin
D13
Symbol
Ctrl
Type
Function
P14.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN87
RXDB0
A13
O0
General-purpose output
TOUT87
O1
GTM output
ARTS0
O2
ASCLIN0 output
SLSO24
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.8
I
ARX1D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
RXDCAN2D
CAN node 2 input
RXDA0
ERAY input
P14.8
O0
General-purpose output
TOUT88
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.9
I
TIN89
ACTS0A
Data Sheet
ERAY input
P14.7
TIN88
D12
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
P14.9
O0
General-purpose output
TOUT89
O1
GTM output
END03
O2
MSC0 output
EN01
O3
MSC0 output
–
O4
Reserved
TXENB
O5
ERAY output
TXENA
O6
ERAY output
–
O7
Reserved
2-130
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-42 Port 14 Functions (cont’d)
Pin
D11
Symbol
Ctrl
Type
Function
P14.10
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN90
GTM input
P14.10
O0
TOUT90
O1
GTM output
END02
O2
MSC0 output
EN00
O3
MSC0 output
ATX1
O4
ASCLIN1 output
TXDCAN2
O5
CAN node 2 output
TXDA
O6
ERAY output
–
O7
Reserved
General-purpose output
Table 2-43 Port 15 Functions
Pin
Symbol
Ctrl
Type
Function
B20
P15.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN71
A18
GTM input
P15.0
O0
TOUT71
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO013
O3
QSPI0 output
–
O4
Reserved
TXDCAN2
O5
CAN node 2 output
ASCLK1
O6
ASCLIN1 output
–
O7
Reserved
P15.1
I
TIN72
REQ16
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
SCU input
ARX1A
ASCLIN1 input
RXDCAN2A
CAN node 2 input
SLSI2B
QSPI2 input
EVRWUPB
SCU input
P15.1
O0
General-purpose output
TOUT72
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO25
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-131
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-43 Port 15 Functions (cont’d)
Pin
C19
Symbol
Ctrl
Type
Function
P15.2
I
MP /
PU1 /
VEXT
General-purpose input
TIN73
SLSI2A
B17
GTM input
QSPI2 input
MRST2E
QSPI2 input
HSIC2INA
QSPI2 input
P15.2
O0
General-purpose output
TOUT73
O1
GTM output
ATX0
O2
ASCLIN0 output
SLSO20
O3
QSPI2 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
ASCLK0
O6
ASCLIN0 output
–
O7
Reserved
P15.3
I
TIN74
ARX0B
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
SCLK2A
QSPI2 input
RXDCAN1A
CAN node 1 input
HSIC2INB
QSPI2 input
P15.3
O0
General-purpose output
TOUT74
O1
GTM output
ATX0
O2
ASCLIN0 output
SCLK2
O3
QSPI2 output
END03
O4
MSC0 output
EN01
O5
MSC0 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-132
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-43 Port 15 Functions (cont’d)
Pin
A17
Symbol
Ctrl
Type
Function
P15.4
I
MP /
PU1 /
VEXT
General-purpose input
TIN75
MRST2A
E14
QSPI2 input
REQ0
SCU input
SCL0C
I2C0 input
P15.4
O0
General-purpose output
TOUT75
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
SCL0
O6
I2C0 output
CC62
O7
CCU60 output
P15.5
I
TIN76
ARX1B
A16
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
MTSR2A
QSPI2 input
SDA0C
I2C0 input
REQ13
SCU input
P15.5
O0
General-purpose output
TOUT76
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR2
O3
QSPI2 output
END02
O4
MSC0 output
EN00
O5
MSC0 output
SDA0
O6
I2C0 output
CC61
O7
CCU60 output
P15.6
I
TIN77
MTSR2B
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P15.6
O0
General-purpose output
TOUT77
O1
GTM output
ATX3
O2
ASCLIN3 output
MTSR2
O3
QSPI2 output
–
O4
Reserved
SCLK2
O5
QSPI2 output
ASCLK3
O6
ASCLIN3 output
CC60
O7
CCU60 output
Data Sheet
2-133
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-43 Port 15 Functions (cont’d)
Pin
D15
Symbol
Ctrl
Type
Function
P15.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN78
ARX3A
MRST2B
D14
GTM input
ASCLIN3 input
QSPI2 input
P15.7
O0
General-purpose output
TOUT78
O1
GTM output
ATX3
O2
ASCLIN3 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P15.8
I
TIN79
SCLK2B
REQ1
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
SCU input
P15.8
O0
General-purpose output
TOUT79
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK3
O6
ASCLIN3 output
COUT61
O7
CCU60 output
Data Sheet
2-134
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-44 Port 20 Functions
Pin
Symbol
Ctrl
Type
Function
H20
P20.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN59
RXDCAN3C
G19
GTM input
CAN node 3 input
T6EUDA
GPT120 input
REQ9
SCU input
SYSCLK
HSCT input
TGI0
OCDS input
P20.0
O0
General-purpose output
TOUT59
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
–
O7
Reserved
TGO0
HWOU
T
OCDS; ENx
P20.1
I
TIN60
TGI1
LP /
PU1 /
VEXT
General-purpose input
GTM input
OCDS input
P20.1
O0
General-purpose output
TOUT60
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO1
HWOU
T
OCDS; ENx
Data Sheet
2-135
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-44 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
H19
P20.2
I
LP /
PU /
VEXT
General-purpose input
This pin is latched at power on reset release to enter
test mode.
TESTMODE
G20
OCDS input
P20.2
O0
Output function not available
–
O1
Output function not available
–
O2
Output function not available
–
O3
Output function not available
–
O4
Output function not available
–
O5
Output function not available
–
O6
Output function not available
–
O7
Output function not available
P20.3
I
TIN61
T6INA
LP /
PU1 /
VEXT
ARX3C
F17
General-purpose input
GTM input
GPT120 input
ASCLIN3 input
P20.3
O0
General-purpose output
TOUT61
O1
GTM output
ATX3
O2
ASCLIN3 output
SLSO09
O3
QSPI0 output
SLSO29
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
–
O7
Reserved
P20.6
I
TIN62
LP /
PU1 /
VEXT
General-purpose input
GTM input
P20.6
O0
TOUT62
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO08
O3
QSPI0 output
SLSO28
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
2-136
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-44 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
F19
P20.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN63
ACTS1A
RXDCAN0B
F20
ASCLIN1 input
CAN node 0 input
P20.7
O0
General-purpose output
TOUT63
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
WDT1LCK
O6
SCU output
COUT63
O7
CCU61 output
P20.8
I
TIN64
E17
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
P20.8
O0
TOUT64
O1
GTM output
ASLSO1
O2
ASCLIN1 output
SLSO00
O3
QSPI0 output
SLSO10
O4
QSPI1 output
TXDCAN0
O5
CAN node 0 output
WDT0LCK
O6
SCU output
CC60
O7
CCU61 output
P20.9
I
TIN65
ARX1C
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN1 input
RXDCAN3E
CAN node 3 input
REQ11
SCU input
SLSI0B
QSPI0 input
P20.9
O0
General-purpose output
TOUT65
O1
GTM output
–
O2
Reserved
SLSO01
O3
QSPI0 output
SLSO11
O4
QSPI1 output
–
O5
Reserved
WDTSLCK
O6
SCU output
CC61
O7
CCU61 output
Data Sheet
2-137
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-44 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E19
P20.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN66
E20
O0
TOUT66
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO06
O3
QSPI0 output
SLSO27
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
ASCLK1
O6
ASCLIN1 output
CC62
O7
CCU61 output
P20.11
I
TIN67
SCLK0A
D19
GTM input
P20.10
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI0 input
P20.11
O0
General-purpose output
TOUT67
O1
GTM output
–
O2
Reserved
SCLK0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU61 output
P20.12
I
TIN68
MRST0A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.12
O0
General-purpose output
TOUT68
O1
GTM output
–
O2
Reserved
MRST0
O3
QSPI0 output
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU61 output
Data Sheet
2-138
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-44 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D20
P20.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN69
SLSI0A
C20
GTM input
QSPI0 input
P20.13
O0
General-purpose output
TOUT69
O1
GTM output
–
O2
Reserved
SLSO02
O3
QSPI0 output
SLSO12
O4
QSPI1 output
SCLK0
O5
QSPI0 output
–
O6
Reserved
COUT62
O7
CCU61 output
P20.14
I
TIN70
MTSR0A
General-purpose input
MP /
PU1 /
VEXT
GTM input
QSPI0 input
P20.14
O0
General-purpose output
TOUT70
O1
GTM output
–
O2
Reserved
MTSR0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-45 Port 21 Functions
Pin
K17
Symbol
Ctrl
Type
Function
P21.0
I
A2 /
PU1 /
VDDP3
General-purpose input
TIN51
GTM input
P21.0
O0
TOUT51
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
–
O7
Reserved
Data Sheet
2-139
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-45 Port 21 Functions (cont’d)
Pin
J17
Symbol
Ctrl
Type
Function
P21.1
I
A2 /
PU1 /
VDDP3
General-purpose input
TIN52
ETHMDIOB
K19
GTM input
ETH input
(Not for production purposes)
P21.1
O0
General-purpose output
TOUT52
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDIO
O6
ETH output
(Not for production purposes)
–
O7
Reserved
P21.2
I
TIN53
MRST2CN
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
QSPI2 input (LVDS)
MRST3FN
QSPI3 input (LVDS)
EMGSTOPB
SCU input
RXDN
HSCT input (LVDS)
P21.2
O0
General-purpose output
TOUT53
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
ETHMDC
O5
ETH output
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-140
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-45 Port 21 Functions (cont’d)
Pin
J19
Symbol
Ctrl
Type
Function
P21.3
I
LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN54
MRST2CP
K20
QSPI2 input (LVDS)
MRST3FP
QSPI3 input (LVDS)
RXDP
HSCT input (LVDS)
P21.3
O0
General-purpose output
TOUT54
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
ETHMDIOD
HWOU
T
ETH input/output
P21.4
I
TIN55
J20
GTM input
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
P21.4
O0
TOUT55
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TXDN
O
HSCT output (LVDS)
P21.5
I
TIN56
LVDSH_P/
PU1 /
VDDP3
General-purpose output
General-purpose input
GTM input
P21.5
O0
TOUT56
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TXDP
O
HSCT output (LVDS)
Data Sheet
2-141
General-purpose output
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-45 Port 21 Functions (cont’d)
Pin
H17
Symbol
Ctrl
Type
Function
P21.6
I
A2 /
PU /
VDDP3
General-purpose input
TIN57
ARX3F
GTM input
ASCLIN3 input
TGI2
OCDS input
TDI
OCDS (JTAG) input
T5EUDA
GPT120 input
P21.6
O0
General-purpose output
TOUT57
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
T3OUT
O7
GPT120 output
TGO2
HWOU
T
OCDS; ENx
Data Sheet
2-142
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-45 Port 21 Functions (cont’d)
Pin
H16
Symbol
Ctrl
Type
Function
P21.7
I
A2 /
PU /
VDDP3
General-purpose input
TIN58
DAP2
GTM input
OCDS (3-Pin DAP) input
In the 3-Pin DAP mode this pin is used as DAP2.
In the 2-PIN DAP mode this pin is used as P21.7
and controlled by the related port control logic.
TGI3
OCDS input
ETHRXERB
ETH input
T5INA
GPT120 input
P21.7
O0
General-purpose output
TOUT58
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
T6OUT
O7
GPT120 output
TGO3
HWOU
T
OCDS; ENx
TDO
OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ.
DAP2
OCDS (DAP2); ENx
In the 3-Pin DAP mode this pin is used as DAP2.
Table 2-46 Port 22 Functions
Pin
Symbol
Ctrl
Type
Function
P20
P22.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47
MTSR3E
GTM input
QSPI3 input
P22.0
O0
General-purpose output
TOUT47
O1
GTM output
–
O2
Reserved
MTSR3
O3
QSPI3 output
SCLK3N
O4
QSPI3 output (LVDS)
FCLN1
O5
MSC1 output (LVDS)
FCLND1
O6
MSC1 output (LVDS)
–
O7
Reserved
Data Sheet
2-143
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-46 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
P19
P22.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN48
MRST3E
R20
QSPI3 input
P22.1
O0
General-purpose output
TOUT48
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
SCLK3P
O4
QSPI3 output (LVDS)
FCLP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P22.2
I
TIN49
SLSI3D
R19
GTM input
LVDSM_N /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P22.2
O0
General-purpose output
TOUT49
O1
GTM output
–
O2
Reserved
SLSO312
O3
QSPI3 output
MTSR3N
O4
QSPI3 output (LVDS)
SON1
O5
MSC1 output (LVDS)
SOND1
O6
MSC1 output (LVDS)
–
O7
Reserved
P22.3
I
TIN50
SCLK3E
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P22.3
O0
General-purpose output
TOUT50
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
MTSR3P
O4
QSPI3 output (LVDS)
SOP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Data Sheet
2-144
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-47 Port 23 Functions
Pin
Symbol
Ctrl
Type
Function
V20
P23.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN41
U19
P23.0
O0
TOUT41
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.1
I
TIN42
SDI10
U20
GTM input
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC1 input
P23.1
O0
General-purpose output
TOUT42
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO313
O3
QSPI3 output
GTMCLK0
O4
GTM output
–
O5
Reserved
EXTCLK0
O6
SCU output
–
O7
Reserved
P23.2
I
TIN43
LP /
PU1 /
VEXT
General-purpose input
GTM input
P23.2
O0
TOUT43
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
2-145
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-47 Port 23 Functions (cont’d)
Pin
T19
Symbol
Ctrl
Type
Function
P23.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN44
INJ10
T20
MSC1 input
P23.3
O0
General-purpose output
TOUT44
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.4
I
TIN45
T17
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P23.4
O0
TOUT45
O1
GTM output
–
O2
Reserved
SLSO35
O3
QSPI3 output
END12
O4
MSC1 output
EN10
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
P23.5
I
TIN46
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P23.5
O0
TOUT46
O1
GTM output
–
O2
Reserved
SLSO34
O3
QSPI3 output
END13
O4
MSC1 output
EN11
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
2-146
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-48 Port 32 Functions
Pin
Symbol
Ctrl
Type
Function
Y17
P32.0
I
LP /
PX/
VEXT
General-purpose input
TIN36
FDEST
GTM input
PMU input
VGATE1N
Y18
SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0
O0
General-purpose output
TOUT36
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P32.2
I
TIN38
ARX3D
General-purpose input
LP /
PU1 /
VEXT
GTM input
ASCLIN3 input
RXDCAN3B
Y19
CAN node 3 input
P32.2
O0
General-purpose output
TOUT38
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
DCDCSYNC
O6
SCU output
–
O7
Reserved
P32.3
I
TIN39
Data Sheet
General-purpose input
LP /
PU1 /
VEXT
GTM input
P32.3
O0
TOUT39
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
ASCLK3
O4
ASCLIN3 output
TXDCAN3
O5
CAN node 3 output
–
O6
Reserved
–
O7
Reserved
General-purpose output
2-147
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-48 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
W18
P32.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN40
ACTS1B
GTM input
ASCLIN1 input
SDI12
MSC1 input
P32.4
O0
General-purpose output
TOUT40
O1
GTM output
–
O2
Reserved
END12
O3
MSC1 output
GTMCLK1
O4
GTM output
EN10
O5
MSC1 output
EXTCLK1
O6
SCU output
COUT63
O7
CCU60 output
Table 2-49 Port 33 Functions
Pin
Symbol
Ctrl
Type
Function
W10
P33.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN22
DSITR0E
Y10
DSADC channel 0 input E
P33.0
O0
General-purpose output
TOUT22
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
VADCG1BFL0
O6
VADC output
–
O7
Reserved
P33.1
I
TIN23
PSIRX0C
DSCIN2B
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
DSADC channel 2 input B
P33.1
O0
General-purpose output
TOUT23
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT2
O4
DSADC channel 2 output
VADCEMUX02
O5
VADC output
VADCG1BFL1
O6
VADC output
–
O7
Reserved
2-148
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-49 Port 33 Functions (cont’d)
Pin
W11
Symbol
Ctrl
Type
Function
P33.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN24
DSDIN2B
DSITR2E
Y11
P33.2
O0
General-purpose output
TOUT24
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
PSITX0
O4
PSI5 output
VADCEMUX01
O5
VADC output
VADCG1BFL2
O6
VADC output
–
O7
Reserved
P33.3
I
PSIRX1C
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
P33.3
O0
General-purpose output
TOUT25
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
VADCEMUX00
O5
VADC output
VADCG1BFL3
O6
VADC output
–
O7
Reserved
P33.4
I
TIN26
CTRAPC
DSITR0F
Data Sheet
DSADC channel 2 input B
DSADC channel 2 input E
TIN25
W12
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
CCU61 input
DSADC channel 0 input F
P33.4
O0
General-purpose output
TOUT26
O1
GTM output
ARTS2
O2
ASCLIN2 output
–
O3
Reserved
PSITX1
O4
PSI5 output
VADCEMUX12
O5
VADC output
VADCG0BFL0
O6
VADC output
–
O7
Reserved
2-149
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-49 Port 33 Functions (cont’d)
Pin
Y12
Symbol
Ctrl
Type
Function
P33.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN27
ACTS2B
W13
ASCLIN2 input
PSIRX2C
PSI5 input
PSISRXC
PSI5-S input
SENT5C
SENT input
CCPOS2C
CCU61 input
T4EUDB
GPT120 input
DSCIN0B
DSADC channel 0 input B
P33.5
O0
General-purpose output
TOUT27
O1
GTM output
SLSO07
O2
QSPI0 output
SLSO17
O3
QSPI1 output
DSCOUT0
O4
DSADC channel 0 output
VADCEMUX11
O5
VADC output
VADCG0BFL1
O6
VADC output
–
O7
Reserved
P33.6
I
TIN28
SENT4C
Data Sheet
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CCPOS1C
CCU61 input
T2EUDB
GPT120 input
DSDIN0B
DSADC channel 0 input B
DSITR2F
DSADC channel 2 input F
P33.6
O0
General-purpose output
TOUT28
O1
GTM output
ASLSO2
O2
ASCLIN2 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
VADCG0BFL2
O6
VADC output
PSISTX
O7
PSI5-S output
2-150
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-49 Port 33 Functions (cont’d)
Pin
Y13
Symbol
Ctrl
Type
Function
P33.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN29
RXDCAN0E
W14
SCU input
CCPOS0C
CCU61 input
T2INB
GPT120 input
P33.7
O0
General-purpose output
TOUT29
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO37
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
VADCG0BFL3
O6
VADC output
–
O7
Reserved
P33.8
I
ARX2E
MP /
HighZ/
VEXT
EMGSTOPA
General-purpose input
GTM input
ASCLIN2 input
SCU input
P33.8
O0
General-purpose output
TOUT30
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO32
O3
QSPI3 output
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
COUT62
O7
CCU61 output
SMUFSP
HWOU
T
SMU
P33.9
I
TIN31
HSIC3INA
Data Sheet
CAN node 0 input
REQ8
TIN30
Y14
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.9
O0
General-purpose output
TOUT31
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
ASCLK2
O4
ASCLIN2 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
2-151
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-49 Port 33 Functions (cont’d)
Pin
W15
Symbol
Ctrl
Type
Function
P33.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN32
SLSI3C
HSIC3INB
Y15
P33.10
O0
General-purpose output
TOUT32
O1
GTM output
SLSO16
O2
QSPI1 output
SLSO311
O3
QSPI3 output
ASLSO1
O4
ASCLIN1 output
PSISCLK
O5
PSI5-S output
–
O6
Reserved
COUT61
O7
CCU61 output
P33.11
I
SCLK3D
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.11
O0
General-purpose output
TOUT33
O1
GTM output
ASCLK1
O2
ASCLIN1 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
DSCGPWMN
O6
DSADC output
CC61
O7
CCU61 output
P33.12
I
TIN34
MTSR3D
Data Sheet
QSPI3 input
QSPI3 input
TIN33
W16
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.12
O0
General-purpose output
TOUT34
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR3
O3
QSPI3 output
ASCLK1
O4
ASCLIN1 output
–
O5
Reserved
DSCGPWMP
O6
DSADC output
COUT60
O7
CCU61 output
2-152
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-49 Port 33 Functions (cont’d)
Pin
Y16
Symbol
Ctrl
Type
Function
P33.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN35
ARX1F
GTM input
ASCLIN1 input
MRST3D
QSPI3 input
DSSGNB
DSADC input
INJ11
MSC1 input
P33.13
O0
General-purpose output
TOUT35
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST3
O3
QSPI3 output
SLSO26
O4
QSPI2 output
–
O5
Reserved
DCDCSYNC
O6
SCU output
CC60
O7
CCU61 output
Table 2-50 Port 40 Functions
Pin
W2
Symbol
Ctrl
Type
Function
P40.0
I
S/
HighZ /
VDDM
General-purpose input
VADCG1.8
CCPOS0D
SENT0A
W1
P40.1
I
CCPOS1B
S/
HighZ /
VDDM
SENT1A
P40.2
I
CCPOS1D
S/
HighZ /
VDDM
SENT2A
P40.3
I
CCPOS2B
S/
HighZ /
VDDM
SENT3A
P40.6
VADCG2.4
DS3PA
Data Sheet
VADC analog input channel 9 of group 1 (MD)
CCU60 input
General-purpose inpu.t
VADC analog input channel 10 of group 1 (MD)
CCU60 input
SENT input
VADCG1.11
N4
General-purpose inpu.t
SENT input
VADCG1.10
V1
CCU60 input
SENT input
VADCG1.9
V2
VADC analog input channel 8 of group 1
General-purpose input
VADC analog input channel 11 of group 1
CCU60 input
SENT input
I
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 4 of group 2
DSADC: positive analog input of channel 3, pin A
CCPOS1B
CCU61 input
SENT2D
SENT input
2-153
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-50 Port 40 Functions (cont’d)
Pin
P2
Symbol
Ctrl
Type
Function
P40.7
I
S/
HighZ /
VDDM
General-purpose input
VADCG2.5
DS3NA
N5
DSADC: negative analog input channel of DSADC 3,
pin A
CCPOS1D
CCU61 input
SENT3D
SENT input
P40.8
I
VADCG2.6
DS3PB
P1
VADC analog input channel 5 of group 2
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 6 of group 2
DSADC: positive analog input of channel 3, pin B
CCPOS2B
CCU61 input
SENT4A
SENT input
P40.9
I
VADCG2.7
DS3NB
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 7 of group 2
DSADC: negative analog input channel of DSADC 3,
pin B
CCPOS2D
CCU61 input
SENT5A
SENT input
Table 2-51 Analog Inputs
Pin
Symbol
Ctrl
Type
Function
T10
AN0
I
D/
HighZ /
VDDM
Analog input 0
D/
HighZ /
VDDM
Analog input 1
D/
HighZ /
VDDM
Analog input 2
D/
HighZ /
VDDM
Analog input 3
D/
HighZ /
VDDM
Analog input 4
D/
HighZ /
VDDM
Analog input 5
VADCG0.0
DS0PB
U10
AN1
I
VADCG0.1
DS0NB
W9
AN2
I
VADCG0.2
DS0PA
U9
AN3
I
VADCG0.3
DS0NA
T9
AN4
I
VADCG0.4
Y9
AN5
VADCG0.5
Data Sheet
I
VADC analog input channel 0 of group 0
DSADC: positive analog input of channel 0, pin B
VADC analog input channel 1 of group 0 (MD)
DSADC: negative analog input channel of DSADC 0,
pin B
VADC analog input channel 2 of group 0 (MD)
DSADC: positive analog input of channel 0, pin A
VADC analog input channel 3 of group 0
DSADC: negative analog input channel of DSADC 0,
pin A
VADC analog input channel 4 of group 0
VADC analog input channel 5 of group 0
2-154
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-51 Analog Inputs (cont’d)
Pin
T8
Symbol
Ctrl
Type
Function
AN6
I
D/
HighZ /
VDDM
Analog input 6
VADCG0.6
U8
AN7
I
VADCG0.7
W8
AN8
I
VADCG0.8
Y8
AN10
I
VADCG0.10
W7
AN11
I
VADCG0.11
T7
AN12
I
VADCG0.12
W6
AN13
I
VADCG0.13
W5
AN16
I
VADCG1.0
U5
AN17
I
VADCG1.1
W4
AN18
I
VADCG1.2
W3
AN19
I
VADCG1.3
Y3
AN20
I
VADCG1.4
DS2PA
Y2
AN21
I
VADCG1.5
DS2NA
W2
AN24
VADCG1.8
SENT0A
Data Sheet
I
VADC analog input channel 6 of group 0
D/
HighZ /
VDDM
Analog input 7
D/
HighZ /
VDDM
Analog input 8
D/
HighZ /
VDDM
Analog input 10
D/
HighZ /
VDDM
Analog input 11
D/
HighZ /
VDDM
Analog input 12
D/
HighZ /
VDDM
Analog input 13
D/
HighZ /
VDDM
Analog input 16
D/
HighZ /
VDDM
Analog input 17
D/
HighZ /
VDDM
Analog input 18
D/
HighZ /
VDDM
Analog input 19
D/
HighZ /
VDDM
Analog input 20
D/
HighZ /
VDDM
Analog input 21
S/
HighZ /
VDDM
Analog input 24
VADC analog input channel 7 of group 0 (with pull
down diagnostics)
VADC analog input channel 8 of group 0
VADC analog input channel 10 of group 0 (MD)
VADC analog input channel 11 of group 0
VADC analog input channel 12 of group 0
VADC analog input channel 13 of group 0
VADC analog input channel 0 of group 1
VADC analog input channel 1 of group 1 (MD)
VADC analog input channel 2 of group 1 (MD)
VADC analog input channel 3 of group 1 (with pull
down diagnostics)
VADC analog input channel 4 of group 1
DSADC: positive analog input of channel 2, pin A
VADC analog input channel 5 of group 1
DSADC: negative analog input channel of DSADC 2,
pin A
VADC analog input channel 8 of group 1
SENT input channel 0, pin A
2-155
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-51 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
Function
W1
AN25
I
S/
HighZ /
VDDM
Analog input 24
VADCG1.9
SENT1A
V2
AN26
I
VADCG1.10
SENT2A
V1
AN27
I
VADCG1.11
SENT3A
U2
AN28
I
VADCG1.12
U1
AN29
I
VADCG1.13
P4
AN32
I
VADCG2.0
R1
AN33
I
VADCG2.1
R2
AN35
I
VADCG2.3
N4
AN36
I
VADCG2.4
DS3PA
S/
HighZ /
VDDM
AN37
I
DS3NA
VADCG2.6
DS3PB
SENT4A
Data Sheet
VADC analog input channel 10 of group 1 (MD)
SENT input channel 2, pin A
Analog input 27
D/
HighZ /
VDDM
Analog input 28
D/
HighZ /
VDDM
Analog input 29
D/
HighZ /
VDDM
Analog input 32
D/
HighZ /
VDDM
Analog input 33
D/
HighZ /
VDDM
Analog input 35
S/
HighZ /
VDDM
Analog input 34
S/
HighZ /
VDDM
SENT3D
AN38
Analog input 26
VADC analog input channel 11 of group 1
SENT input channel 3, pin A
VADC analog input channel 12 of group 1
VADC analog input channel 13 of group 1
VADC analog input channel 0 of group 2
VADC analog input channel 1 of group 2 (MD)
VADC analog input channel 3 of group 2 (with pull
down diagnostics)
VADC analog input channel 4 of group 2
DSADC: positive analog input of channel 3, pin A
SENT input channel 2, pin D
VADCG2.5
N5
SENT input channel 1, pin A
S/
HighZ /
VDDM
SENT2D
P2
VADC analog input channel 9of group 1 (MD)
Analog input 37
VADC analog input channel 5 of group 2
DSADC: negative analog input channel of DSADC 3,
pin A
SENT input channel 3, pin D
I
S/
HighZ /
VDDM
Analog input 38
VADC analog input channel 6 of group 2
DSADC: positive analog input of channel 3, pin B
SENT input channel 4, pin A
2-156
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-51 Analog Inputs (cont’d)
Pin
P1
Symbol
Ctrl
Type
Function
AN39
I
S/
HighZ /
VDDM
Analog input 39
VADCG2.7
DS3NB
VADC analog input channel 7 of group 2
DSADC: negative analog input channel of DSADC 3,
pin B
SENT5A
N1
AN44
SENT input channel 5, pin A
I
VADCG2.10
DS3PC
N2
AN45
I
VADCG2.11
DS3NC
M1
AN46
I
VADCG2.12
DS3PD
M2
AN47
I
VADCG2.13
DS3ND
M4
AN48
I
VADCG2.14
M5
AN49
I
VADCG2.15
D/
HighZ /
VDDM
Analog input 44
D/
HighZ /
VDDM
Analog input 45
D/
HighZ /
VDDM
Analog input 46
D/
HighZ /
VDDM
Analog input 47
D/
HighZ /
VDDM
Analog input 48
D/
HighZ /
VDDM
Analog input 49
VADC analog input channel 10 of group 2 (MD)
DSADC: positive analog input of channel 3, pin C
VADC analog input channel 11 of group 2
DSADC: negative analog input channel of DSADC 3,
pin C
VADC analog input channel 12 of group 24
DSADC: positive analog input of channel 3, pin D
VADC analog input channel 13 of group 2
DSADC: negative analog input channel of DSADC 3,
pin D
VADC analog input channel 14 of group 2
VADC analog input channel 15 of group 2
Table 2-52 System I/O
Pin
Symbol
Ctrl
Type
Function
G17
PORST
I
PORST /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
F16
ESR0
I/O
MP / OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is opendrain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished.
See also SCU chapter for details.
Default after power-on can be different. See also
SCU chapter ´Reset Control Unit´ and SCU_IOCR
register description.
EVRWUP
I
Data Sheet
EVR Wakeup Pin
2-157
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-52 System I/O (cont’d)
Pin
Symbol
Ctrl
Type
Function
G16
ESR1
I/O
MP /
PU1 /
VEXT
External System Request Reset 1
Default NMI function. See also SCU chapter ´Reset
Control Unit´ and SCU_IOCR register description.
EVRWUP
I
W17
VGATE1P
O
VGATE1P / External Pass Device gate control for EVR13
-/
VEXT
K16
TMS
I
DAP1
I/O
A2 /
PD /
VDDP3
L19
TRST
I
A2 /
PD /
VDDP3
JTAG Module Reset/Enable Input
J16
TCK
I
JTAG Module Clock Input
DAP0
I
A2 /
PD /
VDDP3
M20
XTAL1
I
XTAL1 /
-/-
Main Oscillator/PLL/Clock Generator Input
M19
XTAL2
O
XTAL2 /
-/-
Main Oscillator/PLL/Clock Generator Output
EVR Wakeup Pin
JTAG Module State Machine Control Input
Device Access Port Line 1
Device Access Port Line 0
Table 2-53 Supply
Pin
Symbol
Ctrl
Type
Function
Y6
VAREF1
I
Vx
Positive Analog Reference Voltage 1
Y7
VAGND1
I
Vx
Negative Analog Reference Voltage 1
Y5
VDDM
I
Vx
ADC Analog Power Supply (3.3V / 5V)
G8, H7
VDD / VDDSB
I
Vx
Emulation Device: Emulation SRAM Standby Power
Supply (1.3V) (Emulation Device only).
Production Device: VDD (1.3V).
P8, P13,
N7, N14,
H14, G13
VDD
I
Vx
Digital Core Power Supply (1.3V)
N19
VDD
I
Vx
Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (1.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
I
Vx
External Power Supply (5V / 3.3V)
A2, B3,
VEXT
V19, W20
Data Sheet
2-158
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-53 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
B18, A19
VDDP3
I
Vx
Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power Supply for
VFLEX.
N20
VDDP3
I
Vx
Digital Power Supply for Oscillator, LVDSH and A2
pads (3.3V).
The supply pin inturn supplies the main XTAL
Oscillator/PLL (3.3V) . A higher decoupling capacitor is
therefore recommended to the VSS pin for better noise
immunity.
E15, D16
VDDFL3
I
Vx
Flash Power Supply (3.3V)
D5
VFLEX
I
Vx
Digital Power Supply for Flex Port Pads
(5V / 3.3V)
Y4
VSSM
I
Vx
Analog Ground for VDDM
T11
VEVRSB
I
Vx
Standby Power Supply (3.3V/5V) for the Standby
SRAM (CPU0.DSPR).
If Standby mode is not used: To be handled like VEXT
(3.3V/5V).
VSS
B2, D4,
E5, L20,
T16, U17,
W19, Y20
I
Vx
Digital Ground
E16, D17, VSS
B19, A20
I
Vx
Digital Ground (outer balls)
VSS
I
Vx
Digital Ground (center balls)
M7, M8,
VSS
M10, M11,
M13, M14
I
Vx
Digital Ground (center balls)
VSS
I
Vx
Digital Ground (center balls)
K8, K9,
VSS
K10, K11,
K12, K13
I
Vx
Digital Ground (center balls)
VSS
I
Vx
Digital Ground (center balls)
H9, H10, VSS
H11, H12,
G9, G10,
G11, G12
I
Vx
Digital Ground (center balls)
P9, P12,
N9, N10,
N11, N12
L8, L9,
L10, L11,
L12, L13
J7, J8,
J10, J11,
J13, J14
Data Sheet
2-159
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-53 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
P10
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT TX0N
P11
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT TX0P
L7
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT CLKN
K7
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT CLKP
L14
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device as
AGBT ERR
K14
NC / VDDPSB
I
NCVDDP
SB
Emulation Device: Power Supply (3.3V) for DAP/JTAG
pad group.
Production Device: Not Connected.
U16, U15, NC
U14, U13,
U12, U11,
U7, U6
I
NC
Not Connected. These pins are reserved for future
extensions and shall not be connected externally.
T15, T14, NC
T13, T12,
T6, T5, T4,
T2, T1
I
NC
Not Connected. These pins are reserved for future
extensions and shall not be connected externally.
E12, E11, NC
E10, E9,
E8, E7,
E6, E4,
D10, D8,
D7, D6
I
NC
Not Connected. These pins are reserved for future
extensions and shall not be connected externally.
NC
I
NC
Not Connected. These pins are reserved for future
extensions and shall not be connected externally.
R5, R4,
P5, L5,
L4, J5,
H5, H4,
G5, G4,
F5, F4
Data Sheet
2-160
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
Table 2-53 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
R17, R16, NC
P17, P16,
N17, N16,
M17, M16,
L17, L16
I
NC
Not Connected. These pins are reserved for future
extensions and shall not be connected externally.
A1, Y1, U4 NC
I
NC1
Not Connected.
These pins are not connected on package level and
will not be used for future extensions.
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
LP = Pad class LP (5V/3.3V, LVTTL)
MP = Pad class MP (5V/3.3V, LVTTL)
MP+ = Pad class MP (5V/3.3V, LVTTL)
A2 = Pad class A2 (3.3V, LVTTL)
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)
LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V)
S = Pad class S (ADC overlayed with General Purpose Input)
D = Pad class D (ADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST = PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1/PU1 pins are predominantly in HighZ during and after reset.
Data Sheet
2-161
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC267x Pin Definition and Functions:
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
2.3.2
Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
•
Input state and
•
PU or High-Z depending on HWCFG[6] level latched during PORST active
Control of the Emergency Stop function:
•
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
•
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
•
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
•
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
•
Not available for P40.x (analoge input ANx overlayed with GPI)
•
Not available for P32.0 EVR13 SMPS mode.
•
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
•
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O
Ports and Peripheral I/O Lines”, P00 / P01)
•
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
•
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
•
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
•
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
•
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
2.3.3
Data Sheet
Pull-Up/Pull-Down Reset Behavior of the Pins
2-162
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-54 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
2.4
TC260 Bare Die Pad Definition:
List of the TC260x Bare Die Pads describes the pads of the TC260 bare die. It describes also the mapping of
VADC / DS-ADC channels to the analog inputs (ANx) and the mapping of Port functions to the pads.
The detailed description of the port functions (Px.y) can be found in the User’s Manual chapter “General Purpose
I/O Ports and Peripheral I/O LInes (Ports)“.
Data Sheet
2-163
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Pad 132
Pad 65
Pad 64
Pad 133
Y
0.0
X
Pad 1
Pad 197
Pad 260
Pad 198
Figure 2-4 TC 260 / 264 / 265 / 267 Logic Symbol for the Bare Die.
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
1
P10.8
LP / PU1 / VEXT
2756500
-2951000
GPIO
2
P02.0
MP+ / PU1 /
VEXT
2865000
-2861000
GPIO
3
P02.1
LP / PU1 / VEXT
2756500
-2671000
GPIO
4
VSS
Vx
2865000
-2581000
Must be bonded to VSS
5
P02.2
MP+ / PU1 /
VEXT
2756500
-2446000
GPIO
6
VEXT
Vx
2865000
-2311000
Must be bonded to VEXT
7
P02.3
LP / PU1 / VEXT
2756500
-2256000
GPIO
8
P02.4
MP+ / PU1 /
VEXT
2865000
-2166000
GPIO
9
P02.5
MP+ / PU1 /
VEXT
2756500
-1976000
GPIO
Data Sheet
2-164
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
10
VSS
Vx
2865000
-1891000
Must be bonded to VSS
11
P02.6
MP / PU1 / VEXT 2756500
-1826000
GPIO
12
P02.7
MP / PU1 / VEXT 2865000
-1746000
GPIO
13
VEXT
Vx
2756500
-1681000
Must be bonded to VEXT
14
P02.8
LP / PU1 / VEXT
2865000
-1616000
GPIO
15
VDD
Vx
2865000
-1229000
Must be bonded to VDD
16
VSS
Vx
2865000
-1099000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 17.
17
VSS
Vx
2865000
-1059000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 16.
18
VDD
Vx
2865000
-929000
Must be bonded to VDD
19
P00.0
MP / PU1 / VEXT 2865000
-814000
GPIO
20
VSS
Vx
2865000
-714000
Must be bonded to VSS
21
P00.1
LP / PU1 / VEXT
2756500
-443000
GPIO
22
P00.2
LP / PU1 / VEXT
2865000
-383000
GPIO
23
P00.3
LP / PU1 / VEXT
2756500
-263000
GPIO
24
VSS
Vx
2865000
-208000
Must be bonded to VSS
25
P00.4
LP / PU1 / VEXT
2756500
-153000
GPIO
26
P00.5
LP / PU1 / VEXT
2865000
-93000
GPIO
27
P00.6
LP / PU1 / VEXT
2756500
27000
GPIO
28
VEXT
Vx
2865000
82000
Must be bonded to VEXT
29
P00.7
LP / PU1 / VEXT
2756500
147000
GPIO
30
P00.8
LP / PU1 / VEXT
2865000
217000
GPIO
31
P00.9
LP / PU1 / VEXT
2756500
297000
GPIO
32
P00.10
LP / PU1 / VEXT
2865000
377000
GPIO
33
P00.11
LP / PU1 / VEXT
2756500
442000
GPIO
34
VSS
Vx
2865000
497000
Must be bonded to VSS
35
P00.12
LP / PU1 / VEXT
2756500
552000
GPIO
36
VDD
Vx
2865000
607000
Must be bonded to VDD
37
VSS
Vx
2865000
707000
Must be bonded to VSS
38
VSS
Vx
2865000
807000
Must be bonded to VSS
39
VDD
Vx
2865000
907000
Must be bonded to VDD
40
VEXT
Vx
2865000
1007000
Must be bonded to VEXT
41
VSS
Vx
2865000
1107000
Must be bonded to VSS
42
AN49
(VADCG2.15)
D
2865000
1227000
Analog input
43
AN48
(VADCG2.14)
D
2756500
1287000
Analog input
Data Sheet
2-165
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
44
VDDM
Vx
2865000
1347000
ADC external supply
45
AN47 (VADCG2.13 D
/ DS3.N3)
2756500
1407000
Analog input, GPI (SENT,
CCU6)
46
AN46 (VADCG2.12 D
/ DS3.P3)
2865000
1470000
Analog input, GPI (SENT,
CCU6)
47
AN45 (VADCG2.11 D
/ DS3.N2)
2756500
1530000
Analog input, GPI (SENT,
CCU6)
48
AN44 (VADCG2.10 D
/ DS3.P2)
2865000
1605000
Analog input, GPI (SENT,
CCU6)
49
AN39 (VADCG2.7 / S
DS3.N1), P40.9
(SENT5A)
2756500
1665000
Analog input, GPI (SENT,
CCU6)
50
AN38 (VADCG2.6 / S
DS3.P1), P40.8
(SENT4A)
2865000
1754000
Analog input, GPI (SENT,
CCU6)
51
AN37 (VADCG2.5 / S
DS3.N0), P40.7
(SENT3D)
2756500
1816000
Analog input, GPI (SENT,
CCU6)
52
VDDM
2865000
1876000
ADC external supply
53
AN36 (VADCG2.4 / S
DS3.P0), P40.6
(SENT2D)
2756500
1936000
Analog input, GPI (SENT,
CCU6)
54
VSSM
2865000
1996000
ADC ground
55
AN35 (VADCG2.3) D
2865000
2096000
Analog input (mtm) (with
pull down diagnostics)
56
AN33 (VADCG2.1) D
2865000
2196000
Analog input
57
AN32 (VADCG2.0) D
2865000
2296000
Analog input
58
AN29
(VADCG1.13)
D
2865000
2396000
Analog input
59
AN28
(VADCG1.12)
D
2865000
2496000
Analog input
60
AN27
(VADCG1.11),
P40.3 (SENT3A)
S
2865000
2596000
Analog input, GPI (SENT,
CCU6)
61
AN26
(VADCG1.10),
P40.2 (SENT2A)
S
2865000
2696000
Analog input, GPI (SENT,
CCU6)
62
AN25 (VADCG1.9), S
P40.1 (SENT1A)
2865000
2796000
Analog input, GPI (SENT,
CCU6)
63
AN24 (VADCG1.8), S
P40.0 (SENT0A)
2865000
2896000
Analog input, GPI (SENT,
CCU6)
64
VDDM
Vx
2756500
2956000
ADC external supply
65
VSSM
Vx
2685000
3136000
ADC ground
Data Sheet
Vx
Vx
2-166
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
66
X
Y
Comment
AN21 (VADCG1.5 / D
DS2NA)
2625000
3027500
Analog input
67
AN20 (VADCG1.4 / D
DS2PA)
2525000
3027500
Analog input
68
AN19 (VADCG1.3) D
2425000
3027500
Analog input (with pull down
diagnostics)
69
AN18 (VADCG1.2) D
2325000
3027500
Analog input
70
AN17 (VADCG1.1) D
2225000
3027500
Analog input
71
AN16 (VADCG1.0) D
2165000
3136000
Analog input
72
VAGND1
Vx
2105000
3027500
Negative Analog Reference
Voltage 1
73
VAGND0
Vx
2045000
3136000
Negative Analog Reference
Voltage 0
74
VAREF1
Vx
1985000
3027500
Positive Analog Reference
Voltage 1
75
VAREF0
Vx
1925000
3136000
Positive Analog Reference
Voltage 0
76
VSSM
Vx
1865000
3027500
ADC ground
77
VSSMREF
Vx
1805000
3136000
ADC reference ground.
78
VSSM_DS
Vx
1745000
3027500
DS-ADC ground. Must be
bonded with VSSM.
79
VDDM
Vx
1675000
3136000
ADC external supply
80
VDDM_DS
Vx
1585000
3027500
DS-ADC external supply.
Must be bonded with
VDDM.
81
AN13
(VADCG0.13)
D
1525000
3136000
Analog input
82
AN12
(VADCG0.12)
D
1465000
3027500
Analog input
83
AN11
(VADCG0.11)
D
1405000
3136000
Analog input
84
AN10
(VADCG0.10)
D
1345000
3027500
Analog input
85
AN8 (VADCG0.8)
D
1285000
3136000
Analog input
86
AN7 (VADCG0.7)
D
1225000
3027500
Analog input (with pull down
diagnostics)
87
AN6 (VADCG0.6)
D
1165000
3136000
Analog input
88
AN5 (VADCG0.5)
D
1105000
3027500
Analog input
89
AN4 (VADCG0.4)
D
1043000
3136000
Analog input
90
AN3 (VADCG0.3 /
DS0NA)
D
983000
3027500
Analog input
91
VSSM
Vx
923000
3136000
ADC ground
Data Sheet
Pad Type
2-167
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
92
AN2 (VADCG0.2 /
DS0PA)
D
863000
3027500
Analog input
93
VDDM
Vx
803000
3136000
ADC external supply
94
AN1 (VADCG0.1 /
DS0NB)
D
743000
3027500
Analog input
95
AN0 (VADCG0.0 /
DS0PB)
D
656000
3136000
Analog input
96
VSS
Vx
536000
3136000
Must be bonded to VSS
97
VEXT
Vx
486000
3027500
Must be bonded to VEXT
98
VDD
Vx
436000
3136000
Must be bonded to VDD
99
VSS
Vx
306000
3136000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 98.
100
VSS
Vx
266000
3136000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 97.
101
VDD
Vx
136000
3136000
Must be bonded to VDD
102
VEXT
Vx
-250000
3027500
Must be bonded to VEXT
103
VEXT
Vx
-315000
3136000
Must be bonded to VEXT
104
EVR_OFF
Vx
-415000
3136000
Must be bonded to VSS
105
P33.0
LP / PU1 / VEXT
-470000
3027500
GPIO
106
P33.1
LP / PU1 / VEXT
-540000
3136000
GPIO
107
P33.2
LP / PU1 / VEXT
-600000
3027500
GPIO
108
P33.3
LP / PU1 / VEXT
-710000
3136000
GPIO
109
P33.4
LP / PU1 / VEXT
-770000
3027500
GPIO
110
VSS
Vx
-825000
3136000
Must be bonded to VSS
111
P33.5
LP / PU1 / VEXT
-880000
3027500
GPIO
112
P33.6
LP / PU1 / VEXT
-1000000
3136000
GPIO
113
P33.7
LP / PU1 / VEXT
-1060000
3027500
GPIO
114
P33.8
MP / HighZ /
VEXT
-1190000
3136000
GPIO
115
P33.9
LP / PU1 / VEXT
-1260000
3027500
GPIO
116
VEXT
Vx
-1315000
3136000
Must be bonded to VEXT
117
P33.10
MP / PU1 / VEXT -1380000
3027500
GPIO
118
P33.11
MP / PU1 / VEXT -1520000
3136000
GPIO
119
P33.12
MP / PU1 / VEXT -1600000
3027500
GPIO
120
VSS
Vx
-1665000
3136000
Must be bonded to VSS
121
P33.13
MP / PU1 / VEXT -1730000
3027500
GPIO
122
VSS
Vx
-1795000
3136000
Must be bonded to VSS
123
VDD
Vx
-1895000
3136000
Must be bonded to VDD
Data Sheet
2-168
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
124
P32.0
LP / EVR13
SMPS -> PD,
GPIO -> PU1 /
VEXT
-1950000
3027500
GPIO
125
VGATE1N (SMPS) VGATE1N
-2005000
3136000
Must be bonded to VSS if
EVR13 SMPS is not used.
Must be bonded to NMOS
gate if EVR13 SMPS is
used.
126
VGATE1P (SMPS) VGATE1P
-2055000
3027500
Must be bonded to VEXT if
EVR13 SMPS is not used.
Must be bonded to PMOS
gate if EVR13 SMPS is
used.
127
VGATE3P (LDO)
VGATE3P
-2105000
3136000
Must be bonded to VSS
128
VGATE1P (LDO)
VGATE1P
-2155000
3027500
Must be bonded to VSS if
no external P channel
MOSFET is used for EVR13
LDO generation. Must be
bonded to external P
channnel MOSFET if
external LDO pass device is
used.
129
VEXT
Vx
-2205000
3136000
Must be bonded to VEXT
130
P32.2
LP / PU1 / VEXT
-2260000
3027500
GPIO
131
P32.3
LP / PU1 / VEXT
-2360000
3027500
GPIO
132
VSS
Vx
-2415000
3136000
Must be bonded to VSS
133
P32.4
MP+ / PU1 /
VEXT
-2570000
3027500
GPIO
134
P23.0
LP / PU1 / VEXT
-2670000
3027500
GPIO
135
P23.1
MP+ / PU1 /
VEXT
-2865000
2921000
GPIO
136
VEXT
Vx
-2756500
2846000
Must be bonded to VEXT
137
P23.2
LP / PU1 / VEXT
-2865000
2791000
GPIO
138
P23.3
LP / PU1 / VEXT
-2865000
2689000
GPIO
139
P23.4
MP+ / PU1 /
VEXT
-2865000
2589000
GPIO
140
P23.5
MP+ / PU1 /
VEXT
-2756500
2489000
GPIO
141
VSS
Vx
-2865000
2414000
Must be bonded to VSS
142
P22.0
MP / LVDSM_N / -2756500
PU1 / VEXT
2349000
GPIO
Data Sheet
2-169
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
143
P22.1
MP / LVDS_P /
PU1 / VEXT
-2756500
1999000
GPIO
144
P22.2
MP / LVDSM_N / -2756500
PU1 / VEXT
1899000
GPIO
145
P22.3
MP / LVDS_P /
PU1 / VEXT
-2756500
1549000
GPIO
146
VEXT
Vx
-2865000
1484000
Must be bonded to VEXT
147
VEXT
Vx
-2756500
1434000
Must be bonded to VEXT
148
VDD
Vx
-2865000
1384000
Must be bonded to VDD
149
VSS
Vx
-2865000
1284000
Must be bonded to VSS
150
VSS
Vx
-2865000
1184000
Must be bonded to VSS
151
VDD
Vx
-2865000
1084000
Must be bonded to VDD
152
VDDOSC
Vx
-2865000
818000
Must be bonded to VDD
153
VSSOSC
Vx
-2865000
718000
Must be bonded to VSS
154
XTAL1
XTAL1
-2756500
610500
Main Oscillator/PLL/Clock
Generator Input. Must be
bonded to external quartz or
resonator.
155
XTAL2
XTAL2
-2756500
510500
Main Oscillator/PLL/Clock
Generator Input. Must be
bonded to external quartz or
resonator.
156
VSSOSC
Vx
-2865000
403000
Must be bonded to VSS
157
VDDOSC3
Vx
-2756500
353000
Must be bonded to VDDP3
158
VDDP3
Vx
-2756500
253000
Must be bonded to VDDP3
159
VSSP
Vx
-2865000
203000
Must be bonded to VSS
160
P21.0
A2 / PU1 / VDDP3 -2756500
153000
GPIO
161
P21.1
A2 / PU1 / VDDP3 -2756500
53000
GPIO
162
VSSP
Vx
3000
Must be bonded to VSS
163
P21.2
LVDSH_N / PU1 / -2756500
VDDP3
-59500
GPIO
164
P21.3
LVDSH_P / PU1 / -2756500
VDDP3
-159500
GPIO
165
VDDP3
Vx
-2865000
-222000
Must be bonded to VDDP3
166
P21.4
LVDSH_N / PU1 / -2756500
VDDP3
-296500
GPIO
167
P21.5
LVDSH_P / PU1 / -2756500
VDDP3
-447500
GPIO
168
P21.6
A2 / PU / VDDP3 -2756500
-547000
GPIO, TDI
169
VDDP3
Vx
-2865000
-597000
Must be bonded to VDDP3
170
VSSP
Vx
-2865000
-812000
Must be bonded to VSS
Data Sheet
-2865000
2-170
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
171
TMS /DAP1
172
Y
Comment
A2 / PD / VDDP3 -2756500
-862000
JTAG Module TMS Input /
Device Access Port Line 1
P21.7
A2 / PU / VDDP3 -2865000
-912000
GPIO, TDO
173
TRST (N)
A2 / PD / VDDP3 -2756500
-982000
JTAG Module Reset/Enable
Input
174
TCK /DAP0
A2 / PD / VDDP3 -2865000
-1032000
JTAG Module Clock Input /
Device Access Port Line 0
175
P20.0
MP / PU1 / VEXT -2756500
-1167000
GPIO
176
P20.1
LP / PU1 / VEXT
-2865000
-1237000
GPIO
177
P20.2
LP / PU / VEXT
-2756500
-1292000
Testmode pin must be
bonded
178
VSS
Vx
-2865000
-1342000
Must be bonded to VSS
179
P20.3
LP / PU1 / VEXT
-2756500
-1397000
GPIO
180
ESR1 (N)
/EVRWUP
MP / PU1
-2865000
-1472000
External System Request
Reset 1. Default NMI
function. / EVR Wakeup Pin
181
PORST (N)
PORST / PD /
VEXT
-2756500
-1554500
Power On Reset Input.
Additional strong PD in case
of power fail.
182
ESR0 (N)
/EVRWUP
MP / OD
-2865000
-1642000
External System Request
Reset 0. Default
configuration during and
after reset is open-drain
driver. The driver drives low
during power-on reset.
/EVR Wakeup Pin
183
VEXT
Vx
-2756500
-1707000
Must be bonded to VEXT
184
VDD
Vx
-2865000
-1757000
Must be bonded to VDD
185
VSS
Vx
-2865000
-1887000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 184.
186
VSS
Vx
-2865000
-1927000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 183.
187
VDD
Vx
-2865000
-2057000
Must be bonded to VDD
188
P20.6
LP / PU1 / VEXT
-2756500
-2112000
GPIO
189
VSS
Vx
-2865000
-2167000
Must be bonded to VSS
190
P20.7
LP / PU1 / VEXT
-2756500
-2222000
GPIO
191
P20.8
MP / PU1 / VEXT -2865000
-2317000
GPIO
192
P20.9
LP / PU1 / VEXT
-2756500
-2387000
GPIO
193
P20.10
MP / PU1 / VEXT -2865000
-2497000
GPIO
194
VEXT
Vx
-2562000
Must be bonded to VEXT
Data Sheet
X
-2756500
2-171
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
195
P20.11
196
Y
Comment
MP / PU1 / VEXT -2865000
-2627000
GPIO
P20.12
MP / PU1 / VEXT -2756500
-2707000
GPIO
197
VSS
Vx
-2865000
-2772000
Must be bonded to VSS
198
P20.13
MP / PU1 / VEXT -2756500
-2837000
GPIO
199
P20.14
MP / PU1 / VEXT -2756500
-2937000
GPIO
200
P15.0
LP / PU1 / VEXT
-2680000
-3027500
GPIO
201
P15.1
LP / PU1 / VEXT
-2580000
-3027500
GPIO
202
P15.2
MP / PU1 / VEXT -2510000
-3136000
GPIO
203
P15.3
MP / PU1 / VEXT -2410000
-3136000
GPIO
204
VEXT
Vx
-2345000
-3027500
Must be bonded to VEXT
205
P15.4
MP / PU1 / VEXT -2280000
-3136000
GPIO
206
P15.5
MP / PU1 / VEXT -2180000
-3136000
GPIO
207
P15.6
MP / PU1 / VEXT -2059000
-3027500
GPIO
208
VSS
Vx
-1994000
-3136000
Must be bonded to VSS
209
P15.7
MP / PU1 / VEXT -1929000
-3027500
GPIO
210
P15.8
MP / PU1 / VEXT -1849000
-3136000
GPIO
211
P14.0
MP+ / PU1 /
VEXT
-1741000
-3027500
GPIO
212
P14.1
MP / PU1 / VEXT -1641000
-3027500
GPIO
213
VEXT
Vx
-1576000
-3136000
Must be bonded to VEXT
214
P14.2
LP / PU1 / VEXT
-1521000
-3027500
Must be bonded to VEXT if
EVR13 active. Must be
bonded to VSS if EVR13
inactive.
215
P14.3
LP / PU1 / VEXT
-1461000
-3136000
GPIO
216
P14.4
LP / PU1 / VEXT
-1386000
-3027500
GPIO
217
VSS
Vx
-1331000
-3136000
Must be bonded to VSS
218
P14.5
MP+ / PU1 /
VEXT
-1256000
-3027500
GPIO
219
P14.6
MP+ / PU1 /
VEXT
-1156000
-3136000
GPIO
220
P14.7
LP / PU1 / VEXT
-1076000
-3027500
GPIO
221
P14.8
LP / PU1 / VEXT
-1016000
-3136000
GPIO
222
P14.9
MP+ / PU1 /
VEXT
-936000
-3027500
GPIO
223
P14.10
MP+ / PU1 /
VEXT
-836000
-3027500
GPIO
224
Reserved
Vx
-761000
-3136000
Must be bonded to VSS
225
VEXT
Vx
-711000
-3027500
Must be bonded to VEXT
226
VSS
Vx
-661000
-3136000
Must be bonded to VSS
Data Sheet
X
2-172
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
227
VEXT
Vx
-611000
-3027500
Must be bonded to VEXT
228
VSS
Vx
-531000
-3136000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 228.
229
VDDP3
Vx
-508500
-3027500
Must be bonded to VDDP3
230
VSS
Vx
-486000
-3136000
Must be bonded to VSS.
Double Pad (Elephant Pad),
shared with Pad Nr. 226.
231
VDDP3
Vx
-391000
-3027500
Must be bonded to VDDP3
232
VDDFL3
Vx
-311000
-3136000
Must be bonded to VDDP3
233
VDDFL3
Vx
-211000
-3136000
Must be bonded to VDDP3
234
VDDFL3
Vx
-143500
-3027500
Must be bonded to VDDP3
235
VSS
Vx
-91000
-3136000
Must be bonded to VSS
236
P13.0
MP / LVDSM_N / -26000
PU1 / VEXT
-3027500
GPIO
237
P13.1
MP / LVDSM_P / 324000
PU1 / VEXT
-3027500
GPIO
238
VEXT
Vx
389000
-3136000
Must be bonded to VEXT
239
P13.2
MP / LVDSM_N / 454000
PU1 / VEXT
-3027500
GPIO
240
P13.3
MP / LVDSM_P / 804000
PU1 / VEXT
-3027500
GPIO
241
P11.2
MPR / PU1 /
VFLEX
964000
-3027500
GPIO
242
P11.3
MPR / PU1 /
VFLEX
1064000
-3027500
GPIO
243
P11.6
MPR / PU1 /
VFLEX
1164000
-3027500
GPIO
244
P11.9
MP+ / PU1 /
VFLEX
1264000
-3027500
GPIO
245
VSSFLEX
Vx
1339000
-3136000
Must be bonded to VSS
246
VDDFLEX
Vx
1389000
-3027500
Must be bonded to VEXT or
VDDP3
247
VDD
Vx
1439000
-3136000
Must be bonded to VDD
248
VSS
Vx
1539000
-3136000
Must be bonded to VSS
249
P11.10
LP / PU1 / VFLEX 1594000
-3027500
GPIO
250
P11.11
MP+ / PU1 /
VFLEX
1682000
-3136000
GPIO
251
P11.12
MPR / PU1 /
VFLEX
1782000
-3027500
GPIO
252
P10.0
LP / PU1 /VEXT
1932000
-3136000
GPIO
Data Sheet
2-173
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
Table 2-55 List of the TC260x Bare Die Pads
Number
Pad Name
Pad Type
X
Y
Comment
253
P10.1
MP+ / PU1 /
VEXT
2012000
-3027500
GPIO
254
P10.2
MP / PU1 / VEXT 2112000
-3027500
GPIO
255
VSS
Vx
2177000
-3136000
Must be bonded to VSS
256
P10.3
MP / PU1 / VEXT 2242000
-3027500
GPIO
257
P10.4
MP+ / PU1 /
VEXT
2360000
-3136000
GPIO
258
P10.5
LP / PU1 / VEXT
2460000
-3136000
GPIO
259
VEXT
Vx
2515000
-3027500
Must be bonded to VEXT
260
P10.6
LP / PU1 / VEXT
2570000
-3136000
GPIO
261
P10.7
LP / PU1 / VEXT
2630000
-3027500
GPIO
262
VSS
Vx
2685000
-3136000
Must be bonded to VSS
Data Sheet
2-174
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
2.4.1
TC 260 / 264 / 265 / 267 Bare Die Pad Description
Legend:
Column “Number”:
Running number of pads in the pad frame
Column “Name”:
Symbolic name of the pad.
The functions mapped on GPIO pads “Px.y” are described in the User’s Manual chapter ”General Purpose I/O
Ports and Peripheral I/O LInes (Ports)”
Column “Type”:
LP = Pad class LP (5V/3.3V, LVTTL)
MP = Pad class MP (5V/3.3V, LVTTL)
MP+ = Pad class MP (5V/3.3V, LVTTL)
A2 = Pad class A2 (3.3V, LVTTL)
LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V)
LVDSH = Pad class LVDSM (LVDS/CMOS 3.3V)
S = Pad class D (ADC)
D = Pad class D (ADC)
PU = with pull-up device connected during reset (PORST = 0)1)
PD = with pull-down device connected during reset (PORST = 0)
OD = open drain during reset (PORST = 0)
High-Z = tri-state during reset (PORST = 0)
Column “X” / “Y”:
Pad opening center coordinates
2.4.2
Pull-Up/Pull-Down Reset Behavior of the Pins
Table 2-56 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
1) The default pad reset state (PU or High-Z) can be controlled via HWCFG6 (P14.4).
Data Sheet
2-175
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Package and Pinning DefinitionsTC260 Bare Die Pad Definition:
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Data Sheet
2-176
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationParameter Interpretation
3
Electrical Specification
3.1
Parameter Interpretation
The parameters listed in this section partly represent the characteristics of the TC 260 / 264 / 265 / 267 and partly
its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they
are marked with an two-letter abbreviation in column “Symbol”:
•
CC
Such parameters indicate Controller Characteristics which are a distinctive feature of the TC 260 / 264 / 265 /
267 and must be regarded for a system design.
•
SR
Such parameters indicate System Requirements which must provided by the microcontroller system in which
the TC 260 / 264 / 265 / 267 designed in.
Data Sheet
4-177
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationAbsolute Maximum Ratings
3.2
Absolute Maximum Ratings
Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions above those
indicated in the Operational Conditions of this specification is not implied. Exposure to absolute maximum rating
conditions may affect device reliability.
Table 3-1
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
upto 65h @ TJ =
150°C; upto 15h @ TJ
= 170°C
Storage Temperature
TST SR
-65
-
170
°C
Voltage at VDD power supply
pins with respect to VSS 1)
VDD SR
-
-
1.9
V
VDDP3 SR
Voltage at VDDP3 and VDDFL3
power supply pins with respect
to VSS 1)
-
-
4.43
V
Voltage at VDDM, VEXT and
VFLEX power supply pins with
respect to VSS 1)
VDDM SR
-
-
7.0
V
Voltage on any class A2 and
LVDSH input pin with respect
to VSS 1)2)
VIN SR
-0.5
-
min(
V
Voltage on all other input pins
with respect to VSS 1)2)
VIN SR
0.6 , 4.23
)
Input current on any pin during IIN SR
overload condition 3)
Absolute maximum sum of all
input circuit currents during
overload condition 3)
Whatever is lower
VDDP3 +
ΣIIN SR
-0.5
-
7.0
V
-10
-
10
mA
-100
-
100
mA
1) Valid for cumulated for up to 2.8h and pulse forms following a power supply switch on phase, where the rise and fall times
are releated to the system capacities and coils.
2) Voltages below VINmin have no Impact to the device reliabiltiy as Long as the times and currents defined in section Pin
Reliability in Overload for the affected pad(s) are not violated.
3) This parameter is an Absolute Maximum Rating. Exposure to Absolute Maximum Ratings for extended periods of time may
damage the device.
Data Sheet
4-178
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPin Reliability in Overload
3.3
Pin Reliability in Overload
When receiving signals from higher voltage devices, low-voltage devices experience overload currents and
voltages that go beyond their own IO power supplies specification.
The following table defines overload conditions that will not cause any negative reliability impact if all the following
conditions are met:
•
full operation life-time is not exceeded
•
Operating Conditions are met for
–
pad supply levels
–
temperature
If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters
functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still
possible in most cases but with relaxed parameters.
Note: An overload condition on one or more pins does not require a reset.
Table 3-2
Overload Parameters
Parameter
Symbol
Input current on any digital pin IIN
during overload condition
Values
Min.
Typ.
Max.
-5
-
5
-15
1)
-
15
1)
Unit
Note / Test Condition
mA
except LVDS pins
mA
except LVDS pins;
limited to max. 20
pulses with 1ms pulse
length
Input current on LVDS pin
during overload condition
IINLVDS
-3
-
3
mA
Absolute maximum sum of all
input circuit currents during
overload condition
IING
-50
-
50
mA
Input current on analog input
pin during overload condition
IINANA
-3
-
3
mA
-5
-
5
mA
Absolute sum of all ADC inputs IINSCA
during overload condition
-20
-
20
mA
Absolute maximum sum of all
input circuit currents during
overload condition
-100
-
100
mA
Signal voltage over/undershoot VOUS
at GPIOs
VSS - 2
-
VEXT/FLEX
V
limited to 60h over
lifetime; Valid for LP,
MP, MP+, and MPR
pads
Inactive device pin current
during overload condtion 2)
IID
-1
-
1
mA
All power supply
voltages VDDx = 0
Sum of all inactive device pin
currents 2)
IIDS
-100
-
100
mA
Data Sheet
ΣIINS
+2
4-179
limited to 60h over
lifetime
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPin Reliability in Overload
Table 3-2
Overload Parameters (cont’d)
Parameter
Symbol
Values
Min.
Overload coupling factor for
digital inputs, negative 3)
Overload coupling factor for
digital inputs, positive 3)
Data Sheet
KOVDN CC
KOVDP CC
Typ.
Unit
Note / Test Condition
Max.
6*10-4
Overload injected on
GPIO non LVDS pad
and affecting neighbor
LP and A2 pads; -2mA
< IIN < 0mA
-
1*10-2
Overload injected on
GPIO non LVDS pad
and affecting neighbor
LP and A2 pads; -5mA
< IIN < -2mA
-
-
1.7*10-3
Overload injected on
GPIO non LVDS pad
and affecting neighbor
MP, MP+, and MPR
pads; -2mA < IIN <
0mA
-
-
2*10-2
Overload injected on
GPIO non LVDS pad
and affecting neighbor
MP, MP+, and MPR
pads; -5mA < IIN < 2mA
-
-
0.3
Overload injected on
LVDS pad and
affecting neighbor
LVDS pads
-
-
0.93
coupling between pads
21.2 and 21.3
-
-
1*10-5
Overload injected on
GPIO non LVDS pad
and affecting neighbor
GPIO non LVDS pads
-
-
1*10-4
Overload injected on
GPIO pad and
affecting neighbor
P32.0 pad
-
-
5*10-4
Overload injected on
LVDS pad and
affecting neighbor
LVDS pads
-
2*10
-
4-180
-4
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPin Reliability in Overload
Table 3-2
Overload Parameters (cont’d)
Parameter
Symbol
Overload coupling factor for
analog inputs, negative
Overload coupling factor for
analog inputs, positive
1)
2)
3)
4)
KOVAN CC
KOVAP CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
6*10-4 4)
Analog Inputs overlaid
with class LP pads or
pull down diagnostics;
-1mA < IIN < 0mA
-
-
1*10-2
Analog Inputs overlaid
with class LP pads or
pull down diagnostics;
-5mA < IIN < -1mA
-
-
1*10-4
else; -5mA < IIN < 0mA
-
-
1*10-5
5mA < IIN < 0mA
Reduced VADC / DSADC result accuracy and / or GPIO input levels (VIL and VIH) can differ from specified parameters.
Limitations for time and supply levels specified in this section are not valid for this parameter.
Overload is measured as increase of pad leakage caused by injection on neighbor pad.
For analogue inputs overlaid with DSADC function the VCM holdbuffer shall be enabled, in case DSADCs are enabled.
Note: DSADC input pins count as analog pins as they are overlaid with VADC pins.
Table 3-3
PN-Junction Characteristics for positive Overload
Pad Type
IIN = 3 mA
IIN = 5 mA
F / A2
UIN = VDDP3 + 0.5 V
UIN = VDDP3 + 0.6 V
LP / MP / MP+ / MPR
UIN = VEXT / FLEX + 0.75 V
UIN = VEXT / FLEX + 0.8 V
LVDSM
UIN = VEXT + 0.75 V
-
LVDSH
UIN = VDDP3 + 0.5 V
-
D
UIN = VDDM + 0.75 V
-
Table 3-4
PN-Junction Characteristics for negative Overload
Pad Type
IIN = -3 mA
IIN = -5 mA
F / A2
UIN = VSS - 0.5 V
UIN = VSS - 0.6 V
LP / MP / MP+ / MPR
UIN = VSS - 0.75 V
UIN = VSS - 0.8 V
LVDSM
UIN = VSS - 0.75 V
-
LVDSH
UIN = VSS - 0.5 V
-
D
UIN = VSS - 0.75 V
-
Data Sheet
4-181
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationOperating Conditions
3.4
Operating Conditions
The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the
TC 260 / 264 / 265 / 267. All parameters specified in the following tables refer to these operating conditions, unless
otherwise noticed.
Digital supply voltages applied to the TC 260 / 264 / 265 / 267 must be static regulated voltages.
All parameters specified in the following tables refer to these operating conditions (see table below), unless
otherwise noticed in the Note / Test Condition column.
Table 3-5
Operating Conditions
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
SRI frequency
fSRI SR
-
-
200
MHz
Max System Frequency
fMAX SR
-
-
200
MHz
CPU0 Frequency
fCPU0 SR
-
-
200
MHz
CPU1 Frequency
fCPU1 SR
-
-
200
MHz
PLL output frequency
fPLL SR
20
-
200
MHz
PLL_ERAY output frequency
fPLLERAY SR 20
-
400
MHz
SPB frequency
fSPB SR
-
-
100
MHz
ASCLIN fast frequency
fASCLINF SR -
-
200
MHz
ASCLIN slow frequency
fASCLINS SR -
-
100
MHz
Baud2 frequency
fBAUD2 SR
-
-
200
MHz
Baud1 frequency
fBAUD1 SR
-
-
100
MHz
FSI2 frequency
fFSI2 SR
-
-
200
MHz
FSI frequency
fFSI SR
-
-
100
MHz
GTM frequency
fGTM SR
-
-
100
MHz
STM frequency
fSTM SR
-
-
100
MHz
ERAY frequency
fERAY SR
-
-
80
MHz
BBB frequency
fBBB SR
-
-
100
MHz
MultiCAN frequency
fCAN SR
-
-
100
MHz
Absolute sum of short circuit
currents of the device
ΣISC_D SR
-
-
100
mA
Ambient Temperature
TA SR
-40
-
125
°C
valid for all SAK
products
-40
-
150
°C
valid for all SAL
products
-40
-
170
°C
valid for all SAL
products without
package
-40
-
150
°C
valid for all SAK
products
-40
-
170
°C
valid for all SAL
products
Junction Temperature
Data Sheet
TJ SR
4-182
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationOperating Conditions
Table 3-5
Operating Conditions (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Only required if
externally supplied
Min.
Typ.
Max.
VDD SR
1.17
1.3
1.43 2)
V
ADC analog supply voltage
VDDM SR
2.97
5.0
5.5 3)
V
Digital external supply voltage
for LP, MP, MP+ and LVDSM
pads and EVR 4)
VEXT SR
2.97
-
4.5
V
3.3V pad parameters
are valid
4.5
5.0
5.5 3)
V
5V pad parameters are
valid
Digital supply voltage for Flex
port
VFLEX SR
2.97
-
4.5
V
3.3V pad parameters
are valid
4.5
5.0
5.5 3)
V
5V pad parameters are
valid
Core Supply Voltage
1)
Digital supply voltage for
LVDSH and A2 pads 5)
VDDP3 SR
2.97
3.3
3.63 6)
V
3.3V pad parameters
are valid; only required
if externally supplied
Flash supply voltage 3.3V 1)
VDDFL3 SR
2.97
3.3
3.63
V
Only required if
externally supplied
Digital ground voltage
VSS SR
0
-
-
V
Analog ground voltage for VDDM VSSM CC
-0.1
0
0.1
V
Voltage to ensure defined pad
states 7)
0.72
-
-
V
A2 and LVDSH
1.4
-
-
V
LP, MP, MP+, MPR
and LVDSM
2.97
3.3
3.63
V
VDDPPA CC
Digital supply voltage for GPIO VDDP3 SR
pads and EVR 5)
SCR CCLK frequency
fCCLK SR
0.07
-
20
MHz
SCR PCLK frequency
fPCLK SR
0.07
-
20
MHz
SCR RTC frequency
fRTC SR
0.0002
-
20
MHz
SCR WDT frequency
fWDTCLK SR 0.00078
-
20
MHz
1) No external inductive load permissible if EVR is used. All VDD pins shall be connected together externally on the PCB.
2) Voltage overshoot to 1.69V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
3) Voltage overshoot to 6.5V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
4) All VEXT pins shall be connected together externally on the PCB.
5) All VDDP3 pins shall be connected together externally on the PCB.
6) Voltage overshoot to 4.29V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
7) This parameter is valid under the assumption the PORST signal is constantly at low level during the power-up/power-down
of VDDP3.
Data Sheet
4-183
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
3.5
5 V / 3.3 V switchable Pads
Pad classes LP, MP, MP+, and MPR support both Automotive Level (AL) or TTL level (TTL) operation. Parameters
are defined for AL operation and degrade in TTL operation.
Table 3-6
Standard_Pads
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pin capacitance (digital
inputs/outputs)
CIO CC
-
6
10
pF
Spike filter always blocked
pulse duration
tSF1 CC
-
-
80
ns
PORST only
Spike filter pass-through pulse tSF2 CC
duration
220
-
-
ns
PORST only
PORST pad output current 1)
11
-
-
mA
VEXT = 3.0V; VPORST =
0.9V; TJ = 165°C
13
-
-
mA
IPORST CC
VEXT = 4.5V; VPORST =
1.0V
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Table 3-7
Class LP 5V
Parameter
Symbol
Input frequency
Input Hysteresis for LP pad
fIN SR
1)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
-
-
V
AL
-
-
V
TTL
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
-4900
-
4900
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-9400
-
9400
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); for TJ >
150°C
-5800
-
5800
nA
else
-12000
-
12000
nA
else; for TJ > 150°C
|30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
HYSLP CC 0.09 *
VEXT/FLEX
0.075 *
VEXT/FLEX
Input Leakage current for LP
pad
IOZLP CC
Input leakage current for P32.0 IOZP320 CC
Pull-up current for LP pad
Data Sheet
IPUHLP CC
4-184
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-7
Class LP 5V (cont’d)
Parameter
Symbol
Pull-down current for LP pad
On-Resistance for LP pad,
weak driver 2)
On-Resistance for LP pad,
medium driver 2)
Rise / fall time for LP pad
3)
IPDLLP CC
RDSONLPW
Values
Input low voltage for LP pad
Note / Test Condition
Min.
Typ.
Max.
-
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
200
620
1040
Ohm
CC
RDSONLPM
50
155
260
Ohm
PMOS/NMOS ;
IOH=2mA; IOL=2mA
-
-
95+2.1 *
ns
CL
CL≤50pF; pin out
driver=weak
CC
tLP CC
VIHLP SR
VILLP SR
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
-
-
200+2.9 * ns
( CL - 50 )
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5 *
CL
CL≤50pF; pin out
driver=medium
50+0.75 * ns
( CL - 50 )
CL≥50pF; CL≤200pF;
pin out driver=medium
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
Hysteresis inactive;
not available for P14.2,
P14.4, and P15.1
Input high voltage for LP pad
Unit
-
ns
Input low / high voltage for LP
pad
VILHLP CC
1.85
-
3.0
V
Pad set-up time for LP pad
tSET_LP CC
-
-
100
ns
-150
-
1030
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ >
150°C
-150
-
340
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ =
150°C
-420
-
1100
nA
else; TJ > 150°C
-350
-
380
nA
else; TJ = 150°C
-
|105|
µA
VIHmin; AL and TTL
|41|
-
-
µA
VILmax; AL
|16|
-
-
µA
VILmax; TTL
IPUHP320 CC |25|
-
-
µA
VIHmin; AL
|38|
-
-
µA
VIHmin; TTL
-
-
|112|
µA
VILmax; AL and TTL
Input leakage current for P02.1 IOZ021 CC
Pull down current for P32_0 pin IPDLP320 CC -
Pull Up Current for P32_0 pin
Data Sheet
4-185
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-7
Class LP 5V (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
absolute max value
(PSI5)
Min.
Typ.
Max.
Short Circuit current for LP pad ISC SR
-10
-
10
mA
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
6)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-8
Class LP 3.3V
Parameter
Symbol
Input frequency
Input Hysteresis for LP pad
Input Leakage current for LP
pad
Pull-down current for LP pad
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
HYSLP CC 0.05 *
VEXT/FLEX
-
-
V
AL and TTL
IOZLP CC
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
-4900
-
4900
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-9400
-
9400
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); for TJ >
150 °C
-5800
-
5900
nA
else
-12000
-
12000
nA
else; for TJ > 150°C
|17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
-
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
250
875
1500
Ohm
IPUHLP CC
IPDLLP CC
On-Resistance for LP pad,
weak driver 2)
CC
On-Resistance for LP pad,
medium driver 2)
CC
Data Sheet
Note / Test Condition
Typ.
Input leakage current for P32.0 IOZP320 CC
Pull-up current for LP pad
Unit
Min.
fIN SR
1)
Values
RDSONLPW
RDSONLPM
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
70
235
400
Ohm
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
4-186
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-8
Class LP 3.3V (cont’d)
Parameter
Rise / fall time for LP pad
Symbol
3)
tLP CC
Values
Min.
Typ.
Max.
-
-
150+3.4 * ns
Input low voltage for LP pad
VIHLP SR
VILLP SR
Note / Test Condition
CL
CL≤50pF; pin out
driver=weak
-
-
320+4.5 * ns
( CL - 50 )
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
CL≤50pF; pin out
L
driver=medium
70+1.1 * ( ns
CL - 50 )
CL≥50pF; CL≤200pF;
pin out driver=medium
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Hysteresis inactive;
not available for P14.2,
P14.4, and P15.1
Input high voltage for LP pad
Unit
-
Input low / high voltage for LP
pad
VILHLP CC
1.1
-
1.9
V
Pad set-up time for LP pad
tSET_LP CC
-
-
100
ns
-150
-
920
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ >
150°C
-150
-
330
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ =
150°C
-360
-
1000
nA
else; TJ > 150°C
-350
-
375
nA
else; TJ = 150°C
-
|80|
µA
VIHmin; AL and TTL
|17|
-
-
µA
VILmax; AL
|6|
-
-
µA
VILmax; TTL
IPUHP320 CC |12|
-
-
µA
VIHmin; AL
|14|
-
-
µA
VIHmin; TTL
-
-
|80|
µA
VILmax; AL and TTL
Short Circuit current for LP pad ISC SR
-10
-
10
mA
absolute max value
(PSI5)
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Input leakage current for P02.1 IOZ021 CC
Pull down current for P32_0 pin IPDLP320 CC -
Pull Up Current for P32_0 pin
6)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
Data Sheet
4-187
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
3)
4)
5)
6)
Rise / fall times are defined 10% - 90% of VEXT/FLEX.
VIHx = 0.27 * VEXT/FLEX + 0.545V
VILx = 0.17 * VEXT/FLEX
The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-9
Class MP 5V
Parameter
Symbol
Input frequency
Input Hysteresis for MP pad
fIN SR
1)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
-
-
V
AL
-
-
V
TTL
-500
-
500
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1000
-
1000
nA
else
|30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
-
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
200
620
1040
Ohm
HYSMP CC 0.09 *
VEXT/FLEX
0.075 *
VEXT/FLEX
Input Leakage current for MP
pad
Pull-up current for MP pad
Pull-down current for MP pad
IOZMP CC
IPUHMP CC
IPDLMP CC
On-Resistance for MP pad,
weak driver 2)
RDSONMPW
On-Resistance for MP pad,
medium driver 2)
RDSONMPM
On-Resistance for MP pad,
strong driver 2)
Data Sheet
CC
50
155
260
Ohm
PMOS/NMOS ;
IOH=2mA; IOL=2mA
CC
RDSONMPS
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
20
75
CC
130
Ohm
PMOS/NMOS ;
IOH=8mA; IOL=8mA
4-188
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-9
Class MP 5V (cont’d)
Parameter
Rise / fall time for MP pad
Symbol
3)
tMP CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
95+2.1*C ns
L
CL≤50pF; pin out
driver=weak
-
-
200+2.9*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5*C ns
CL≤50pF; pin out
L
driver=medium
-
-
50 + 0.75 ns
* ( CL - 50
)
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
17.5+0.25 ns
*CL
CL≤50pF;
edge=medium ; pin out
driver=strong
-
-
30+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
7+0.2*CL
ns
CL≤50pF; edge=sharp
; pin out driver=strong
-
-
17+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
1.85
-
3.0
V
Hysteresis inactive
-
-
100
ns
Short Circuit current for MP pad ISC SR
-10
-
10
mA
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Input high voltage for MP pad
Input low voltage for MP pad
VIHMP SR
VILMP SR
Input low / high voltage for MP VILHMP CC
pad
Pad set-up time for MP pad
tSET_MP CC
6)
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Data Sheet
4-189
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-10 Class MP 3.3V
Parameter
Symbol
Input frequency
Input Hysteresis for MP pad
Input Leakage current for MP
pad
Pull-up current for MP pad
Pull-down current for MP pad
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
HYSMP CC 0.05 *
VEXT/FLEX
-
-
V
AL and TTL
IOZMP CC
-500
-
500
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1000
-
1000
nA
else
|17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
-
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
250
875
1500
Ohm
fIN SR
1)
Values
IPUHMP CC
IPDLMP CC
On-Resistance for MP pad,
weak driver 2)
RDSONMPW
On-Resistance for MP pad,
medium driver 2)
RDSONMPM
CC
70
235
400
Ohm
20
110
200
Ohm
CC
On-Resistance for MP pad,
strong driver 2)
CC
Rise / fall time for MP pad 3)
tMP CC
RDSONMPS
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
PMOS/NMOS ;
IOH=4mA; IOL=4mA
-
-
150+3.4*
CL
CL≤50pF; pin out
driver=weak
ns
-
-
320+4.5*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
CL≤50pF; pin out
driver=medium
-
-
70+1.1*(
CL-50)
L
Data Sheet
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
ns
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
32.5+0.35 ns
*CL
CL≤50pF;
edge=medium ; pin out
driver=strong
-
-
50+0.45*( ns
CL-50)
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
14.5+0.35 ns
*CL
CL≤50pF; edge=sharp
; pin out driver=strong
-
-
32+0.5*(
CL-50)
CL≥50pF; CL≤200pF;
4-190
ns
edge=sharp ; pin out
driver=strong
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-10 Class MP 3.3V (cont’d)
Parameter
Symbol
Values
Min.
Input high voltage for MP pad
Note / Test Condition
Max.
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Input low / high voltage for MP VILHMP CC
pad
1.1
-
1.9
V
Hysteresis inactive
Pad set-up time for MP pad
-
-
100
ns
Short Circuit current for MP pad ISC SR
-10
-
10
mA
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Input low voltage for MP pad
VIHMP SR
Typ.
Unit
VILMP SR
tSET_MP CC
6)
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-11 Class MP+ 5V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
HYSMPP
0.09 *
-
-
V
AL
CC
VEXT/FLEX
-
-
V
TTL
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPP CC |30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
Pull-down current for MP+ pad IPDLMPP CC -
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
Input frequency
Input hysteresis for MP+ pad
fIN SR
1)
0.075 *
VEXT/FLEX
Input leakage current for MP+
pad
Pull-up current for MP+ pad
Data Sheet
IOZMPP CC
4-191
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-11 Class MP+ 5V (cont’d)
Parameter
Symbol
On-resistance for MP+ pad,
weak driver 2)
RDSONMPPW
RDSONMPPM
On-resistance for MP+ pad,
strong driver 2)
RDSONMPPS
Rise/fall time for MP+ pad
Unit
Min.
Typ.
Max.
200
620
1040
Ohm
CC
On-resistance for MP+ pad,
medium driver 2)
3)
Values
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
50
155
260
Ohm
CC
PMOS/NMOS ;
IOH=2mA; IOL=2mA
20
55
90
Ohm
-
-
95+2.1*C ns
L
CL≤50pF; pin out
driver=weak
-
-
200+2.9*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5*C ns
L
CL≤50pF; pin out
driver=medium
CC
tMPP CC
Note / Test Condition
PMOS/NMOS ;
IOH=8mA; IOL=8mA
-
-
50+0.75*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
9+0.16*C ns
CL≤50pF;
L
edge=medium ; pin out
driver=strong
-
-
17+0.2*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
4+0.16*C ns
CL≤50pF; edge=sharp
; pin out driver=strong
L
-
-
12+0.21*( ns
CL-50)
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
edge=sharp ; pin out
driver=strong
-
-
4.5
ns
CL=15pF; edge=sharp
; pin out driver=strong
Input high voltage for MP+ pad VIHMPP SR
Input low voltage for MP+ pad
VILMPP SR
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
-
3.0
V
Hysteresis inactive
-
100
ns
Input low / high voltage for MP+ VILHMPP CC 1.85
pad
Pad set-up time for MP+ pad
Data Sheet
tSET_MPP CC -
4-192
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-11 Class MP+ 5V (cont’d)
Parameter
Symbol
Short circuit current for MP+
pad 6)
ISCMPP SR
Deviation of symmetry for rising SYM CC
and falling edges
Values
Unit
Note / Test Condition
absolute max value
(PSI5)
Min.
Typ.
Max.
-10
-
10
mA
-
-
20
%
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-12 Class MP+ 3.3V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
HYSMPP
0.05 *
-
-
V
AL and TTL
CC
VEXT/FLEX
IOZMPP CC
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPP CC |17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
Pull-down current for MP+ pad IPDLMPP CC -
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
250
875
1500
Ohm
Input frequency
Input hysteresis for MP+ pad
fIN SR
1)
Input leakage current for MP+
pad
Pull-up current for MP+ pad
On-resistance for MP+ pad,
weak driver 2)
RDSONMPPW
CC
On-resistance for MP+ pad,
medium driver 2)
RDSONMPPM
On-resistance for MP+ pad,
strong driver 2)
RDSONMPPS
Data Sheet
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
70
235
400
Ohm
CC
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
20
75
CC
130
Ohm
PMOS/NMOS ;
IOH=4mA; IOL=4mA
4-193
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-12 Class MP+ 3.3V (cont’d)
Parameter
Rise/fall time for MP+ pad
Symbol
3)
tMPP CC
Values
Unit
Note / Test Condition
ns
CL
CL≤50pF; pin out
driver=weak
Min.
Typ.
Max.
-
-
150+3.4*
-
-
320+4.5*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
CL≤50pF; pin out
L
driver=medium
-
-
70+1.1*(
CL-50)
ns
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
20+0.2*C ns
CL≤50pF;
edge=medium ; pin out
driver=strong
L
-
-
30+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
13+0.2*C ns
CL≤50pF; edge=sharp
L
; pin out driver=strong
-
-
7.65
ns
CL = 15pF; VEXT/FLEX =
3.135V; V = 0V to
2.0V; edge=sharp ; pin
out driver=strong
-
-
5.42
ns
CL = 15pF; VEXT/FLEX =
3.135V; V = 3.135V to
0.8V; edge=sharp ; pin
out driver=strong
-
-
7.36
ns
CL = 15pF; VEXT/FLEX =
3.201V; V = 0V to
2.0V; edge=sharp ; pin
out driver=strong
-
-
5.32
ns
CL = 15pF; VEXT/FLEX =
3.201V; V = 3.201V to
0.8V; edge=sharp ; pin
out driver=strong
-
-
5.9
ns
CL = 15pF; VEXT/FLEX =
3.63V; V = 0V to 2.0V;
edge=sharp ; pin out
driver=strong
-
-
4.8
ns
CL = 15pF; VEXT/FLEX =
3.63V; V = 3.63V to
0.8V; edge=sharp ; pin
out driver=strong
-
-
23+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
V 1.0
2017-06
edge=sharp
; pin
out
driver=strong
4.5
ns
from 0.2 * VEXT/FLEX to
Data Sheet
4-194
-
-
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-12 Class MP+ 3.3V (cont’d)
Parameter
Symbol
Values
Min.
Input high voltage for MP+ pad VIHMPP SR
Typ.
Unit
Note / Test Condition
Max.
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Input low / high voltage for MP+ VILHMPP CC 1.1
pad
-
1.9
V
Hysteresis inactive
Pad set-up time for MP+ pad
tSET_MPP CC -
-
100
ns
Short circuit current for MP+
pad 6)
ISCMPP SR
-10
-
10
mA
-
-
20
%
Input low voltage for MP+ pad
VILMPP SR
Deviation of symmetry for rising SYM CC
and falling edges
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-13 Class MPR 5V
Parameter
Input frequency
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
0.09 *
-
-
V
AL
-
-
V
TTL
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPR CC |30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
IPDLMPR CC -
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
fIN SR
Input Hysteresis for MPR pads HYSMPR
1)
CC
VEXT/FLEX
0.075*
VEXT/FLEX
Input leakage current class
MPR
Pull-up current
Pull-down current
Data Sheet
IOZMPR CC
4-195
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-13 Class MPR 5V (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
On-resistance of the MPR pad, RDSONMPRW
weak driver 2)
CC
200
620
1040
On-resistance of the MPR pad, RDSONMPRM
medium driver 2)
CC
50
On-resistance of the MPR pad, RDSONMPRS
strong driver 2)
CC
20
55
90
Rise/fall time 3)
-
-
95+2.1*C ns
L
CL≤50pF; pin out
driver=weak
-
-
200+2.9*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5*C ns
L
CL≤50pF; pin out
driver=medium
tMPR CC
Ohm
155
260
Ohm
Input low voltage, class MPR
pads
Input low / high voltage, class
MPR pads
Data Sheet
VIHMPR SR
VILMPR SR
PMOS/NMOS ;
IOH=2mA; IOL=2mA
Ohm
PMOS/NMOS ;
IOH=8mA; IOL=8mA
-
-
50+0.75*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
9+0.16*C ns
CL≥0pF; CL≤50pF;
L
edge=medium ; pin out
driver=strong
-
-
17+0.2*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
4+0.16*C ns
CL≤50pF; edge=sharp
; pin out driver=strong
L
Input high voltage, class MPR
pads
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
-
-
12+0.21*( ns
CL-50)
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
edge=sharp ; pin out
driver=strong
-
-
4.5
ns
from 0.2 * VEXT/FLEX to
0.8 * VEXT/FLEX;
CL=15pF; edge=sharp
; pin out driver=strong
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
-
2.3
V
Hysteresis inactive
VILHMPR SR 1.2
4-196
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-13 Class MPR 5V (cont’d)
Parameter
Symbol
Values
Min.
Pad set-up time
tSET_MPR CC -
Unit
Typ.
Max.
-
100
ns
Short circuit current Class MPR ISC SR
-10
-
10
mA
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Note / Test Condition
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
Table 3-14 Class MPR 3.3V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
Input Hysteresis for MPR pads HYSMPR
1)
CC
0.05 *
-
-
V
AL and TTL
Input leakage current class
MPR
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPR CC |17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
IPDLMPR CC -
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
On-resistance of the MPR pad, RDSONMPRW
weak driver 2)
CC
250
875
1500
Ohm
On-resistance of the MPR pad, RDSONMPRM
medium driver 2)
CC
70
235
400
Ohm
On-resistance of the MPR pad, RDSONMPRS
strong driver 2)
CC
20
75
130
Ohm
Input frequency
Pull-up current
Pull-down current
Data Sheet
fIN SR
IOZMPR CC
VEXT/FLEX
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
PMOS/NMOS ;
IOH=4mA; IOL=4mA
4-197
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-14 Class MPR 3.3V (cont’d)
Parameter
Rise/fall time
Symbol
3)
tMPR CC
Values
Unit
Note / Test Condition
ns
CL
CL≤50pF; pin out
driver=weak
Min.
Typ.
Max.
-
-
150+3.4*
-
-
320+4.5*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
CL≤50pF; pin out
L
driver=medium
-
-
70+1.1*(
CL-50)
ns
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
20+0.2*C ns
CL≥0pF; CL≤50pF;
edge=medium ; pin out
driver=strong
L
Input high voltage, class MPR
pads
Input low voltage, class MPR
pads
VIHMPR SR
VILMPR SR
-
-
30+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
13+0.2*C ns
CL≤50pF; edge=sharp
L
; pin out driver=strong
-
-
23+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
edge=sharp ; pin out
driver=strong
-
-
4.5
ns
from 0.2 * VEXT/FLEX to
0.8 * VEXT/FLEX;
CL=15pF; edge=sharp
; pin out driver=strong
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Hysteresis inactive
Input low / high voltage, class
MPR pads
VILHMPR SR 0.8
-
1.7
V
Pad set-up time
tSET_MPR CC -
-
100
ns
-
10
mA
Short circuit current Class MPR ISC SR
-10
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
Data Sheet
4-198
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
Table 3-15 Class S
Parameter
Symbol
Input frequency
Input Hysteresis for S pad
Pull-up current for S pad
Pull-down current for S pad
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
HYSS CC
0.3
-
-
V
IPUHS CC
|30|
-
-
µA
VIHmin
-
-
|107|
µA
VILmax
-
-
|100|
µA
VIHmin
|46|
-
-
µA
VILmax
-350
-
350
nA
Analog Inputs with pull
down diagnostics
-150
-
150
nA
else
-
(0.73*VDD V
M)-0.25
Hysteresis active
fIN SR
1)
Values
IPDLS CC
Input Leakage current Class S IOZS CC
Input voltage high for S pad
VIHS SR
-
Input voltage low for S pad
VILS SR
(0.52*VDD M)-0.25
-
V
Hysteresis active
Input low threshold variation for VILSD SR
S pad 2)
-50
-
50
mV
max. variation of 1ms;
VDDM=constant
Input capacitance for S pad
CINS CC
-
-
10
pF
Pad set-up time for S pad
tSETS CC
-
-
100
ns
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VILSD is implemented to ensure J2716 specification. For details of dedicated pins please see AP32286 for details.
Table 3-16 Class I 5V
Parameter
Input frequency
Input Hysteresis for I pad 1)
Symbol
fIN SR
HYSI CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
0.07 *
-
-
V
PORST pad only
-
-
V
AL
-
-
V
TTL
|30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
VEXT/FLEX
0.09 *
VEXT/FLEX
0.075 *
VEXT/FLEX
Pull-up current for I pad
Data Sheet
IPUHI CC
4-199
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-16 Class I 5V (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
2.03 2)
-
-
V
Hysteresis active, TTL
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active; AL;
not available for the
PORST pad
-
-
0.8 3)
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active; AL;
not available for the
PORST pad
Input low / high voltage for I pad VILHI CC
1.85
-
3.0
V
Hysteresis inactive
Pad set-up time for I pad
-
-
100
ns
Pull-down current for I pad
IPDLI CC
Input Leakage Current for I pad IOZI CC
Input high voltage for I pad
Input low voltage for I pad
VIHI SR
VILI SR
tSETI CC
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VIHx = 0.27 * VEXT/FLEX + 0.545V
3) VILx = 0.17 * VEXT/FLEX
Table 3-17 Class I 3.3V
Parameter
Symbol
Input frequency
Input Hysteresis for I pad
fIN SR
1)
HYSI CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
0.045 *
-
-
V
PORST pad only
-
-
V
AL and TTL
|17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
-
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
VEXT/FLEX
0.05 *
VEXT/FLEX
Pull-up current for I pad
Pull-down current for I pad
IPUHI CC
IPDLI CC
Input Leakage Current for I pad IOZI CC
Data Sheet
4-200
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-17 Class I 3.3V (cont’d)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
Typ.
Max.
-
-
V
Hysteresis active, TTL
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active; AL;
not available for the
PORST pad
-
-
0.5 3)
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active; AL;
not available for the
PORST pad
Input low / high voltage for I pad VILHI CC
1.1
-
1.9
V
Hysteresis inactive
Pad set-up time for I pad
-
-
100
ns
Input high voltage for I pad
VIHI SR
Input low voltage for I pad
VILI SR
tSETI CC
1.6
2)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VIHx = 0.27 * VEXT/FLEX + 0.545V
3) VILx = 0.17 * VEXT/FLEX
Table 3-18 Driver Mode Selection for LP Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
X
0
Speed grade 1
medium (LPm)
X
X
1
Speed grade 2
weak (LPw)
Table 3-19 Driver Mode Selection for MP / MP+ Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
0
0
Speed grade 1
Strong sharp edge
(MPss / MP+ss / MPRss)
X
0
1
Speed grade 2
Strong medium edge
(MPsm / MP+sm / MPRsm)
X
1
0
Speed grade 3
medium (MPm / MP+m / MPRm)
X
1
1
Speed grade 4
weak (MPw / MP+w / MPRw)
Data Sheet
4-201
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification3.3 V only Pads
3.6
3.3 V only Pads
Pad classes LP, MP and MP+ support both Automotive Level (AL) or TTL level (TTL) operation. Parameters are
defined for AL operation and degrade in TTL operation.
Table 3-20 Class A2
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
-
-
160
MHz
Note / Test Condition
Input frequency
fIN SR
Input Hysteresis for A2 pad 1)
HYSA2 CC 0.1 *
VDDP3
-
-
V
TTL;else
0.06 *
-
-
V
valid for P21.6 and
P21.7
-300
-
300
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-800
-
500
nA
else
-
-
|100|
µA
VIHmin
|25|
-
-
µA
VILmax
|23|
-
-
µA
VIHmin
-
-
|100|
µA
VILmax
100
200
325
Ohm
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
40
70
100
Ohm
VDDP3
Input Leakage current for A2
pad
Pull-up current for A2 pad
Pull-down current for A2 pad
IOZA2 CC
IPUHA2 CC
IPDLA2 CC
On-Resistance for A2 pad,
weak driver 2)
CC
On-Resistance for A2 pad,
medium driver 2)
CC
RDSONA2W
RDSONA2M
On-Resistance for A2 pad,
strong driver 2)
RDSONA2S
Rise/fall time for A2 pad 3)
tA2 CC
20
35
50
Ohm
CC
PMOS/NMOS ;
IOH=8mA; IOL=8mA
-
-
20+0.8*C ns
CL≤50pF; pin out
L
driver=weak
-
-
17.5+0.85 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
12+0.16*
CL
CL≤50pF; pin out
driver=medium
ns
-
-
11.5+0.17 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
6+0.06*C ns
CL≤50pF;
edge=medium ; pin out
driver=strong
L
-
-
5.5+0.07* ns
CL
-
-
0.0+0.12* ns
CL
-
-
0.0+0.12* ns
CL
Data Sheet
PMOS/NMOS ;
IOH=2mA; IOL=2mA
4-202
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
CL≤50pF; edge=sharp
; pin out driver=strong
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical Specification3.3 V only Pads
Table 3-20 Class A2 (cont’d)
Parameter
Symbol
Values
Min.
Input high voltage for A2 pad
VIHA2 SR
Unit
Note / Test Condition
Typ.
Max.
-
-
V
TTL;valid for all A2
pads except
TMS/DAP1, TRST,
and TCK/DAP0
-
-
V
valid for TMS/DAP1,
TRST, and TCK/DAP0
-
-
0.8 5)
V
TTL;valid for all A2
pads except
TMS/DAP1, TRST,
and TCK/DAP0
-
-
0.3 *
V
valid for TMS/DAP1,
TRST, and TCK/DAP0
2.04
4)
0.7 *
VDDP3
Input low voltage for A2 pad
VILA2 SR
VDDP3
Pad set-up time for A2 pad
tSETA2 CC
Deviation of symmetry for rising SYM CC
and falling edges
-
-
100
ns
-
-
20
%
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VDDP3.
4) VIHx = 0.57 * VDDP3 - 0.03V
5) VILx = 0.25 * VDDP3 + 0.058V
Table 3-21 Driver Mode Selection for A2 Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
0
0
Speed grade 1
Strong sharp edge
X
0
1
Speed grade 2
Strong medium edge
X
1
0
Speed grade 3
medium
X
1
1
Speed grade 4
weak
Table 3-22 Driver Mode Selection for F Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
0
0
Speed grade 1
Reduced Strong sharp edge
X
0
1
Speed grade 2
Reduced Strong medium edge
X
1
0
Speed grade 3
medium
X
1
1
Speed grade 4
weak
Data Sheet
4-203
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
3.7
High performance LVDS Pads (LVDSH)
This LVDS pad type is used for the high speed chip to chip communication inferface of the new TC 260 / 264 / 265
/ 267. It compose out of a LVDSH pad and a Class F pad.
This pad combination is always supplied by the 3.3V supply rail.
Table 3-23 Class F
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Input frequency
fIN SR
-
-
75
MHz
Input Hysteresis for F pad 1)
HYSF CC
0.1 *
-
-
V
TTL
-1000
-
1000
nA
(0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.2 and P21.3; TJ =
150°C
-1500
-
1500
nA
(0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.2 and P21.3; TJ =
170°C
-300
-
300
nA
(0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.4 and P21.5
-2000
-
2000
nA
else; valid for P21.2
and P21.3; TJ = 150°C
-3000
-
3000
nA
else; valid for P21.2
and P21.3; TJ = 170°C
-600
-
600
nA
else; valid for P21.4
and P21.5
|25|
-
-
µA
VIHmin
-
-
|100|
µA
VILmax
-
-
|100|
µA
VIHmin
|25|
-
-
µA
VILmax
100
200
325
Ohm
VDDP3
Input Leakage Current for F
pad
Pull-up current for F pad
IOZF CC
IPUHF CC
Pull-down current for class F
pads
IPDLF CC
On resistance for F pad, weak
driver 2)
RDSONFW
On resistance for F pad,
medium driver 2)
RDSONFM
CC
40
70
100
Ohm
On resistance for F pad, strong RDSONFS CC 20
driver 2)
50
80
Ohm
Data Sheet
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
CC
PMOS/NMOS ;
IOH=2mA; IOL=2mA
PMOS/NMOS ;
IOH=4mA; IOL=4mA
4-204
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Table 3-23 Class F (cont’d)
Parameter
Rise/fall time for F pad
Symbol
3)
trfF CC
Values
Unit
Min.
Typ.
Max.
-
-
20+0.8*C ns
L
CL≤50pF; pin out
driver=weak
-
-
17.5+0.85 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
12+0.16*
CL≤50pF; pin out
ns
CL
driver=medium
-
-
11.5+0.17 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
7+0.16*C ns
CL≤50pF;
edge=medium ; pin out
driver=reduced strong
L
-
-
-
-
6.5+0.17* ns
-
-
CL
CL≥50pF; CL≤200pF;
edge=meduim ; pin out
driver>reduced strong
4+0.16*C ns
CL≤50pF; edge=sharp
L
; pin out
driver=reduced strong
3.5+0.17* ns
CL
Input high voltage for F pad
VIHF SR
Note / Test Condition
2.04 4)
-
5)
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=reduced strong
V
TTL
V
TTL
Input low voltage for F pad
VILF SR
-
-
0.8
Pad set-up time for F pad
tSETF CC
-
-
100
ns
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VDDP3.
4) VIHx = 0.57 * VDDP3 - 0.03V
5) VILx = 0.25 * VDDP3 + 0.058V
CL = 2.5 pF for all LVDSH parameters.
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
R0 CC
40
-
140
Ohm
Vcm = 1.0 V and 1.4 V
trise20 CC
-
-
0.5
ns
ZL = 100 Ohm ±5%
@2 pF
Fall time 1)
tfall20 CC
-
-
0.5
ns
ZL = 100 Ohm ±5% @
2 pF
Output differential voltage
VOD CC
250
-
400
mV
RT = 100 Ohm ±5%
Output impedance
Rise time
1)
Data Sheet
4-205
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL) (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Output voltage high
VOH CC
-
-
1475
mV
RT = 100 Ohm ±5%
(400 mV/2) + 1275 mV
Output voltage low
VOL CC
925
-
-
mV
RT = 100 Ohm ±5%
Output offset (Common mode) VOS CC
voltage
1125
-
1275
mV
RT = 100 Ohm ±5%
Input voltage range
0
-
1600
mV
Driver ground potential
difference < 925 mV;
RT = 100 Ohm ±10%
0
-
2000
mV
Driver ground potential
difference < 925 mV;
RT = 100 Ohm ±20%
VI SR
Input differential threshold
Vidth SR
-100
-
100
mV
Driver ground potential
difference < 925 mV
Delta output impedance
dR0 SR
-
-
10
%
Vcm = 1.0 V and 1.4 V
(mismatch Pd and Pn)
Change in VOS between 0 and dVOS CC
1
-
-
25
mV
RT = 100 Ohm ±5%
Change in Vod between 0 and dVod CC
1
-
-
25
mV
RT = 100 Ohm ±5%
-
55
%
45
1) Rise / fall times are defined for 20% - 80% of VOD
Duty cycle
tduty CC
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Output impedance
R0 CC
40
-
140
Ohm
Vcm = 1.0 V and 1.4 V
Output differential voltage
VOD CC
150
-
250
mV
RT = 100 Ohm ±5%
Output voltage high
VOH CC
-
-
1375
mV
RT = 100 Ohm ±5%
Output voltage low
VOL CC
1025
-
-
mV
RT = 100 Ohm ±5%
Output offset (Common mode) VOS CC
voltage
1125
-
1275
mV
RT = 100 Ohm ±5%
Input voltage range
VI SR
825
-
1575
mV
Driver ground potential
difference < 50 mV
Input differential threshold
Vidth SR
-100
-
100
mV
Driver ground potential
difference < 50 mV
Change in VOS between 0 and dVOS CC
1
-
-
25
mV
RT = 100 Ohm ±5%
Change in Vod between 0 and dVod CC
1
-
-
25
mV
RT = 100 Ohm ±5%
45
-
55
%
Duty cycle
Data Sheet
tduty CC
4-206
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL) (cont’d)
Parameter
VOD Fall time
VOD Rise time
Symbol
1)
1)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
tfall10 CC
-
-
0.5
ns
ZL = 100 Ohm ±5% @
2pF
trise10 CC
-
-
0.5
ns
ZL = 100 Ohm ±5% @
2pF
1) Rise / fall times are defined for 10% - 90% of VOD
default after start-up = CMOS function
P
Htotal=5nH
Ctotal=3.5pF
Cext=2pF
Rin
LVDSH
IN
RT=100Ohm
N
Htotal=5nH
Ctotal=3.5pF
Cext=2pF
LVDSH _Input _Pad _Model .vsd
Figure 3-1 LVDSH pad Input model
Data Sheet
4-207
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMedium performance LVDS Pads (LVDSM)
3.8
Medium performance LVDS Pads (LVDSM)
This LVDS pad type is used for the medium speed chip to chip communication inferface of the new TC 260 / 264
/ 265 / 267. It compose out of a LVDSM pad and a MP pad.
This pad combination is always supplied by the 5V or 3.3V.
For the parameters of the MP pad please see Chapter 3.5.
Table 3-26 LVDSM
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Output impedance
RO CC
40
100
140
Ohm
Fall time
tF CC
-
-
2.5
ns
Zload = 100 Ohm;
termination 100 Ohm
±1%
Rise time
tR CC
-
-
2.5
ns
Zload = 100 Ohm;
termination 100 Ohm
±1%
tSET_LVDS
-
10
13
µs
Pad set-up time
CC
Output Differential Voltage
VOD CC
250
-
400
mV
termination 100 Ohm
±1%
Output voltage high
VOH CC
-
-
1475
mV
termination 100 Ohm
±1%
Output voltage low
VOL CC
925
-
-
mV
termination 100 Ohm
±1%
Output Offset Voltage
VOS CC
1125
-
1275
mV
termination 100 Ohm
±1%
default after start-up = CMOS function
Data Sheet
4-208
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationVADC Parameters
3.9
VADC Parameters
VADC parameter are valid for VDDM = 4.5 V to 5.5 V.
This tables also covers the parameters for Class D pads.
Table 3-27 VADC
Parameter
Symbol
Analog reference voltage
1)
VAREF SR
Values
Min.
Typ.
Max.
VAGND +
-
VDDM +
1.0
Analog reference ground
VAGND SR
Unit
VSSM -
Note / Test Condition
V
0.05
-
0.05
VSSM +
V
0.05
Analog input voltage range
VAIN SR
VAGND
-
VAREF
V
Converter reference clock
fADCI SR
2
-
20
MHz
Charge consumption per
conversion 2) 3)
QCONV CC
-
50
75
pC
VAIN = 5 V, charge
consumed from
reference pin,
precharging disabled
-
10
22
pC
VAIN = 5 V, charge
consumed from
reference pin,
precharging enabled
Conversion time for 12-bit
result
tC12 CC
-
(16 +
STC) x
tADCI + 2 x
Includes sample time
and post calibration
tVADC
Conversion time for 10-bit
result
tC10 CC
-
(14 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for 8-bit result tC8 CC
-
(12 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for fast
compare mode
tCF CC
-
(4 + STC) x tADCI + 2
x tVADC
Broken wire detection delay
against VAGND 4)
tBWG CC
-
-
120
cycles Result below 10%
Broken wire detection delay
against VAREF 5)
tBWR CC
-
-
60
cycles Result above 80%
Input leakage at analog inputs
IOZ1 CC
-350
-
350
nA
Analog Inputs overlaid
with class LP pads or
pull down diagnostics
-150
-
150
nA
else
LSB
12-bit resolution
Total Unadjusted Error
Data Sheet
1)
TUE CC
-4
6)
-
4-209
4
Includes sample time
6)
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationVADC Parameters
Table 3-27 VADC (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
EAINL CC
-3
-
3
LSB
12-bit resolution
EAGAIN CC
-3.5
-
3.5
LSB
12-bit resolution
EADNL CC
-3
-
3
LSB
12-bit resolution
EAOFF CC
-4
-
4
LSB
12-bit resolution
Total capacitance of an analog CAINT CC
input
-
-
30
pF
CAINS CC
2
4
7
pF
Resistance of the analog input RAIN CC
path
-
-
1.5
kOhm
else
-
-
1.8
kOhm
valid for analog inputs
mapped to GPIOs
Switched capacitance of a
reference input
CAREFS CC
-
-
30
pF
RMS Noise 7)
ENRMS CC
-
0.5
0.8 6)8)
LSB
Positive reference VAREFx pin
leakage
IOZ2 CC
-2
-
2
µA
VAREFx = VAREF1;
VAREF≤VDDMV;
TJ≤150°C
-3
-
3
µA
VAREFx = VAREF1;
VAREF≤VDDMV;
TJ>150°C
-4
-
4
µA
VAREFx = VAREF1;
VAREF>VDDMV;
TJ≤150°C
-7
-
7
µA
VAREFx = VAREF1;
VAREF>VDDMV;
TJ>150°C
-13
-
13
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ > 150
INL Error
Gain Error
DNL error
1)
1)
Offset Error
1)
Switched capacitance of an
analog input
Negative reference VAGNDx pin
leakage
IOZ3 CC
°C
-7
-
7
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ ≤ 150
°C
-3
-
3
µA
VAGNDx = VAGND1 ;
VAGND ≥ VSSM ; TJ > 150
°C
-2.5
-
2.5
µA
VAGNDx = VAGND1 ;
VAGND ≥ VSSM ; TJ ≤ 150
°C
Resistance of the reference
input path
RAREF CC
-
-
1
kOhm
CSD resistance 9)
RCSD CC
-
-
28
kOhm
Data Sheet
4-210
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationVADC Parameters
Table 3-27 VADC (cont’d)
Parameter
Symbol
Values
Min.
Resistance of the multiplexer
diagnostics pull-down device
RMDD CC
Resistance of the multiplexer
diagnostics pull-up device
RMDU CC
Typ.
Unit
Note / Test Condition
Max.
25 + 1*VIN -
35 + 8*VIN kOhm
0 V ≤ VIN ≤ 2.5 V
-5 +
13*VIN
-
15 +
16*VIN
kOhm
2.5 V ≤ VIN ≤ VDDM
45 - 6*VIN -
90 16*VIN
kOhm
0 V ≥ VIN ≤ 2.5 V
40 - 4*VIN -
65 - 6*VIN kOhm
Resistance of the pull-down
test device 10)
RPDD CC
-
-
0.3
kOhm
CSD voltage accuracy 11) 12)
dVCSD CC -
-
10
%
Wakeup time
tWU CC
-
12
µs
-
2.5 V ≤ VIN ≤ VDDM
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor
1/k. VAREF must be decoupled with an external capacitor.
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 500 ms.
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS.
7) This parameter is valid for soldered devices and requires careful analog board design.
8) Value is defined for one sigma Gauss distribution.
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad
itself adds another 200-Ohm series resistance, when measuring through the pin.
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current
of max. VAREF / 45 kOhm.
The following VADC parameter are valid for VDDM = 2.97 V to 4.5 V.
Table 3-28 VADC_33V
Parameter
Analog reference voltage
Symbol
1)
VAREF SR
Values
Min.
Typ.
Max.
VAGND +
-
VDDM +
1.0
Analog reference ground
VAGND SR
Unit
VSSM -
V
0.05
-
0.05
VSSM +
V
0.05
Analog input voltage range
VAIN SR
VAGND
-
VAREF
V
Converter reference clock
fADCI SR
2
-
20
MHz
Data Sheet
Note / Test Condition
4-211
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationVADC Parameters
Table 3-28 VADC_33V (cont’d)
Parameter
Symbol
Charge consumption per
conversion 2) 3)
QCONV CC
Values
Min.
Typ.
Max.
-
35
50
Unit
Note / Test Condition
pC
VAIN = 3.3 V, charge
consumed from
reference pin,
precharging disabled
-
8
17
pC
VAIN = 3.3 V, charge
consumed from
reference pin,
precharging enabled
Conversion time for 12-bit
result
tC12 CC
-
(16 +
STC) x
tADCI + 2 x
Includes sample time
and post calibration
tVADC
Conversion time for 10-bit
result
tC10 CC
-
(14 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for 8-bit result tC8 CC
-
(12 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for fast
compare mode
tCF CC
-
(4 + STC) x tADCI + 2
x tVADC
Broken wire detection delay
against VAGND 4)
tBWG CC
-
-
120
cycles Result below 10%
Broken wire detection delay
against VAREF 5)
tBWR CC
-
-
60
cycles Result above 80%
Input leakage at analog inputs
IOZ1 CC
-350
-
350
nA
Analog Inputs overlaid
with class LP pads or
pull down diagnostics
-150
-
150
nA
else
LSB
12-bit Resolution; TJ >
150 °C
Total Unadjusted Error
INL Error
Gain Error 1)
Data Sheet
1)
TUE CC
EAINL CC
EAGAIN CC
-12
6)
Includes sample time
6)
-
12
-6 6)
-
6 6)
LSB
12-bit Resolution; TJ ≤
150 °C
-12
-
12
LSB
12-bit Resolution; TJ >
150 °C
-5
-
5
LSB
12-bit Resolution; TJ ≤
150 °C
-6
-
6
LSB
12-bit Resolution; TJ >
150 °C
-5.5
-
5.5
LSB
12-bit Resolution; TJ ≤
150 °C
4-212
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationVADC Parameters
Table 3-28 VADC_33V (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
EADNL CC
-4
-
4
LSB
12-bit resolution
EAOFF CC
-6
-
6
LSB
12-bit Resolution; TJ >
150 °C
-5
-
5
LSB
12-bit Resolution; TJ ≤
150 °C
Total capacitance of an analog CAINT CC
input
-
-
30
pF
CAINS CC
2
4
7
pF
Resistance of the analog input RAIN CC
path
-
-
4.5
kOhm
Switched capacitance of a
reference input
CAREFS CC
-
-
30
pF
RMS Noise 7)
ENRMS CC
-
-
1.7 6)8)
LSB
Positive reference VAREFx pin
leakage
IOZ2 CC
-6
-
6
µA
VAREFx = VAREF1;
VAREF>VDDMV;
TJ>150°C
-3.5
-
3.5
µA
VAREFx = VAREF1;
VAREF>VDDMV;
TJ≤150°C
-3
-
3
µA
VAREFx = VAREF1;
VAREF≤VDDMV;
TJ>150°C
-2
-
2
µA
VAREFx = VAREF1;
VAREF≤VDDMV;
TJ≤150°C
-12
-
12
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ > 150
DNL error
1)
Offset Error
1)
Switched capacitance of an
analog input
Negative reference VAGNDx pin
leakage
IOZ3 CC
°C
-6.5
-
6.5
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ ≤ 150
°C
-3
-
3
µA
VAGNDx = VAGND1 ;
VAGND ≥ VSSM ; TJ > 150
°C
-2
-
2
µA
VAGNDx = VAGND1 ;
VAGND ≥ VSSM ; TJ ≤ 150
°C
Resistance of the reference
input path
RAREF CC
-
-
3
kOhm
CSD resistance 9)
RCSD CC
-
-
28
kOhm
Data Sheet
4-213
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationVADC Parameters
Table 3-28 VADC_33V (cont’d)
Parameter
Symbol
Values
Min.
Resistance of the multiplexer
diagnostics pull-down device
Resistance of the multiplexer
diagnostics pull-up device
RMDD CC
RMDU CC
Typ.
Unit
Note / Test Condition
kOhm
0 V ≤ VIN ≤ 1.667 V
Max.
25 + 3*VIN -
40 +
12*VIN
0 + 18*VIN -
0 + 18*VIN kOhm
1.667 V ≤ VIN ≤ VDDM
60 12*VIN
-
120 30*VIN
kOhm
0 V ≤ VIN ≤ 1.667 V
55 - 9*VIN -
95 15*VIN
kOhm
1.667 V ≤ VIN ≤ VDDM
Resistance of the pull-down
test device 10)
RPDD CC
-
-
0.9
kOhm
CSD voltage accuracy 11) 12)
dVCSD CC -
-
10
%
Wakeup time
tWU CC
-
12
µs
-
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor
1/k. VAREF must be decoupled with an external capacitor.
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 500 ms.
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS.
7) This parameter is valid for soldered devices and requires careful analog board design.
8) Value is defined for one sigma Gauss distribution.
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad
itself adds another 200-Ohm series resistance, when measuring through the pin.
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current
of max. VAREF / 45 kOhm.
RSource
V AIN
R AIN, On
C AINT - C AINS
C Ext
A/D Converter
CAINS
MCS05570
Figure 3-2 Equivalent Circuitry for Analog Inputs
Data Sheet
4-214
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDSADC Parameters
3.10
DSADC Parameters
The following DSADC parameter are valid for VDDM = 4.5 V to 5.5 V.
Table 3-29 DSADC
Parameter
Symbol
Analog input voltage range
1)
VDSIN SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
0
-
5
V
single ended
0
-
10
V
differential;VDSxP -
VDSxN
Reference load current
IREF SR
-
4.5
Modulator clock frequency 3)
fMOD SR
10
-
Gain error
EDGAIN CC -1
-3.5
DC offset error
EDOFF CC
Input impedance
Signal-Noise Ratio 9) 10) 11) 12)
1
-
%
Calibrated once
3.5
%
Uncalibrated
6)
%
calibrated; GAIN = 1;
MODCFG.INCFGx=01
mV
calibrated
mV
calibrated once
mV
gain = 1; uncalibrated
0.2
-5
-
5 6)
0
50
5)7)
per twin-modulator (1
or 2 channels)
5)
-
5)7)
µA
MHz
4)
-0.2
-100
8)
7.8
2)
20
5)
-50
Common Mode Rejection Ratio EDCM CC
2)
100
5)
200
500
-
RDAIN CC
100
130
170
kOhm
Exact value (±1%)
available in UCB
SNR CC
80
-
-
dB
fPB = 30 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
78
-
-
dB
fPB = 50 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
70
-
-
dB
fPB = 100 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
74
-
-
dB
fPB = 100 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
76
-
-
dB
fPB = 30 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
74
-
-
dB
fPB = 50 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
Output data rate fD =
fPB * 3
Pass band
fPB CC
10 13)
-
100
kHz
Pass band ripple 10)
dfPB CC
-1
-
1
%
Output sampling rate
fD CC
30
-
330
kHz
Data Sheet
4-215
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDSADC Parameters
Table 3-29 DSADC (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
DC compensation factor
DCF CC
-3
-
-
dB
10-5 fD
Positive reference VAREF1 pin
leakage
IOZ5 CC
-2
-
2
µA
VVAREFx = VVAREF1 ;
VVAREF ≤ VDDM ; TJ ≤
150 °C
-3
-
3
µA
VVAREFx = VVAREF1 ;
VVAREF ≤ VDDM ; TJ >
150 °C
-4
-
4
µA
VVAREFx = VVAREF1 ;
VVAREF > VDDM ; TJ ≤
150 °C
-7
-
7
µA
VVAREFx = VVAREF1 ;
VVAREF > VDDM ; TJ >
150 °C
Negative reference VAGND1 pin
leakage
IOZ6 CC
-2.5
-
2.5
µA
VAGNDx = VAGND1 ;
VAGND > VSSM ; TJ ≤ 150
°C
-3
-
3
µA
VAGNDx = VAGND1 ;
VAGND > VSSM ; TJ > 150
°C
-7
-
7
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ ≤ 150
°C
-13
-
13
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ > 150
°C
Stop band attenuation
10)
Reference ground voltage
Positive reference voltage
SBA CC
VAGND SR
VAREF SR
40
-
-
dB
0.5 ... 1 fD
45
-
-
dB
1 ... 1.5 fD
50
-
-
dB
1.5 ... 2 fD
55
-
-
dB
2 ... 2.5 fD
60
-
-
dB
2.5 ... OSR/2 fD
VSSM -
-
VSSM +
V
0.05
0.05
VDDMnom * -
VDDM +
0.9
0.05
V
Common mode voltage
accuracy
dVCM CC
-100
-
100
mV
from selected voltage
Common mode hold voltage
deviation 14)
dVCMH CC
-200
-
200
mV
From common mode
voltage
Analog filter settling time
tAFSET CC
-
2
4
µs
If enabled
Modulator recovery time
tMREC CC
-
3.5
5.5
µs
After leaving overdrive
state
Data Sheet
4-216
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDSADC Parameters
Table 3-29 DSADC (cont’d)
Parameter
Modulator settling time
Symbol
15)
tMSET CC
Spurious Free Dynamic Range SFDR CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
1
-
µs
After switching on,
voltage regulator
already running
60
-
-
dB
VCM = 2.2 V, DC
coupled; VDDM = ±10%
9)16)
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external
common mode voltage. In this case the Amplitude is limited to VCM * 2.
2) When measuring at pin VAREF1, leakage/operating currents of the VADC must be added to IREF.
3) All modulators must run on the same frequency.
4) The calibration sequence must be executed once after an Application Reset
5) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF
6) Recalibration needed in case of a temperature change > 20ºC
7) Systematic offset shift
8) The variation of the impedance between different channels is < 1.5%.
9) Derating factors:
-2 dB in standard-performance mode.
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.
10) CIC3, FIR0, FIR1 filters enabled.
11) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM
(GAIN = 2).
12) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM.
13) 10 kHz only reachable with 10 MHz modulator clock frequency.
14) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM.
15) The modulator needs to settle after being switched on and after leaving the overdrive state.
16) SFDR = 20 * log(INL / 2N); N = amount of bits
The following DSADC parameter are valid for VDDM = 2.97 V to 3.63 V.
Table 3-30 DSADC_33V
Parameter
Analog input voltage range
Symbol
1)
VDSIN SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
0
-
3.3
V
single ended
0
-
6.6
V
differential;VDSxP -
VDSxN
Reference load current
IREF SR
-
4.5
Modulator clock frequency 3)
fMOD SR
10
-
Gain error
EDGAIN CC -1.5
-10
DC offset error
EDOFF CC
6.9
1.5
-
10
5)
-
0.3
-5
-
5 6)
-100
5)
0
6)
50
5)
4-217
µA
per twin-modulator (1
or 2 channels)
MHz
4)
-0.3
-50
Data Sheet
2)
20
-
5)
2)
100
5)
%
Calibrated once
%
Uncalibrated
%
calibrated; GAIN = 1;
MODCFG.INCFGx=01
mV
calibrated
mV
calibrated once
mV
gain = 1; uncalibrated
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDSADC Parameters
Table 3-30 DSADC_33V (cont’d)
Parameter
Symbol
Input impedance
Signal-Noise Ratio 8) 9) 10) 11)
Unit
Note / Test Condition
Min.
Typ.
Max.
200
500
-
RDAIN CC
100
130
170
kOhm
Exact value (±1%)
available in UCB
SNR CC
45
63
-
dB
fPB = 100kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
60
69
-
dB
fPB = 100kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
60
68
-
dB
fPB = 30kHz; VDDM =
±10%; fMOD = 20 MHz;
Common Mode Rejection Ratio EDCM CC
7)
Values
GAIN = 1
69
74
-
dB
fPB = 30kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
55
66
-
dB
fPB = 50kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
65
72
-
dB
fPB = 50kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
Pass band
fPB CC
10
12)
-
100
kHz
Output data rate fD =
fPB * 3
Pass band ripple 9)
dfPB CC
-1
-
1
%
Output sampling rate
fD CC
30
-
330
kHz
DC compensation factor
DCF CC
-3
-
-
dB
10-5 fD
Positive reference VAREF1 pin
leakage
IOZ5 CC
-6
-
6
µA
VAREFx = VAREF1 ; VAREF
> VDDM ; TJ > 150 °C
-3.5
-
3.5
µA
VAREFx = VAREF1 ; VAREF
> VDDM ; TJ ≤ 150 °C
-3
-
3
µA
VAREFx = VAREF1 ; VAREF
≤ VDDM ; TJ > 150 °C
-2
-
2
µA
VAREFx = VAREF1 ; VAREF
≤ VDDM ; TJ ≤ 150 °C
Data Sheet
4-218
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDSADC Parameters
Table 3-30 DSADC_33V (cont’d)
Parameter
Symbol
Negative reference VAGND1 pin
leakage
IOZ6 CC
Values
Min.
Typ.
Max.
-2
-
2
Unit
Note / Test Condition
µA
VAGNDx = VAGND1 ;
VAGND ≥ VSSM ; TJ ≤ 150
°C
-3
-
3
µA
VAGNDx = VAGND1 ;
VAGND ≥ VSSM ; TJ > 150
°C
-6.5
-
6.5
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ ≤ 150
°C
-12
-
12
µA
VAGNDx = VAGND1 ;
VAGND < VSSM ; TJ > 150
°C
Stop band attenuation
9)
Reference ground voltage
Positive reference voltage
SBA CC
VAGND SR
VAREF SR
40
-
-
dB
0.5 ... 1 fD
45
-
-
dB
1 ... 1.5 fD
50
-
-
dB
1.5 ... 2 fD
55
-
-
dB
2 ... 2.5 fD
60
-
-
dB
2.5 ... OSR/2 fD
VSSM -
-
VSSM +
V
0.05
0.05
VDDMnom * -
VDDM +
0.9
0.05
V
Common mode voltage
accuracy
dVCM CC
-100
-
100
mV
from selected voltage
Common mode hold voltage
deviation 13)
dVCMH CC
-200
-
200
mV
From common mode
voltage
Analog filter settling time
tAFSET CC
-
2
4
µs
If enabled
Modulator recovery time
tMREC CC
-
3.5
-
µs
After leaving overdrive
state
Modulator settling time 14)
tMSET CC
-
1
-
µs
After switching on,
voltage regulator
already running
52
-
-
dB
VCM = 2.2 V, DC
coupled; VDDM = ±10%
60
-
-
dB
VCM = 2.2 V, DC
coupled; VDDM = ±5%
Spurious Free Dynamic Range SFDR CC
8)15)
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external
common mode voltage. In this case the Amplitude is limited to VCM * 2.
2) When measuring at pin VAREF1, leakage/operating currents of the VADC must be added to IREF.
3) All modulators must run on the same frequency.
4) The calibration sequence must be executed once after an Application Reset
5) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF
6) Recalibration needed in case of a temperature change > 20ºC.
7) The variation of the impedance between different channels is < 1.5%.
Data Sheet
4-219
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDSADC Parameters
8) Derating factors:
-2 dB in standard-performance mode.
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.
9) CIC3, FIR0, FIR1 filters enabled.
10) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM
(GAIN = 2).
11) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM.
12) 10 kHz bandwidth only with 10Mhz modulator clock frequency reachable
13) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM.
14) The modulator needs to settle after being switched on and after leaving the overdrive state.
15) SFDR = 20 * log(INL / 2N); N = amount of bits
37 kΩ
37 kΩ
V CM
Gain
Inp ut
V OFFSET
130 kΩ
=
130 kΩ
Modulator
Gain
MC_DSADC_MODULATORBLOCK
Figure 3-3 DSADC Analog Inputs
Data Sheet
4-220
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMHz Oscillator
3.11
MHz Oscillator
OSC_XTAL is used as accurate and exact clock source. OSC_XTAL supports 8 MHz to 40 MHz crystals external
outside of the device. Support of ceramic resonators is also provided.
Table 3-31 OSC_XTAL
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Input current at XTAL1
IIX1 CC
-25
-
25
µA
VIN>0V; VIN
25MHz
V
If shaper is not
bypassed; fOSC ≤
25MHz
0.5
Input low voltage at XTAL1
VILBX SR
-0.5
-
Input voltage at XTAL1
VIX SR
-0.5
-
0.5
Input amplitude (peak to peak) VPPX SR
at XTAL1
0.3 *
-
1.0
VDDP3
0.4 *
VDDP3 +
-
VDDP3 +
1.0
VDDP3
Internal load capacitor
CL0 CC
2
2.35
2.7
pF
Internal load capacitor
CL1 CC
2
2.35
2.7
pF
Internal load capacitor
CL2 CC
3
3.5
4
pF
Internal load capacitor
CL3 CC
5.1
5.9
6.6
pF
1) tOSCS is defined from the moment when VDDP3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDP3.
The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended
and specified by crystal suppliers.
2) This value depends on the frequency of the used external crystal. For faster crystal frequencies this value decrease.
Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target
system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits
specified by the crystal or ceramic resonator supplier.
Data Sheet
4-221
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationBack-up Clock
3.12
Back-up Clock
The back-up clock provides an alternative clock source.
Table 3-32 Back-up Clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
75
100
125
MHz
VEXT≥2.97V
Slow speed Back-up clock
fBACKSS CC 75
100
125
kHz
VEXT≥2.97V
Back-up clock after trimming
fBACKT CC
100
102.5
MHz
VEXT≥2.97V
Back-up clock before trimming fBACKUT CC
Data Sheet
97.5
4-222
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationTemperature Sensor
3.13
Temperature Sensor
Table 3-33 DTS
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
-
-
100
µs
Calibration reference accuracy TCALACC CC -1
-
1
°C
Non-linearity accuracy over
temperature range
TNL CC
-2
-
2
°C
Temperature sensor range
TSR SR
-40
-
170
°C
Start-up time after resets
inactive
tTSST SR
-
-
20
µs
Measurement time
tM CC
Note / Test Condition
calibration points @
TJ=-40°C and
TJ=127°C
The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the
DTSSTAT register.
(3.1)
DTSSTATRESULT – ( 607 )
Tj = ---------------------------------------------------------------------------2, 13
Data Sheet
4-223
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower Supply Current
3.14
Power Supply Current
The total power supply current defined below consists of leakage and switching component.
Application relevant values are typically lower than those given in the following table and depend on the customer's
system operating conditions (e.g. thermal connection or used application configurations).
The operating conditions for the parameters in the following table are:
The real (realisic) power pattern defines the following conditions:
•
•
TJ = 150 °C
fCPU0 = 80 MHz
fSRI = fMAX = fCPU1 = 160 MHz
fSPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 40 MHz
VDD = 1.326 V
VDDP3 = 3.366 V
VEXT / FLEX = VDDM = 5.1 V
•
all cores are active including one lockstep core
•
the following peripherals are inactive: HSM, HSCT, Ethernet, PSI5, I2C, FCE, MTU, and 50% of the DSADC
channels
•
•
•
•
•
The max power pattern defines the following conditions:
•
•
TJ = 150 °C
fSRI = fMAX = fCPU0 = 200 MHz
fSPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 100 MHz
VDD = 1.43 V
VDDP3 = 3.63 V
VEXT / FLEX = VDDM = 5.5 V
•
all cores and lockstep cores are active
•
all peripherals are active
•
•
•
•
Table 3-34 Power Supply
Parameter
∑ Sum of IDD 1.3 V core and
peripheral supply currents
Data Sheet
Symbol
IDD CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
380 1)
mA
valid for Feature
Package D and DC;
max power pattern
-
-
198 1)
mA
valid for Feature
Package D and DC;
real power pattern
-
-
432
mA
valid for Feature
Package DA; max
power pattern
-
-
250
mA
valid for Feature
Package DA; real
power pattern
4-224
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower Supply Current
Table 3-34 Power Supply (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
60
mA
valid for Feature
Package D and DC;
TJ=125°C
-
-
112
mA
valid for Feature
Package D and DC;
TJ=150°C
-
-
103
mA
valid for Feature
Package DA;
TJ=125°C
-
-
160
mA
valid for Feature
Package D and DC;
TJ=165°C
-
-
154
mA
valid for Feature
Package DA;
TJ=150°C
-
-
216
mA
valid for Feature
Package DA;
TJ=165°C
-
-
38
mA
real power pattern
IDD core current of CPU1 main IDDC11 CC
core with lockstep core active
-
-
IDDC10 +
mA
real power pattern
IDD core current added by FFT IDDFFT CC
-
-
40
mA
FFT running at
200MHz
∑ Sum of 3.3 V supply currents IDDx3RAIL CC without pad activity
-
46 2)
mA
real power pattern
IDDFL3 Flash memory current
-
33 3)
mA
flash read current
-
-
33
4)
mA
flash read current
while programming
Dflash
-
-
13 3)
mA
real power pattern;
incl. OSC & flash read
current
-
-
27 5)
mA
incl. OSC current and
flash 3.3V
programming current
when using external
5V supply
-
-
31 4)
mA
incl. OSC current and
flash programming
current when using
3.3V supply only
IDD core current during active
power-on reset (PORST held
low)
IDDPORST
CC
IDD core current of CPU1 main IDDC10 CC
core with CPU1 lockstep core
inactive
IDDP3 supply current without
IDDFL3 CC
IDDP3 CC
32
-
pad activity
Data Sheet
4-225
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower Supply Current
Table 3-34 Power Supply (cont’d)
Parameter
Symbol
IDDP3 supply current for LVDSH IDDP3LVDSH
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
-
-
16
mA
pads in LVDS mode
CC
Σ Sum of external and ADC
supply currents (incl.
IEXTFLEX+IDDM+IEXTLVDSM)
IEXTRAIL CC -
-
31
mA
real power pattern
Sum of IEXT and IFLEX supply
current without pad activity
IEXT/FLEX CC -
-
11
mA
real power pattern;
PORST output
inactive.
-
-
6 6)
mA
real power pattern
-
-
14
mA
real power pattern;
sum of currents of
DSADC and VADC
modules
-
-
12
mA
current for DSADC
module only; 50%
DSADC channels
active.
-
-
32 7)
mA
max power pattern; All
DSADC channels
active 100% time.
-
-
2
mA
real pattern; current for
VADC only
-
-
7 8)
mA
max power pattern; All
VADC converters are
active 100% time
-
-
275
mA
valid for Feature
Package D and DC;
real power pattern
-
-
327
mA
valid for Feature
Package DA; real
power pattern
-
-
180
mA
real power pattern;
VEXT = 3.3V
-
-
150
mA
real power pattern;
VEXT = 5V
-
-
150 10)
µA
Standby RAM is
active. Power to
remaining domains
switched off. TJ =
25°C; VEVRSB = 5V
IEXT supply current for LVDSM IEXTLVDSM
pads in LVDS mode
CC
IDDM supply current
IDDM CC
Σ Sum of all currents (incl.
IDDTOT CC
IEXTRAIL+IDDx3RAIL+IDD)
Σ Sum of all currents with DCDC EVR13 regulator active 9)
IDDTOTDC3
Σ Sum of all currents with DCDC EVR13 regulator active 9)
IDDTOTDC5
∑ Sum of all currents
(STANDBY mode)
IEVRSB CC
Data Sheet
CC
CC
4-226
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower Supply Current
Table 3-34 Power Supply (cont’d)
Parameter
∑ Sum of all currents (SLEEP
mode)
Maximum power dissipation
Symbol
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
15
mA
All CPUs in idle, All
peripherals in sleep,
fSRI/SPB = 1 MHz via
LPDIV divider; TJ =
25°C; valid for Feature
Package D and DC
-
-
19
mA
All CPUs in idle, All
peripherals in sleep,
fSRI/SPB = 1 MHz via
LPDIV divider; TJ =
25°C; valid for Feature
Package DA
-
-
1090
mW
valid for Feature
Package D and DC;
max power pattern
-
-
614
mW
valid for Feature
Package D and DC;
real power pattern
-
-
1145
mW
valid for Feature
Package DA; max
power pattern
-
-
669
mW
valid for Feature
Package DA; real
power pattern
-
25
-
µA
fSYS_SCR = 100KHz;
TJ=25°C
-
-
4
mA
fSYS_SCR = 20MHz;
TJ=25°C
ISCRIDLE CC -
-
1
mA
ISLEEP CC
PD CC
SCR 8-bit Standby Controller in ISCRSB CC
STANDBY Mode
SCR 8-bit Standby Controller
CPU in IDLE mode
Values
1) The real pattern usecase is limited to 160 MHz in TC26x to limit the IDD current to less than 200 mA to ensure that internal
pass devices of EVR13 LDO can deliver the required IDD current. The max pattern IDD current can only be met with EVR13
LDO using external pass devices or EVR13 SMPS mode.
2) In case EVR33 is not used, Injection current into 3.3V VDDP3 supply rail with active sink on 5V VEXT rail should be limited
to 500 mA if during power sequencing 3.3V is supplied before 5V by external regulator.
3) Realistic Pflash read pattern with 70% Pflash bandwidth utlilization and a code mix of 50% 0s and 50% 1s. Dynamic Flash
Idle via FCON.IDLE is activated bringing a benefit of 8 mA. A common decoupling capacitor of atleast 100nF for
(VDDFL3+VDDP3) is used. Dflash read current is also included. Flash read current is predominantly drawn from VDDFL3 pin and
a minor part drawn from the neighbouring VDDP3 pin.
4) Continuous Dflash programming in burst mode with 3.3 V supply and realistic Pflash read access in parallel. Dynamic Flash
Idle via FCON.IDLE is activated bringing a benefit of 8 mA. Erase currents of the corresponding flash modules are less
than the respective programming currents at VDDP3 pin. Programming and erasing flash may generate transient current
spikes of up to x mA for maximum x us which is handled by the decoupling and buffer capacitors. This parameter is relevant
for external power supply dimensioning and not for thermal considerations.
5) In addition to the current specified, upto 4 mA is additionally drawn at VEXT supply in burst programming mode with 5V
external supply. Erase currents of the corresponding flash modules are less than the respective programming currents at
VDDP3 supply. This parameter is relevant for external power supply dimensioning and not for thermal considerations.
Data Sheet
4-227
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower Supply Current
6) The current consumption is for 1 pair of LVDSM differential pads (4 pins).
7) The current consumption is for 6 DS channels with standard performance (MCFG=11b). A single DS channel instance
consumes 6-8 mA.
8) A single converter instance of VADC unit consumes 2 mA.
9) The total current drawn from external regulator is estimated with 72% EVR13 SMPS regulator Efficiency. IDDTOTDCx is
calculated from IDDTOT using the scaled core current [(IDD x VDD)/(VinxEfficiency)] and constitutes all other rail currents and
IDDM.
10) Current at VEVRSB supply pin during normal RUN mode is less than 5 mA at TJ =150 °C. The transition between RUN mode
to STANDBY mode has a duration of less than 100us during which the current is higher but is less than 8 mA at TJ =150
°C. Once STANDBY mode is entered with only Standby RAM active the current is less than 5mA at TJ = 150 °C. It is
recommended to have atleast 100 nF decoupling capacitor at this pin. The standby current indicated is solely drawn from
VEVRSB pin.
3.14.1
Calculating the 1.3 V Current Consumption
The current consumption of the 1.3 V rail compose out of two parts:
•
Static current consumption
•
Dynamic current consumption
The static current consumption is related to the device temperature TJ and the dynamic current consumption
depends of the configured clocking frequencies and the software application executed. These two parts needs to
be added in order to get the rail current consumption.
Valid for Feature Package D and DC products:
(3.2)
mA
I 0 = 0, 741 --------- × e 0, 0255 × T J [ C ]
C
(3.3)
mA
I 0 = 2, 86 --------- × e 0, 0244 × T J [ C ]
C
Valid for Feature Package DA products:
(3.4)
mA
I 0 = 0, 99 --------- × e 0, 02483 × T J [ C ]
C
(3.5)
mA
I 0 = 4, 8 --------- × e 0, 02308 × T J [ C ]
C
Function 2 defines the typical static current consumption and Function 3 defines the maximum static current
consumption. Both functions are valid for VDD = 1.326 V.
Data Sheet
4-228
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
3.15
Power-up and Power-down
3.15.1
External Supply Mode
5 V & 1.3 V supplies are externally supplied. 3.3V is generated internally by EVR33.
•
External supplies VEXT and VDD may ramp-up or ramp-down independent of each other with regards to start,
rise and fall time(s). Voltage Ramp-up from a residual threshold (Eg : up to 1 V) should also lead to a normal
startup of the device.
•
The rate at which current is drawn from the external regulator (dIEXT /dt or dIDD /dt) is limited in the Start-up
phase to a maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary
reset thresholds.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-4 is enumerated below
–
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supplies
ramp up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR33 regulator is initiated.
–
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR33 regulator
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.
Firmware execution is initiated.
–
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset
thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
4-229
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
1
2
3
4
5.5 V
5.0 V
4.5 V
2.97 V
Primary Reset Threshold
0V
VDD (externally supplied )
1.33 V
1.30 V
1.17 V Primary Reset Threshold
0V
PORST (output )
PORST (input)
VDDP3 (internally generated
by EVR33)
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
T0
T2
T1
Basic Supply & Clock
Infrastructure
EVR33 Ramp-up Phase
T3
Firmware Execution
User Code Execution
fCPU =100MHz default
on firmware exit
T4
Power Ramp-down phase
Startup_Diag_1 v 0.1
Figure 3-4 External Supply Mode - 5 V and 1.3 V externally supplied
Data Sheet
4-230
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
3.15.2
Single Supply Mode
5 V single supply mode. 1.3 V & 3.3 V are generated internally by EVR13 & EVR33.
•
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a
maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary
reset threshold.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-5 is enumerated below
–
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR13 and EVR33 regulators are initiated.
–
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 and EVR33
regulators have ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST
rising edge. Firmware execution is initiated.
–
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset
thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
4-231
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
1
2
3
4
5.5 V
5.0 V
4.5 V
2.97 V
Primary Reset Threshold
0V
PORST (output )
PORST (input)
VDD
1.33 V
(internally generated
by EVR13)
1.30 V
1.17 V Primary Reset Threshold
0V
VDDP3 (internally generated
by EVR33)
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
T0
T1
Basic Supply & Clock
Infrastructure
T2
EVR13 & EVR 33 Ramp-up
Firmware Execution
Phase
T3
User Code Execution
fCPU =100MHz default
on firmware exit
T4
Power Ramp-down phase
Startup_Diag_2 v 0.1
Figure 3-5 Single Supply Mode - 5 V single supply
Data Sheet
4-232
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
3.15.3
External Supply Mode
All supplies, namely 5 V, 3.3 V & 1.3 V, are externally supplied.
•
External supplies VEXT ,, VDDP3 & VDD may ramp-up or ramp-down independent of each other with regards
to start, rise and fall time(s).
•
The rate at which current is drawn from the external regulator (dIEXT /dt, dIDD /dt or dIDDP3 /dt) is limited in
the Start-up phase to a maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary
reset thresholds.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-6 is enumerated below
–
T1 refers to the point in time when all supplies are above their primary reset thresholds and basic clock
infrastructure is available. The supply mode is evaluated based on the HWCFG [0:2] pins. PORST (output)
is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated.
–
T2 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T3 refers to the point in time during the Ramp-down phase when atleast one of the externally provided
supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
4-233
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
1
2
3
5.5 V
5.0 V
4.5 V
2.97 V
Primary Reset Threshold
0V
VDD (externally supplied )
1.33 V
1.30 V
1.17 V Primary Reset Threshold
0V
VDDP3
(externally supplied)
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
PORST (output )
PORST (input)
T0
T1
Basic Supply & Clock
Infrastructure
T3
T2
User Code Execution
fCPU =100 MHz default
on firmware exit
Firmware Execution
Power Ramp-down phase
Startup_Diag_3 v 0.1
Figure 3-6 External Supply Mode - 5 V, 3.3 V & 1.3 V externally supplied
Data Sheet
4-234
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
3.15.4
Single Supply Mode
3.3 V single supply mode. 1.3 V is generated internally by EVR13.
•
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a
maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary
reset threshold.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V or 3.3 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-7 is enumerated below
–
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR13 regulator is initiated.
–
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 regulator
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.
Firmware execution is initiated.
–
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V or 3.3 V) drop below their respective primary under-voltage reset thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
4-235
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
&
VDDP3 (externally supplied )
1
2
3
4
T3
User Code Execution
fCPU =100MHz default
on firmware exit
T4
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
PORST (output )
PORST (input)
VDD (internally generated
1.33 V
1.30 V
1.17 V
by EVR 13)
Primary Reset Threshold
0V
T2
T1
T0
Basic Supply & Clock
Infrastructure
EVR13 Ramp-up Phase
Firmware Execution
Power Ramp-down phase
Startup_Diag_4 v 0.1
Figure 3-7 Single Supply Mode - 3.3 V single supply
Data Sheet
4-236
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationReset Timing
3.16
Reset Timing
Table 3-35 Reset Timings
Parameter
Symbol
Application Reset Boot Time
1)
System Reset Boot Time
Power on Reset Boot Time
3)
Values
Note / Test Condition
operating with max.
frequencies.
Min.
Typ.
Max.
tB CC
-
-
350 2)
µs
tBS CC
-
-
1 2)
ms
tBP CC
-
-
2.5
ms
dV/dT=1V/ms.
including EVR rampup and Firmware
execution time
-
-
1.1 2)
ms
Firmware execution
time; without EVR
operation (external
supply only)
-
-
µs
-
-
1
ms
1
-
-
ms
-
1200
ns
Minimum PORST hold time
tEVRPOR CC 10
incase of power fail event
issued by EVR primary monitor
EVR start-up or ramp-up time
Unit
tEVRstartup
CC
Minimum PORST active hold
time after power supplies are
stable at operating levels 4)
tPOA CC
tPORSTDF CC 600
Configurable PORST digital
filter delay in addition to analog
pad filter delay
dV/dT=1V/ms. EVR13
and EVR33 active
HWCFG pins hold time from
ESR0 rising edge
tHDH CC
16 / fSPB
-
-
ns
HWCFG pins setup time to
ESR0 rising edge
tHDS CC
0
-
-
ns
Ports inactive after ESR0 reset tPI CC
active
-
-
8/fSPB
ns
Ports inactive after PORST
reset active 5)
tPIP CC
-
-
150
ns
Hold time from PORST rising
edge
tPOH SR
150
-
-
ns
Setup time to PORST rising
edge
tPOS SR
0
-
-
ns
SCR reset boot time
tSCR CC
-
-
300
µs
User Mode 0
-
-
300
µs
User Mode 1
-
13.3
-
µs
WDT double bit ECC,
soft reset
Data Sheet
4-237
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationReset Timing
1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when
the first user instruction has entered the CPU pipeline and its processing starts.
2) The timing values assumes programmed BMI with ESR0CNT inactive.
3) The duration of the boot time is defined by all external supply voltages are inside there operation condictions and the clock
cycle when the first user instruction has entered the CPU pipeline and its processing starts.
4) The regulator that supplies VEXT should ensure that VEXT is in the operational region before PORST is externally released
by the regulator. Incase of 5V nominal supply, it should be ensured that VEXT > 4V before PORST is released. Incase of
3.3V nominal supply , it should be ensured that VEXT > 3V before PORST is released. The additional minimum PORST hold
time is required as an additional mechanism to avoid consecutive PORST toggling owing to slow supply slopes or residual
supply ramp-ups. It is also required to activate external PORST atleast 100us before power-fail is recognised to avoid
consecutive PORST toggling on a power fail event.
5) This parameter includes the delay of the analog spike filter in the PORST pad.
VDDP
V D DPPA
VDD PPA
V DDPR
VDD
tPOA
tPOA
PORST
Warm
Cold
ESR0
t PI
tP I
tP IP
Tristate Z / pullup H
Pads
Programmed
Z/ H
Programmed
Z /H
Programmed
Padstate
undefined
TRST
Padstate
undefined
t P OS
t P OS
t P OH
tP OH
TESTMODE
t HDH
HWCFG
power -on config
t HDA
t HDH
config
t HDA
t HDH
config
reset_beh_aurix
Figure 3-8 Power, Pad and Reset Timing
Data Sheet
4-238
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEVR
3.17
EVR
Table 3-36 3.3V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
VIN SR
4
-
5.50
V
pass device=on chip
VOUT CC
2.97
3.3
3.63
V
pass device=on chip
3.225
3.3
3.375
V
pass device=on chip
COUT CC
-
1
-
µF
pass device=on chip
Primary Undervoltage Reset
threshold for VDDx3 3)
VRST33 CC
-
-
3.0
V
by reset release before
EVR trimming on
supply ramp-up.
Startup time
tSTR CC
-
-
1000
µs
pass device=on chip
dVin/dT
-
1
50
V/ms
pass device=on chip
dVout/dIout -
-
240
mV
dI=-70mA/20ns;
Tsettle=20us; pass
Input voltage range
1)
Output voltage operational
range including load/line
regulation and aging incase of
LDO regulator
VOUTT CC
Output VDDx3 static voltage
accuracy after trimming and
aging without dynamic load/line
Regulation incase of LDO
regulator.
Output buffer capacitance on
VOUT
2)
External VIN supply ramp
4)
SR
Load step response
CC
device=on chip
-240
-
-
mV
dI=50mA/20ns;
Tsettle=100us; pass
device=on chip
Line step response
dVout/dVin -20
-
CC
20
mV
dV/dT=1V/ms; pass
device=on chip
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device
operation.
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.
3) The reset release on supply ramp-up is delayed by a time duration 20-40 us after reaching undervoltage reset threshold.
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to
voltage drop/current jumps when reset is released. The reset limit of 2,97V at pin is for the case with 3.3V generated
internally from EVR33. In case the 3.3V supply is provided externally, the bondwire drop will cause a reset at a higher
voltage of 3.0V at the VDDP3 pin.
4) EVR robust against residual voltage ramp-up starting between 0-1 V.
Data Sheet
4-239
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEVR
Table 3-37 1.3V
Parameter
Input voltage range
Symbol
1)
VIN SR
Values
Min.
Typ.
Max.
2.97
-
5.5
Unit
Note / Test Condition
V
VIN≥; pass device=on
chip
Output voltage operational
range including load/line
regulation and aging incase of
LDO regulator
VOUT CC
VOUT
2)
Primary undervoltage reset
threshold for VDD 3)
Startup time
-
5.5
V
pass device=off chip
1.17
1.3
1.43
V
VIN≥; pass device=on
chip
VOUTT CC
Output VDD static voltage
accuracy after trimming without
dynamic load/line regulation
with aging incase of LDO
regulator.
Output buffer capacitance on
2.97
COUT CC
VRST13 CC
1.17
1.3
1.43
V
pass device=off chip
1.275
1.3
1.325
V
VIN≥; pass device=on
chip
1.275
1.3
1.325
V
pass device=off chip
1.4
2.2
3
µF
On chip pass device
usage restricted to IDD
< 200mA. If IDD >
200mA, off chip pass
device to be used.;
VIN≥; pass device=on
chip
3
4.7
6.3
µF
pass device=off chip
-
-
1.17
V
VIN≥; pass device=on
chip
tSTR CC
-
-
1.17
V
by reset release before
EVR trimming on
supply ramp-up. pass
device=off chip
-
-
1000
µs
VIN≥; pass device=on
chip
External VIN supply ramp
4)
dVin/dT
-
-
1000
µs
pass device=off chip
-
1
50
V/ms
VIN≥; pass device=on
SR
chip
-
Data Sheet
1
4-240
50
V/ms
pass device=off chip
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEVR
Table 3-37 1.3V (cont’d)
Parameter
Symbol
Values
Min.
Load step response
dVout/dIout -
Typ.
Max.
-
100
Unit
Note / Test Condition
mV
dI=-125mA;
Tsettle=20µs; VIN≥;
CC
pass device=on chip
-
-
100
mV
dI=-150mA;
Tsettle=20µs; pass
device=off chip
-100
-
-
mV
dI=100mA;
Tsettle=20µs; pass
device=off chip
-100
-
-
mV
dI=75mA;
Tsettle=20µs; VIN≥;
pass device=on chip
Line step response
dVout/dVin -10
-
10
mV
CC
dV/dT=1V/ms; VIN≥;
pass device=on chip
-10
-
10
mV
dV/dT=1V/ms; pass
device=off chip
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device
operation.
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.
3) The reset release on supply ramp-up is delayed by a time duration 30-60 µs after reaching undervoltage reset threshold.
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to
voltage drop/current jumps when reset is released.The reset limit of 1,17V at pin is for the case with 1.3V generated
internally from EVR13. In case the 1.3V supply is provided externally, the bondwire drop will cause a reset at a higher
voltage of 1.18V at the VDD pin.
4) EVR robust against residual voltage ramp-up starting between 0-1 V.
Table 3-38 Supply Monitoring
Parameter
Symbol
VEXT primary undervoltage
VEXTPRIUV
monitor accuracy after
trimming 1)
SR
VDDP3 primary undervoltage
VDDP3PRIUV
monitor accuracy after
trimming 1)
SR
VDD primary undervoltage
VDDPRIUV
monitor accuracy after
trimming 1)
SR
Values
Note / Test Condition
Min.
Typ.
Max.
2.86
2.92
2.97
V
VEXT = Undervoltage
Reset Threshold
2.86
2.90
2.97
V
VDDP3 = Undervoltage
Reset Threshold
1.13
VEXT secondary supply monitor VEXTMON CC 4.9
1.15
1.17
V
VDD = Undervoltage
Reset Threshold
5.0
accuracy
Data Sheet
Unit
4-241
5.1
V
SWDxxVAL VEXT
monitoring
threshold=5V=DBh
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEVR
Table 3-38 Supply Monitoring (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3.23
3.30
3.37
V
EVR33xxVAL VDDP3
monitoring
threshold=3.3V=91h
VDD secondary supply monitor VDDMON CC 1.27
1.30
1.33
V
EVR13xxVAL VDD
monitoring
threshold=1.3V=E4h
-
1.8
µs
after trimming
VDDP3 secondary supply
monitor accuracy
VDDP3MON
CC
accuracy
EVR primary and secondary
monitor measurement latency
for a new supply value
tEVRMON CC -
1) The monitor tolerances constitute the inherent variation of the bandgap and ADC over process, voltage and temperature
operational ranges. The xxxPRIUV parameters are device individually tested in production with ±1% tolerance about the
min and max xxxPRIUV limits. In TQFP100 and QFP80 pin packages, VDDPRIUV is not tested as HWCFG2 pin is absent.
Table 3-39 EVR13 SMPS External components
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
15.4
22
29.7
µF
IDDDC=1A
6.5
10
13.5
µF
IDDDC=400mA
External output capacitor ESR CDC_ESR SR -
-
50
mOhm f≥0.5MHz; f≤10MHz
-
-
100
Ohm
f=10Hz
6.5
10
13.5
µF
IDDDC=1A
4.42
6.8
9.18
µF
IDDDC=400mA
CIN_ESR SR -
-
50
mOhm f≥0.5MHz; f≤10MHz
-
-
100
Ohm
f=100Hz
2.31
3.3
4.29
µH
fDCDC=1.5MHz
3.29
4.7
6.11
µH
fDCDC=1MHz
External output capacitor value COUTDC SR
1)
External input capacitor value
1)
External input capacitor ESR
External inductor value
2)
CIN SR
LDC SR
External inductor ESR
LDC_ESR SR -
-
0.2
Ohm
P + N-channel MOSFET logic
level
VLL SR
-
-
2.5
V
P + N-channel MOSFET drain
source breakdown voltage
|VBR_DS| SR -
-
7
V
P + N-channel MOSFET drain
source ON-state resistance
RON SR
-
-
150
mOhm IDDDC=1A;VGS=2.5V ;
TA=25°C
-
-
200
mOhm IDDDC=400mA;VGS=2.5
V ; TA=25°C
-
4
-
nC
IDDDC=1A; MOSVGS=5V
-
8
-
nC
IDDDC=400mA; MOSVGS=5V
P + N-channel MOSFET Gate
Charge
Data Sheet
Qac SR
4-242
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEVR
Table 3-39 EVR13 SMPS External components (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
configurable
External MOSFET
commutation time
tc SR
10
30
40
ns
N-channel MOSFET reverse
diode forward voltage
VRDN SR
-
0.8
-
V
1) Capacitor min-max range represent typical ±35% tolerance including DC bias effect. The trace resistance from the
capacitor to the supply or ground rail should be limited to 25 mOhm.
2) External inductor min-max range represent typical ±30% tolerance at a DC bias current of 100mA.
Table 3-40 EVR13 SMPS
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
2.97
-
5.5
V
SMPS regulator output voltage VDDDC CC
range including load/line
regulation and aging 1)
1.17
-
1.43
V
VDD≥2.97V; VDD≤5.5V;
IDDDC≥1mA; IDDDC≤1A
SMPS regulator static voltage VDDDCT CC
output accuracy after trimming
without dynamic load/line
Regulation with aging. 2)
1.275
1.3
1.325
V
VDD≥2.97V; VDD≤5.5V;
IDDDC≥1mA; IDDDC≤1A
0.4
-
2.0
MHz
Input VEXT Voltage range
VIN SR
Programmable switching
frequency
fDCDC CC
Switching frequency
modulation spread
∆fDCSPR CC -
-
2%
MHz
Maximum ripple at IMAX (peak- ∆VDDDC CC to-peak) 3)
-
15
mV
VDD≥2.97V; VDD≤5.5V;
IDDDC≥300mA;
IDDDC≤1A
No load current consumption of IDCNL CC
SMPS regulator
5
10
mA
fDCDC=1MHz
-
25
mV
dI < 200mA ;
fDCDC=1MHz; tr=0.1us;
tf=0.1us; VDDDC=1.3V
-65
-
65
mV
dI < 400mA ;
fDCDC=1MHz; tr=0.1us;
tf=0.1us; VDDDC=1.3V
-
-
1
A
limited by thermal
constraints and
component choice
SMPS regulator load transient
response
dVout/dIout -25
CC
Maximum output current of the IMAX SR
regulator
Data Sheet
-
4-243
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEVR
Table 3-40 EVR13 SMPS (cont’d)
Parameter
SMPS regulator efficiency
Symbol
nDC CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
85
-
%
VIN=3.3V;
IDDDC=300mA;
fDCDC=1MHz
-
75
-
%
VIN=5V; IDDDC=400mA;
fDCDC=1.5MHz
-
80
-
%
VIN=5V; IDDDC=400mA;
fDCDC=1MHz
1) Incase of SMPS mode, It shall be ensured that the VDD output pin shall be connected on PCB level to all other VDD Input
pins.
2) Incase of fSRI running with max frequency, it shall be ensured that the VDD operating range is limited to 1.235V upto 1.430V.
The DCDC may be configured in this case with a nominal voltage of 1.33V±7.5%. The static accuracy and regulation
parameter ranges remain also valid for this case.
3) If frequency spreading (SDFREQSPRD = 1) is activated, an additional ripple of 1% need to be considered.
Data Sheet
4-244
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPhase Locked Loop (PLL)
3.18
Phase Locked Loop (PLL)
Table 3-41 PLL
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Note / Test Condition
PLL base frequency
fPLLBASE CC 80
150
360
MHz
VCO frequency range
fVCO SR
400
-
800
MHz
VCO Input frequency range
fREF CC
8
-
24
MHz
Modulation Amplitude
MA CC
0
-
2
%
Peak Period jitter
DP CC
-200
-
200
ps
Peak Accumulated Jitter
DPP CC
-5
-
5
ns
without modulation
Total long term jitter
JTOT CC
-
-
11.5
ns
including modulation;
MA ≤ 1%
System frequency deviation
fSYSD CC
-
-
0.01
%
with active modulation
2
3.6
5.4
MHz
11.5
-
200
µs
Modulation variation frequency fMV CC
PLL lock-in time
tL CC
Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the
maximum driver and sharp edge.
Note: The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of
VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the
supply pins and using PCB supply and ground planes.
Data Sheet
4-245
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationERAY Phase Locked Loop (ERAY_PLL)
3.19
ERAY Phase Locked Loop (ERAY_PLL)
Table 3-42 PLL_ERAY
Parameter
Symbol
Values
Min.
PLL Base Frequency of the
ERAY PLL
VCO frequency range of the
ERAY PLL
Unit
Typ.
Max.
200
320
MHz
400
-
480
MHz
fPLLBASE_ERA 50
Note / Test Condition
Y CC
fVCO_ERAY
SR
VCO input frequency of the
ERAY PLL
fREF SR
16
-
24
MHz
Accumulated_Jitter
DP CC
-0.5
-
0.5
ns
Accumulated jitter at SYSCLK
pin
DPP CC
-0.8
-
0.8
ns
PLL lock-in time
tL CC
5.6
-
200
µs
Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the
maximum driver and sharp edge.
Note: The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of
VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the
supply pins and using PCB supply and ground planes.
Data Sheet
4-246
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationAC Specifications
3.20
AC Specifications
All AC parameters are specified for the complette operating range defined in Chapter 3.4 unless otherwise noted
in colum Note / test Condition.
Unless otherwise noted in the figures the timings are defined with the following guidelines:
VEXT/FL EX / VD DP3
90%
VSS
90%
10%
10%
tr
tf
rise_fall
Figure 3-9 Definition of rise / fall times
VEXT/FL EX / VD D P3
VEXT/FL EX / VD D P3
2
VSS
Timing
Reference
Points
VEXT /FL EX / VD D P3
2
timing_reference
Figure 3-10 Time Reference Point Definition
Data Sheet
4-247
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationJTAG Parameters
3.21
JTAG Parameters
The following parameters are applicable for communication through the JTAG debug interface. The JTAG module
is fully compliant with IEEE1149.1-2000.
Table 3-43 JTAG
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
TCK clock period
t1 SR
25
-
-
ns
TCK high time
t2 SR
10
-
-
ns
TCK low time
t3 SR
10
-
-
ns
TCK clock rise time
t4 SR
-
-
4
ns
TCK clock fall time
t5 SR
-
-
4
ns
TDI/TMS setup to TCK rising
edge
t6 SR
6.0
-
-
ns
TDI/TMS hold after TCK rising t7 SR
edge
6.0
-
-
ns
TDO valid after TCK falling
edge (propagation delay) 1)
t8 CC
3.0
-
-
ns
CL≤20pF
-
-
16
ns
CL≤50pF
TDO hold after TCK falling
edge 1)
t18 CC
2
-
-
ns
TDO high impedance to valid
from TCK falling edge 1)2)
t9 CC
-
-
17.5
ns
CL≤50pF
TDO valid output to high
impedance from TCK falling
edge 1)
t10 CC
-
-
17
ns
CL≤50pF
1) The falling edge on TCK is used to generate the TDO timing.
2) The setup time for TDO is given implicitly by the TCK cycle time.
t1
0.9 VD D P
0.5 VD D P
t5
t2
t4
0.1 VD D P
t3
MC_ JTAG_ TCK
Figure 3-11 Test Clock Timing (TCK)
Data Sheet
4-248
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationJTAG Parameters
TCK
t6
t7
t6
t7
TMS
TDI
t9
t8
t1 0
TDO
t18
MC_JTAG
Figure 3-12 JTAG Timing
Data Sheet
4-249
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDAP Parameters
3.22
DAP Parameters
The following parameters are applicable for communication through the DAP debug interface.
Table 3-44 DAP
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
DAP0 clock period
t11 SR
6.25
-
-
ns
DAP0 high time
t12 SR
2
-
-
ns
DAP0 low time
t13 SR
2
-
-
ns
DAP0 clock rise time
t14 SR
-
-
1
ns
f=160MHz
-
-
2
ns
f=80MHz
-
-
1
ns
f=160MHz
-
-
2
ns
f=80MHz
DAP0 clock fall time
t15 SR
DAP1 setup to DAP0 rising
edge
t16 SR
4
-
-
ns
DAP1 hold after DAP0 rising
edge
t17 SR
2
-
-
ns
DAP1 valid per DAP0 clock
period 1)
t19 CC
3
-
-
ns
CL=20pF; f=160MHz
8
-
-
ns
CL=20pF; f=80MHz
10
-
-
ns
CL=50pF; f=40MHz
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.
t11
0.9 VD D P
0.5 VD D P
t1 5
t1 2
t14
0.1 VD D P
t1 3
MC_DAP0
Figure 3-13 Test Clock Timing (DAP0)
DAP0
t1 6
t1 7
DAP1
MC_ DAP1_RX
Figure 3-14 DAP Timing Host to Device
Data Sheet
4-250
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationDAP Parameters
t1 1
DAP1
t1 9
MC_ DAP1_TX
Figure 3-15 DAP Timing Device to Host (DAP1 and DAP2 pins)
Note: The DAP1 and DAP2 device to host timing is individual for both pins. There is no guaranteed max. signal
skew.
Data Sheet
4-251
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationASCLIN SPI Master Timing
3.23
ASCLIN SPI Master Timing
This section defines the timings for the ASCLIN in the TC 260 / 264 / 265 / 267, for 5V power supply.
Note: Pad asymmetry is already included in the following timings.
Table 3-45 Master Mode MP+ss/MPRss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
20
-
-
ns
CL=25pF
-3
-
3
ns
0 < CL < 50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-7
-
6
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
5
-
35
ns
CL=25pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR
28
-
-
ns
CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR
-6
-
-
ns
CL=25pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-46 Master Mode MPss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
ns
CL=25pF
Min.
Typ.
Max.
20
-
-
-2
-
3.5+0.035 ns
* CL
0 < CL < 200pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-7
-
6
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-7
-
6
ns
CL=25pF
MRST setup to ASCLKO
latching edge
t52 SR
30
-
-
ns
CL=25pF, else
-
-
ns
CL=25pF, for P14.2,
P14.4, and P15.1
MRST hold from ASCLKO
latching edge
t53 SR
-
-
ns
CL=25pF
33
-5
3)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
3) Please note that these pins didn't support the hystereses inactive feature.
Data Sheet
4-252
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationASCLIN SPI Master Timing
Table 3-47 Master Mode MPsm output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
100
-
-
ns
CL=50pF
-3
-
4+0.04 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-11
-
10
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-11
-
10
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
60
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-10
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-48 Master Mode medium output pads
Parameter
Symbol
ASCLKO clock period 1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
200
-
-
ns
CL=50pF
-8
-
4+0.04 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-20
-
15
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-20
-
20
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
70
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-10
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-49 Master Mode weak output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Min.
Typ.
Max.
1000
-
-
-30
-
2)
Data Sheet
Unit
Note / Test Condition
ns
CL=50pF
30+0.15 * ns
0 < CL < 200pF
CL
4-253
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationASCLIN SPI Master Timing
Table 3-49 Master Mode weak output pads (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
MTSR delay from ASCLKO
shifting edge
t51 CC
-75
-
75
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-65
-
65
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
510
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-50
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t50
ASCLKO
t51
t500
t51
MTSR
t52
MRST
t53
Data valid
Data valid
t510
ASLSO
ASCLIN_TmgMM.vsd
Figure 3-16 ASCLIN SPI Master Timing
Data Sheet
4-254
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationASCLIN SPI Master Timing
3.24
ASCLIN SPI Master Timing
This section defines the timings for the ASCLIN in the TC 260 / 264 / 265 / 267, for 3.3V power supply, Medium
Performance pads, strong sharp edge (MPss), CL=25pF.
Note: Pad asymmetry is already included in the following timings.
Table 3-50 Master Mode MP+ss/MPRss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=25pF
-5
-
5
ns
0 < CL < 50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-12
-
12
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
0
-
60
ns
CL=25pF; pad used =
MRST setup to ASCLKO
latching edge
t52 SR
50
-
-
ns
CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR
-5
-
-
ns
CL=25pF
LPm
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-51 Master Mode MPss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=25pF
-5
-
7+0.07 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-12
-
12
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-12
-
12
ns
CL=25pF
MRST setup to ASCLKO
latching edge
t52 SR
50
-
-
ns
CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR
-5
-
-
ns
CL=25pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
4-255
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationASCLIN SPI Master Timing
Table 3-52 Master Mode MPsm output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
200
-
-
ns
CL=50pF
-5
-
9+0.06 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-19
-
17
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-19
-
17
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
100
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-13
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-53 Master Mode medium output pads
Parameter
Symbol
ASCLKO clock period 1)
t50 CC
Deviation from ideal duty cycle t500 CC
2)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
400
-
-
ns
CL=50pF
-6-0.07 *
-
6+0.07 *
ns
0 < CL < 200pF
CL
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-33
-
25
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-35
-
35
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
120
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-13
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-54 Master Mode weak output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Note / Test Condition
Min.
Typ.
Max.
2000
-
-
ns
CL=50pF
-110
-
150
ns
0 < CL < 200pF
2)
Data Sheet
Unit
4-256
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationASCLIN SPI Master Timing
Table 3-54 Master Mode weak output pads (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
MTSR delay from ASCLKO
shifting edge
t51 CC
-170
-
170
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-170
-
170
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
510
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-40
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-55 Master Mode A2ss output pads
Parameter
Symbol
ASCLKO clock period 1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
20
-
-
ns
CL=50pF
-3
-
3
ns
CL=50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-4
-
4
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-5
-
4
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
17
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
0
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-56 Master Mode A2sm output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=50pF
-4
-
4
ns
CL=50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-8
-
6
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-8
-
9
ns
CL=50pF
Data Sheet
4-257
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationASCLIN SPI Master Timing
Table 3-56 Master Mode A2sm output pads (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
MRST setup to ASCLKO
latching edge
t52 SR
26
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
0
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t50
ASCLKO
t51
t500
t51
MTSR
t52
MRST
t53
Data valid
Data valid
t510
ASLSO
ASCLIN_TmgMM.vsd
Figure 3-17 ASCLIN SPI Master Timing
Data Sheet
4-258
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
3.25
QSPI Timings, Master and Slave Mode
This section defines the timings for the QSPI in the TC 260 / 264 / 265 / 267, for 5V pad power supply.
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:
•
LVDSM output pads,LVDSH input pad, master mode, CL=25pF
•
Medium Performance Plus Pads (MP+):
•
•
–
strong sharp edge (MP+ss), CL=25pF
–
strong medium edge (MP+sm), CL=50pF
–
medium edge (MP+m), CL=50pF
–
weak edge (MP+w), CL=50pF
Medium Performance Pads (MP):
–
strong sharp edge (MPss), CL=25pF
–
strong medium edge (MPsm), CL=50pF
Medium and Low Performance Pads (MP/LP), the identical output strength settings:
–
medium edge (LP/MPm), CL=50pF
–
weak edge (MPw), CL=50pF
Note: Pad asymmetry is already included in the following timings.
Table 3-57 Master Mode Timing, LVDSM output pads for data and clock
Parameter
Symbol
Values
Min.
SCLKO clock period
1)
2)
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
CL=25pF
t50 CC
20
Deviation from the ideal duty
cycle 3) 4)
t500 CC
-1
-
1
ns
CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC
-3
-
3
ns
CL=25pF
0
-
30
ns
CL=25pF; MPsm
-5
-
7
ns
CL=25pF; MPss
-4
-
7
ns
MP+ss; CL=25pF
-
15
ns
MP+sm; CL=25pF
-
-
ns
CL=25pF; LVDSM 5V
output and LVDSH
3.3V input
-
-
ns
CL=25pF; LVDSM 5V
SLSOn deviation from the ideal t510 CC
programmed position
-1
MRST setup to SCLK latching
edge 5)
t52 SR
MRST hold from SCLK latching t53 SR
edge
19
5)
-6 5)
output and LVDSH
3.3V input
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
3) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
4) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
5) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
Data Sheet
4-259
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
Table 3-58 Master Mode MP+ss/MPRss output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
20
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-3
-
3
ns
0 < CL < 50pF
MTSR delay from SCLKO
shifting edge
t51 CC
-7
-
6
ns
CL=25pF
-7
-
6
ns
CL=25pF
t52 SR
27 4)5)
-
-
ns
CL=25pF
MRST hold from SCLK latching t53 SR
edge
-6 4)5)
-
-
ns
CL=25pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-59 Master Mode MP+sm/MPRsm output pads for data and clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
50
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-2
-
3+0.01 *
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
t52 SR
MRST hold from SCLK latching t53 SR
edge
-10
-
10
ns
CL=50pF
-10
-
10
ns
MP+sm; CL=50pF
-13
-
1
ns
MPss; CL=50pF
0
-
40
ns
MP+m, MPm, LPm;
CL=50pF
50 4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
4-260
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-60 Master Mode timing MPss output pads for data and clock, CL=50pF
Parameter
Symbol
Values
Unit
Note / Test Condition
ns
CL=50pF
Min.
Typ.
Max.
t50 CC
40
-
-
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-2
-
3.5+0.035 ns
* CL
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
-8
-
8
ns
CL=50pF
-8
-
8
ns
MPss; CL=50pF
-1
-
15
ns
MP+sm; CL=50pF
0
-
50
ns
MP+m, MPm, LPm;
CL=50pF
t52 SR
40 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-5 4)5)
-
-
ns
CL=50pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-61 Master Mode timing MPsm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
100
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-3
-
4+0.04 *
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
-11
-
10
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
-11
-
10
ns
CL=50pF
MRST setup to SCLK latching
edge 4)
60 4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
t52 SR
MRST hold from SCLK latching t53 SR
edge
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
Data Sheet
4-261
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-62 Master Mode timing MPRm/MP+m/MPm/LPm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
200
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-10
-
4+0.04 *
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
t52 SR
MRST hold from SCLK latching t53 SR
edge
-15
-
17
ns
CL=50pF
-20
-
20
ns
CL=50pF
70 4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-63 Master Mode Weak output pads
Parameter
Symbol
Values
Min.
Typ.
Max.
-
SCLKO clock period 1)
t50 CC
1000
-
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-30
-
MTSR delay from SCLKO
shifting edge
t51 CC
Unit
Note / Test Condition
ns
CL=50pF
30+0.15 * ns
0 < CL < 200pF
CL
-65
-
65
ns
CL=50pF
-65
-
65
ns
CL=50pF
t52 SR
300 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-40 4)5)
-
-
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
Data Sheet
4-262
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-64 Slave mode timing
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
SCLK clock period
t54 SR
4 x TMAX
-
-
ns
SCLK duty cycle
t55/t54 SR
40
-
60
%
MTSR setup to SCLK latching
edge
t56 SR
4
-
-
ns
Hystheresis Inactive
5
-
-
ns
Input Level AL
5
-
-
ns
Input Level TTL
3
-
-
ns
Hystheresis Inactive
6
-
-
ns
Input Level AL
MTSR hold from SCLK latching t57 SR
edge
9
SLSI setup to first SCLK shift
edge
SLSI hold from last SCLK
latching edge
MRST delay from SCLK shift
edge
SLSI to valid data on MRST
t58 SR
t59 SR
t60 CC
t61 SR
-
-
ns
Input Level TTL
1)
-
-
ns
Hystheresis Inactive
4 1)
-
-
ns
Input Level AL
8
-
-
ns
Input Level TTL
6
-
-
ns
Only for pin 15.1, AL
3
-
-
ns
Hystheresis Inactive
4
-
-
ns
Input Level AL
8
-
-
ns
Input Level TTL
10
-
70
ns
MP+m/MPRm;
CL=50pF
10
-
50
ns
MP+sm/MPRsm;
CL=50pF
5
-
30
ns
MP+ss/MPRss;
CL=25pF
40
-
300
ns
MP+w/MPRw;
CL=50pF
10
-
70
ns
MPm/LPm; CL=50pF
10
-
55
ns
MPsm; CL=50pF
5
-
30
ns
MPss; CL=25pF
40
-
300
ns
MPw/LPw; CL=50pF
-
-
5
ns
5
1) Except pin P15.1.
Data Sheet
4-263
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
t50
t500
0.5 VEXT/FLEX
SCLK1)2)
t51
SAMPLING POINT
0.5 VEXT/FLEX
MTSR1)
t52
t53
Data valid
MRST1)
Data valid
t510
0.5 VEXT/FLEX
SLSOn2)
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.
QSPI_TmgMM.vsd
Figure 3-18 Master Mode Timing
t54
SCLKI
t55
MTSR
1)
MRST
1)
Last latching
SCLK edge
First latching
SCLK edge
First shift
SCLK edge
1)
t56
0.5 VEXT/FLEX
t55
t56
t57
Data
valid
t60
t57
Data
valid
t60
0.5 VEXT/FLEX
t58
t59
t61
SLSI
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0. QSPI_TmgSM.vsd
Figure 3-19 Slave Mode Timing
Data Sheet
4-264
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
3.26
QSPI Timings, Master and Slave Mode
This section defines the timings for the QSPI in the TC 260 / 264 / 265 / 267, for 3.3V pad power supply.
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:
•
LVDSM output pads, LVDSH input pad, master mode, CL=25pF
•
Medium Performance Plus Pads (MP+):
•
•
–
strong sharp edge (MP+ss), CL=25pF
–
strong medium edge (MP+sm), CL=50pF
–
medium edge (MP+m), CL=50pF
–
weak edge (MP+w), CL=50pF
Medium Performance Pads (MP):
–
strong sharp edge (MPss), CL=25pF
–
strong medium edge (MPsm), CL=50pF
Medium and Low Performance Pads (MP/LP), the identical output strength settings:
–
medium edge (LP/MPm), CL=50pF
–
weak edge (MPw), CL=50pF
Note: Pad asymmetry is already included in the following timings.
Table 3-65 Master Mode Timing, LVDSM output pads for data and clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
20
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-2
-
2
ns
CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC
-5
-
5
ns
CL=25pF
-2
-
55
ns
CL=25pF; MPsm
-9
-
12
ns
CL=25pF; MPss
-7
-
12
ns
MP+ss; CL=25pF
-2
-
26
ns
MP+sm; CL=25pF
t52 SR
20
-
-
ns
CL=25pF; LVDSM 5V
output and LVDSH
3.3V input
MRST hold from SCLK latching t53 SR
edge
-6
-
-
ns
CL=25pF; LVDSM 5V
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
output and LVDSH
3.3V input
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
Data Sheet
4-265
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
Table 3-66 Master Mode MP+ss/MPRss output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
40
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-5
-
5
ns
0 < CL < 50pF
MTSR delay from SCLKO
shifting edge
t51 CC
-12
-
12
ns
CL=25pF
-12
-
12
ns
CL=25pF
t52 SR
50 4)5)
-
-
ns
CL=25pF
MRST hold from SCLK latching t53 SR
edge
-6 4)5)
-
-
ns
CL=25pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-67 Master Mode MP+sm/MPRsm output pads for data and clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
100
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-3
-
7
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
-17
-
17
ns
CL=50pF
-17
-
17
ns
MP+sm; CL=50pF
-22
-
2
ns
MPss; CL=50pF
0
-
70
ns
MP+m; MPm; LPm;
CL=50pF
85 4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
t52 SR
MRST hold from SCLK latching t53 SR
edge
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
4-266
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-68 Master Mode timing MPss output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
40
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-5
-
7+0.07 *
ns
CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
-10
-
10
ns
CL=25pF
SLSOn deviation from the ideal t510 CC
programmed position
-10
-
10
ns
CL=25pF
MRST setup to SCLK latching
edge 4)
t52 SR
50 4)5)
-
-
ns
CL=25pF
MRST hold from SCLK latching t53 SR
edge
-6 4)5)
-
-
ns
CL=25pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-69 Master Mode timing MPsm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
ns
CL=50pF
9+0.06 *
ns
0 < CL < 200pF
SCLKO clock period 1)
t50 CC
200
-
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-5
-
MTSR delay from SCLKO
shifting edge
t51 CC
CL
-19
-
19
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
-19
-
17
ns
CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR
100 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-13 4)5)
-
-
ns
CL=50pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
4-267
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-70 Master Mode timing MPRm/MP+m/MPm/LPm output pads
Parameter
SCLKO clock period
Symbol
1)
t50 CC
Deviation from the ideal duty
cycle 2) 3)
t500 CC
MTSR delay from SCLKO
shifting edge
t51 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
400
-
-
ns
CL=50pF
-6-0.07 *
-
6+0.07 *
ns
0 < CL < 200pF
CL
CL
-25
-
33
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
-35
-
35
ns
CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR
120 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-13 4)5)
-
-
ns
CL=50pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-71 Master Mode Weak output pads
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
SCLKO clock period 1)
t50 CC
2000
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-110
-
110
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
-170
-
170
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
-170
-
170
ns
CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR
510 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-40 4)5)
-
-
ns
CL=50pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
4-268
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-72 Slave mode timing
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
SCLK clock period
t54 SR
4 x TMAX
-
-
ns
SCLK duty cycle
t55/t54 SR
40
-
60
%
MTSR setup to SCLK latching
edge
t56 SR
7
-
-
ns
Hystheresis inactive
9
-
-
ns
Input Level AL
7
-
-
ns
Input Level TTL
5
-
-
ns
Hystheresis inactive
11
-
-
ns
Input Level AL
16
MTSR hold from SCLK latching t57 SR
edge
SLSI setup to first SCLK shift
edge
SLSI hold from last SCLK
latching edge
MRST delay from SCLK shift
edge
SLSI to valid data on MRST
t58 SR
t59 SR
t60 CC
t61 SR
-
-
ns
Input Level TTL
1)
-
-
ns
Hystheresis inactive
7 1)
-
-
ns
Input Level AL
14
-
-
ns
Input Level TTL
11
-
-
ns
Only for pin P15.1, AL
5
-
-
ns
Hystheresis inactive
7
-
-
ns
Input Level AL
14
-
-
ns
Input Level TTL
13
-
120
ns
MP+m/MPRm;
CL=50pF
13
-
85
ns
MP+sm/MPRsm;
CL=50pF
6
-
50
ns
MP+ss/MPRss;
CL=25pF
70
-
500
ns
MP+w/MPRw;
CL=50pF
13
-
120
ns
MPm/LPm; CL=50pF
13
-
100
ns
MPsm; CL=50pF
6
-
52
ns
MPss; CL=25pF
70
-
500
ns
MPw/LPw; CL=50pF
-
-
9
ns
7
1) Except pin P15.1
Data Sheet
4-269
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQSPI Timings, Master and Slave Mode
t50
t500
0.5 VEXT/FLEX
SCLK1)2)
t51
SAMPLING POINT
0.5 VEXT/FLEX
MTSR1)
t52
MRST
t53
Data valid
1)
Data valid
t510
SLSOn
0.5 VEXT/FLEX
2)
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.
QSPI_TmgMM.vsd
Figure 3-20 Master Mode Timing
t54
SCLKI
t55
MTSR
1)
MRST
1)
Last latching
SCLK edge
First latching
SCLK edge
First shift
SCLK edge
1)
t56
0.5 VEXT/FLEX
t55
t56
t57
Data
valid
t60
t57
Data
valid
t60
0.5 VEXT/FLEX
t58
t59
t61
SLSI
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0. QSPI_TmgSM.vsd
Figure 3-21 Slave Mode Timing
Data Sheet
4-270
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 5 V Operation
3.27
MSC Timing 5 V Operation
The following section defines the timings for 5V pad power supply.
Note: Pad asymmetry is already included in the following timings.
Note: Load for LVDS pads are defined as differential loads in the following timings.
Table 3-73 LVDS clock/data (LVDS pads in LVDS mode)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
2 * TA
2) 3)
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
LVDSM; CL=50pF
Deviation from ideal duty cycle t400 CC
-1
-
1
ns
LVDSM; 0 < CL < 50pF
SOPx output delay 6)
-3
-
4
ns
LVDSM; CL=50pF;
option EN01
-4
-
4.5
ns
LVDSM; CL=50pF;
option EN01D
-4
-
5
ns
MP+ss/MPRss; option
EN01; CL=25pF
-3
-
7
ns
MP+ss/MPRss; option
EN01; CL=50pF
-3
-
11
ns
MP+sm/MPRsm;
option EN01D;
CL=50pF
-2
-
9
ns
MP+ss/MPRss; option
EN23; CL=25pF
-2
-
10
ns
MP+ss/MPRss; option
EN23; CL=50pF
-3
-
11
ns
MPss; option EN01;
CL=50pF
-7
-
2
ns
MP+ss/MPRss; option
EN01; CL=0pF
-5
-
3
ns
MP+sm/MPRsm;
option EN01D; CL=0pF
-4
-
5
ns
MP+ss/MPRss; option
EN23; CL=0pF
-7
-
4
ns
MPss; option EN01;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
4) 5)
ENx output delay 6)
SDI bit time
SDI rise time
SDI fall time
7)
7)
t44 CC
t45 CC
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
Data Sheet
4-271
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 5 V Operation
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Data Sheet
4-272
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 5 V Operation
Timing Options for t45
The wiring shown in the Figure 3-22 provides three useful timing options for t45. depending on the signals selected
with the alternate output lines (ALT1 to ALT7) in the ports:
•
EN01
- FCLN, SON, EN0, EN1
•
EN01D - FCLND, SOND, EN0, EN1
- t45 window shifted to the left
•
EN23
- t45 window shifted to the right
- FCLN, SON, EN2, EN3
- t45 reference timing
The timings corresponding to EN01, EN01D, and EN23 are defined in the LVDS mode. In order to use the EN23
timings, the application should use the EN2 and EN3 outputs of the MSC module.
ALT1
FCLN
ALTx
LVDSM
ALTy
FCLP
FCLND
FCLN
ALT7
PAD
ALT1
SON ALTx
LVDSM
ALTy
SOP
SOND
SON
ALT7
PAD
ALT1
EN0
ALTx
CMOS
ALTy
EN1
ALT7
PAD
EN2
ALT1
ALTx
EN3
CMOS
ALTy
MSC
ALT7
PAD
_DoublePath_4a.vsd
Figure 3-22 Timing Options for t45
Table 3-74 MPss clock/data (LVDS pads in CMOS mode, option EN01)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
Deviation from ideal duty cycle t400 CC
2 * TA
-2
2) 3)
Data Sheet
Note / Test Condition
ns
MPss; CL=50pF
Typ.
Max.
-
-
-
3+0.035 * ns
4) 5)
SOPx output delay 6)
Unit
MPss; 0 < CL < 100pF
CL
t44 CC
-4
-
4-273
7
ns
MPss; CL=50pF
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 5 V Operation
Table 3-74 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)
Parameter
Symbol
ENx output delay
6)
SDI bit time
SDI rise time
SDI fall time
7)
7)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-5
-
7
ns
MP+ss/MPRss;
CL=50pF
-2
-
15
ns
MP+sm/MPRsm;
CL=50pF
-4
-
10
ns
MPss; CL=50pF
0
-
30
ns
MPsm; CL=50pF;
except pin P13.0
0
-
31
ns
MPsm; CL=50pF; pin
P13.0
6
-
45
ns
MPm/MP+m/MPRm;
CL=50pF
-11
-
2
ns
MP+ss/MPRss;
CL=0pF
-4
-
7
ns
MP+sm/MPRsm;
CL=0pF
-10
-
2
ns
MPss; CL=0pF
-1
-
16
ns
MPsm; CL=0pF
-2
-
18
ns
MP+m/MPm/MPRm;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
t45 CC
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.
3) FCLP signal high and low can be minimum 1 * TMSC.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Table 3-75 MP+sm/MPRsm clock/data
Parameter
FCLPx clock period 1)
Symbol
t40 CC
Values
Unit
Min.
Typ.
Max.
2 * TA
-
-
ns
Note / Test Condition
MP+sm/MPRsm;
CL=50pF
Deviation from ideal duty cycle t400 CC
-2
-
2) 3)
SOPx output delay 4)
Data Sheet
3+0.01 *
ns
MP+sm/MPRsm; 0 <
CL < 200pF
ns
MP+sm; CL=50pF
CL
t44 CC
-5
4-274
7
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 5 V Operation
Table 3-75 MP+sm/MPRsm clock/data (cont’d)
Parameter
ENx output delay
Symbol
4)
t45 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-13
-
2 5)
ns
MPss; CL=50pF
-5
-
11
ns
MP+sm/MPRsm;
CL=50pF
1
-
24
ns
MPsm; CL=50pF
4
-
37
ns
MP+m/MPm/MPRm;
CL=50pF
-19
-
-1
ns
MPss; CL=0pF
-13
-
2
ns
MP+sm; CL=0pF
-5
-
8
ns
MPsm; CL=0pF
-5
-
10
ns
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) From FCLP rising edge.
5) If EN1 is configured to P13.0 the max limt is increased by 0.5ns to 2.5ns.
Table 3-76 MPm/MP+m/MPRm clock/data
Parameter
Symbol
FCLPx clock period 1)
t40 CC
Deviation from ideal duty cycle t400 CC
Values
Note / Test Condition
Min.
Typ.
Max.
2 * TA
-
-
ns
MPm/MP+m/MPRm;
CL=50pF
-8
-
4+0.04 *
ns
MPm/MP+m; 0 < CL <
200pF
2) 3)
CL
SOPx output delay 4)
ENx output delay
Unit
4)
t44 CC
-11
-
9
ns
MPm/MP+m; CL=50pF
t45 CC
-13
-
11
ns
MPm/MP+m/MPRm;
CL=50pF
-33
-
-4
ns
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) From FCLP rising edge.
Data Sheet
4-275
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 3.3 V Operation
t40
t400
FCLP
t44
t44
t45
t45
SOP
EN
0.5 VEXT/FLEX
t48
t49
0.9 VEXT/FLEX
SDI
0.1 VEXT/FLEX
t46
t46
MSC_Timing_A.vsd
Figure 3-23 MSC Interface Timing
Note: The SOP data signal is sampled with the falling edge of FCLP in the target device.
3.28
MSC Timing 3.3 V Operation
The following section defines the timings for 3.3V pad power supply.
Note: Pad asymmetry is already included in the following timings.
Note: Load for LVDS pads are defined as differential loads in the following timings.
Mapping A, Combo Pads in LVDS Mode or CMOS Mode
The timing applies for the LVDS pads in LVDS operating mode:
•
The LVDSM output pads for clock and data signals set in LVDS mode
•
The CMOS MP pads for enable signals, with strong driver sharp edge (MPss) or strong driver medium edge
(MPsm).
Table 3-77 LVDS clock/data (LVDS pads in LVDS mode)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
2 * TA
2) 3)
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
LVDSM; CL=50pF
Deviation from ideal duty cycle t400 CC
-2
-
2
ns
LVDSM; 0 < CL < 50pF
SOPx output delay 6)
-5
-
5
ns
LVDSM; CL=50pF;
option EN01
-7
-
7
ns
LVDSM; CL=50pF;
option EN01D
4) 5)
Data Sheet
t44 CC
4-276
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 3.3 V Operation
Table 3-77 LVDS clock/data (LVDS pads in LVDS mode) (cont’d)
Parameter
Symbol
ENx output delay
6)
SDI rise time
SDI fall time
7)
7)
Unit
Note / Test Condition
Min.
Typ.
Max.
-7
-
9
ns
MP+ss/MPRss; option
EN01; CL=25pF
-5
-
13
ns
MP+ss/MPRss; option
EN01; CL=50pF
-5
-
26
ns
MP+sm/MPRsm;
option EN01D;
CL=50pF
-4
-
16
ns
MP+ss/MPRss; option
EN23; CL=25pF
-4
-
17
ns
MP+ss/MPRss; option
EN23; CL=50pF
-5
-
19
ns
MPss; option EN01;
CL=50pF
-12
-
4
ns
MP+ss/MPRss; option
EN01; CL=0pF
-9
-
11
ns
MP+sm/MPRsm;
option EN01D; CL=0pF
-7
-
9
ns
MP+ss/MPRss; option
EN23; CL=0pF
-12
-
7
ns
MPss; option EN01;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
t45 CC
SDI bit time
Values
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Table 3-78 MPss clock/data (LVDS pads in CMOS mode, option EN01)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
Deviation from ideal duty cycle t400 CC
2 * TA
-5
2) 3)
Note / Test Condition
Typ.
Max.
-
-
ns
MPss; CL=50pF
-
7+0.07 *
ns
MPss; 0 < CL < 100pF
4) 5)
Data Sheet
Unit
CL
4-277
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 3.3 V Operation
Table 3-78 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)
Parameter
Symbol
SOPx output delay
ENx output delay
6)
6)
SDI bit time
SDI rise time
SDI fall time
7)
7)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t44 CC
-7
-
12
ns
MPss; CL=50pF
t45 CC
-9
-
12
ns
MP+ss/MPRss;
CL=50pF
-4
-
26
ns
MP+sm/MPRsm;
CL=50pF
-7
-
17
ns
MPss; CL=50pF
0
-
54
ns
MPsm; CL=50pF;
except pin P13.0
0
-
58
ns
MPsm; CL=50pF; pin
P13.0
4
-
77
ns
MPm/MP+m/MPRm;
CL=50pF
-19
-
4
ns
MP+ss/MPRss;
CL=0pF
-7
-
12
ns
MP+sm/MPRsm;
CL=0pF
-17
-
4
ns
MPss; CL=0pF
-2
-
28
ns
MPsm; CL=0pF
-4
-
31
ns
MP+m/MPm/MPRm;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns
3) FCLP signal high and low can be minimum 1 * TMSC.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Mapping B, CMOS MP Pads
This timing applies for the dedicated CMOS pads, pin Mapping B:
•
MP strong sharp (MPss) output pads for the clock and the data signals
•
MP strong sharp or strong medium (MPss or MPsm) output pads for enable signals
Data Sheet
4-278
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 3.3 V Operation
Table 3-79 MP+sm/MPRsm clock/data
Parameter
Symbol
FCLPx clock period
1)
t40 CC
Values
Unit
Min.
Typ.
Max.
2 * TA
-
-
ns
Note / Test Condition
MP+sm/MPRsm;
CL=50pF
Deviation from ideal duty cycle t400 CC
-3
-
7
ns
MP+sm/MPRsm; 0 <
CL < 200pF
SOPx output delay 4)
t44 CC
-9
-
12
ns
MP+sm; CL=50pF
t45 CC
-20
-
4
ns
MPss; CL=50pF
-9
-
19
ns
MP+sm/MPRsm;
CL=50pF
0
-
44
ns
MPsm; CL=50pF
0
-
63
ns
MP+m/MPm/MPRm;
CL=50pF
-33
-
0
ns
MPss; CL=0pF
-23
-
4
ns
MP+sm/MPRsm;
CL=0pF
-9
-
14
ns
MPsm; CL=0pF
-9
-
17
ns
2) 3)
ENx output delay
4)
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) From FCLP rising edge.
Table 3-80 MPm/MP+m/MPRm clock/data
Parameter
Symbol
FCLPx clock period
1)
t40 CC
Deviation from ideal duty cycle t400 CC
2) 3)
4)
4)
Unit
Note / Test Condition
Min.
Typ.
Max.
2 * TA
-
-
ns
MPm/MP+m/MPRm;
CL=50pF
-6-0.07 *
-
6+0.07 *
ns
MPm/MP+m/MPRm; 0
< CL < 200pF
CL
SOPx output delay
ENx output delay
Values
CL
t44 CC
-19
-
16
ns
MPm/MP+m; CL=50pF
t45 CC
-19
-
20
ns
MPm/MP+m/MPRm;
CL=50pF
-57
-
0
ns
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
4-279
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationMSC Timing 3.3 V Operation
4) From FCLP rising edge.
t40
t400
FCLP
t44
t44
t45
t45
SOP
EN
0.5 VEXT/FLEX
t48
t49
0.9 VEXT/FLEX
SDI
0.1 VEXT/FLEX
t46
t46
MSC_Timing_A.vsd
Figure 3-24 MSC Interface Timing
Note: The SOP data signal is sampled with the falling edge of FCLP in the target device.
Data Sheet
4-280
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.29
Ethernet Interface (ETH) Characteristics
3.29.1
ETH Measurement Reference Points
ETH Clock
1.4 V
1.4 V
ETH I/O
2.0 V
0.8 V
2.0 V
0.8 V
tR
tF
ETH_Testpoints.vsd
Figure 3-25 ETH Measurement Reference Points
Data Sheet
4-281
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.29.2
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)
Table 3-81 ETH Management Signal Parameters
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
ETH_MDC period
t1 CC
400
-
-
ns
CL=25pF
ETH_MDC high time
t2 CC
160
-
-
ns
CL=25pF
ETH_MDC low time
t3 CC
160
-
-
ns
CL=25pF
ETH_MDIO setup time (output) t4 CC
10
-
-
ns
CL=25pF
ETH_MDIO hold time (output)
t5 CC
10
-
-
ns
CL=25pF
ETH_MDIO data valid (input)
t6 SR
0
-
300
ns
CL=25pF
t1
t3
t2
ETH_MDC
ETH_MDIO
sourced by controller :
ETH_MDC
t4
ETH_MDIO
(output )
t5
Valid Data
ETH_MDIO sourced by PHY:
ETH_MDC
t6
ETH_MDIO
(input )
Valid Data
ETH_Timing-Mgmt.vsd
Figure 3-26 ETH Management Signal Timing
Data Sheet
4-282
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.29.3
ETH MII Parameters
In the following, the parameters of the MII (Media Independent Interface) are described.
Table 3-82 ETH MII Signal Timing Parameters
Parameter
Symbol
Clock period
t7 SR
Clock high time
t8 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=25pF;
baudrate=100Mbps
400
-
-
ns
CL=25pF;
baudrate=10Mbps
14
-
26
ns
CL=25pF;
baudrate=100Mbps
140 1)
-
260 2)
ns
CL=25pF;
baudrate=10Mbps
Clock low time
t9 SR
14
-
26
ns
CL=25pF;
baudrate=100Mbps
140 1)
-
260 2)
ns
CL=25pF;
baudrate=10Mbps
Input setup time
t10 SR
10
-
-
ns
CL=25pF
Input hold time
t11 SR
10
-
-
ns
CL=25pF
Output valid time
t12 CC
0
-
25
ns
CL=25pF
1) Defined by 35% of clock period.
2) Defined by 65% of clock period.
t7
t9
ETH_MII_RX_CLK
ETH_MII_TX_CLK
t8
ETH_MII_RX_CLK
t1 0
ETH_MII_RXD[3:0]
ETH_MII_RX_DV
ETH_MII_RX_ER
(sourced by PHY )
t1 1
Valid Data
ETH_MII_TX_CLK
t1 2
ETH_MII_TXD[3:0]
ETH_MII_TXEN
(sourced by controller )
Valid Data
ETH_Timing-MII.vsd
Figure 3-27 ETH MII Signal Timing
Data Sheet
4-283
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.29.4
ETH RMII Parameters
In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.
Table 3-83 ETH RMII Signal Timing Parameters
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
20
-
-
ns
CL=25pF; 50ppm
ETH_RMII_REF_CL clock high t14 CC
time
7 1)
-
13 2)
ns
CL=25pF
ETH_RMII_REF_CL clock low t15 CC
time
7 1)
-
13 2)
ns
CL=25pF
ETH_RMII_REF_CL clock
period
t13 CC
ETHTXEN, ETHTXD[1:0],
ETHRXD[1:0], ETHCRSDV,
ETHRXER; setup time
t16 CC
4
-
-
ns
CL=25pF
ETHTXEN, ETHTXD[1:0],
ETHRXD[1:0], ETHCRSDV,
ETHRXER; hold time
t17 CC
2
-
-
ns
CL=25pF
1) Defined by 35% of clock period.
2) Defined by 65% of clock period.
t1 3
t1 5
t14
ETH_RMII_REF_CL
ETH_RMII_REF_CL
t1 6
ETHTXEN,
ETHTXD[1:0],
ETHRXD[1:0],
ETHCRSDV,
ETHRXER
t17
Valid Data
ETH_Timing-RMII .vsd
Figure 3-28 ETH RMII Signal Timing
Data Sheet
4-284
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationE-Ray Parameters
3.30
E-Ray Parameters
The timings of this section are valid for the strong driver and either sharp edge settings of the output drivers with
CL = 25 pF. For the inputs the hysteresis has to be configured to inactive.
Table 3-84 Transmit Parameters
Parameter
Symbol
Values
Min.
Rise time of TxEN
tdCCTxENRise2 5
Fall time of TxEN
Unit
Note / Test Condition
Typ.
Max.
-
9
ns
CL=25pF
-
9
ns
CL=25pF
-
9
ns
20% - 80%; CL=25pF
CC
tdCCTxENFall25 CC
Sum of rise and fall time
tdCCTxRise25+ dCCTxFall25
CC
Sum of delay between TP1_FF tdCCTxEN01
CC
and TP1_CC and delays
derived from TP1_FFi, rising
edge of TxEN
-
-
25
ns
Sum of delay between TP1_FF tdCCTxEN10
CC
and TP1_CC and delays
derived from TP1_FFi, falling
edge of TxEN
-
-
25
ns
-2.45
-
2.45
ns
Sum of delay between TP1_FF tdCCTxD01
and TP1_CC and delays
CC
derived from TP1_FFi, rising
edge of TxD
-
-
25
ns
Sum of delay between TP1_FF tdCCTxD10
CC
and TP1_CC and delays
derived from TP1_FFi, falling
edge of TxD
-
-
25
ns
TxD signal sum of rise and fall ttxd_sum CC
time at TP1_BD
-
-
9
ns
Asymmetry of sending
ttx_asym CC
CL=25pF
Table 3-85 Receive Parameters
Parameter
Symbol
Values
Min.
Max.
-
43.0
ns
CL=25pF
-
44.0
ns
CL=15pF
35
-
70
%
30
-
65
%
tdCCTxAsymAcc -30.5
Acceptance of asymmetry at
receiving part
tdCCTxAsymAcc -31.5
Threshold for detecting logical
high
TuCCLogic1
SR
Threshold for detecting logical
low
SR
Data Sheet
Note / Test Condition
Typ.
Acceptance of asymmetry at
receiving part
ept25
Unit
SR
ept15 SR
TuCCLogic0
4-285
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationE-Ray Parameters
Table 3-85 Receive Parameters (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Sum of delay between TP4_CC tdCCRxD01
and TP4_FF and delays
CC
derived from TP4_FFi, rising
edge of RxD
-
-
10
ns
Sum of delay between TP1_CC tdCCRxD10
CC
and TP1_CC and delays
derived from TP4_FFi, falling
edge of RxD
-
-
10
ns
Data Sheet
4-286
Note / Test Condition
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationHSCT Parameters
3.31
HSCT Parameters
Table 3-86 HSCT - Rx/Tx setup timing
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
RX o/p duty cycle
DCrx CC
40
-
60
%
Bias startup time
tbias CC
-
5
10
µs
Bias distributor waking
up from power down
and provide stable
Bias.
RX startup time
trxi CC
-
5
-
µs
Wake-up RX from
power down.
TX startup time
ttx CC
-
5
-
µs
Wake-up TX from
power down.
Unit
Note / Test Condition
Total Budget for
complete receiver
including silicon,
package, pins and
bond wire
Table 3-87 HSCT - Rx parasitics and loads
Parameter
Symbol
Values
Min.
Typ.
Max.
Capacitance total budget
Ctotal CC
-
3.5
5
pF
Parasitic inductance budget
Htotal CC
-
5
-
nH
Table 3-88 LVDSH - Reduced TX and RX (RED)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Output differential voltage
VOD CC
150
200
285
mV
Rt = 100 Ohm ±20%
@2pF
Output voltage high
VOH CC
-
-
1463
mV
Rt = 100 Ohm ±20%
Output voltage low
VOL CC
937
-
-
mV
Rt = 100 Ohm ±20%
Output offset (Common mode) VOS CC
voltage
1.08
1.2
1.32
V
Rt = 100 Ohm ±20%
@2pF
Input voltage range
-
-
1.6
V
Absolute max = 1.6 V +
(285mV/2) = 1.743
0.15
-
-
V
Absolute min = 0.15 V (285 mV /2) = 0 V
100 mV for 55% of bit
period; Note Absolute
Value (Vidth - Vidthl)
VI SR
Input differential threshold
Vidth SR
-100
-
100
mV
Data frequency
DR CC
5
-
320
Mbps
Data Sheet
4-287
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationHSCT Parameters
Table 3-88 LVDSH - Reduced TX and RX (RED) (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
90
100
110
Ohm
0 V < VI < 1.6V
80
100
120
Ohm
1.6 V < VI < 2.0V
-
-
2
V/ns
Change in VOS between 0 and dVOS CC
1
-
-
50
mV
Peak to peak
(including DC
transients).
Change in Vod between 0 and dVod CC
1
-
-
50
mV
Peak to peak
(including DC
transients)
Fall time 1)
tfall CC
0.26
-
1.2
ns
Rt = 100 Ohm ±20%
@2pF
Rise time 1)
trise CC
0.26
-
1.2
ns
Rt = 100 Ohm ±20%
@2pF
Unit
Note / Test Condition
Receiver differential input
impedance
Rin CC
Slew rate
SRtx CC
1) Rise / fall times are defined for 10% - 90% of VOD
Table 3-89 HSCT PLL
Parameter
Symbol
Values
Min.
Typ.
Max.
PLL frequency range
fPLL CC
12.5
320
320
MHz
PLL input frequency
fREF CC
10
-
20
MHz
PLL lock-in time
tLOCK CC
-
-
50
µs
Bit Error Rate based on 10 MHz BER10 CC
reference clock at Slave PLL
side
-
-
10EXP-9
-
Bit Error Rate based
on Slave interface
reference clock at 10
MHz
Bit Error Rate based on 20 MHz BER20 CC
reference clock at Slave PLL
side
-
-
10EXP12
-
Bit Error Rate based
on Slave interface
reference clock at 20
MHz
Absolute RMS Jitter (TX out)
JABS10 CC
-125
-
125
ps
Measured at link TX
out; valid for
Reference frequency
at 10 MHz
Absolute RMS Jitter (TX out)
JABS20 CC
-85
-
85
ps
Measured at link TX
out; valid for
Reference frequency
at 20 MHz
Data Sheet
4-288
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationHSCT Parameters
Table 3-89 HSCT PLL (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Accumulated RMS Jitter (RX
side)
JACC10 CC
-
-
145
ps
Measured at link RX
input, based on 5000
measures, each 300
clock cycles; valid for
Reference frequency
at 10 MHz
Accumulated RMS Jitter (link
RX side)
JACC20 CC
-
-
115
ps
Measured at link RX
input, based on 5000
measures, each 300
clock cycles; valid for
Reference frequency
at 20 MHz
Total Jitter peak to peak
TJpp CC
-
-
2083
ps
Total Jitter as sum of
deterministic jitter and
random jitter
Unit
Note / Test Condition
Table 3-90 HSCT Sysclk
Parameter
Symbol
Values
Min.
Typ.
Max.
Frequency
fSYSCLK CC
10
-
20
MHz
Frequency error
dfERR CC
-1
-
1
%
Duty Cycle
DCsys CC
45
-
55
%
Load impedance
RLOAD CC
10
-
-
kOhm
Load capacitance
CLOAD CC
-
-
10
pF
Integrated phase noise
IPN CC
-
-
-58
dB
Data Sheet
4-289
single sideband phase
noise in 10 kHz to 10
Mhz at 20 MHz SysClk
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationInter-IC (I2C) Interface Timing
3.32
Inter-IC (I2C) Interface Timing
This section defines the timings for I2C in the TC 260 / 264 / 265 / 267.
All I2C timing parameter are SR for Master Mode and CC for Slave Mode.
Table 3-91 I2C Standard Mode Timing
Parameter
Symbol
Values
Unit
Note / Test Condition
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Min.
Typ.
Max.
Fall time of both SDA and SCL t1
-
-
300
ns
Capacitive load for each bus
line
-
-
400
pF
Bus free time between a STOP t10
and ATART condition
4.7
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Rise time of both SDA and SCL t2
-
-
1000
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data hold time
t3
0
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data set-up time
t4
250
-
-
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Low period of SCL clock
t5
4.7
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
High period of SCL clock
t6
4
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Hold time for the (repeated)
START condition
t7
4
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data Sheet
Cb SR
4-290
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationInter-IC (I2C) Interface Timing
Table 3-91 I2C Standard Mode Timing (cont’d)
Parameter
Set-up time for (repeated)
START condition
Symbol
t8
Set-up time for STOP condition t9
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
4.7
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
4
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Unit
Note / Test Condition
300
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Table 3-92 I2C Fast Mode Timing
Parameter
Symbol
Values
Min.
Fall time of both SDA and SCL t1
Typ.
20+0.1*C -
Max.
b
Capacitive load for each bus
line
Cb SR
-
-
400
pF
Bus free time between a STOP t10
and ATART condition
1.3
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Rise time of both SDA and SCL t2
20+0.1*C -
300
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
b
Data hold time
t3
0
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data set-up time
t4
100
-
-
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Low period of SCL clock
t5
1.3
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
High period of SCL clock
t6
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data Sheet
4-291
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationInter-IC (I2C) Interface Timing
Table 3-92 I2C Fast Mode Timing (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Hold time for the (repeated)
START condition
t7
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Set-up time for (repeated)
START condition
t8
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Set-up time for STOP condition t9
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data Sheet
4-292
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationSCR Parameters
3.33
SCR Parameters
3.33.1
SSC Timing 5V
It is assumed that SCLKO and MTSR pads have the same pad settings:
•
•
•
Medium Performance Plus Pads (MP+):
–
strong sharp edge (MP+ss), CL=25pF
–
strong medium edge (MP+sm), CL=50pF
–
medium edge (MP+m), CL=50pF
–
weak edge (MP+w), CL=50pF
Medium Performance Pads (MP):
–
strong sharp edge (MPss), CL=25pF
–
strong medium edge (MPsm), CL=50pF
Medium and Low Performance Pads (MP/LP), the identical output strength settings:
–
medium edge (LP/MPm), CL=50pF
–
weak edge (MPw), CL=50pF
Table 3-93 Master Mode timing MPsm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
100
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-10
-
10
ns
CL=50pF
MTSR delay from SCLKO
shifting edge
t51 CC
-10
-
10
ns
CL=50pF
-10 4) 5)
-
-
ns
CL=50pF
SCLKO clock period
1)
MRST hold from SCLK latching t53 SR
edge
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-94 Master Mode timing MP+m/MPm/LPm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
200
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-15
-
15
ns
CL=50pF
MTSR delay from SCLKO
shifting edge
t51 CC
-15
-
15
ns
CL=50pF
SCLKO clock period
Data Sheet
1)
4-293
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationSCR Parameters
Table 3-94 Master Mode timing MP+m/MPm/LPm output pads (cont’d)
Parameter
Symbol
Values
Min.
MRST setup to SCLK latching
edge 4)
t52 SR
MRST hold from SCLK latching t53 SR
edge
Unit
Note / Test Condition
Typ.
Max.
4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
-70
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-95 Slave mode timing
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
SCLK clock period
t54 SR
4 x TSSC -
-
ns
SCLK duty cycle
t55/t54 SR
40
-
60
%
MTSR setup to SCLK latching
edge
t56 SR
40 1)
-
-
ns
3
-
-
ns
MTSR hold from SCLK latching t57 SR
edge
Note / Test Condition
SLSI setup to first SCLK shift
edge
t58 SR
3 1)
-
-
ns
MRST delay from SCLK shift
edge
t60 CC
10
-
70
ns
MP+m; CL=50pF
10
-
50
ns
MP+sm; CL=50pF
5
-
30
ns
MP+ss; CL=25pF
100
-
300
ns
MP+w; CL=50pF
10
-
70
ns
MPm/LPm; CL=50pF
10
-
50
ns
MPsm; CL=50pF
5
-
30
ns
MPss; CL=25pF
100
-
300
ns
MPw/LPw; CL=50pF
1) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Data Sheet
4-294
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationSCR Parameters
t0
SCLK1 )
t1
t1
t0 0
MTSR1 )
t2
t3
Data
valid
MRST1 )
Data
valid
t1
1) This timing is based on the following setup
: CON.PH = CON.PO = 0.
SSC_TmgMM.vsd
Figure 3-29 Master Mode Timing
t4
Last latching
SCLK edge
First latching
SCLK edge
First shift
SCLK edge
SCLK1 )
t5
t6
t5
t6
t7
Data
valid
MTSR1 )
t8
t7
Data
valid
t8
1)
MRST
1) This timing is based on the following setup
: CON.PH = CON.PO = 0.
SSC_TmgSM.vsd
Figure 3-30 Slave Mode Timing
3.33.2
SPD Timing
The SPD interface will work with standard SPD tools having a sample/output clock frequency deviation of +/- 5%
or less. For further details please refer to application note AP24004 in section SPD Timing Requirements.
3.33.3
WCAN Timing
The following table defines the timing parameter for the WCAN filter.
Data Sheet
4-295
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationSCR Parameters
Table 3-96 WCAN
Parameter
Symbol
Values
Min.
Timeout for bus inactivity
Data Sheet
tSILENCE SR 0.6
Unit
Typ.
Max.
0.75
1.2
4-296
Note / Test Condition
s
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationCIF Parameters
3.34
CIF Parameters
Table 3-97 Timings for 5V
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
96 MHz
HSYNC, VSYNC set up time
t71 SR
2.5
-
-
ns
AL input level,
hysteresis bypass
2
-
-
ns
TTL input level,
hysteresis bypass
6.5
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
2.5
-
-
ns
AL input level,
hysteresis bypass
2.5
-
-
ns
TTL input level,
hysteresis bypass
7
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
2.5
-
-
ns
AL input level,
hysteresis bypass
2
-
-
ns
TTL input level,
hysteresis bypass
6.5
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
2.5
-
-
ns
AL input level,
hysteresis bypass
2.5
-
-
ns
TTL input level,
hysteresis bypass
7
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
HSYNC, VSYNC hold time
Pixel data set up time
Pixel data hold time
Data Sheet
t72 SR
t73 SR
t74 SR
4-297
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationCIF Parameters
Table 3-98 Timings for 3.3V
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3.5
-
-
ns
AL input level,
hysteresis bypass
4.5
-
-
ns
AL input level,
hysteresis on
9
-
-
ns
TTL input level,
hysteresis on
3
-
-
ns
TTL input level,
hysteresis bypass
4
-
-
ns
AL input level,
hysteresis bypass
5
-
-
ns
AL input level,
hysteresis on
10
-
-
ns
TTL input level,
hysteresis on
3.5
-
-
ns
TTL input level,
hysteresis bypass
3.5
-
-
ns
AL input level,
hysteresis bypass
4.5
-
-
ns
AL input level,
hysteresis on
9
-
-
ns
TTL input level,
hysteresis on
3
-
-
ns
TTL input level,
hysteresis bypass
4
-
-
ns
AL input level,
hysteresis bypass
5
-
-
ns
AL input level,
hysteresis on
10
-
-
ns
TTL input level,
hysteresis on
3.5
-
-
ns
TTL input level,
hysteresis bypass
Unit
Note / Test Condition
HSYNC, VSYNC hold time
Pixel data set up time
Pixel data hold time
t72 SR
t73 SR
t74 SR
Table 3-99 Timings for 0.4V to 2.4V input signals (2.8V imager)
Parameter
Pixel clock period
Data Sheet
Symbol
t70 SR
Values
Min.
Typ.
Max.
10.42
-
-
4-298
ns
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationCIF Parameters
Table 3-99 Timings for 0.4V to 2.4V input signals (2.8V imager) (cont’d)
Parameter
HSYNC, VSYNC set up time
HSYNC, VSYNC hold time
Pixel data set up time
Pixel data hold time
Symbol
t71 SR
t72 SR
t73 SR
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3
-
-
ns
Hysteresis Bypass,
3.3V±10%
9
-
-
ns
TTL Input Levels,
3.3V±10%
4.5
-
-
ns
TTL Input Levels,
5V±10%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±10%
10
-
-
ns
TTL Input Levels,
3.3V±10%
5
-
-
ns
TTL Input Levels,
5V±10%
3
-
-
ns
Hysteresis Bypass,
3.3V±10%
9
-
-
ns
TTL Input Levels,
3.3V±10%
4.5
-
-
ns
TTL Input Levels,
5V±10%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±10%
10
-
-
ns
TTL Input Levels,
3.3V±10%
5
-
-
ns
TTL Input Levels,
5V±10%
Table 3-100 Timings for 0.4V to 2.4V input signals (2.8V imager), ± 5% pad power supply
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3
-
-
ns
Hysteresis Bypass,
3.3V±5%
9
-
-
ns
TTL Input Levels,
3.3V±5%
4.5
-
-
ns
TTL Input Levels,
5V±5%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±5%
10
-
-
ns
TTL Input Levels,
3.3V±5%
5
-
-
ns
TTL Input Levels,
5V±5%
HSYNC, VSYNC hold time
Data Sheet
t72 SR
4-299
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationCIF Parameters
Table 3-100 Timings for 0.4V to 2.4V input signals (2.8V imager), ± 5% pad power supply (cont’d)
Parameter
Pixel data set up time
Pixel data hold time
Symbol
t73 SR
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3
-
-
ns
Hysteresis Bypass,
3.3V±5%
9
-
-
ns
TTL Input Levels,
3.3V±5%
4.5
-
-
ns
TTL Input Levels,
5V±5%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±5%
10
-
-
ns
TTL Input Levels,
3.3V±5%
5
-
-
ns
TTL Input Levels,
5V±5%
Unit
Note / Test Condition
Table 3-101 Timings for 1.8V imager, TTL input level
Parameter
Symbol
Values
Min.
Typ.
Max.
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
HSYNC, VSYNC hold time
Pixel data set up time
Data Sheet
t72 SR
t73 SR
4-300
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationCIF Parameters
Table 3-101 Timings for 1.8V imager, TTL input level (cont’d)
Parameter
Pixel data hold time
Symbol
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
Table 3-102 Timings for 1.8V imager, 3.3V ± 5% pad power supply, TTL input level
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
HSYNC, VSYNC hold time
Pixel data set up time
Data Sheet
t72 SR
t73 SR
4-301
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationCIF Parameters
Table 3-102 Timings for 1.8V imager, 3.3V ± 5% pad power supply, TTL input level (cont’d)
Parameter
Pixel data hold time
Data Sheet
Symbol
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
4-302
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationFlash Target Parameters
3.35
Flash Target Parameters
Program Flash program and erase operation is only allowed up the TJ = 150°C.
Table 3-103 FLASH
Parameter
Symbol
Program Flash Erase Time per tERP CC
logical sector
Program Flash Erase Time per tMERP CC
Multi-Sector Command
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
1
s
cycle count < 1000
-
0.207 +
0.003 * (S
[KByte]) /
(fFSI
[MHz])1)
s
cycle count < 1000, for
sector of size S
-
-
1
s
For consecutive logical
sectors in a physical
sector, cycle count <
1000
-
0.207 +
0.003 * (S
[KByte]) /
(fFSI
[MHz])1)
s
For consecutive logical
sector range of size S
in a physical sector,
cycle count < 1000
Program Flash program time
per page in 5 V mode
tPRP5 CC
-
-
µs
50 +
3000/(fFSI
[MHz])
32 Byte
Program Flash program time
per page in 3.3 V mode
tPRP3 CC
-
-
81 +
µs
3400/(fFSI
[MHz])
32 Byte
Program Flash program time
per burst in 5 V mode
tPRPB5 CC
-
-
125 +
µs
9500/(fFSI
[MHz])
256 Byte
Program Flash program time
per burst in 3.3 V mode
tPRPB3 CC
-
-
µs
410 +
12000/(fF
SI [MHz])
256 Byte
Program Flash program time
for 1 MByte with burst
programming in 3 V mode
excluding communication
tPRPB3_1MB
-
-
2.2
s
Derived value for
documentation
purpose, valid for fFSI =
100MHz
Program Flash program time
for 1 MByte with burst
programming in 5 V mode
excluding communication
tPRPB5_1MB
-
-
0.9
s
Derived value for
documentation
purpose, valid for fFSI =
100MHz
-
-
2.3
s
Derived value for
documentation
purpose, valid for fFSI =
100MHz
CC
CC
Program Flash program time
tPRPB5_PF
for complete PFlash with burst CC
programming in 5 V mode
excluding communication
Data Sheet
4-303
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationFlash Target Parameters
Table 3-103 FLASH (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
15 +
500/(fFSI
[MHz])
µs
Adder to Program
Time when using Write
Page Once
Program Flash suspend to read tSPNDP CC
latency
-
-
12000/(fF µs
SI [MHz])
For Write Burst, Verify
Erased and for multi(logical) sector erase
commands
Data Flash Erase Time per
Sector 2)
-
0.12 +
0.08/(fFSI
[MHz])1)
-
s
cycle count < 1000
-
0.57 +
0.15/(fFSI
[MHz])1)
0.928 +
0.15/(fFSI
[MHz])
s
cycle count < 125000
-
0.12 +
0.01 * (S
[KByte]) /
(fFSI
[MHz])1)
s
For consecutive logical
sector range of size S,
cycle count < 1000
-
0.57 +
0.019 * (S
[KByte]) /
(fFSI
[MHz])1)
s
0.928 +
0.019 * (S
[KByte]) /
(fFSI
[MHz])
For consecutive logical
sector range of size S,
cycle count < 125000
Write Page Once adder
Data Flash Erase Time per
Multi-Sector Command 2)
tADD CC
tERD CC
tMERD CC
Data Flash erase disturb limit
NDFD CC
-
-
50
Program time data flash per
page 3)
tPRD CC
-
-
50 +
µs
2500/(fFSI
[MHz]) 3)
8 Byte
Complete Device Flash Erase
Time PFlash and DFlash 4)
tER_Dev CC
-
-
6
Derived value for
documentation
purpose, valid for fFSI =
100MHz
Data Flash program time per
burst 3)
tPRDB CC
-
-
96 +
µs
4400/(fFSI
[MHz]) 3)
Data Flash suspend to read
latency
tSPNDD CC
-
-
12000/(fF µs
SI [MHz])
Wait time after margin change
tFL_MarginDel
-
-
10
µs
Program Flash Retention Time, tRET CC
Sector
20
-
-
years
Data Flash Endurance per
EEPROMx sector 5)
125000
-
-
cycles Max. data retention
time 10 years
cycles
s
32 Bytes
CC
Data Sheet
NE_EEP10
CC
4-304
Max. 1000
erase/program cycles
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationFlash Target Parameters
Table 3-103 FLASH (cont’d)
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Note / Test Condition
Data Flash Endurance per
HSMx sector 5)
NE_HSM CC 125000
-
-
cycles Max. data retention
time 10 years
UCB Retention Time
tRTU CC
20
-
-
years
Max. 100
erase/program cycles
per UCB, max 400
erase/program cycles
in total
Data Flash access delay
tDF CC
-
-
100
ns
see
PMU_FCON.WSDFLA
SH
Data Flash ECC Delay
tDFECC CC
-
-
20
ns
see
PMU_FCON.WSECD
F
Program Flash access delay
tPF CC
-
-
30
ns
see
PMU_FCON.WSPFLA
SH
Program Flash ECC delay
tPFECC CC
-
-
10
ns
see
PMU_FCON.WSECP
F
Number of erase operations on NERD0 CC
DF0 over lifetime
-
-
750000
cycles
-
-
150
°C
Junction temperature limit for
PFlash program/erase
operations
TJPFlash SR
1) All typical values were characterised, but are not tested. Typical values are safe median values at room temperature
2) Under out-of-spec conditions (e.g. over-cycling) or in case of activation of WL oriented defects, the duration of erase
processes may be increased by up to 50%.
3) Time is not dependent on program mode (5V or 3.3V).
4) Using 512 KByte erase commands.
5) Only valid when a robust EEPROM emulation algorithm is used. For more details see the Users Manual.
Data Sheet
4-305
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPackage Outline
3.36
Package Outline
Figure 3-31 Package Outlines PG-LQFP-144-22
Table 3-104 Exposed Pad Dimensions
Ax; vaild for Feature Package D and DC (nominal EPad size)
7.5 mm ± 50 µm
Ay; vaild for Feature Package D and DC (nominal EPad size)
7.5 mm ± 50 µm
Ex; vaild for Feature Package D and DC (solder able EPad size)
6.7 mm ± 50 µm
Ey; vaild for Feature Package D and DC (solder able EPad size)
6.7 mm ± 50 µm
Ax; vaild for Feature Package DA (nominal EPad size)
7.7 mm ± 50 µm
Ay; vaild for Feature Package DA (nominal EPad size)
9.2 mm ± 50 µm
Ex; vaild for Feature Package DA (solder able EPad size)
6.9 mm ± 50 µm
Ey; vaild for Feature Package DA (solder able EPad size)
8.4 mm ± 50 µm
Note: It is recommended to use dimensions Ex and Ey for board layout considerations. Solder wetting between
Ex / Ey and Ax / Ay and lead between Ex / Ey and Ax / Ay will not case any harm.
Data Sheet
4-306
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPackage Outline
Figure 3-32 Package Outlines PG-LQFP-176-22
Table 3-105 Exposed Pad Dimensions
Ax; vaild for Feature Package D and DC (nominal EPad size)
7.5 mm ± 50 µm
Ay; vaild for Feature Package D and DC (nominal EPad size)
7.5 mm ± 50 µm
Ex; vaild for Feature Package D and DC (solder able EPad size)
6.7 mm ± 50 µm
Ey; vaild for Feature Package D and DC (solder able EPad size)
6.7 mm ± 50 µm
Ax; vaild for Feature Package DA (nominal EPad size)
7.7 mm ± 50 µm
Ay; vaild for Feature Package DA (nominal EPad size)
9.2 mm ± 50 µm
Ex; vaild for Feature Package DA (solder able EPad size)
6.9 mm ± 50 µm
Ey; vaild for Feature Package DA (solder able EPad size)
8.4 mm ± 50 µm
Note: It is recommended to use dimensions Ex and Ey for board layout considerations. Solder wetting between
Ex / Ey and Ax / Ay and lead between Ex / Ey and Ax / Ay will not case any harm.
Data Sheet
4-307
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPackage Outline
292 x
0 .5 ±0.05
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1 7 ±0.1
0.1 C
CODE
COPLANARITY
INDEX MARKING
(LASERED )
SEATIN G PLAN E
292 x
0.15
C
Y W V U T R P N M L K J HG F E D C B A
19 x 0 .8 = 1 5.2
0.15 M C A B
0.08 M C
1 .7 MAX
A
0 .8
17 ±0. 1
B
INDEX
MARKING
0.8
19 x 0.8 = 15 .2
0.33 MIN
STANDOFF
Figure 3-33 Package Outlines PG-LFBGA-292-6
You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/products.
3.36.1
Package Parameters
Table 3-106 Thermal Characteristics of the Package
Device
Package
RQJCT1)
RQJCB1)
RQJA
Unit
Note
2)
TC264
PG-LQFP-144-22PGLFBGA-292-6
13,3
3,3
18,6
K/W
with soldered
exposed pad
TC265
PG-LQFP-176-22PGLFBGA-292-6
11,7
3,5
19,42)
K/W
with soldered
exposed pad
24,93)
K/W
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the
thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal
resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT,
RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility.
The junction temperature can be calculated using the following equation: TJ = TA + RTJA * PD, where the RTJA is the total
thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from
TC267
PG-LFBGA-292-6
11,1
15,0
the upper four partial thermal resistances.
Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1).
2) Value is defined in accordance with JEDEC JESD51-3, JESD51-5, and JESD51-7.
3) Value is defined in accordance with JEDEC JESD51-1.
3.36.2
Data Sheet
TC260 Carrier Tape
4-308
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationPackage Outline
Figure 3-34 Carrier Tape Dimenions
Table 3-107 TC260 Chip Dimenions
Device
A
B
T
TC260
5,910 mm
6,453 mm
0,3 mm
Data Sheet
4-309
V 1.0 2017-06
TC 260 / 264 / 265 / 267
Electrical SpecificationQuality Declarations
3.37
Quality Declarations
Table 3-108 Quality Parameters
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
24500
hour
ESD susceptibility according to VHBM
Human Body Model (HBM)
-
-
2000
V
ESD susceptibility of the LVDS VHBM1
pins
-
-
500
V
ESD susceptibility according to VCDM
Charged Device Model (CDM)
-
-
500
V
for all other balls/pins;
conforming to
JESD22-C101-C
-
-
750
V
for corner balls/pins;
conforming to
JESD22-C101-C
-
-
3
Operation Lifetime
Moisture Sensitivity Level
Data Sheet
tOP
MSL
4-310
Conforming to
JESD22-A114-B
Conforming to Jedec
J-STD--020C for 240C
V 1.0 2017-06
TC 260 / 264 / 265 / 267
History
4
History
Version 1.0 is the first version of this document.
•
•
•
VADC
–
Add parameter tWU
–
Add parameter RMDU
–
Add parameter RMDD
Calculating the 1.3 V Current Consumption
–
Add formula 3.4
–
Add furmula 3.5
Changes in table 'Master Mode timing MPRm/MP+m/MPm/LPm output pads' of QSPI/5V
–
•
Change max value of t51 from '15 ns' to '17 ns'
EVR/Supply Monitoring
–
Change note of tEVRMON from '' to 'after trimming'
Data Sheet
5-311
V 1.0 2017-06
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG