0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SAK-TC265D-40F200W

SAK-TC265D-40F200W

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    -

  • 描述:

    SAK-TC265D-40F200W

  • 详情介绍
  • 数据手册
  • 价格&库存
SAK-TC265D-40F200W 数据手册
32-Bit Microcontroller TC260 / 264 / 265 / 267 32-Bit Single-Chip Microcontroller BC-Step 32-Bit Single-Chip Microcontroller Data Sheet V 1.0, 2017-06 Microcontrollers Edition 2017-06 Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com) Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TC 260 / 264 / 265 / 267 Revision History Page or Item Subjects (major changes since previous revision) V 1.0, 2017-06 The history is documented in the last chapter Data Sheet 3 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Table of Contents 1 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 2.1 2.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2 2.2.3 2.3 2.3.1 2.3.2 2.3.3 2.4 2.4.1 2.4.2 Package and Pinning Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 TC264x Pin Definition and Functions: LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 TC264 LQFP144 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 TC265x Pin Definition and Functions: LQFP176 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 TC265 LQFP176 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 TC267x Pin Definition and Functions: BGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 TC267 BGA292 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 TC260 Bare Die Pad Definition: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 TC 260 / 264 / 265 / 267 Bare Die Pad Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.14.1 3.15 3.15.1 3.15.2 3.15.3 3.15.4 3.16 3.17 3.18 3.19 3.20 3.21 3.22 3.23 3.24 3.25 Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V / 3.3 V switchable Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 V only Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High performance LVDS Pads (LVDSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Medium performance LVDS Pads (LVDSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DSADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Back-up Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . JTAG Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DAP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet TOC-1 177 177 178 179 182 184 202 204 208 209 215 221 222 223 224 228 229 229 231 233 235 237 239 245 246 247 248 250 252 255 259 V 1.0, 2017-06 TC 260 / 264 / 265 / 267 3.26 3.27 3.28 3.29 3.29.1 3.29.2 3.29.3 3.29.4 3.30 3.31 3.32 3.33 3.33.1 3.33.2 3.33.3 3.34 3.35 3.36 3.36.1 3.36.2 3.37 QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MSC Timing 5 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MSC Timing 3.3 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ethernet Interface (ETH) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ETH Measurement Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) . . . . . . . . . . . . . . . . . . . . . . . . . ETH MII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ETH RMII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E-Ray Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . HSCT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Inter-IC (I2C) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SCR Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SSC Timing 5V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPD Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . WCAN Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CIF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Flash Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TC260 Carrier Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311 Data Sheet 2 265 271 276 281 281 282 283 284 285 287 290 293 293 295 295 297 303 306 308 308 310 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-11-11 Data Sheet 3 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Summary of Features 1 Summary of Features The TC26x product family has the following features: • High Performance Microcontroller with two CPU cores • One 32-bit super-scalar TriCore CPUs (TC1.6P), having the following features: • – Superior real-time performance – Strong bit handling – Fully integrated DSP capabilities – Multiply-accumulate unit able to sustain 2 MAC operations per cycle – up to 200 MHz operation at full temperature range – up to 120 Kbyte Data Scratch-Pad RAM (DSPR) – up to 32 Kbyte Instruction Scratch-Pad RAM (PSPR) – 16 Kbyte Instruction Cache (ICACHE) – 8 Kbyte Data Cache (DCACHE) Power Efficient scalar TriCore CPU (TC1.6E), having the following features: – Binary code compatibility with TC1.6P – up to 200 MHz operation at full temperature range – up to 72 Kbyte Data Scratch-Pad RAM (DSPR) – up to 16 Kbyte Instruction Scratch-Pad RAM (PSPR) – 8 Kbyte Instruction Cache (ICACHE) – 0.125Kbyte Data Read Buffer (DRB) • Lockstepped shadow core for TC1.6P • Multiple on-chip memories – All embedded NVM and SRAM are ECC protected – up to 2.5 Mbyte Program Flash Memory (PFLASH) – up to 96 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation – 0 Kbyte Memory (LMU) – BootROM (BROM) • 48-Channel DMA Controller with safe data transfer • Sophisticated interrupt system (ECC protected) • High performance on-chip bus structure – 64-bit Cross Bar Interconnect (SRI) giving fast parallel access between busmasters, CPUs and memories – 32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units – One bus bridge (SFI Bridge) • Safety Management Unit (SMU) handling safety monitor alarms • Memory Test Unit with ECC, Memory Initialization and MBIST functions (MTU) • Hardware I/O Monitor (IOM) for checking of digital I/O • Versatile On-chip Peripheral Units – Four Asynchronous/Synchronous Serial Channels (ASCLIN) with hardware LIN support (V1.3, V2.0, V2.1 and J2602) up to 50 MBaud – Four Queued SPI Interface Channels (QSPI) with master and slave capability upto 50 Mbit/s – High Speed Serial Link (HSSL) for serial inter-processor communication up to 320Mbit/s Data Sheet 1-1 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Summary of Features • • • – Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices – One MultiCAN+ Module with 5 CAN nodes and 256 free assignable messageobjects for high efficiency data handling via FIFO buffering and gateway data transfer – 6 Single Edge Nibble Transmission (SENT) channels for connection to sensors – One FlexRayTMmodule with 2 channels (E-Ray) supporting V2.1 – One Generic Timer Module (GTM) providing a powerful set of digital signal filteringand timer functionality to realize autonomous and complex Input/Output management – One Capture / Compare 6 module (Two kernels CCU60 and CCU61) – One General Purpose 12 Timer Unit (GPT120) – Three channel Peripheral Sensor Interface conforming to V1.3 (PSI5) – Peripheral Sensor Interface with Serial PHY (PSI5-S) – Inter-Integrated Circuit Bus Interface (I2C) conforming to V2.1 – IEEE802.3 Ethernet MAC with RMII and MII interfaces (ETH) 8-bit Standby Controller (TC2x_SCR) – Two 8-bit timers – One 16-bit timer – Timer 2 Capture Compare Unit – Real Time Clock – Universal Asynchronous Receiver/Transmitter – High Speed Synchronous Serial Interface – Wake-up CAN Filter Versatile Successive Approximation ADC (VADC) – Cluster of 4 independent ADC kernels – Input voltage range from 0 V to 5.5V (ADC supply) Delta-Sigma ADC (DSADC) – Three/Four channels • Digital programmable I/O ports • On-chip debug support for OCDS Level 1 (CPUs , DMA, On Chip Buses) • Dedicated Emulation Device chip available (ED) – multi-core debugging, real time tracing, and calibration – Aurora Gigabit Trace Port (AGBT) on some variants (See below) – four/five wire JTAG (IEEE 1149.1) or DAP (Device Access Port) interface • Power Management System and on-chip regulators • Clock Generation Unit with System PLL and Flexray PLL • Embedded Voltage Regulator The support of the Feature 8-bit Standby Controller (TC2x_SCR) is discontinued. Data Sheet 1-2 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Summary of Features Ordering Information The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies: • The derivative itself, i.e. its function set, the temperature range, and the supply voltage • The package and the type of delivery. For the available ordering codes for the TC 260 / 264 / 265 / 267 please refer to the “AURIX™ TC2x Data Sheet Addendum”, which summarizes all available variants. Table 1-1 Feature Overview of TC 260 / 264 / 265 / 267 Functions Type TC1.6P / TC1.6E P Cores / Checker Cores / E Cores / Checker Cores 1/ 1/ 1/ 0 Max. Freq. 200 MHz FPU yes Program Flash Size 2.5 Mbyte Data Flash Size 96 Kbyte Instruction 16 Kbyte / 8 Kbyte Data 8 Kbyte / - Size TC1.6P (DPSR/PSPR) 120 Kbyte / 32 Kbyte2) Size TC1.6E (DPSR/PSPR) 72 Kbyte / 16 Kbyte1) 2) Size LMU 0 Kbyte DMA Channels 48 ADC Channels 38 + 12 Converter 4 Channels 3/4 TIM 3 TOM 2 ATOM / MCS 4/3 CMU / ICM 1/1 PSM 1 TBU 1 SPE 2 CMP / MON 1/1 BRC / DPLL 0/1 GPT12 2 CCU6 2 CPU Core Cache SRAM DSADC GTM Timer Data Sheet 1-3 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Summary of Features Table 1-1 Overview of TC 260 / 264 / 265 / 267 Functions Feature STM Modules 2 FlexRay Modules 1 Channels 2 Nodes 5 Message Objects 256 QSPI Channels 4 ASCLIN Interfaces 4 I2C Interfaces 1 SENT Modules 6 PSI5 Channels 3 PSI5-S Modules 1 HSSL Channels 1 MSC Channels 2 Ethernet Channels 1 ASIL Level up to ASIL-D FCE Modules 1 SMU 1 IOM 1 ADAS No Standby-Controller 8-bit Yes DCDC from 5 V/ 3.3 V to 1.3 V Yes LDO from 5 V / 3.3 V to 1.3 V Yes LDO from 5 V to 3.3 V Yes Standby RAM Yes Packages Type PG-LQFP-144-22 / PG-LQFP-17622 / PG-LFBGA-292-6 I/O Type 5 V CMOS / 3.3 V CMOS / LVDS Range -40 ... + 150°C CAN Safety Support Feature Discontinued Embedded Voltage Regulator Low Power Features Tambient 1) Address range starts at lowest address defined in the User’s Manual. For reference see the Memory Maps chapter of the User’s Manual. 2) To ensure the processor cores are provided with a constant stream of instructions the Instruction Fetch Units will speculatively fetch instructions from the up to 64 bytes ahead of the current PC. If the current PC is within 64 bytes of the top of an instruction memory the Instruction Fetch Unit may attempt to speculatively fetch instruction from beyond the physical range. This may then lead to error conditions and alarms being triggered by the bus and memory systems. It is therefore recommended that the upper 64 bytes of any memory be unused for instruction storage. Data Sheet 1-4 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning Definitions 2 Package and Pinning Definitions This chapter gives a pinning of the different packages of the TC 260 / 264 / 265 / 267. Data Sheet 2-5 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: 2.1 TC264x Pin Definition and Functions: LQFP144 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 TC26x 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 P20. 14 P20. 13 P20. 12 P20. 11 P20. 10 P20. 9 P20. 8 P20. 7 P20. 6 VDD ESR0 PORST ESR1 P20. 3 P20. 2 / TESTMODE P20. 0 TCK TRST P21. 7 / TDO TMS P21. 6 / TDI P21. 5 P21. 4 P21. 3 P21. 2 VDDP3 XTAL2 XTAL1 VSS VDD VEXT P22. 3 P22. 2 P22. 1 P22. 0 P23. 1 A N21 A N20 A N17 A N16 VAGND 1 VA REF1 VSSM VD DM A N13 A N12 A N11 A N10 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0 VDD VEX T P33. 4 P33. 5 P33. 6 P33. 7 P33. 8 P33. 9 P33.10 P33.11 P33.12 P33.13 VG ATE1 N / P32. 0 VG ATE1P P32. 4 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 P02.0 P02.1 P02.2 P02.3 P02.4 P02.5 P02.6 P02.7 P02.8 VDD/ VDDSB P00.0 P00.1 P00.2 P00.3 P00.4 P00.5 P00.6 P00.7 P00.8 P00.9 P 00.12 VDD V EXT AN49 AN48 AN47 AN46 AN45 AN44 AN39 AN38 AN37 AN36 AN35 AN25 AN24 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 P10.6 P10.5 P10.3 P10.2 P10.1 P11.12 P11.11 P11.10 VFL EX P11.9 P11.6 P11.3 P11.2 P13.3 P13.2 P13.1 P13.0 VD DFL3 VD DP3 VEXT P14.6 P14.5 P14.4 P14.3 P14.2 P14.1 P14.0 P15.8 P15.7 P15.6 P15.5 P15.4 P15.3 P15.2 P15.1 P15.0 Figure 2-1 is showing the TC264x Logic Symbol for the package variant: QFP144. Figure 2-1 TC264x Logic Symbol for the package variant LQFP144. Data Sheet 2-6 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: 2.1.1 TC264 LQFP144 Package Variant Pin Configuration Table 2-1 Port 00 Functions Pin Symbol Ctrl Type Function 11 P00.0 I MP / PU1 / VEXT General-purpose input TIN9 CTRAPA 12 GTM input CCU61 input T12HRE CCU60 input INJ00 MSC0 input CIFD9 CIF input P00.0 O0 General-purpose output TOUT9 O1 GTM output ASCLK3 O2 ASCLIN3 output ATX3 O3 ASCLIN3 output – O4 Reserved TXDCAN1 O5 CAN node 1 output – O6 Reserved COUT63 O7 CCU60 output ETHMDIOA I/O ETH input/output P00.1 I TIN10 ARX3E General-purpose input LP / PU1 / VEXT GTM input ASCLIN3 input RXDCAN1D CAN node 1 input PSIRX0A PSI5 input SENT0B SENT input CC60INB CCU60 input CC60INA CCU61 input DSCIN0A DSADC channel 0 input A VADCG3.11 VADC analog input channel 11 of group 3 CIFD10 CIF input P00.1 O0 General-purpose output TOUT10 O1 GTM output ATX3 O2 ASCLIN3 output – O3 Reserved DSCOUT0 O4 DSADC channel 0 output – O5 Reserved SPC0 O6 SENT output CC60 O7 CCU61 output Data Sheet 2-7 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 00 Functions (cont’d) Table 2-1 Pin Symbol Ctrl Type Function 13 P00.2 I LP / PU1 / VEXT General-purpose input TIN11 SENT1B 14 GTM input SENT input DSDIN0A DSADC channel 0 input A VADCG3.10 VADC analog input channel 10 of group 3 (MD) CIFD11 CIF input P00.2 O0 General-purpose output TOUT11 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved PSITX0 O4 PSI5 output TXDCAN3 O5 CAN node 3 output – O6 Reserved COUT60 O7 CCU61 output P00.3 I TIN12 RXDCAN3A General-purpose input LP / PU1 / VEXT GTM input CAN node 3 input PSIRX1A PSI5 input PSISRXA PSI5-S input SENT2B SENT input CC61INB CCU60 input CC61INA CCU61 input DSCIN3A DSADC channel 3 input A VADCG3.9 VADC analog input channel 9 of group 3 (MD) CIFD12 CIF input P00.3 O0 General-purpose output TOUT12 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved DSCOUT3 O4 DSADC channel 3 output – O5 Reserved SPC2 O6 SENT output CC61 O7 CCU61 output Data Sheet 2-8 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 00 Functions (cont’d) Table 2-1 Pin Symbol Ctrl Type Function 15 P00.4 I LP / PU1 / VEXT General-purpose input TIN13 REQ7 16 GTM input SCU input SENT3B SENT input DSDIN3A DSADC channel 3 input A DSSGNA DSADC input VADCG3.8 VADC analog input channel 8 of group 3 CIFD13 CIF input P00.4 O0 General-purpose output TOUT13 O1 GTM output PSISTX O2 PSI5-S output TXDCAN4 O3 CAN node 4 output PSITX1 O4 PSI5 output VADCG2BFL0 O5 VADC output SPC3 O6 SENT output COUT61 O7 CCU61 output P00.5 I TIN14 PSIRX2A General-purpose input LP / PU1 / VEXT GTM input PSI5 input SENT4B SENT input RXDCAN4A CAN node 4 input CC62INB CCU60 input CC62INA CCU61 input DSCIN2A DSADC channel 2 input A VADCG3.7 VADC analog input channel 7 of group 3 CIFD14 CIF input P00.5 O0 General-purpose output TOUT14 O1 GTM output DSCGPWMN O2 DSADC output – O3 Reserved DSCOUT2 O4 DSADC channel 2 output VADCG2BFL1 O5 VADC output SPC4 O6 SENT output CC62 O7 CCU61 output Data Sheet 2-9 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 00 Functions (cont’d) Table 2-1 Pin Symbol Ctrl Type Function 17 P00.6 I LP / PU1 / VEXT General-purpose input TIN15 SENT5B 18 GTM input SENT input DSDIN2A DSADC channel 2 input A VADCG3.6 VADC analog input channel 6 of group 3 CIFD15 CIF input P00.6 O0 General-purpose output TOUT15 O1 GTM output DSCGPWMP O2 DSADC output VADCG2BFL2 O3 VADC output PSITX2 O4 PSI5 output VADCEMUX10 O5 VADC output SPC5 O6 SENT output COUT62 O7 CCU61 output P00.7 I TIN16 CC60INC LP / PU1 / VEXT General-purpose input GTM input CCU61 input CCPOS0A CCU61 input T12HRB CCU60 input T2INA GPT120 input VADCG3.5 VADC analog input channel 5 of group 3 CIFCLK CIF input P00.7 O0 General-purpose output TOUT16 O1 GTM output – O2 Reserved VADCG2BFL3 O3 VADC output – O4 Reserved VADCEMUX11 O5 VADC output – O6 Reserved CC60 O7 CCU61 output Data Sheet 2-10 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 00 Functions (cont’d) Table 2-1 Pin Symbol Ctrl Type Function 19 P00.8 I LP / PU1 / VEXT General-purpose input TIN17 CC61INC 20 GTM input CCU61 input CCPOS1A CCU61 input T13HRB CCU60 input T2EUDA GPT120 input VADCG3.4 VADC analog input channel 4 of group 3 CIFVSNC CIF input P00.8 O0 General-purpose output TOUT17 O1 GTM output SLSO36 O2 QSPI3 output – O3 Reserved – O4 Reserved VADCEMUX12 O5 VADC output – O6 Reserved CC61 O7 CCU61 output P00.9 I TIN18 CC62INC LP / PU1 / VEXT General-purpose input GTM input CCU61 input CCPOS2A CCU61 input T13HRC CCU60 input T12HRC CCU60 input T4EUDA GPT120 input VADCG3.3 VADC analog input channel 3 of group 3 DSITR3F DSADC channel 3 input F CIFHSNC CIF input P00.9 O0 General-purpose output TOUT18 O1 GTM output SLSO37 O2 QSPI3 output ARTS3 O3 ASCLIN3 output – O4 Reserved – O5 Reserved – O6 Reserved CC62 O7 CCU61 output Data Sheet 2-11 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 00 Functions (cont’d) Table 2-1 Pin Symbol Ctrl Type Function 21 P00.12 I LP / PU1 / VEXT General-purpose input TIN21 ACTS3A VADCG3.0 GTM input ASCLIN3 input VADC analog input channel 0 of group 3 P00.12 O0 General-purpose output TOUT21 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU61 output Table 2-2 Port 02 Functions Pin Symbol Ctrl Type Function 1 P02.0 I MP+ / PU1 / VEXT General-purpose input TIN0 ARX2G GTM input ASCLIN2 input REQ6 SCU input CC60INA CCU60 input CC60INB CCU61 input CIFD0 CIF input P02.0 O0 General-purpose output TOUT0 O1 GTM output ATX2 O2 ASCLIN2 output SLSO31 O3 QSPI3 output DSCGPWMN O4 DSADC output TXDCAN0 O5 CAN node 0 output TXDA O6 ERAY output CC60 O7 CCU60 output Data Sheet 2-12 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 02 Functions (cont’d) Table 2-2 Pin Symbol Ctrl Type 2 P02.1 I LP / PU1 General-purpose input / VEXT GTM input TIN1 3 Function REQ14 SCU input ARX2B ASCLIN2 input RXDCAN0A CAN node 0 input RXDA2 ERAY input CIFD1 CIF input P02.1 O0 General-purpose output TOUT1 O1 GTM output – O2 Reserved SLSO32 O3 QSPI3 output DSCGPWMP O4 DSADC output – O5 Reserved – O6 Reserved COUT60 O7 CCU60 output P02.2 I TIN2 CC61INA MP+ / PU1 / VEXT General-purpose input GTM input CCU60 input CC61INB CCU61 input CIFD2 CIF input P02.2 O0 General-purpose output TOUT2 O1 GTM output ATX1 O2 ASCLIN1 output SLSO33 O3 QSPI3 output PSITX0 O4 PSI5 output TXDCAN2 O5 CAN node 2 output TXDB O6 ERAY output CC61 O7 CCU60 output Data Sheet 2-13 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 02 Functions (cont’d) Table 2-2 Pin Symbol Ctrl Type Function 4 P02.3 I LP / PU1 / VEXT General-purpose input TIN3 ARX1G 5 GTM input ASCLIN1 input RXDCAN2B CAN node 2 input RXDB2 ERAY input PSIRX0B PSI5 input SDI11 MSC1 input CIFD3 CIF input P02.3 O0 General-purpose output TOUT3 O1 GTM output ASLSO2 O2 ASCLIN2 output SLSO34 O3 QSPI3 output – O4 Reserved – O5 Reserved – O6 Reserved COUT61 O7 CCU60 output P02.4 I TIN4 SLSI3A MP+ / PU1 / VEXT General-purpose input GTM input QSPI3 input ECTT1 TTCAN input RXDCAN0D CAN node 0 input CC62INA CCU60 input CC62INB CCU61 input SDA0A I2C0 input CIFD4 CIF input P02.4 O0 General-purpose output TOUT4 O1 GTM output ASCLK2 O2 ASCLIN2 output SLSO30 O3 QSPI3 output PSISCLK O4 PSI5-S output SDA0 O5 I2C0 output TXENA O6 ERAY output CC62 O7 CCU60 output Data Sheet 2-14 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 02 Functions (cont’d) Table 2-2 Pin Symbol Ctrl Type Function 6 P02.5 I MP+ / PU1 / VEXT General-purpose input TIN5 MRST3A 7 GTM input QSPI3 input ECTT2 TTCAN input PSIRX1B PSI5 input PSISRXB PSI5-S input SENT3C SENT input SCL0A I2C0 input CIFD5 CIF input P02.5 O0 General-purpose output TOUT5 O1 GTM output TXDCAN0 O2 CAN node 0 output MRST3 O3 QSPI3 output – O4 Reserved SCL0 O5 I2C0 output TXENB O6 ERAY output COUT62 O7 CCU60 output P02.6 I TIN6 MTSR3A MP / PU1 / VEXT General-purpose input GTM input QSPI3 input SENT2C SENT input CC60INC CCU60 input CCPOS0A CCU60 input T12HRB CCU61 input T3INA GPT120 input CIFD6 CIF input P02.6 O0 General-purpose output TOUT6 O1 GTM output PSISTX O2 PSI5-S output MTSR3 O3 QSPI3 output PSITX1 O4 PSI5 output VADCEMUX00 O5 VADC output – O6 Reserved CC60 O7 CCU60 output Data Sheet 2-15 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 02 Functions (cont’d) Table 2-2 Pin Symbol Ctrl Type Function 8 P02.7 I MP / PU1 / VEXT General-purpose input TIN7 SCLK3A 9 GTM input QSPI3 input PSIRX2B PSI5 input SENT1C SENT input CC61INC CCU60 input CCPOS1A CCU60 input T13HRB CCU61 input T3EUDA GPT120 input CIFD7 CIF input DSCIN3B DSADC channel 3 input B P02.7 O0 General-purpose output TOUT7 O1 GTM output – O2 Reserved SCLK3 O3 QSPI3 output DSCOUT3 O4 DSADC channel 3 output VADCEMUX01 O5 VADC output SPC1 O6 SENT output CC61 O7 CCU60 output P02.8 I SENT0C LP / PU1 General-purpose input / GTM input VEXT SENT input CC62INC CCU60 input CCPOS2A CCU60 input T12HRC CCU61 input T13HRC CCU61 input T4INA GPT120 input CIFD8 CIF input DSDIN3B DSADC channel 3 input B DSITR3E DSADC channel 3 input E TIN8 P02.8 O0 General-purpose output TOUT8 O1 GTM output SLSO35 O2 QSPI3 output – O3 Reserved PSITX2 O4 PSI5 output VADCEMUX02 O5 VADC output ETHMDC O6 ETH output CC62 O7 CCU60 output Data Sheet 2-16 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-3 Port 10 Functions Pin Symbol Ctrl Type Function 140 P10.1 I MP+ / PU1 / VEXT General-purpose input TIN103 MRST1A GTM input QSPI1 input T5EUDB 141 GPT120 input P10.1 O0 General-purpose output TOUT103 O1 GTM output MTSR1 O2 QSPI1 output MRST1 O3 QSPI1 output EN01 O4 MSC0 output VADCG3BFL1 O5 VADC output END03 O6 MSC0 output – O7 Reserved P10.2 I TIN104 SCLK1A General-purpose input MP / PU1 / VEXT GTM input QSPI1 input T6INB GPT120 input REQ2 SCU input RXDCAN2E CAN node 2 input SDI01 MSC0 input P10.2 O0 General-purpose output TOUT104 O1 GTM output – O2 Reserved SCLK1 O3 QSPI1 output EN00 O4 MSC0 output VADCG3BFL2 O5 VADC output END02 O6 MSC0 output – O7 Reserved Data Sheet 2-17 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 10 Functions (cont’d) Table 2-3 Pin 142 Symbol Ctrl Type Function P10.3 I MP / PU1 / VEXT General-purpose input TIN105 MTSR1A 143 GTM input QSPI1 input REQ3 SCU input T5INB GPT120 input P10.3 O0 General-purpose output TOUT105 O1 GTM output VADCG3BFL3 O2 VADC output MTSR1 O3 QSPI1 output EN00 O4 MSC0 output END02 O5 MSC0 output TXDCAN2 O6 CAN node 2 output – O7 Reserved P10.5 I TIN107 HWCFG4 General-purpose input LP / PU1 / VEXT GTM input SCU input RXDCAN4B CAN node 4 input INJ01 MSC0 input P10.5 O0 General-purpose output TOUT107 O1 GTM output ATX2 O2 ASCLIN2 output SLSO38 O3 QSPI3 output SLSO19 O4 QSPI1 output T6OUT O5 GPT120 output ASLSO2 O6 ASCLIN2 output – O7 Reserved Data Sheet 2-18 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 10 Functions (cont’d) Table 2-3 Pin 144 Symbol Ctrl Type Function P10.6 I LP / PU1 / VEXT General-purpose input TIN108 ARX2D 132 QSPI3 input HWCFG5 SCU input P10.6 O0 General-purpose output TOUT108 O1 GTM output ASCLK2 O2 ASCLIN2 output MTSR3 O3 QSPI3 output T3OUT O4 GPT120 output TXDCAN4 O5 CAN node 4 output MRST1 O6 QSPI1 output VADCG3BFL0 O7 VADC output Port 11 Functions Symbol Ctrl Type Function P11.2 I MPR / PU1 / VFLEX General-purpose input TIN95 133 ASCLIN2 input MTSR3B Table 2-4 Pin GTM input GTM input P11.2 O0 TOUT95 O1 GTM output END03 O2 MSC0 output SLSO05 O3 QSPI0 output SLSO15 O4 QSPI1 output EN01 O5 MSC0 output ETHTXD1 O6 ETH output COUT63 O7 CCU60 output P11.3 I TIN96 MRST1B MPR / PU1 / VFLEX SDI03 General-purpose output General-purpose input GTM input QSPI1 input MSC0 input P11.3 O0 General-purpose output TOUT96 O1 GTM output – O2 Reserved MRST1 O3 QSPI1 output TXDA O4 ERAY output – O5 Reserved ETHTXD0 O6 ETH output COUT62 O7 CCU60 output Data Sheet 2-19 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 11 Functions (cont’d) Table 2-4 Pin 134 Symbol Ctrl Type Function P11.6 I MPR / PU1 / VFLEX General-purpose input TIN97 SCLK1B 135 GTM input QSPI1 input P11.6 O0 General-purpose output TOUT97 O1 GTM output TXENB O2 ERAY output SCLK1 O3 QSPI1 output TXENA O4 ERAY output FCLP0 O5 MSC0 output ETHTXEN O6 ETH output COUT61 O7 CCU60 output P11.9 I TIN98 MTSR1B MP+ / PU1 / VFLEX General-purpose input GTM input QSPI1 input RXDA1 ERAY input ETHRXD1 ETH input P11.9 O0 General-purpose output TOUT98 O1 GTM output – O2 Reserved MTSR1 O3 QSPI1 output – O4 Reserved SOP0 O5 MSC0 output – O6 Reserved COUT60 O7 CCU60 output Data Sheet 2-20 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 11 Functions (cont’d) Table 2-4 Pin 137 Symbol Ctrl Type Function P11.10 I LP / PU1 / VFLEX General-purpose input TIN99 REQ12 138 GTM input SCU input ARX1E ASCLIN1 input SLSI1A QSPI1 input RXDCAN3D CAN node 3 input RXDB1 ERAY input ETHRXD0 ETH input SDI00 MSC0 input P11.10 O0 General-purpose output TOUT99 O1 GTM output – O2 Reserved SLSO03 O3 QSPI0 output SLSO13 O4 QSPI1 output – O5 Reserved – O6 Reserved CC62 O7 CCU60 output P11.11 I TIN100 ETHCRSDVA MP+ / PU1 / VFLEX General-purpose input GTM input ETH input P11.11 O0 General-purpose output TOUT100 O1 GTM output END02 O2 MSC0 output SLSO04 O3 QSPI0 output SLSO14 O4 QSPI1 output EN00 O5 MSC0 output TXENB O6 ERAY output CC61 O7 CCU60 output Data Sheet 2-21 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 11 Functions (cont’d) Table 2-4 Pin 139 Symbol Ctrl Type Function P11.12 I MPR / PU1 / VFLEX General-purpose input TIN101 ETHREFCLK GTM input ETH input ETHTXCLKB ETH input (Not for productive purposes) ETHRXCLKA ETH input (Not for productive purposes) P11.12 O0 General-purpose output TOUT101 O1 GTM output ATX1 O2 ASCLIN1 output GTMCLK2 O3 GTM output TXDB O4 ERAY output TXDCAN3 O5 CAN node 3 output EXTCLK1 O6 SCU output CC60 O7 CCU60 output Table 2-5 Port 13 Functions Pin Symbol Ctrl Type Function 128 P13.0 I LVDSM_N / PU1 / VEXT General-purpose input TIN91 Data Sheet GTM input P13.0 O0 TOUT91 O1 GTM output END03 O2 MSC0 output SCLK2N O3 QSPI2 output (LVDS) EN01 O4 MSC0 output FCLN0 O5 MSC0 output (LVDS) FCLND0 O6 MSC0 output (LVDS) TXDCAN4 O7 CAN node 4 output 2-22 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-5 Port 13 Functions (cont’d) Pin Symbol Ctrl Type Function P13.1 I LVDSM_P / PU1 / VEXT General-purpose input 129 TIN92 SCL0B RXDCAN4C 130 P13.1 O0 General-purpose output TOUT92 O1 GTM output – O2 Reserved SCLK2P O3 QSPI2 output (LVDS) – O4 Reserved FCLP0 O5 MSC0 output (LVDS) SCL0 O6 I2C0 output – O7 Reserved P13.2 I CAPINA LVDSM_N / PU1 / VEXT SDA0B General-purpose input GTM input GPT120 input I2C0 input P13.2 O0 General-purpose output TOUT93 O1 GTM output – O2 Reserved MTSR2N O3 QSPI2 output (LVDS) FCLP0 O4 MSC0 output SON0 O5 MSC0 output (LVDS) SDA0 O6 I2C0 output SOND0 O7 MSC0 output (LVDS) P13.3 I TIN94 Data Sheet I2C0 input CAN node 4 input TIN93 131 GTM input LVDSM_P / PU1 / VEXT General-purpose input GTM input P13.3 O0 TOUT94 O1 GTM output – O2 Reserved MTSR2P O3 QSPI2 output (LVDS) – O4 Reserved SOP0 O5 MSC0 output (LVDS) – O6 Reserved – O7 Reserved 2-23 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-6 Port 14 Functions Pin Symbol Ctrl Type Function 118 P14.0 I MP+ / PU1 / VEXT General-purpose input TIN80 119 P14.0 O0 TOUT80 O1 GTM output ATX0 O2 ASCLIN0 output Recommended as Boot loader pin. TXDA O3 ERAY output TXDB O4 ERAY output TXDCAN1 O5 CAN node 1 output Used for single pin DAP (SPD) function. ASCLK0 O6 ASCLIN0 output COUT62 O7 CCU60 output P14.1 I TIN81 REQ15 Data Sheet GTM input MP / PU1 / VEXT General-purpose output General-purpose input GTM input SCU input ARX0A ASCLIN0 input RXDCAN1B CAN node 1 input Used for single pin DAP (SPD) function. RXDA3 ERAY input RXDB3 ERAY input EVRWUPA SCU input P14.1 O0 General-purpose output TOUT81 O1 GTM output ATX0 O2 ASCLIN0 output Recommended as Boot loader pin. – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU60 output 2-24 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-6 Pin 120 Port 14 Functions (cont’d) Symbol Ctrl Type Function P14.2 I LP / PU1 / VEXT General-purpose input TIN82 HWCFG2 EVR13 121 SCU input Latched at cold power on reset to decide EVR13 activation. P14.2 O0 General-purpose output TOUT82 O1 GTM output ATX2 O2 ASCLIN2 output SLSO21 O3 QSPI2 output – O4 Reserved – O5 Reserved ASCLK2 O6 ASCLIN2 output – O7 Reserved P14.3 I TIN83 ARX2A Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input ASCLIN2 input REQ10 SCU input HWCFG3_BMI SCU input SDI02 MSC0 input P14.3 O0 General-purpose output TOUT83 O1 GTM output ATX2 O2 ASCLIN2 output SLSO23 O3 QSPI2 output ASLSO1 O4 ASCLIN1 output ASLSO3 O5 ASCLIN3 output – O6 Reserved – O7 Reserved 2-25 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-6 Pin 122 Port 14 Functions (cont’d) Symbol Ctrl Type Function P14.4 I LP / PU1 / VEXT General-purpose input TIN84 HWCFG6 123 O0 General-purpose output TOUT84 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P14.5 I HWCFG1 MP+ / PU1 / VEXT EVR33 General-purpose input GTM input SCU input Latched at cold power on reset to decide EVR33 activation. P14.5 O0 General-purpose output TOUT85 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved TXDB O6 ERAY output – O7 Reserved P14.6 I TIN86 HWCFG0 DCLDO Data Sheet SCU input Latched at cold power on reset to decide default pad reset state (PU or HighZ). P14.4 TIN85 124 GTM input MP+ / PU1 / VEXT General-purpose input GTM input SCU input If EVR13 active, latched at cold power on reset to decide between LDO and SMPS mode. P14.6 O0 General-purpose output TOUT86 O1 GTM output – O2 Reserved SLSO22 O3 QSPI2 output – O4 Reserved – O5 Reserved TXENB O6 ERAY output – O7 Reserved 2-26 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-7 Port 15 Functions Pin Symbol Ctrl Type Function 109 P15.0 I LP / PU1 / VEXT General-purpose input TIN71 110 P15.0 O0 TOUT71 O1 GTM output ATX1 O2 ASCLIN1 output SLSO013 O3 QSPI0 output – O4 Reserved TXDCAN2 O5 CAN node 2 output ASCLK1 O6 ASCLIN1 output – O7 Reserved P15.1 I TIN72 REQ16 LP / PU1 / VEXT General-purpose output General-purpose input GTM input SCU input ARX1A ASCLIN1 input RXDCAN2A CAN node 2 input SLSI2B QSPI2 input EVRWUPB 111 GTM input SCU input P15.1 O0 General-purpose output TOUT72 O1 GTM output ATX1 O2 ASCLIN1 output SLSO25 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P15.2 I TIN73 SLSI2A MP / PU1 / VEXT General-purpose input GTM input QSPI2 input MRST2E QSPI2 input HSIC2INA QSPI2 input P15.2 O0 General-purpose output TOUT73 O1 GTM output ATX0 O2 ASCLIN0 output SLSO20 O3 QSPI2 output – O4 Reserved TXDCAN1 O5 CAN node 1 output ASCLK0 O6 ASCLIN0 output – O7 Reserved Data Sheet 2-27 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 15 Functions (cont’d) Table 2-7 Pin 112 Symbol Ctrl Type Function P15.3 I MP / PU1 / VEXT General-purpose input TIN74 ARX0B 113 GTM input ASCLIN0 input SCLK2A QSPI2 input RXDCAN1A CAN node 1 input HSIC2INB QSPI2 input P15.3 O0 General-purpose output TOUT74 O1 GTM output ATX0 O2 ASCLIN0 output SCLK2 O3 QSPI2 output END03 O4 MSC0 output EN01 O5 MSC0 output – O6 Reserved – O7 Reserved P15.4 I TIN75 MRST2A MP / PU1 / VEXT General-purpose input GTM input QSPI2 input REQ0 SCU input SCL0C I2C0 input P15.4 O0 General-purpose output TOUT75 O1 GTM output ATX1 O2 ASCLIN1 output MRST2 O3 QSPI2 output – O4 Reserved – O5 Reserved SCL0 O6 I2C0 output CC62 O7 CCU60 output Data Sheet 2-28 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 15 Functions (cont’d) Table 2-7 Pin 114 Symbol Ctrl Type Function P15.5 I MP / PU1 / VEXT General-purpose input TIN76 ARX1B 115 ASCLIN1 input MTSR2A QSPI2 input SDA0C I2C0 input REQ13 SCU input P15.5 O0 General-purpose output TOUT76 O1 GTM output ATX1 O2 ASCLIN1 output MTSR2 O3 QSPI2 output END02 O4 MSC0 output EN00 O5 MSC0 output SDA0 O6 I2C0 output CC61 O7 CCU60 output P15.6 I TIN77 MTSR2B 116 GTM input MP / PU1 / VEXT General-purpose input GTM input QSPI2 input P15.6 O0 General-purpose output TOUT77 O1 GTM output ATX3 O2 ASCLIN3 output MTSR2 O3 QSPI2 output – O4 Reserved SCLK2 O5 QSPI2 output ASCLK3 O6 ASCLIN3 output CC60 O7 CCU60 output P15.7 I TIN78 ARX3A MRST2B MP / PU1 / VEXT General-purpose input GTM input ASCLIN3 input QSPI2 input P15.7 O0 General-purpose output TOUT78 O1 GTM output ATX3 O2 ASCLIN3 output MRST2 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved COUT60 O7 CCU60 output Data Sheet 2-29 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 15 Functions (cont’d) Table 2-7 Pin 117 Symbol Ctrl Type Function P15.8 I MP / PU1 / VEXT General-purpose input TIN79 SCLK2B REQ1 GTM input QSPI2 input SCU input P15.8 O0 General-purpose output TOUT79 O1 GTM output – O2 Reserved SCLK2 O3 QSPI2 output – O4 Reserved – O5 Reserved ASCLK3 O6 ASCLIN3 output COUT61 O7 CCU60 output Table 2-8 Port 20 Functions Pin Symbol Ctrl Type Function 93 P20.0 I MP / PU1 / VEXT General-purpose input TIN59 RXDCAN3C GTM input CAN node 3 input T6EUDA GPT120 input REQ9 SCU input SYSCLK HSCT input TGI0 OCDS input P20.0 O0 General-purpose output TOUT59 O1 GTM output ATX3 O2 ASCLIN3 output ASCLK3 O3 ASCLIN3 output – O4 Reserved SYSCLK O5 HSCT output – O6 Reserved – O7 Reserved TGO0 HWOU T OCDS; ENx Data Sheet 2-30 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 20 Functions (cont’d) Table 2-8 Pin Symbol Ctrl Type Function 94 P20.2 I LP / PU / VEXT General-purpose input This pin is latched at power on reset release to enter test mode. TESTMODE 95 OCDS input P20.2 O0 Output function not available – O1 Output function not available – O2 Output function not available – O3 Output function not available – O4 Output function not available – O5 Output function not available – O6 Output function not available – O7 Output function not available P20.3 I TIN61 T6INA LP / PU1 / VEXT ARX3C 100 General-purpose input GTM input GPT120 input ASCLIN3 input P20.3 O0 General-purpose output TOUT61 O1 GTM output ATX3 O2 ASCLIN3 output SLSO09 O3 QSPI0 output SLSO29 O4 QSPI2 output TXDCAN3 O5 CAN node 3 output – O6 Reserved – O7 Reserved P20.6 I TIN62 LP / PU1 / VEXT General-purpose input GTM input P20.6 O0 TOUT62 O1 GTM output ARTS1 O2 ASCLIN1 output SLSO08 O3 QSPI0 output SLSO28 O4 QSPI2 output – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet General-purpose output 2-31 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 20 Functions (cont’d) Table 2-8 Pin Symbol Ctrl Type Function 101 P20.7 I LP / PU1 / VEXT General-purpose input TIN63 ACTS1A RXDCAN0B 102 ASCLIN1 input CAN node 0 input P20.7 O0 General-purpose output TOUT63 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved WDT1LCK O6 SCU output COUT63 O7 CCU61 output P20.8 I TIN64 103 GTM input MP / PU1 / VEXT General-purpose input GTM input P20.8 O0 TOUT64 O1 GTM output ASLSO1 O2 ASCLIN1 output SLSO00 O3 QSPI0 output SLSO10 O4 QSPI1 output TXDCAN0 O5 CAN node 0 output WDT0LCK O6 SCU output CC60 O7 CCU61 output P20.9 I TIN65 ARX1C LP / PU1 / VEXT General-purpose output General-purpose input GTM input ASCLIN1 input RXDCAN3E CAN node 3 input REQ11 SCU input SLSI0B QSPI0 input P20.9 O0 General-purpose output TOUT65 O1 GTM output – O2 Reserved SLSO01 O3 QSPI0 output SLSO11 O4 QSPI1 output – O5 Reserved WDTSLCK O6 SCU output CC61 O7 CCU61 output Data Sheet 2-32 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 20 Functions (cont’d) Table 2-8 Pin Symbol Ctrl Type Function 104 P20.10 I MP / PU1 / VEXT General-purpose input TIN66 105 O0 TOUT66 O1 GTM output ATX1 O2 ASCLIN1 output SLSO06 O3 QSPI0 output SLSO27 O4 QSPI2 output TXDCAN3 O5 CAN node 3 output ASCLK1 O6 ASCLIN1 output CC62 O7 CCU61 output P20.11 I TIN67 SCLK0A 106 GTM input P20.10 MP / PU1 / VEXT General-purpose output General-purpose input GTM input QSPI0 input P20.11 O0 General-purpose output TOUT67 O1 GTM output – O2 Reserved SCLK0 O3 QSPI0 output – O4 Reserved – O5 Reserved – O6 Reserved COUT60 O7 CCU61 output P20.12 I TIN68 MRST0A MP / PU1 / VEXT General-purpose input GTM input QSPI0 input P20.12 O0 General-purpose output TOUT68 O1 GTM output – O2 Reserved MRST0 O3 QSPI0 output MTSR0 O4 QSPI0 output – O5 Reserved – O6 Reserved COUT61 O7 CCU61 output Data Sheet 2-33 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 20 Functions (cont’d) Table 2-8 Pin Symbol Ctrl Type Function 107 P20.13 I MP / PU1 / VEXT General-purpose input TIN69 SLSI0A 108 GTM input QSPI0 input P20.13 O0 General-purpose output TOUT69 O1 GTM output – O2 Reserved SLSO02 O3 QSPI0 output SLSO12 O4 QSPI1 output SCLK0 O5 QSPI0 output – O6 Reserved COUT62 O7 CCU61 output P20.14 I TIN70 MTSR0A MP / PU1 / VEXT General-purpose input GTM input QSPI0 input P20.14 O0 General-purpose output TOUT70 O1 GTM output – O2 Reserved MTSR0 O3 QSPI0 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet 2-34 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-9 Port 21 Functions Pin Symbol Ctrl Type Function 84 P21.2 I LVDSH_N/ PU1 / VDDP3 General-purpose input TIN53 MRST2CN 85 GTM input QSPI2 input (LVDS) MRST3FN QSPI3 input (LVDS) EMGSTOPB SCU input RXDN HSCT input (LVDS) P21.2 O0 General-purpose output TOUT53 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved ETHMDC O5 ETH output – O6 Reserved – O7 Reserved P21.3 I TIN54 MRST2CP LVDSH_P/ PU1 / VDDP3 General-purpose input GTM input QSPI2 input (LVDS) MRST3FP QSPI3 input (LVDS) RXDP HSCT input (LVDS) P21.3 O0 General-purpose output TOUT54 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved ETHMDIOD HWOU T ETH input/output Data Sheet 2-35 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 21 Functions (cont’d) Table 2-9 Pin 86 Symbol Ctrl Type Function P21.4 I LVDSH_N/ PU1 / VDDP3 General-purpose input TIN55 87 O0 TOUT55 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TXDN O HSCT output (LVDS) P21.5 I TIN56 1) 88 GTM input P21.4 LVDSH_P/ PU1 / VDDP3 General-purpose output General-purpose input GTM input P21.5 O0 TOUT56 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TXDP O HSCT output (LVDS) P21.6 I TIN57 ARX3F A2 / PU / VDDP3 General-purpose output General-purpose input GTM input ASCLIN3 input TGI2 OCDS input TDI OCDS (JTAG) input T5EUDA GPT120 input P21.6 O0 General-purpose output TOUT57 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved SYSCLK O5 HSCT output – O6 Reserved T3OUT O7 GPT120 output TGO2 HWOU T OCDS; ENx Data Sheet 2-36 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Port 21 Functions (cont’d) Table 2-9 Pin 90 Symbol Ctrl Type Function P21.7 I A2 / PU / VDDP3 General-purpose input TIN58 DAP2 GTM input OCDS (3-Pin DAP) input In the 3-Pin DAP mode this pin is used as DAP2. In the 2-PIN DAP mode this pin is used as P21.7 and controlled by the related port control logic. TGI3 OCDS input ETHRXERB ETH input T5INA GPT120 input P21.7 O0 General-purpose output TOUT58 O1 GTM output ATX3 O2 ASCLIN3 output ASCLK3 O3 ASCLIN3 output – O4 Reserved – O5 Reserved – O6 Reserved T6OUT O7 GPT120 output TGO3 HWOU T OCDS; ENx TDO OCDS (JTAG); ENx The JTAG TDO function is overlayed with P21.7 via a double bond. In JTAG mode this pin is used as TDO, after power-on reset it is HighZ. DAP2 OCDS (DAP2); ENx In the 3-Pin DAP mode this pin is used as DAP2. 1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V) Table 2-10 Port 22 Functions Pin Symbol Ctrl Type Function 74 P22.0 I LVDSM_N / PU1 / VEXT General-purpose input TIN47 MTSR3E GTM input QSPI3 input P22.0 O0 General-purpose output TOUT47 O1 GTM output – O2 Reserved MTSR3 O3 QSPI3 output SCLK3N O4 QSPI3 output (LVDS) FCLN1 O5 MSC1 output (LVDS) FCLND1 O6 MSC1 output (LVDS) – O7 Reserved Data Sheet 2-37 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-10 Port 22 Functions (cont’d) Pin Symbol Ctrl Type Function 75 P22.1 I LVDSM_P / PU1 / VEXT General-purpose input TIN48 MRST3E 76 QSPI3 input P22.1 O0 General-purpose output TOUT48 O1 GTM output – O2 Reserved MRST3 O3 QSPI3 output SCLK3P O4 QSPI3 output (LVDS) FCLP1 O5 MSC1 output (LVDS) – O6 Reserved – O7 Reserved P22.2 I TIN49 SLSI3D 77 GTM input LVDSM_N / PU1 / VEXT General-purpose input GTM input QSPI3 input P22.2 O0 General-purpose output TOUT49 O1 GTM output – O2 Reserved SLSO312 O3 QSPI3 output MTSR3N O4 QSPI3 output (LVDS) SON1 O5 MSC1 output (LVDS) SOND1 O6 MSC1 output (LVDS) – O7 Reserved P22.3 I TIN50 SCLK3E LVDSM_P / PU1 / VEXT General-purpose input GTM input QSPI3 input P22.3 O0 General-purpose output TOUT50 O1 GTM output – O2 Reserved SCLK3 O3 QSPI3 output MTSR3P O4 QSPI3 output (LVDS) SOP1 O5 MSC1 output (LVDS) – O6 Reserved – O7 Reserved Data Sheet 2-38 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-11 Port 23 Functions Pin Symbol Ctrl Type Function 73 P23.1 I MP+ / PU1 / VEXT General-purpose input TIN42 SDI10 GTM input MSC1 input P23.1 O0 General-purpose output TOUT42 O1 GTM output ARTS1 O2 ASCLIN1 output SLSO313 O3 QSPI3 output GTMCLK0 O4 GTM output – O5 Reserved EXTCLK0 O6 SCU output – O7 Reserved Table 2-12 Port 32 Functions Pin Symbol Ctrl Type Function 70 P32.0 I LP / PX/ VEXT General-purpose input TIN36 FDEST GTM input PMU input VGATE1N Data Sheet SMPS mode: analog output. External Pass Device gate control for EVR13 P32.0 O0 General-purpose output TOUT36 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved 2-39 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-12 Port 32 Functions (cont’d) Pin Symbol Ctrl Type Function 72 P32.4 I MP+ / PU1 / VEXT General-purpose input TIN40 ACTS1B GTM input ASCLIN1 input SDI12 MSC1 input P32.4 O0 General-purpose output TOUT40 O1 GTM output – O2 Reserved END12 O3 MSC1 output GTMCLK1 O4 GTM output EN10 O5 MSC1 output EXTCLK1 O6 SCU output COUT63 O7 CCU60 output Table 2-13 Port 33 Functions Pin Symbol Ctrl Type Function 60 P33.4 I LP / PU1 / VEXT General-purpose input TIN26 CTRAPC DSITR0F Data Sheet GTM input CCU61 input DSADC channel 0 input F P33.4 O0 General-purpose output TOUT26 O1 GTM output ARTS2 O2 ASCLIN2 output – O3 Reserved PSITX1 O4 PSI5 output VADCEMUX12 O5 VADC output VADCG0BFL0 O6 VADC output – O7 Reserved 2-40 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-13 Port 33 Functions (cont’d) Pin 61 Symbol Ctrl Type Function P33.5 I LP / PU1 / VEXT General-purpose input TIN27 ACTS2B 62 ASCLIN2 input PSIRX2C PSI5 input PSISRXC PSI5-S input SENT5C SENT input CCPOS2C CCU61 input T4EUDB GPT120 input DSCIN0B DSADC channel 0 input B P33.5 O0 General-purpose output TOUT27 O1 GTM output SLSO07 O2 QSPI0 output SLSO17 O3 QSPI1 output DSCOUT0 O4 DSADC channel 0 output VADCEMUX11 O5 VADC output VADCG0BFL1 O6 VADC output – O7 Reserved P33.6 I TIN28 SENT4C Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input SENT input CCPOS1C CCU61 input T2EUDB GPT120 input DSDIN0B DSADC channel 0 input B DSITR2F DSADC channel 2 input F P33.6 O0 General-purpose output TOUT28 O1 GTM output ASLSO2 O2 ASCLIN2 output – O3 Reserved PSITX2 O4 PSI5 output VADCEMUX10 O5 VADC output VADCG0BFL2 O6 VADC output PSISTX O7 PSI5-S output 2-41 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-13 Port 33 Functions (cont’d) Pin 63 Symbol Ctrl Type Function P33.7 I LP / PU1 / VEXT General-purpose input TIN29 RXDCAN0E 64 SCU input CCPOS0C CCU61 input T2INB GPT120 input P33.7 O0 General-purpose output TOUT29 O1 GTM output ASCLK2 O2 ASCLIN2 output SLSO37 O3 QSPI3 output – O4 Reserved – O5 Reserved VADCG0BFL3 O6 VADC output – O7 Reserved P33.8 I ARX2E MP / HighZ/ VEXT EMGSTOPA General-purpose input GTM input ASCLIN2 input SCU input P33.8 O0 General-purpose output TOUT30 O1 GTM output ATX2 O2 ASCLIN2 output SLSO32 O3 QSPI3 output – O4 Reserved TXDCAN0 O5 CAN node 0 output – O6 Reserved COUT62 O7 CCU61 output SMUFSP HWOU T SMU P33.9 I TIN31 HSIC3INA Data Sheet CAN node 0 input REQ8 TIN30 65 GTM input LP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.9 O0 General-purpose output TOUT31 O1 GTM output ATX2 O2 ASCLIN2 output SLSO31 O3 QSPI3 output ASCLK2 O4 ASCLIN2 output – O5 Reserved – O6 Reserved CC62 O7 CCU61 output 2-42 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-13 Port 33 Functions (cont’d) Pin 66 Symbol Ctrl Type Function P33.10 I MP / PU1 / VEXT General-purpose input TIN32 SLSI3C HSIC3INB 67 P33.10 O0 General-purpose output TOUT32 O1 GTM output SLSO16 O2 QSPI1 output SLSO311 O3 QSPI3 output ASLSO1 O4 ASCLIN1 output PSISCLK O5 PSI5-S output – O6 Reserved COUT61 O7 CCU61 output P33.11 I SCLK3D MP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.11 O0 General-purpose output TOUT33 O1 GTM output ASCLK1 O2 ASCLIN1 output SCLK3 O3 QSPI3 output – O4 Reserved – O5 Reserved DSCGPWMN O6 DSADC output CC61 O7 CCU61 output P33.12 I TIN34 MTSR3D Data Sheet QSPI3 input QSPI3 input TIN33 68 GTM input MP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.12 O0 General-purpose output TOUT34 O1 GTM output ATX1 O2 ASCLIN1 output MTSR3 O3 QSPI3 output ASCLK1 O4 ASCLIN1 output – O5 Reserved DSCGPWMP O6 DSADC output COUT60 O7 CCU61 output 2-43 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-13 Port 33 Functions (cont’d) Pin 69 Symbol Ctrl Type Function P33.13 I MP / PU1 / VEXT General-purpose input TIN35 ARX1F GTM input ASCLIN1 input MRST3D QSPI3 input DSSGNB DSADC input INJ11 MSC1 input P33.13 O0 General-purpose output TOUT35 O1 GTM output ATX1 O2 ASCLIN1 output MRST3 O3 QSPI3 output SLSO26 O4 QSPI2 output – O5 Reserved DCDCSYNC O6 SCU output CC60 O7 CCU61 output Table 2-14 Port 40 Functions Pin 36 Symbol Ctrl Type Function P40.0 I S/ HighZ / VDDM General-purpose input VADCG1.8 CCPOS0D SENT0A 35 P40.1 I CCPOS1B S/ HighZ / VDDM SENT1A P40.6 I DS3PA VADC analog input channel 9 of group 1 (MD) CCU60 input S/ HighZ / VDDM General-purpose input VADC analog input channel 4 of group 2 DSADC: positive analog input of channel 3, pin A CCPOS1B CCU61 input SENT2D SENT input P40.7 VADCG2.5 DS3NA Data Sheet General-purpose inpu.t SENT input VADCG2.4 32 CCU60 input SENT input VADCG1.9 33 VADC analog input channel 8 of group 1 I S/ HighZ / VDDM General-purpose input VADC analog input channel 5 of group 2 DSADC: negative analog input channel of DSADC 3, pin A CCPOS1D CCU61 input SENT3D SENT input 2-44 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-14 Port 40 Functions (cont’d) Pin 31 Symbol Ctrl Type Function P40.8 I S/ HighZ / VDDM General-purpose input VADCG2.6 DS3PB 30 VADC analog input channel 6 of group 2 DSADC: positive analog input of channel 3, pin B CCPOS2B CCU61 input SENT4A SENT input P40.9 I VADCG2.7 DS3NB S/ HighZ / VDDM General-purpose input VADC analog input channel 7 of group 2 DSADC: negative analog input channel of DSADC 3, pin B CCPOS2D CCU61 input SENT5A SENT input Table 2-15 Analog Inputs Pin Symbol Ctrl Type Function 57 AN0 I D/ HighZ / VDDM Analog input 0 D/ HighZ / VDDM Analog input 1 D/ HighZ / VDDM Analog input 2 D/ HighZ / VDDM Analog input 3 D/ HighZ / VDDM Analog input 4 D/ HighZ / VDDM Analog input 5 D/ HighZ / VDDM Analog input 6 D/ HighZ / VDDM Analog input 7 VADCG0.0 DS0PB 56 AN1 I VADCG0.1 DS0NB 55 AN2 I VADCG0.2 DS0PA 54 AN3 I VADCG0.3 DS0NA 53 AN4 I VADCG0.4 52 AN5 I VADCG0.5 51 AN6 I VADCG0.6 50 AN7 VADCG0.7 Data Sheet I VADC analog input channel 0 of group 0 DSADC: positive analog input of channel 0, pin B VADC analog input channel 1 of group 0 (MD) DSADC: negative analog input channel of DSADC 0, pin B VADC analog input channel 2 of group 0 (MD) DSADC: positive analog input of channel 0, pin A VADC analog input channel 3 of group 0 DSADC: negative analog input channel of DSADC 0, pin A VADC analog input channel 4 of group 0 VADC analog input channel 5 of group 0 VADC analog input channel 6 of group 0 VADC analog input channel 7 of group 0 (with pull down diagnostics) 2-45 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-15 Analog Inputs (cont’d) Pin 49 Symbol Ctrl Type Function AN8 I D/ HighZ / VDDM Analog input 8 VADCG0.8 AN10 48 I VADCG0.10 AN11 47 I VADCG0.11 AN12 46 I VADCG0.12 AN13 45 I VADCG0.13 AN16 40 I VADCG1.0 AN17 39 I VADCG1.1 AN20 38 I VADCG1.4 DS2PA AN21 37 I VADCG1.5 DS2NA AN24 36 I VADCG1.8 SENT0A AN25 35 I VADCG1.9 SENT1A 34 AN35 I VADCG2.3 33 AN36 VADCG2.4 DS3PA SENT2D Data Sheet I VADC analog input channel 8 of group 0 D/ HighZ / VDDM Analog input 10 D/ HighZ / VDDM Analog input 11 D/ HighZ / VDDM Analog input 12 D/ HighZ / VDDM Analog input 13 D/ HighZ / VDDM Analog input 16 D/ HighZ / VDDM Analog input 17 D/ HighZ / VDDM Analog input 20 D/ HighZ / VDDM Analog input 21 S/ HighZ / VDDM Analog input 24 S/ HighZ / VDDM Analog input 24 VADC analog input channel 10 of group 0 (MD) VADC analog input channel 11 of group 0 VADC analog input channel 12 of group 0 VADC analog input channel 13 of group 0 VADC analog input channel 0 of group 1 VADC analog input channel 1 of group 1 (MD) VADC analog input channel 4 of group 1 DSADC: positive analog input of channel 2, pin A VADC analog input channel 5 of group 1 DSADC: negative analog input channel of DSADC 2, pin A VADC analog input channel 8 of group 1 SENT input channel 0, pin A VADC analog input channel 9of group 1 (MD) SENT input channel 1, pin A D/ HighZ / VDDM Analog input 35 S/ HighZ / VDDM Analog input 34 VADC analog input channel 3 of group 2 (with pull down diagnostics) VADC analog input channel 4 of group 2 DSADC: positive analog input of channel 3, pin A SENT input channel 2, pin D 2-46 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-15 Analog Inputs (cont’d) Pin 32 Symbol Ctrl Type Function AN37 I S/ HighZ / VDDM Analog input 37 VADCG2.5 DS3NA SENT3D 31 AN38 I DS3PB S/ HighZ / VDDM SENT4A AN39 I DS3NB S/ HighZ / VDDM SENT5A AN44 I DS3PC AN45 I VADCG2.11 DS3NC 27 AN46 I VADCG2.12 DS3PD 26 AN47 I VADCG2.13 DS3ND 25 AN48 I VADCG2.14 24 AN49 VADCG2.15 Data Sheet VADC analog input channel 6 of group 2 DSADC: positive analog input of channel 3, pin B Analog input 39 VADC analog input channel 7 of group 2 DSADC: negative analog input channel of DSADC 3, pin B SENT input channel 5, pin A VADCG2.10 28 Analog input 38 SENT input channel 4, pin A VADCG2.7 29 DSADC: negative analog input channel of DSADC 3, pin A SENT input channel 3, pin D VADCG2.6 30 VADC analog input channel 5 of group 2 I D/ HighZ / VDDM Analog input 44 D/ HighZ / VDDM Analog input 45 D/ HighZ / VDDM Analog input 46 D/ HighZ / VDDM Analog input 47 D/ HighZ / VDDM Analog input 48 D/ HighZ / VDDM Analog input 49 VADC analog input channel 10 of group 2 (MD) DSADC: positive analog input of channel 3, pin C VADC analog input channel 11 of group 2 DSADC: negative analog input channel of DSADC 3, pin C VADC analog input channel 12 of group 24 DSADC: positive analog input of channel 3, pin D VADC analog input channel 13 of group 2 DSADC: negative analog input channel of DSADC 3, pin D VADC analog input channel 14 of group 2 VADC analog input channel 15 of group 2 2-47 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-16 System I/O Pin Symbol Ctrl Type Function 97 PORST I PORST / PD / VEXT Power On Reset Input Additional strong PD in case of power fail. 98 ESR0 I/O MP / OD / VEXT External System Request Reset 0 Default configuration during and after reset is opendrain driver. The driver drives low during power-on reset. This is valid additionally after deactivation of PORST until the internal reset phase has finished. See also SCU chapter for details. Default after power-on can be different. See also SCU chapter ´Reset Control Unit´ and SCU_IOCR register description. EVRWUP I ESR1 I/O EVRWUP I 71 VGATE1P O VGATE1P / External Pass Device gate control for EVR13 -/ VEXT 89 TMS I DAP1 I/O A2 / PD / VDDP3 91 TRST I A2 / PD / VDDP3 JTAG Module Reset/Enable Input 92 TCK I JTAG Module Clock Input DAP0 I A2 / PD / VDDP3 81 XTAL1 I XTAL1 / -/- Main Oscillator/PLL/Clock Generator Input 82 XTAL2 O XTAL2 / -/- Main Oscillator/PLL/Clock Generator Output 96 EVR Wakeup Pin External System Request Reset 1 Default NMI function. See also SCU chapter ´Reset Control Unit´ and SCU_IOCR register description. MP / PU1 / VEXT EVR Wakeup Pin JTAG Module State Machine Control Input Device Access Port Line 1 Device Access Port Line 0 Table 2-17 Supply Pin Symbol Ctrl Type Function 42 VAREF1 I Vx Positive Analog Reference Voltage 1 41 VAGND1 I Vx Negative Analog Reference Voltage 1 44 VDDM I Vx ADC Analog Power Supply (3.3V / 5V) Data Sheet 2-48 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: Table 2-17 Supply (cont’d) Pin Symbol Ctrl Type Function 10 VDD / VDDSB I Vx Emulation Device: Emulation SRAM Standby Power Supply (1.3V) (Emulation Device only). Production Device: VDD (1.3V). 99, 58, 22 VDD I Vx Digital Core Power Supply (1.3V) 79 VDD I Vx Digital Core Power Supply (1.3V). The supply pin inturn supplies the main XTAL Oscillator/PLL (1.3V) . A higher decoupling capacitor is therefore recommended to the VSS pin for better noise immunity. 125, 78, 59, 23 VEXT I Vx External Supply (5V / 3.3V) 126 VDDP3 I Vx Digital Power Supply for Flash (3.3V). Can be also used as external 3.3V Power Supply for VFLEX. 83 VDDP3 I Vx Digital Power Supply for Oscillator, LVDSH and A2 pads (3.3V). The supply pin inturn supplies the main XTAL Oscillator/PLL (3.3V) . A higher decoupling capacitor is therefore recommended to the VSS pin for better noise immunity. 127 VDDFL3 I Vx Flash Power Supply (3.3V) 136 VFLEX I Vx Digital Power Supply for Flex Port Pads (5V / 3.3V) 80 VSS I Vx Digital Ground 43 VSSM I Vx Analog Ground for VDDM Legend: Column “Ctrl.”: I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB) O = Output O0 = Output with IOCR bit field selection PCx = 1X000B O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1) O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2) O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3) O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4) O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5) O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6) O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7) Column “Type”: LP = Pad class LP (5V/3.3V, LVTTL) MP = Pad class MP (5V/3.3V, LVTTL) MP+ = Pad class MP (5V/3.3V, LVTTL) A2 = Pad class A2 (3.3V, LVTTL) Data Sheet 2-49 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V) LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V) S = Pad class S (ADC overlay with General Purpose Input) D = Pad class D (ADC) PU = with pull-up device connected during reset (PORST = 0) PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3) PD = with pull-down device connected during reset (PORST = 0) PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3) PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode OD = open drain during reset (PORST = 0) HighZ = tri-state during reset (PORST = 0) PORST = PORST input pad XTAL1 = XTAL1 input pad XTAL2 = XTAL2 input pad VGATE1P = VGATE1P VGATE3P = VGATE3P Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground) NC = These pins are reserved for future extensions and shall not be connected externally NC1 = These pins are not connected on package level and will not be used for future extensions NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details pls. see Pin/Ball description of this pin. NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details pls. see Pin/Ball description of this pin. 2.1.2 Emergency Stop Function The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input signal (EMGSTOPA or EMGSTOPB) into a defined state: • Input state and • PU or High-Z depending on HWCFG[6] level latched during PORST active Control of the Emergency Stop function: • The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop Control”) • The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see chapter “SCU”, “Emergency Stop Control”) • On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, “Emergency Stop Register”). The Emergency Stop function is available for all GPIO Ports with the following exceptions: • Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode) • Not available for P40.x (analoge input ANx overlayed with GPI) • Not available for P32.0 EVR13 SMPS mode. 1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”. 2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active during and after reset. 3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset. Data Sheet 2-50 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC264x Pin Definition and Functions: • Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK) The Emergency Stop function can be overruled on the following GPIO Ports: • P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented. Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00 / P01) • P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00) • P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode). No Overruling in the DXCM (Debug over can message) mode • P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI • P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode • P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI 2.1.3 Pull-Up/Pull-Down Reset Behavior of the Pins Table 2-18 List of Pull-Up/Pull-Down Reset Behavior of the Pins Pins PORST = 0 all GPIOs Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0 TDI, TESTMODE Pull-up 1) PORST Pull-down with IPORST relevant TRST, TCK, TMS Pull-down ESR0 The open-drain driver is used to drive low.2) ESR1 Pull-up3) TDO Pull-up 1) 2) 3) 4) PORST = 1 Pull-down with IPDLI relevant Pull-up3) High-Z/Pull-up4) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation. Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details. See the SCU_IOCR register description. Depends on JTAG/DAP selection with TRST. In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on. Data Sheet 2-51 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: 2.2 TC265x Pin Definition and Functions: LQFP176 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 TC26x 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 P20. 14 P20. 13 P20. 12 P20. 11 P20. 10 P20. 9 P20. 8 P20. 7 P20. 6 VDD ESR0 PORST ESR1 P20. 3 P20. 2 / TESTMODE P20. 1 P20. 0 TCK TRST P21. 7 / TDO TMS P21. 6 / TDI P21. 5 P21. 4 P21. 3 P21. 2 P21. 1 P21. 0 VDDP 3 XTAL2 XTAL1 VSS VDD VEXT P22. 3 P22. 2 P22. 1 P22. 0 P23. 5 P23. 4 P23. 3 P23. 2 P23. 1 P23. 0 AN21 AN20 AN19 AN18 AN17 AN16 VAG ND1 VAREF1 VSSM VDDM AN13 AN12 AN11 AN10 AN8 AN7 AN6 AN5 AN4 AN3 AN2 AN1 AN0 VD D VEXT P 33.0 P 33.1 P 33.2 P 33.3 P 33.4 P 33.5 P 33.6 P 33.7 P 33.8 P 33.9 P33. 10 P33. 11 P33. 12 P33. 13 VGATE1 N / P 32.0 V GATE1 P P 32.2 P 32.3 P 32.4 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 P02.0 P02.1 P02.2 P02.3 P02.4 P02.5 P02.6 P02.7 P02.8 VDD/ VDDSB P00.0 P00.1 P00.2 P00.3 P00.4 P00.5 P00.6 P00.7 P00.8 P00.9 P 00.10 P 00.11 P 00.12 VDD V EXT AN49 AN48 AN47 AN46 AN45 AN44 AN39 AN38 AN37 AN36 AN35 AN33 AN32 AN29 AN28 AN27 AN26 AN25 AN24 176 175 174 173 172 171 170 169 168 167 166 165 164 163 162 161 160 159 158 157 156 155 154 153 152 151 150 149 148 147 146 145 144 143 142 141 140 139 138 137 136 135 134 133 P10.8 P10.7 P10.6 P10.5 P10.4 P10.3 P10.2 P10.1 P10.0 P11.12 P11.11 P11.10 VFL EX P11.9 P11.6 P11.3 P11.2 P13.3 P13.2 P13.1 P13.0 VD DFL3 VD DP3 VEXT P14.10 P14.9 P14.8 P14.7 P14.6 P14.5 P14.4 P14.3 P14.2 P14.1 P14.0 P15.8 P15.7 P15.6 P15.5 P15.4 P15.3 P15.2 P15.1 P15.0 Figure 2-1 is showing the TC265x Logic Symbol for the package variant: QFP176. Figure 2-2 TC265x Logic Symbol for the package variant LQFP176. Data Sheet 2-52 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: 2.2.1 TC265 LQFP176 Package Variant Pin Configuration Table 2-19 Port 00 Functions Pin Symbol Ctrl Type Function 11 P00.0 I MP / PU1 / VEXT General-purpose input TIN9 CTRAPA 12 GTM input CCU61 input T12HRE CCU60 input INJ00 MSC0 input CIFD9 CIF input P00.0 O0 General-purpose output TOUT9 O1 GTM output ASCLK3 O2 ASCLIN3 output ATX3 O3 ASCLIN3 output – O4 Reserved TXDCAN1 O5 CAN node 1 output – O6 Reserved COUT63 O7 CCU60 output ETHMDIOA I/O ETH input/output P00.1 I TIN10 ARX3E LP / PU1 / VEXT General-purpose input GTM input ASCLIN3 input RXDCAN1D CAN node 1 input PSIRX0A PSI5 input SENT0B SENT input CC60INB CCU60 input CC60INA CCU61 input DSCIN0A DSADC channel 0 input A VADCG3.11 VADC analog input channel 11 of group 3 CIFD10 CIF input P00.1 O0 General-purpose output TOUT10 O1 GTM output ATX3 O2 ASCLIN3 output – O3 Reserved DSCOUT0 O4 DSADC channel 0 output – O5 Reserved SPC0 O6 SENT output CC60 O7 CCU61 output Data Sheet 2-53 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-19 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function 13 P00.2 I LP / PU1 / VEXT General-purpose input TIN11 SENT1B 14 GTM input SENT input DSDIN0A DSADC channel 0 input A VADCG3.10 VADC analog input channel 10 of group 3 (MD) CIFD11 CIF input P00.2 O0 General-purpose output TOUT11 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved PSITX0 O4 PSI5 output TXDCAN3 O5 CAN node 3 output – O6 Reserved COUT60 O7 CCU61 output P00.3 I TIN12 RXDCAN3A LP / PU1 / VEXT General-purpose input GTM input CAN node 3 input PSIRX1A PSI5 input PSISRXA PSI5-S input SENT2B SENT input CC61INB CCU60 input CC61INA CCU61 input DSCIN3A DSADC channel 3 input A VADCG3.9 VADC analog input channel 9 of group 3 (MD) CIFD12 CIF input P00.3 O0 General-purpose output TOUT12 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved DSCOUT3 O4 DSADC channel 3 output – O5 Reserved SPC2 O6 SENT output CC61 O7 CCU61 output Data Sheet 2-54 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-19 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function 15 P00.4 I LP / PU1 / VEXT General-purpose input TIN13 REQ7 16 GTM input SCU input SENT3B SENT input DSDIN3A DSADC channel 3 input A DSSGNA DSADC input VADCG3.8 VADC analog input channel 8 of group 3 CIFD13 CIF input P00.4 O0 General-purpose output TOUT13 O1 GTM output PSISTX O2 PSI5-S output TXDCAN4 O3 CAN node 4 output PSITX1 O4 PSI5 output VADCG2BFL0 O5 VADC output SPC3 O6 SENT output COUT61 O7 CCU61 output P00.5 I TIN14 PSIRX2A LP / PU1 / VEXT General-purpose input GTM input PSI5 input SENT4B SENT input RXDCAN4A CAN node 4 input CC62INB CCU60 input CC62INA CCU61 input DSCIN2A DSADC channel 2 input A VADCG3.7 VADC analog input channel 7 of group 3 CIFD14 CIF input P00.5 O0 General-purpose output TOUT14 O1 GTM output DSCGPWMN O2 DSADC output – O3 Reserved DSCOUT2 O4 DSADC channel 2 output VADCG2BFL1 O5 VADC output SPC4 O6 SENT output CC62 O7 CCU61 output Data Sheet 2-55 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-19 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function 17 P00.6 I LP / PU1 / VEXT General-purpose input TIN15 SENT5B 18 GTM input SENT input DSDIN2A DSADC channel 2 input A VADCG3.6 VADC analog input channel 6 of group 3 CIFD15 CIF input P00.6 O0 General-purpose output TOUT15 O1 GTM output DSCGPWMP O2 DSADC output VADCG2BFL2 O3 VADC output PSITX2 O4 PSI5 output VADCEMUX10 O5 VADC output SPC5 O6 SENT output COUT62 O7 CCU61 output P00.7 I TIN16 CC60INC LP / PU1 / VEXT General-purpose input GTM input CCU61 input CCPOS0A CCU61 input T12HRB CCU60 input T2INA GPT120 input VADCG3.5 VADC analog input channel 5 of group 3 CIFCLK CIF input P00.7 O0 General-purpose output TOUT16 O1 GTM output – O2 Reserved VADCG2BFL3 O3 VADC output – O4 Reserved VADCEMUX11 O5 VADC output – O6 Reserved CC60 O7 CCU61 output Data Sheet 2-56 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-19 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function 19 P00.8 I LP / PU1 / VEXT General-purpose input TIN17 CC61INC 20 GTM input CCU61 input CCPOS1A CCU61 input T13HRB CCU60 input T2EUDA GPT120 input VADCG3.4 VADC analog input channel 4 of group 3 CIFVSNC CIF input P00.8 O0 General-purpose output TOUT17 O1 GTM output SLSO36 O2 QSPI3 output – O3 Reserved – O4 Reserved VADCEMUX12 O5 VADC output – O6 Reserved CC61 O7 CCU61 output P00.9 I TIN18 CC62INC LP / PU1 / VEXT General-purpose input GTM input CCU61 input CCPOS2A CCU61 input T13HRC CCU60 input T12HRC CCU60 input T4EUDA GPT120 input VADCG3.3 VADC analog input channel 3 of group 3 DSITR3F DSADC channel 3 input F CIFHSNC CIF input P00.9 O0 General-purpose output TOUT18 O1 GTM output SLSO37 O2 QSPI3 output ARTS3 O3 ASCLIN3 output – O4 Reserved – O5 Reserved – O6 Reserved CC62 O7 CCU61 output Data Sheet 2-57 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-19 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function 21 P00.10 I LP / PU1 / VEXT General-purpose input TIN19 VADCG3.2 22 VADC analog input channel 2 of group 3 (MD) P00.10 O0 General-purpose output TOUT19 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU61 output P00.11 I TIN20 CTRAPA 23 GTM input LP / PU1 / VEXT General-purpose input GTM input CCU60 input T12HRE CCU61 input VADCG3.1 VADC analog input channel of group 3 P00.11 O0 General-purpose output TOUT20 O1 GTM output – O2 Reserved – O3 Reserved DSCOUT0 O4 DSADC channel 0 output – O5 Reserved – O6 Reserved – O7 Reserved P00.12 I TIN21 ACTS3A VADCG3.0 LP / PU1 / VEXT General-purpose input GTM input ASCLIN3 input VADC analog input channel 0 of group 3 P00.12 O0 General-purpose output TOUT21 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU61 output Data Sheet 2-58 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-20 Port 02 Functions Pin Symbol Ctrl Type Function 1 P02.0 I MP+ / PU1 / VEXT General-purpose input TIN0 ARX2G 2 GTM input ASCLIN2 input REQ6 SCU input CC60INA CCU60 input CC60INB CCU61 input CIFD0 CIF input P02.0 O0 General-purpose output TOUT0 O1 GTM output ATX2 O2 ASCLIN2 output SLSO31 O3 QSPI3 output DSCGPWMN O4 DSADC output TXDCAN0 O5 CAN node 0 output TXDA O6 ERAY output CC60 O7 CCU60 output P02.1 I TIN1 LP / PU1 General-purpose input / VEXT GTM input REQ14 SCU input ARX2B ASCLIN2 input RXDCAN0A CAN node 0 input RXDA2 ERAY input CIFD1 CIF input P02.1 O0 General-purpose output TOUT1 O1 GTM output – O2 Reserved SLSO32 O3 QSPI3 output DSCGPWMP O4 DSADC output – O5 Reserved – O6 Reserved COUT60 O7 CCU60 output Data Sheet 2-59 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-20 Port 02 Functions (cont’d) Pin Symbol Ctrl Type Function 3 P02.2 I MP+ / PU1 / VEXT General-purpose input TIN2 CC61INA 4 GTM input CCU60 input CC61INB CCU61 input CIFD2 CIF input P02.2 O0 General-purpose output TOUT2 O1 GTM output ATX1 O2 ASCLIN1 output SLSO33 O3 QSPI3 output PSITX0 O4 PSI5 output TXDCAN2 O5 CAN node 2 output TXDB O6 ERAY output CC61 O7 CCU60 output P02.3 I TIN3 ARX1G LP / PU1 / VEXT General-purpose input GTM input ASCLIN1 input RXDCAN2B CAN node 2 input RXDB2 ERAY input PSIRX0B PSI5 input SDI11 MSC1 input CIFD3 CIF input P02.3 O0 General-purpose output TOUT3 O1 GTM output ASLSO2 O2 ASCLIN2 output SLSO34 O3 QSPI3 output – O4 Reserved – O5 Reserved – O6 Reserved COUT61 O7 CCU60 output Data Sheet 2-60 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-20 Port 02 Functions (cont’d) Pin Symbol Ctrl Type Function 5 P02.4 I MP+ / PU1 / VEXT General-purpose input TIN4 SLSI3A 6 GTM input QSPI3 input ECTT1 TTCAN input RXDCAN0D CAN node 0 input CC62INA CCU60 input CC62INB CCU61 input SDA0A I2C0 input CIFD4 CIF input P02.4 O0 General-purpose output TOUT4 O1 GTM output ASCLK2 O2 ASCLIN2 output SLSO30 O3 QSPI3 output PSISCLK O4 PSI5-S output SDA0 O5 I2C0 output TXENA O6 ERAY output CC62 O7 CCU60 output P02.5 I TIN5 MRST3A MP+ / PU1 / VEXT General-purpose input GTM input QSPI3 input ECTT2 TTCAN input PSIRX1B PSI5 input PSISRXB PSI5-S input SENT3C SENT input SCL0A I2C0 input CIFD5 CIF input P02.5 O0 General-purpose output TOUT5 O1 GTM output TXDCAN0 O2 CAN node 0 output MRST3 O3 QSPI3 output – O4 Reserved SCL0 O5 I2C0 output TXENB O6 ERAY output COUT62 O7 CCU60 output Data Sheet 2-61 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-20 Port 02 Functions (cont’d) Pin Symbol Ctrl Type Function 7 P02.6 I MP / PU1 / VEXT General-purpose input TIN6 MTSR3A 8 GTM input QSPI3 input SENT2C SENT input CC60INC CCU60 input CCPOS0A CCU60 input T12HRB CCU61 input T3INA GPT120 input CIFD6 CIF input P02.6 O0 General-purpose output TOUT6 O1 GTM output PSISTX O2 PSI5-S output MTSR3 O3 QSPI3 output PSITX1 O4 PSI5 output VADCEMUX00 O5 VADC output – O6 Reserved CC60 O7 CCU60 output P02.7 I TIN7 SCLK3A MP / PU1 / VEXT General-purpose input GTM input QSPI3 input PSIRX2B PSI5 input SENT1C SENT input CC61INC CCU60 input CCPOS1A CCU60 input T13HRB CCU61 input T3EUDA GPT120 input CIFD7 CIF input DSCIN3B DSADC channel 3 input B P02.7 O0 General-purpose output TOUT7 O1 GTM output – O2 Reserved SCLK3 O3 QSPI3 output DSCOUT3 O4 DSADC channel 3 output VADCEMUX01 O5 VADC output SPC1 O6 SENT output CC61 O7 CCU60 output Data Sheet 2-62 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-20 Port 02 Functions (cont’d) Pin Symbol Ctrl Type 9 P02.8 I SENT0C LP / PU1 General-purpose input / GTM input VEXT SENT input CC62INC CCU60 input CCPOS2A CCU60 input T12HRC CCU61 input T13HRC CCU61 input T4INA GPT120 input CIFD8 CIF input DSDIN3B DSADC channel 3 input B DSITR3E DSADC channel 3 input E TIN8 Function P02.8 O0 General-purpose output TOUT8 O1 GTM output SLSO35 O2 QSPI3 output – O3 Reserved PSITX2 O4 PSI5 output VADCEMUX02 O5 VADC output ETHMDC O6 ETH output CC62 O7 CCU60 output Table 2-21 Port 10 Functions Pin Symbol Ctrl Type Function 168 P10.0 I LP / PU1 / VEXT General-purpose input TIN102 T6EUDB GTM input GPT120 input P10.0 O0 General-purpose output TOUT102 O1 GTM output – O2 Reserved SLSO110 O3 QSPI1 output – O4 Reserved VADCG3BFL0 O5 VADC output – O6 Reserved – O7 Reserved Data Sheet 2-63 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-21 Port 10 Functions (cont’d) Pin 169 Symbol Ctrl Type Function P10.1 I MP+ / PU1 / VEXT General-purpose input TIN103 MRST1A GTM input QSPI1 input T5EUDB 170 GPT120 input P10.1 O0 General-purpose output TOUT103 O1 GTM output MTSR1 O2 QSPI1 output MRST1 O3 QSPI1 output EN01 O4 MSC0 output VADCG3BFL1 O5 VADC output END03 O6 MSC0 output – O7 Reserved P10.2 I TIN104 SCLK1A General-purpose input MP / PU1 / VEXT GTM input QSPI1 input T6INB GPT120 input REQ2 SCU input RXDCAN2E CAN node 2 input SDI01 MSC0 input P10.2 O0 General-purpose output TOUT104 O1 GTM output – O2 Reserved SCLK1 O3 QSPI1 output EN00 O4 MSC0 output VADCG3BFL2 O5 VADC output END02 O6 MSC0 output – O7 Reserved Data Sheet 2-64 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-21 Port 10 Functions (cont’d) Pin 171 Symbol Ctrl Type Function P10.3 I MP / PU1 / VEXT General-purpose input TIN105 MTSR1A 172 GTM input QSPI1 input REQ3 SCU input T5INB GPT120 input P10.3 O0 General-purpose output TOUT105 O1 GTM output VADCG3BFL3 O2 VADC output MTSR1 O3 QSPI1 output EN00 O4 MSC0 output END02 O5 MSC0 output TXDCAN2 O6 CAN node 2 output – O7 Reserved P10.4 I TIN106 MTSR1C General-purpose input MP+ / PU1 / VEXT GTM input QSPI1 input CCPOS0C CCU60 input T3INB GPT120 input P10.4 O0 General-purpose output TOUT106 O1 GTM output – O2 Reserved SLSO18 O3 QSPI1 output MTSR1 O4 QSPI1 output EN00 O5 MSC0 output END02 O6 MSC0 output – O7 Reserved Data Sheet 2-65 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-21 Port 10 Functions (cont’d) Pin 173 Symbol Ctrl Type Function P10.5 I LP / PU1 / VEXT General-purpose input TIN107 HWCFG4 174 GTM input SCU input RXDCAN4B CAN node 4 input INJ01 MSC0 input P10.5 O0 General-purpose output TOUT107 O1 GTM output ATX2 O2 ASCLIN2 output SLSO38 O3 QSPI3 output SLSO19 O4 QSPI1 output T6OUT O5 GPT120 output ASLSO2 O6 ASCLIN2 output – O7 Reserved P10.6 I TIN108 ARX2D General-purpose input LP / PU1 / VEXT GTM input ASCLIN2 input MTSR3B QSPI3 input HWCFG5 SCU input P10.6 O0 General-purpose output TOUT108 O1 GTM output ASCLK2 O2 ASCLIN2 output MTSR3 O3 QSPI3 output T3OUT O4 GPT120 output TXDCAN4 O5 CAN node 4 output MRST1 O6 QSPI1 output VADCG3BFL0 O7 VADC output Data Sheet 2-66 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-21 Port 10 Functions (cont’d) Pin 175 Symbol Ctrl Type Function P10.7 I LP / PU1 / VEXT General-purpose input TIN109 ACTS2A 176 GTM input ASCLIN2 input MRST3B QSPI3 input REQ4 SCU input CCPOS1C CCU60 input T3EUDB GPT120 input P10.7 O0 General-purpose output TOUT109 O1 GTM output – O2 Reserved MRST3 O3 QSPI3 output VADCG3BFL1 O4 VADC output – O5 Reserved – O6 Reserved – O7 Reserved P10.8 I TIN110 SCLK3B General-purpose input LP / PU1 / VEXT GTM input QSPI3 input REQ5 SCU input CCPOS2C CCU60 input T4INB GPT120 input P10.8 O0 General-purpose output TOUT110 O1 GTM output ARTS2 O2 ASCLIN2 output SCLK3 O3 QSPI3 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet 2-67 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-22 Port 11 Functions Pin Symbol Ctrl Type Function 160 P11.2 I MPR / PU1 / VFLEX General-purpose input TIN95 161 P11.2 O0 TOUT95 O1 GTM output END03 O2 MSC0 output SLSO05 O3 QSPI0 output SLSO15 O4 QSPI1 output EN01 O5 MSC0 output ETHTXD1 O6 ETH output COUT63 O7 CCU60 output P11.3 I TIN96 MRST1B MPR / PU1 / VFLEX SDI03 162 GTM input General-purpose output General-purpose input GTM input QSPI1 input MSC0 input P11.3 O0 General-purpose output TOUT96 O1 GTM output – O2 Reserved MRST1 O3 QSPI1 output TXDA O4 ERAY output – O5 Reserved ETHTXD0 O6 ETH output COUT62 O7 CCU60 output P11.6 I TIN97 SCLK1B MPR / PU1 / VFLEX General-purpose input GTM input QSPI1 input P11.6 O0 General-purpose output TOUT97 O1 GTM output TXENB O2 ERAY output SCLK1 O3 QSPI1 output TXENA O4 ERAY output FCLP0 O5 MSC0 output ETHTXEN O6 ETH output COUT61 O7 CCU60 output Data Sheet 2-68 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-22 Port 11 Functions (cont’d) Pin 163 Symbol Ctrl Type Function P11.9 I MP+ / PU1 / VFLEX General-purpose input TIN98 MTSR1B 165 GTM input QSPI1 input RXDA1 ERAY input ETHRXD1 ETH input P11.9 O0 General-purpose output TOUT98 O1 GTM output – O2 Reserved MTSR1 O3 QSPI1 output – O4 Reserved SOP0 O5 MSC0 output – O6 Reserved COUT60 O7 CCU60 output P11.10 I TIN99 REQ12 LP / PU1 / VFLEX General-purpose input GTM input SCU input ARX1E ASCLIN1 input SLSI1A QSPI1 input RXDCAN3D CAN node 3 input RXDB1 ERAY input ETHRXD0 ETH input SDI00 MSC0 input P11.10 O0 General-purpose output TOUT99 O1 GTM output – O2 Reserved SLSO03 O3 QSPI0 output SLSO13 O4 QSPI1 output – O5 Reserved – O6 Reserved CC62 O7 CCU60 output Data Sheet 2-69 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-22 Port 11 Functions (cont’d) Pin 166 Symbol Ctrl Type Function P11.11 I MP+ / PU1 / VFLEX General-purpose input TIN100 ETHCRSDVA 167 GTM input ETH input P11.11 O0 General-purpose output TOUT100 O1 GTM output END02 O2 MSC0 output SLSO04 O3 QSPI0 output SLSO14 O4 QSPI1 output EN00 O5 MSC0 output TXENB O6 ERAY output CC61 O7 CCU60 output P11.12 I TIN101 ETHREFCLK MPR / PU1 / VFLEX General-purpose input GTM input ETH input ETHTXCLKB ETH input (Not for productive purposes) ETHRXCLKA ETH input (Not for productive purposes) P11.12 O0 General-purpose output TOUT101 O1 GTM output ATX1 O2 ASCLIN1 output GTMCLK2 O3 GTM output TXDB O4 ERAY output TXDCAN3 O5 CAN node 3 output EXTCLK1 O6 SCU output CC60 O7 CCU60 output Table 2-23 Port 13 Functions Pin Symbol Ctrl Type Function 156 P13.0 I LVDSM_N / PU1 / VEXT General-purpose input TIN91 Data Sheet GTM input P13.0 O0 TOUT91 O1 GTM output END03 O2 MSC0 output SCLK2N O3 QSPI2 output (LVDS) EN01 O4 MSC0 output FCLN0 O5 MSC0 output (LVDS) FCLND0 O6 MSC0 output (LVDS) TXDCAN4 O7 CAN node 4 output 2-70 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-23 Port 13 Functions (cont’d) Pin 157 Symbol Ctrl Type Function P13.1 I LVDSM_P / PU1 / VEXT General-purpose input TIN92 SCL0B RXDCAN4C 158 P13.1 O0 General-purpose output TOUT92 O1 GTM output – O2 Reserved SCLK2P O3 QSPI2 output (LVDS) – O4 Reserved FCLP0 O5 MSC0 output (LVDS) SCL0 O6 I2C0 output – O7 Reserved P13.2 I CAPINA LVDSM_N / PU1 / VEXT SDA0B General-purpose input GTM input GPT120 input I2C0 input P13.2 O0 General-purpose output TOUT93 O1 GTM output – O2 Reserved MTSR2N O3 QSPI2 output (LVDS) FCLP0 O4 MSC0 output SON0 O5 MSC0 output (LVDS) SDA0 O6 I2C0 output SOND0 O7 MSC0 output (LVDS) P13.3 I TIN94 Data Sheet I2C0 input CAN node 4 input TIN93 159 GTM input LVDSM_P / PU1 / VEXT General-purpose input GTM input P13.3 O0 TOUT94 O1 GTM output – O2 Reserved MTSR2P O3 QSPI2 output (LVDS) – O4 Reserved SOP0 O5 MSC0 output (LVDS) – O6 Reserved – O7 Reserved 2-71 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-24 Port 14 Functions Pin Symbol Ctrl Type Function 142 P14.0 I MP+ / PU1 / VEXT General-purpose input TIN80 143 P14.0 O0 TOUT80 O1 GTM output ATX0 O2 ASCLIN0 output Recommended as Boot loader pin. TXDA O3 ERAY output TXDB O4 ERAY output TXDCAN1 O5 CAN node 1 output Used for single pin DAP (SPD) function. ASCLK0 O6 ASCLIN0 output COUT62 O7 CCU60 output P14.1 I TIN81 REQ15 Data Sheet GTM input MP / PU1 / VEXT General-purpose output General-purpose input GTM input SCU input ARX0A ASCLIN0 input RXDCAN1B CAN node 1 input Used for single pin DAP (SPD) function. RXDA3 ERAY input RXDB3 ERAY input EVRWUPA SCU input P14.1 O0 General-purpose output TOUT81 O1 GTM output ATX0 O2 ASCLIN0 output Recommended as Boot loader pin. – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU60 output 2-72 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-24 Port 14 Functions (cont’d) Pin 144 Symbol Ctrl Type Function P14.2 I LP / PU1 / VEXT General-purpose input TIN82 HWCFG2 EVR13 145 SCU input Latched at cold power on reset to decide EVR13 activation. P14.2 O0 General-purpose output TOUT82 O1 GTM output ATX2 O2 ASCLIN2 output SLSO21 O3 QSPI2 output – O4 Reserved – O5 Reserved ASCLK2 O6 ASCLIN2 output – O7 Reserved P14.3 I TIN83 ARX2A Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input ASCLIN2 input REQ10 SCU input HWCFG3_BMI SCU input SDI02 MSC0 input P14.3 O0 General-purpose output TOUT83 O1 GTM output ATX2 O2 ASCLIN2 output SLSO23 O3 QSPI2 output ASLSO1 O4 ASCLIN1 output ASLSO3 O5 ASCLIN3 output – O6 Reserved – O7 Reserved 2-73 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-24 Port 14 Functions (cont’d) Pin 146 Symbol Ctrl Type Function P14.4 I LP / PU1 / VEXT General-purpose input TIN84 HWCFG6 147 O0 General-purpose output TOUT84 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P14.5 I HWCFG1 MP+ / PU1 / VEXT EVR33 General-purpose input GTM input SCU input Latched at cold power on reset to decide EVR33 activation. P14.5 O0 General-purpose output TOUT85 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved TXDB O6 ERAY output – O7 Reserved P14.6 I TIN86 HWCFG0 DCLDO Data Sheet SCU input Latched at cold power on reset to decide default pad reset state (PU or HighZ). P14.4 TIN85 148 GTM input MP+ / PU1 / VEXT General-purpose input GTM input SCU input If EVR13 active, latched at cold power on reset to decide between LDO and SMPS mode. P14.6 O0 General-purpose output TOUT86 O1 GTM output – O2 Reserved SLSO22 O3 QSPI2 output – O4 Reserved – O5 Reserved TXENB O6 ERAY output – O7 Reserved 2-74 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-24 Port 14 Functions (cont’d) Pin 149 Symbol Ctrl Type Function P14.7 I LP / PU1 / VEXT General-purpose input TIN87 RXDB0 150 O0 General-purpose output TOUT87 O1 GTM output ARTS0 O2 ASCLIN0 output SLSO24 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P14.8 I ARX1D LP / PU1 / VEXT General-purpose input GTM input ASCLIN1 input RXDCAN2D CAN node 2 input RXDA0 ERAY input P14.8 O0 General-purpose output TOUT88 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P14.9 I TIN89 ACTS0A Data Sheet ERAY input P14.7 TIN88 151 GTM input MP+ / PU1 / VEXT General-purpose input GTM input ASCLIN0 input P14.9 O0 General-purpose output TOUT89 O1 GTM output END03 O2 MSC0 output EN01 O3 MSC0 output – O4 Reserved TXENB O5 ERAY output TXENA O6 ERAY output – O7 Reserved 2-75 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-24 Port 14 Functions (cont’d) Pin 152 Symbol Ctrl Type Function P14.10 I MP+ / PU1 / VEXT General-purpose input TIN90 GTM input P14.10 O0 TOUT90 O1 GTM output END02 O2 MSC0 output EN00 O3 MSC0 output ATX1 O4 ASCLIN1 output TXDCAN2 O5 CAN node 2 output TXDA O6 ERAY output – O7 Reserved General-purpose output Table 2-25 Port 15 Functions Pin Symbol Ctrl Type Function 133 P15.0 I LP / PU1 / VEXT General-purpose input TIN71 134 GTM input P15.0 O0 TOUT71 O1 GTM output ATX1 O2 ASCLIN1 output SLSO013 O3 QSPI0 output – O4 Reserved TXDCAN2 O5 CAN node 2 output ASCLK1 O6 ASCLIN1 output – O7 Reserved P15.1 I TIN72 REQ16 LP / PU1 / VEXT General-purpose output General-purpose input GTM input SCU input ARX1A ASCLIN1 input RXDCAN2A CAN node 2 input SLSI2B QSPI2 input EVRWUPB SCU input P15.1 O0 General-purpose output TOUT72 O1 GTM output ATX1 O2 ASCLIN1 output SLSO25 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet 2-76 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-25 Port 15 Functions (cont’d) Pin 135 Symbol Ctrl Type Function P15.2 I MP / PU1 / VEXT General-purpose input TIN73 SLSI2A 136 GTM input QSPI2 input MRST2E QSPI2 input HSIC2INA QSPI2 input P15.2 O0 General-purpose output TOUT73 O1 GTM output ATX0 O2 ASCLIN0 output SLSO20 O3 QSPI2 output – O4 Reserved TXDCAN1 O5 CAN node 1 output ASCLK0 O6 ASCLIN0 output – O7 Reserved P15.3 I TIN74 ARX0B MP / PU1 / VEXT General-purpose input GTM input ASCLIN0 input SCLK2A QSPI2 input RXDCAN1A CAN node 1 input HSIC2INB QSPI2 input P15.3 O0 General-purpose output TOUT74 O1 GTM output ATX0 O2 ASCLIN0 output SCLK2 O3 QSPI2 output END03 O4 MSC0 output EN01 O5 MSC0 output – O6 Reserved – O7 Reserved Data Sheet 2-77 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-25 Port 15 Functions (cont’d) Pin 137 Symbol Ctrl Type Function P15.4 I MP / PU1 / VEXT General-purpose input TIN75 MRST2A 138 QSPI2 input REQ0 SCU input SCL0C I2C0 input P15.4 O0 General-purpose output TOUT75 O1 GTM output ATX1 O2 ASCLIN1 output MRST2 O3 QSPI2 output – O4 Reserved – O5 Reserved SCL0 O6 I2C0 output CC62 O7 CCU60 output P15.5 I TIN76 ARX1B 139 GTM input MP / PU1 / VEXT General-purpose input GTM input ASCLIN1 input MTSR2A QSPI2 input SDA0C I2C0 input REQ13 SCU input P15.5 O0 General-purpose output TOUT76 O1 GTM output ATX1 O2 ASCLIN1 output MTSR2 O3 QSPI2 output END02 O4 MSC0 output EN00 O5 MSC0 output SDA0 O6 I2C0 output CC61 O7 CCU60 output P15.6 I TIN77 MTSR2B MP / PU1 / VEXT General-purpose input GTM input QSPI2 input P15.6 O0 General-purpose output TOUT77 O1 GTM output ATX3 O2 ASCLIN3 output MTSR2 O3 QSPI2 output – O4 Reserved SCLK2 O5 QSPI2 output ASCLK3 O6 ASCLIN3 output CC60 O7 CCU60 output Data Sheet 2-78 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-25 Port 15 Functions (cont’d) Pin 140 Symbol Ctrl Type Function P15.7 I MP / PU1 / VEXT General-purpose input TIN78 ARX3A MRST2B 141 GTM input ASCLIN3 input QSPI2 input P15.7 O0 General-purpose output TOUT78 O1 GTM output ATX3 O2 ASCLIN3 output MRST2 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved COUT60 O7 CCU60 output P15.8 I TIN79 SCLK2B REQ1 MP / PU1 / VEXT General-purpose input GTM input QSPI2 input SCU input P15.8 O0 General-purpose output TOUT79 O1 GTM output – O2 Reserved SCLK2 O3 QSPI2 output – O4 Reserved – O5 Reserved ASCLK3 O6 ASCLIN3 output COUT61 O7 CCU60 output Data Sheet 2-79 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-26 Port 20 Functions Pin Symbol Ctrl Type Function 116 P20.0 I MP / PU1 / VEXT General-purpose input TIN59 RXDCAN3C 117 GTM input CAN node 3 input T6EUDA GPT120 input REQ9 SCU input SYSCLK HSCT input TGI0 OCDS input P20.0 O0 General-purpose output TOUT59 O1 GTM output ATX3 O2 ASCLIN3 output ASCLK3 O3 ASCLIN3 output – O4 Reserved SYSCLK O5 HSCT output – O6 Reserved – O7 Reserved TGO0 HWOU T OCDS; ENx P20.1 I TIN60 TGI1 LP / PU1 / VEXT General-purpose input GTM input OCDS input P20.1 O0 General-purpose output TOUT60 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TGO1 HWOU T OCDS; ENx Data Sheet 2-80 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-26 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function 118 P20.2 I LP / PU / VEXT General-purpose input This pin is latched at power on reset release to enter test mode. TESTMODE 119 OCDS input P20.2 O0 Output function not available – O1 Output function not available – O2 Output function not available – O3 Output function not available – O4 Output function not available – O5 Output function not available – O6 Output function not available – O7 Output function not available P20.3 I TIN61 T6INA LP / PU1 / VEXT ARX3C 124 General-purpose input GTM input GPT120 input ASCLIN3 input P20.3 O0 General-purpose output TOUT61 O1 GTM output ATX3 O2 ASCLIN3 output SLSO09 O3 QSPI0 output SLSO29 O4 QSPI2 output TXDCAN3 O5 CAN node 3 output – O6 Reserved – O7 Reserved P20.6 I TIN62 LP / PU1 / VEXT General-purpose input GTM input P20.6 O0 TOUT62 O1 GTM output ARTS1 O2 ASCLIN1 output SLSO08 O3 QSPI0 output SLSO28 O4 QSPI2 output – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet General-purpose output 2-81 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-26 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function 125 P20.7 I LP / PU1 / VEXT General-purpose input TIN63 ACTS1A RXDCAN0B 126 ASCLIN1 input CAN node 0 input P20.7 O0 General-purpose output TOUT63 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved WDT1LCK O6 SCU output COUT63 O7 CCU61 output P20.8 I TIN64 127 GTM input MP / PU1 / VEXT General-purpose input GTM input P20.8 O0 TOUT64 O1 GTM output ASLSO1 O2 ASCLIN1 output SLSO00 O3 QSPI0 output SLSO10 O4 QSPI1 output TXDCAN0 O5 CAN node 0 output WDT0LCK O6 SCU output CC60 O7 CCU61 output P20.9 I TIN65 ARX1C LP / PU1 / VEXT General-purpose output General-purpose input GTM input ASCLIN1 input RXDCAN3E CAN node 3 input REQ11 SCU input SLSI0B QSPI0 input P20.9 O0 General-purpose output TOUT65 O1 GTM output – O2 Reserved SLSO01 O3 QSPI0 output SLSO11 O4 QSPI1 output – O5 Reserved WDTSLCK O6 SCU output CC61 O7 CCU61 output Data Sheet 2-82 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-26 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function 128 P20.10 I MP / PU1 / VEXT General-purpose input TIN66 129 O0 TOUT66 O1 GTM output ATX1 O2 ASCLIN1 output SLSO06 O3 QSPI0 output SLSO27 O4 QSPI2 output TXDCAN3 O5 CAN node 3 output ASCLK1 O6 ASCLIN1 output CC62 O7 CCU61 output P20.11 I TIN67 SCLK0A 130 GTM input P20.10 MP / PU1 / VEXT General-purpose output General-purpose input GTM input QSPI0 input P20.11 O0 General-purpose output TOUT67 O1 GTM output – O2 Reserved SCLK0 O3 QSPI0 output – O4 Reserved – O5 Reserved – O6 Reserved COUT60 O7 CCU61 output P20.12 I TIN68 MRST0A MP / PU1 / VEXT General-purpose input GTM input QSPI0 input P20.12 O0 General-purpose output TOUT68 O1 GTM output – O2 Reserved MRST0 O3 QSPI0 output MTSR0 O4 QSPI0 output – O5 Reserved – O6 Reserved COUT61 O7 CCU61 output Data Sheet 2-83 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-26 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function 131 P20.13 I MP / PU1 / VEXT General-purpose input TIN69 SLSI0A 132 GTM input QSPI0 input P20.13 O0 General-purpose output TOUT69 O1 GTM output – O2 Reserved SLSO02 O3 QSPI0 output SLSO12 O4 QSPI1 output SCLK0 O5 QSPI0 output – O6 Reserved COUT62 O7 CCU61 output P20.14 I TIN70 MTSR0A General-purpose input MP / PU1 / VEXT GTM input QSPI0 input P20.14 O0 General-purpose output TOUT70 O1 GTM output – O2 Reserved MTSR0 O3 QSPI0 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Table 2-27 Port 21 Functions Pin 105 Symbol Ctrl Type Function P21.0 I A2 / PU1 / VDDP3 General-purpose input TIN51 GTM input P21.0 O0 TOUT51 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved ETHMDC O6 ETH output – O7 Reserved Data Sheet 2-84 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-27 Port 21 Functions (cont’d) Pin 106 Symbol Ctrl Type Function P21.1 I A2 / PU1 / VDDP3 General-purpose input TIN52 ETHMDIOB 107 GTM input ETH input (Not for production purposes) P21.1 O0 General-purpose output TOUT52 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved ETHMDIO O6 ETH output (Not for production purposes) – O7 Reserved P21.2 I TIN53 MRST2CN LVDSH_N/ PU1 / VDDP3 General-purpose input GTM input QSPI2 input (LVDS) MRST3FN QSPI3 input (LVDS) EMGSTOPB SCU input RXDN HSCT input (LVDS) P21.2 O0 General-purpose output TOUT53 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved ETHMDC O5 ETH output – O6 Reserved – O7 Reserved Data Sheet 2-85 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-27 Port 21 Functions (cont’d) Pin 108 Symbol Ctrl Type Function P21.3 I LVDSH_P/ PU1 / VDDP3 General-purpose input TIN54 MRST2CP 109 QSPI2 input (LVDS) MRST3FP QSPI3 input (LVDS) RXDP HSCT input (LVDS) P21.3 O0 General-purpose output TOUT54 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved ETHMDIOD HWOU T ETH input/output P21.4 I TIN55 110 GTM input LVDSH_N/ PU1 / VDDP3 General-purpose input GTM input P21.4 O0 TOUT55 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TXDN O HSCT output (LVDS) P21.5 I TIN56 LVDSH_P/ PU1 / VDDP3 General-purpose output General-purpose input GTM input P21.5 O0 TOUT56 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TXDP O HSCT output (LVDS) Data Sheet 2-86 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-27 Port 21 Functions (cont’d) Pin Symbol Ctrl Type Function 1111) P21.6 I A2 / PU / VDDP3 General-purpose input TIN57 ARX3F GTM input ASCLIN3 input TGI2 OCDS input TDI OCDS (JTAG) input T5EUDA GPT120 input P21.6 O0 General-purpose output TOUT57 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved SYSCLK O5 HSCT output – O6 Reserved T3OUT O7 GPT120 output TGO2 HWOU T OCDS; ENx Data Sheet 2-87 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-27 Port 21 Functions (cont’d) Pin 113 Symbol Ctrl Type Function P21.7 I A2 / PU / VDDP3 General-purpose input TIN58 DAP2 GTM input OCDS (3-Pin DAP) input In the 3-Pin DAP mode this pin is used as DAP2. In the 2-PIN DAP mode this pin is used as P21.7 and controlled by the related port control logic. TGI3 OCDS input ETHRXERB ETH input T5INA GPT120 input P21.7 O0 General-purpose output TOUT58 O1 GTM output ATX3 O2 ASCLIN3 output ASCLK3 O3 ASCLIN3 output – O4 Reserved – O5 Reserved – O6 Reserved T6OUT O7 GPT120 output TGO3 HWOU T OCDS; ENx TDO OCDS (JTAG); ENx The JTAG TDO function is overlayed with P21.7 via a double bond. In JTAG mode this pin is used as TDO, after power-on reset it is HighZ. DAP2 OCDS (DAP2); ENx In the 3-Pin DAP mode this pin is used as DAP2. 1) For an Emulation Device in a non Fusion Quad package this pin is used as VDDPSB (3.3V) Table 2-28 Port 22 Functions Pin Symbol Ctrl Type Function 95 P22.0 I LVDSM_N / PU1 / VEXT General-purpose input TIN47 MTSR3E GTM input QSPI3 input P22.0 O0 General-purpose output TOUT47 O1 GTM output – O2 Reserved MTSR3 O3 QSPI3 output SCLK3N O4 QSPI3 output (LVDS) FCLN1 O5 MSC1 output (LVDS) FCLND1 O6 MSC1 output (LVDS) – O7 Reserved Data Sheet 2-88 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-28 Port 22 Functions (cont’d) Pin Symbol Ctrl Type Function 96 P22.1 I LVDSM_P / PU1 / VEXT General-purpose input TIN48 MRST3E 97 QSPI3 input P22.1 O0 General-purpose output TOUT48 O1 GTM output – O2 Reserved MRST3 O3 QSPI3 output SCLK3P O4 QSPI3 output (LVDS) FCLP1 O5 MSC1 output (LVDS) – O6 Reserved – O7 Reserved P22.2 I TIN49 SLSI3D 98 GTM input LVDSM_N / PU1 / VEXT General-purpose input GTM input QSPI3 input P22.2 O0 General-purpose output TOUT49 O1 GTM output – O2 Reserved SLSO312 O3 QSPI3 output MTSR3N O4 QSPI3 output (LVDS) SON1 O5 MSC1 output (LVDS) SOND1 O6 MSC1 output (LVDS) – O7 Reserved P22.3 I TIN50 SCLK3E LVDSM_P / PU1 / VEXT General-purpose input GTM input QSPI3 input P22.3 O0 General-purpose output TOUT50 O1 GTM output – O2 Reserved SCLK3 O3 QSPI3 output MTSR3P O4 QSPI3 output (LVDS) SOP1 O5 MSC1 output (LVDS) – O6 Reserved – O7 Reserved Data Sheet 2-89 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-29 Port 23 Functions Pin Symbol Ctrl Type Function 89 P23.0 I LP / PU1 / VEXT General-purpose input TIN41 90 P23.0 O0 TOUT41 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P23.1 I TIN42 SDI10 91 GTM input MP+ / PU1 / VEXT General-purpose output General-purpose input GTM input MSC1 input P23.1 O0 General-purpose output TOUT42 O1 GTM output ARTS1 O2 ASCLIN1 output SLSO313 O3 QSPI3 output GTMCLK0 O4 GTM output – O5 Reserved EXTCLK0 O6 SCU output – O7 Reserved P23.2 I TIN43 LP / PU1 / VEXT General-purpose input GTM input P23.2 O0 TOUT43 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet General-purpose output 2-90 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-29 Port 23 Functions (cont’d) Pin 92 Symbol Ctrl Type Function P23.3 I LP / PU1 / VEXT General-purpose input TIN44 INJ10 93 MSC1 input P23.3 O0 General-purpose output TOUT44 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P23.4 I TIN45 94 GTM input MP+ / PU1 / VEXT General-purpose input GTM input P23.4 O0 TOUT45 O1 GTM output – O2 Reserved SLSO35 O3 QSPI3 output END12 O4 MSC1 output EN10 O5 MSC1 output – O6 Reserved – O7 Reserved P23.5 I TIN46 MP+ / PU1 / VEXT General-purpose output General-purpose input GTM input P23.5 O0 TOUT46 O1 GTM output – O2 Reserved SLSO34 O3 QSPI3 output END13 O4 MSC1 output EN11 O5 MSC1 output – O6 Reserved – O7 Reserved Data Sheet General-purpose output 2-91 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-30 Port 32 Functions Pin Symbol Ctrl Type Function 84 P32.0 I LP / PX/ VEXT General-purpose input TIN36 FDEST GTM input PMU input VGATE1N 86 SMPS mode: analog output. External Pass Device gate control for EVR13 P32.0 O0 General-purpose output TOUT36 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P32.2 I TIN38 ARX3D General-purpose input LP / PU1 / VEXT GTM input ASCLIN3 input RXDCAN3B 87 CAN node 3 input P32.2 O0 General-purpose output TOUT38 O1 GTM output ATX3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved – O5 Reserved DCDCSYNC O6 SCU output – O7 Reserved P32.3 I TIN39 Data Sheet General-purpose input LP / PU1 / VEXT GTM input P32.3 O0 TOUT39 O1 GTM output ATX3 O2 ASCLIN3 output – O3 Reserved ASCLK3 O4 ASCLIN3 output TXDCAN3 O5 CAN node 3 output – O6 Reserved – O7 Reserved General-purpose output 2-92 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-30 Port 32 Functions (cont’d) Pin Symbol Ctrl Type Function 88 P32.4 I MP+ / PU1 / VEXT General-purpose input TIN40 ACTS1B GTM input ASCLIN1 input SDI12 MSC1 input P32.4 O0 General-purpose output TOUT40 O1 GTM output – O2 Reserved END12 O3 MSC1 output GTMCLK1 O4 GTM output EN10 O5 MSC1 output EXTCLK1 O6 SCU output COUT63 O7 CCU60 output Table 2-31 Port 33 Functions Pin Symbol Ctrl Type Function 70 P33.0 I LP / PU1 / VEXT General-purpose input TIN22 DSITR0E 71 DSADC channel 0 input E P33.0 O0 General-purpose output TOUT22 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved VADCG1BFL0 O6 VADC output – O7 Reserved P33.1 I TIN23 PSIRX0C DSCIN2B Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input PSI5 input DSADC channel 2 input B P33.1 O0 General-purpose output TOUT23 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved DSCOUT2 O4 DSADC channel 2 output VADCEMUX02 O5 VADC output VADCG1BFL1 O6 VADC output – O7 Reserved 2-93 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-31 Port 33 Functions (cont’d) Pin 72 Symbol Ctrl Type Function P33.2 I LP / PU1 / VEXT General-purpose input TIN24 DSDIN2B DSITR2E 73 P33.2 O0 General-purpose output TOUT24 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved PSITX0 O4 PSI5 output VADCEMUX01 O5 VADC output VADCG1BFL2 O6 VADC output – O7 Reserved P33.3 I PSIRX1C LP / PU1 / VEXT General-purpose input GTM input PSI5 input P33.3 O0 General-purpose output TOUT25 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved VADCEMUX00 O5 VADC output VADCG1BFL3 O6 VADC output – O7 Reserved P33.4 I TIN26 CTRAPC DSITR0F Data Sheet DSADC channel 2 input B DSADC channel 2 input E TIN25 74 GTM input LP / PU1 / VEXT General-purpose input GTM input CCU61 input DSADC channel 0 input F P33.4 O0 General-purpose output TOUT26 O1 GTM output ARTS2 O2 ASCLIN2 output – O3 Reserved PSITX1 O4 PSI5 output VADCEMUX12 O5 VADC output VADCG0BFL0 O6 VADC output – O7 Reserved 2-94 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-31 Port 33 Functions (cont’d) Pin 75 Symbol Ctrl Type Function P33.5 I LP / PU1 / VEXT General-purpose input TIN27 ACTS2B 76 ASCLIN2 input PSIRX2C PSI5 input PSISRXC PSI5-S input SENT5C SENT input CCPOS2C CCU61 input T4EUDB GPT120 input DSCIN0B DSADC channel 0 input B P33.5 O0 General-purpose output TOUT27 O1 GTM output SLSO07 O2 QSPI0 output SLSO17 O3 QSPI1 output DSCOUT0 O4 DSADC channel 0 output VADCEMUX11 O5 VADC output VADCG0BFL1 O6 VADC output – O7 Reserved P33.6 I TIN28 SENT4C Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input SENT input CCPOS1C CCU61 input T2EUDB GPT120 input DSDIN0B DSADC channel 0 input B DSITR2F DSADC channel 2 input F P33.6 O0 General-purpose output TOUT28 O1 GTM output ASLSO2 O2 ASCLIN2 output – O3 Reserved PSITX2 O4 PSI5 output VADCEMUX10 O5 VADC output VADCG0BFL2 O6 VADC output PSISTX O7 PSI5-S output 2-95 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-31 Port 33 Functions (cont’d) Pin 77 Symbol Ctrl Type Function P33.7 I LP / PU1 / VEXT General-purpose input TIN29 RXDCAN0E 78 SCU input CCPOS0C CCU61 input T2INB GPT120 input P33.7 O0 General-purpose output TOUT29 O1 GTM output ASCLK2 O2 ASCLIN2 output SLSO37 O3 QSPI3 output – O4 Reserved – O5 Reserved VADCG0BFL3 O6 VADC output – O7 Reserved P33.8 I ARX2E MP / HighZ/ VEXT EMGSTOPA General-purpose input GTM input ASCLIN2 input SCU input P33.8 O0 General-purpose output TOUT30 O1 GTM output ATX2 O2 ASCLIN2 output SLSO32 O3 QSPI3 output – O4 Reserved TXDCAN0 O5 CAN node 0 output – O6 Reserved COUT62 O7 CCU61 output SMUFSP HWOU T SMU P33.9 I TIN31 HSIC3INA Data Sheet CAN node 0 input REQ8 TIN30 79 GTM input LP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.9 O0 General-purpose output TOUT31 O1 GTM output ATX2 O2 ASCLIN2 output SLSO31 O3 QSPI3 output ASCLK2 O4 ASCLIN2 output – O5 Reserved – O6 Reserved CC62 O7 CCU61 output 2-96 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-31 Port 33 Functions (cont’d) Pin 80 Symbol Ctrl Type Function P33.10 I MP / PU1 / VEXT General-purpose input TIN32 SLSI3C HSIC3INB 81 P33.10 O0 General-purpose output TOUT32 O1 GTM output SLSO16 O2 QSPI1 output SLSO311 O3 QSPI3 output ASLSO1 O4 ASCLIN1 output PSISCLK O5 PSI5-S output – O6 Reserved COUT61 O7 CCU61 output P33.11 I SCLK3D MP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.11 O0 General-purpose output TOUT33 O1 GTM output ASCLK1 O2 ASCLIN1 output SCLK3 O3 QSPI3 output – O4 Reserved – O5 Reserved DSCGPWMN O6 DSADC output CC61 O7 CCU61 output P33.12 I TIN34 MTSR3D Data Sheet QSPI3 input QSPI3 input TIN33 82 GTM input MP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.12 O0 General-purpose output TOUT34 O1 GTM output ATX1 O2 ASCLIN1 output MTSR3 O3 QSPI3 output ASCLK1 O4 ASCLIN1 output – O5 Reserved DSCGPWMP O6 DSADC output COUT60 O7 CCU61 output 2-97 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-31 Port 33 Functions (cont’d) Pin 83 Symbol Ctrl Type Function P33.13 I MP / PU1 / VEXT General-purpose input TIN35 ARX1F GTM input ASCLIN1 input MRST3D QSPI3 input DSSGNB DSADC input INJ11 MSC1 input P33.13 O0 General-purpose output TOUT35 O1 GTM output ATX1 O2 ASCLIN1 output MRST3 O3 QSPI3 output SLSO26 O4 QSPI2 output – O5 Reserved DCDCSYNC O6 SCU output CC60 O7 CCU61 output Table 2-32 Port 40 Functions Pin 44 Symbol Ctrl Type Function P40.0 I S/ HighZ / VDDM General-purpose input VADCG1.8 CCPOS0D SENT0A 43 P40.1 I CCPOS1B S/ HighZ / VDDM SENT1A P40.2 I CCPOS1D S/ HighZ / VDDM SENT2A P40.3 I CCPOS2B S/ HighZ / VDDM SENT3A P40.6 VADCG2.4 DS3PA Data Sheet VADC analog input channel 9 of group 1 (MD) CCU60 input General-purpose inpu.t VADC analog input channel 10 of group 1 (MD) CCU60 input SENT input VADCG1.11 35 General-purpose inpu.t SENT input VADCG1.10 41 CCU60 input SENT input VADCG1.9 42 VADC analog input channel 8 of group 1 General-purpose input VADC analog input channel 11 of group 1 CCU60 input SENT input I S/ HighZ / VDDM General-purpose input VADC analog input channel 4 of group 2 DSADC: positive analog input of channel 3, pin A CCPOS1B CCU61 input SENT2D SENT input 2-98 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-32 Port 40 Functions (cont’d) Pin 34 Symbol Ctrl Type Function P40.7 I S/ HighZ / VDDM General-purpose input VADCG2.5 DS3NA 33 DSADC: negative analog input channel of DSADC 3, pin A CCPOS1D CCU61 input SENT3D SENT input P40.8 I VADCG2.6 DS3PB 32 VADC analog input channel 5 of group 2 S/ HighZ / VDDM General-purpose input VADC analog input channel 6 of group 2 DSADC: positive analog input of channel 3, pin B CCPOS2B CCU61 input SENT4A SENT input P40.9 I VADCG2.7 DS3NB S/ HighZ / VDDM General-purpose input VADC analog input channel 7 of group 2 DSADC: negative analog input channel of DSADC 3, pin B CCPOS2D CCU61 input SENT5A SENT input Table 2-33 Analog Inputs Pin Symbol Ctrl Type Function 67 AN0 I D/ HighZ / VDDM Analog input 0 D/ HighZ / VDDM Analog input 1 D/ HighZ / VDDM Analog input 2 D/ HighZ / VDDM Analog input 3 D/ HighZ / VDDM Analog input 4 D/ HighZ / VDDM Analog input 5 VADCG0.0 DS0PB 66 AN1 I VADCG0.1 DS0NB 65 AN2 I VADCG0.2 DS0PA 64 AN3 I VADCG0.3 DS0NA 63 AN4 I VADCG0.4 62 AN5 VADCG0.5 Data Sheet I VADC analog input channel 0 of group 0 DSADC: positive analog input of channel 0, pin B VADC analog input channel 1 of group 0 (MD) DSADC: negative analog input channel of DSADC 0, pin B VADC analog input channel 2 of group 0 (MD) DSADC: positive analog input of channel 0, pin A VADC analog input channel 3 of group 0 DSADC: negative analog input channel of DSADC 0, pin A VADC analog input channel 4 of group 0 VADC analog input channel 5 of group 0 2-99 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-33 Analog Inputs (cont’d) Pin 61 Symbol Ctrl Type Function AN6 I D/ HighZ / VDDM Analog input 6 VADCG0.6 60 AN7 I VADCG0.7 59 AN8 I VADCG0.8 58 AN10 I VADCG0.10 57 AN11 I VADCG0.11 56 AN12 I VADCG0.12 55 AN13 I VADCG0.13 50 AN16 I VADCG1.0 49 AN17 I VADCG1.1 48 AN18 I VADCG1.2 47 AN19 I VADCG1.3 46 AN20 I VADCG1.4 DS2PA 45 AN21 I VADCG1.5 DS2NA 44 AN24 VADCG1.8 SENT0A Data Sheet I VADC analog input channel 6 of group 0 D/ HighZ / VDDM Analog input 7 D/ HighZ / VDDM Analog input 8 D/ HighZ / VDDM Analog input 10 D/ HighZ / VDDM Analog input 11 D/ HighZ / VDDM Analog input 12 D/ HighZ / VDDM Analog input 13 D/ HighZ / VDDM Analog input 16 D/ HighZ / VDDM Analog input 17 D/ HighZ / VDDM Analog input 18 D/ HighZ / VDDM Analog input 19 D/ HighZ / VDDM Analog input 20 D/ HighZ / VDDM Analog input 21 S/ HighZ / VDDM Analog input 24 VADC analog input channel 7 of group 0 (with pull down diagnostics) VADC analog input channel 8 of group 0 VADC analog input channel 10 of group 0 (MD) VADC analog input channel 11 of group 0 VADC analog input channel 12 of group 0 VADC analog input channel 13 of group 0 VADC analog input channel 0 of group 1 VADC analog input channel 1 of group 1 (MD) VADC analog input channel 2 of group 1 (MD) VADC analog input channel 3 of group 1 (with pull down diagnostics) VADC analog input channel 4 of group 1 DSADC: positive analog input of channel 2, pin A VADC analog input channel 5 of group 1 DSADC: negative analog input channel of DSADC 2, pin A VADC analog input channel 8 of group 1 SENT input channel 0, pin A 2-100 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-33 Analog Inputs (cont’d) Pin Symbol Ctrl Type Function 43 AN25 I S/ HighZ / VDDM Analog input 24 VADCG1.9 SENT1A 42 AN26 I VADCG1.10 SENT2A 41 AN27 I VADCG1.11 SENT3A 40 AN28 I VADCG1.12 39 AN29 I VADCG1.13 38 AN32 I VADCG2.0 37 AN33 I VADCG2.1 36 AN35 I VADCG2.3 35 AN36 I VADCG2.4 DS3PA S/ HighZ / VDDM AN37 I DS3NA VADCG2.6 DS3PB SENT4A Data Sheet VADC analog input channel 10 of group 1 (MD) SENT input channel 2, pin A Analog input 27 D/ HighZ / VDDM Analog input 28 D/ HighZ / VDDM Analog input 29 D/ HighZ / VDDM Analog input 32 D/ HighZ / VDDM Analog input 33 D/ HighZ / VDDM Analog input 35 S/ HighZ / VDDM Analog input 34 S/ HighZ / VDDM SENT3D AN38 Analog input 26 VADC analog input channel 11 of group 1 SENT input channel 3, pin A VADC analog input channel 12 of group 1 VADC analog input channel 13 of group 1 VADC analog input channel 0 of group 2 VADC analog input channel 1 of group 2 (MD) VADC analog input channel 3 of group 2 (with pull down diagnostics) VADC analog input channel 4 of group 2 DSADC: positive analog input of channel 3, pin A SENT input channel 2, pin D VADCG2.5 33 SENT input channel 1, pin A S/ HighZ / VDDM SENT2D 34 VADC analog input channel 9of group 1 (MD) Analog input 37 VADC analog input channel 5 of group 2 DSADC: negative analog input channel of DSADC 3, pin A SENT input channel 3, pin D I S/ HighZ / VDDM Analog input 38 VADC analog input channel 6 of group 2 DSADC: positive analog input of channel 3, pin B SENT input channel 4, pin A 2-101 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-33 Analog Inputs (cont’d) Pin 32 Symbol Ctrl Type Function AN39 I S/ HighZ / VDDM Analog input 39 VADCG2.7 DS3NB VADC analog input channel 7 of group 2 DSADC: negative analog input channel of DSADC 3, pin B SENT5A 31 AN44 SENT input channel 5, pin A I VADCG2.10 DS3PC 30 AN45 I VADCG2.11 DS3NC 29 AN46 I VADCG2.12 DS3PD 28 AN47 I VADCG2.13 DS3ND 27 AN48 I VADCG2.14 26 AN49 I VADCG2.15 D/ HighZ / VDDM Analog input 44 D/ HighZ / VDDM Analog input 45 D/ HighZ / VDDM Analog input 46 D/ HighZ / VDDM Analog input 47 D/ HighZ / VDDM Analog input 48 D/ HighZ / VDDM Analog input 49 VADC analog input channel 10 of group 2 (MD) DSADC: positive analog input of channel 3, pin C VADC analog input channel 11 of group 2 DSADC: negative analog input channel of DSADC 3, pin C VADC analog input channel 12 of group 24 DSADC: positive analog input of channel 3, pin D VADC analog input channel 13 of group 2 DSADC: negative analog input channel of DSADC 3, pin D VADC analog input channel 14 of group 2 VADC analog input channel 15 of group 2 Table 2-34 System I/O Pin Symbol Ctrl Type Function 121 PORST I PORST / PD / VEXT Power On Reset Input Additional strong PD in case of power fail. 122 ESR0 I/O MP / OD / VEXT External System Request Reset 0 Default configuration during and after reset is opendrain driver. The driver drives low during power-on reset. This is valid additionally after deactivation of PORST until the internal reset phase has finished. See also SCU chapter for details. Default after power-on can be different. See also SCU chapter ´Reset Control Unit´ and SCU_IOCR register description. EVRWUP I Data Sheet EVR Wakeup Pin 2-102 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-34 System I/O (cont’d) Pin Symbol Ctrl Type Function 120 ESR1 I/O MP / PU1 / VEXT External System Request Reset 1 Default NMI function. See also SCU chapter ´Reset Control Unit´ and SCU_IOCR register description. EVRWUP I 85 VGATE1P O VGATE1P / External Pass Device gate control for EVR13 -/ VEXT 112 TMS I DAP1 I/O A2 / PD / VDDP3 114 TRST I A2 / PD / VDDP3 JTAG Module Reset/Enable Input 115 TCK I JTAG Module Clock Input DAP0 I A2 / PD / VDDP3 102 XTAL1 I XTAL1 / -/- Main Oscillator/PLL/Clock Generator Input 103 XTAL2 O XTAL2 / -/- Main Oscillator/PLL/Clock Generator Output EVR Wakeup Pin JTAG Module State Machine Control Input Device Access Port Line 1 Device Access Port Line 0 Table 2-35 Supply Pin Symbol Ctrl Type Function 52 VAREF1 I Vx Positive Analog Reference Voltage 1 51 VAGND1 I Vx Negative Analog Reference Voltage 1 54 VDDM I Vx ADC Analog Power Supply (3.3V / 5V) 10 VDD / VDDSB I Vx Emulation Device: Emulation SRAM Standby Power Supply (1.3V) (Emulation Device only). Production Device: VDD (1.3V). 123, 68, 24 VDD I Vx Digital Core Power Supply (1.3V) 100 VDD I Vx Digital Core Power Supply (1.3V). The supply pin inturn supplies the main XTAL Oscillator/PLL (1.3V) . A higher decoupling capacitor is therefore recommended to the VSS pin for better noise immunity. 153, 99, 69, 25 VEXT I Vx External Supply (5V / 3.3V) Data Sheet 2-103 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: Table 2-35 Supply (cont’d) Pin Symbol Ctrl Type Function 154 VDDP3 I Vx Digital Power Supply for Flash (3.3V). Can be also used as external 3.3V Power Supply for VFLEX. 104 VDDP3 I Vx Digital Power Supply for Oscillator, LVDSH and A2 pads (3.3V). The supply pin inturn supplies the main XTAL Oscillator/PLL (3.3V) . A higher decoupling capacitor is therefore recommended to the VSS pin for better noise immunity. 155 VDDFL3 I Vx Flash Power Supply (3.3V) 164 VFLEX I Vx Digital Power Supply for Flex Port Pads (5V / 3.3V) 101 VSS I Vx Digital Ground 53 VSSM I Vx Analog Ground for VDDM Legend: Column “Ctrl.”: I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB) O = Output O0 = Output with IOCR bit field selection PCx = 1X000B O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1) O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2) O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3) O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4) O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5) O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6) O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7) Column “Type”: LP = Pad class LP (5V/3.3V, LVTTL) MP = Pad class MP (5V/3.3V, LVTTL) MP+ = Pad class MP (5V/3.3V, LVTTL) A2 = Pad class A2 (3.3V, LVTTL) LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V) LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V) S = Pad class S (ADC overlayed with General Purpose Input) D = Pad class D (ADC) PU = with pull-up device connected during reset (PORST = 0) PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3) PD = with pull-down device connected during reset (PORST = 0) 1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”. Data Sheet 2-104 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3) PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode OD = open drain during reset (PORST = 0) HighZ = tri-state during reset (PORST = 0) PORST = PORST input pad XTAL1 = XTAL1 input pad XTAL2 = XTAL2 input pad VGATE1P = VGATE1P VGATE3P = VGATE3P Vx = Supply (the Exposed Pad is also considered as VSS and shall be connected to ground) NC = These pins are reserved for future extensions and shall not be connected externally NC1 = These pins are not connected on package level and will not be used for future extensions NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details pls. see Pin/Ball description of this pin. NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details pls. see Pin/Ball description of this pin. 2.2.2 Emergency Stop Function The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input signal (EMGSTOPA or EMGSTOPB) into a defined state: • Input state and • PU or High-Z depending on HWCFG[6] level latched during PORST active Control of the Emergency Stop function: • The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop Control”) • The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see chapter “SCU”, “Emergency Stop Control”) • On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, “Emergency Stop Register”). The Emergency Stop function is available for all GPIO Ports with the following exceptions: • Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode) • Not available for P40.x (analoge input ANx overlayed with GPI) • Not available for P32.0 EVR13 SMPS mode. • Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK) The Emergency Stop function can be overruled on the following GPIO Ports: • P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented. Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00 / P01) • P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00) • P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode). No Overruling in the DXCM (Debug over can message) mode 2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active during and after reset. 3) If HWCFG[6] is connected to ground, the PD1/PU1 pins are predominantly in HighZ during and after reset. Data Sheet 2-105 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC265x Pin Definition and Functions: • P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI • P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode • P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI 2.2.3 Pull-Up/Pull-Down Reset Behavior of the Pins Table 2-36 List of Pull-Up/Pull-Down Reset Behavior of the Pins Pins PORST = 0 all GPIOs Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0 TDI, TESTMODE Pull-up 1) PORST Pull-down with IPORST relevant TRST, TCK, TMS Pull-down ESR0 The open-drain driver is used to drive low.2) ESR1 Pull-up3) TDO Pull-up 1) 2) 3) 4) PORST = 1 Pull-down with IPDLI relevant Pull-up3) High-Z/Pull-up4) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation. Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details. See the SCU_IOCR register description. Depends on JTAG/DAP selection with TRST. In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on. Data Sheet 2-106 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: 2.3 TC267x Pin Definition and Functions: BGA292 Figure 2-3 is showing the TC267x Logic Symbol for the package variant: BGA292. Y 20 19 18 17 16 15 14 13 12 11 10 9 8 VSS P32.3 P32.2 P32.0 P33.13 P33.11 P33.9 P33.7 P33.5 P33.3 P33.1 AN5 AN10 VGATE1 P33.12 P P33.10 P33.8 P33.6 P33.4 P33.2 P33.0 AN2 AN8 AN11 W VEXT VSS V P23.0 VEXT P32.4 4 3 2 1 VSSM AN20 AN21 NC Y AN13 AN16 AN18 AN19 AN24 AN25 W AN26 AN27 V AN28 AN29 U 15 14 13 12 11 10 9 8 7 6 5 4 VSS P32.7 P32.6 P33.15 P34.5 P34.3 P34.1 AN1 AN3 AN7 AN9 AN14 AN17 NC U P32.5 P33.14 P34.4 P34.2 VEVRSB AN0 AN4 AN6 AN12 AN15 AN22 AN30 T AN23 AN31 R AN35 AN33 R AN34 AN32 P AN37 AN39 P VDD AN38 AN36 N AN45 AN44 N VSS AN40 AN41 M AN47 AN46 M AN42 AN43 L P00.12 P00.11 L P00.10 P00.8 K P00.9 P00.7 K VSS P01.7 P00.6 J P00.5 P00.4 J VDD (VDDSB) P01.5 P01.6 H P00.3 P00.2 H P01.3 P01.4 G P00.1 P00.0 G P02.10 P02.11 F P02.7 P02.8 F P02.9 E P02.5 P02.6 E D P02.3 P02.4 D P02.1 P02.2 C P23.1 U T P23.4 P23.3 T P23.5 VSS R P22.2 P22.3 R P23.6 P23.7 Top-View VSS VSS (AGBT TX0P) VSS (AGBT TX0N) VSS VSS VSS VSS VSS VSS VSS P P22.0 P22.1 P P22.5 P22.4 N VDDP3 VDD N P22.7 P22.6 VDD M XTAL1 XTAL2 M P22.9 P22.8 VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VDD VSS L VSS TRST L P22.11 P22.10 VSS (AGBT ERR) K P21.4 P21.2 K P21.0 TMS NC (VDDPSB) VSS J P21.5 P21.3 J P21.1 TCK VSS VSS H P21.6 P20.2 5 VDDM 16 P23.2 P20.0 6 17 U H 7 VAGND1 VAREF1 P21.7 VDD VSS VSS VSS VDD VSS VSS VSS VSS (AGBT CLKN) VSS (AGBT CLKP) VDD (VDDSB) G P20.3 P20.1 G PORST ESR1 F P20.8 P20.7 F P20.6 ESR0 E P20.11 P20.10 E P20.9 VSS VDDFL3 P15.5 P14.2 P12.0 P12.1 P11.0 P11.1 P11.7 P11.8 P11.13 VSS D P20.13 P20.12 D VSS VDDFL3 P15.7 P15.8 P14.7 P14.9 P14.10 P11.4 P11.6 P11.5 P11.14 P11.15 VFLEX VSS 17 16 15 14 13 12 11 10 9 8 7 6 5 4 VDD VSS VSS VSS VSS VAGND2 VAREF2 T C P20.14 P15.2 B P15.0 VSS VDDP3 P15.3 P14.0 P14.4 P14.3 P14.6 P13.0 P13.2 P11.3 P11.10 P11.12 P10.1 P10.4 P10.5 P10.8 VEXT VSS P02.0 B A VSS VDDP3 P15.1 P15.4 P15.6 P14.1 P14.5 P14.8 P13.1 P13.3 P11.2 P11.9 P11.11 P10.0 P10.3 P10.2 P10.6 P10.7 VEXT NC A 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Figure 2-3 TC267x Logic Symbol for the package variant BGA292. Data Sheet 2-107 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: 2.3.1 TC267 BGA292 Package Variant Pin Configuration Table 2-37 Port 00 Functions Pin Symbol Ctrl Type Function G1 P00.0 I MP / PU1 / VEXT General-purpose input TIN9 CTRAPA G2 GTM input CCU61 input T12HRE CCU60 input INJ00 MSC0 input CIFD9 CIF input P00.0 O0 General-purpose output TOUT9 O1 GTM output ASCLK3 O2 ASCLIN3 output ATX3 O3 ASCLIN3 output – O4 Reserved TXDCAN1 O5 CAN node 1 output – O6 Reserved COUT63 O7 CCU60 output ETHMDIOA I/O ETH input/output P00.1 I TIN10 ARX3E LP / PU1 / VEXT General-purpose input GTM input ASCLIN3 input RXDCAN1D CAN node 1 input PSIRX0A PSI5 input SENT0B SENT input CC60INB CCU60 input CC60INA CCU61 input DSCIN0A DSADC channel 0 input A VADCG3.11 VADC analog input channel 11 of group 3 CIFD10 CIF input P00.1 O0 General-purpose output TOUT10 O1 GTM output ATX3 O2 ASCLIN3 output – O3 Reserved DSCOUT0 O4 DSADC channel 0 output – O5 Reserved SPC0 O6 SENT output CC60 O7 CCU61 output Data Sheet 2-108 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-37 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function H1 P00.2 I LP / PU1 / VEXT General-purpose input TIN11 SENT1B H2 GTM input SENT input DSDIN0A DSADC channel 0 input A VADCG3.10 VADC analog input channel 10 of group 3 (MD) CIFD11 CIF input P00.2 O0 General-purpose output TOUT11 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved PSITX0 O4 PSI5 output TXDCAN3 O5 CAN node 3 output – O6 Reserved COUT60 O7 CCU61 output P00.3 I TIN12 RXDCAN3A LP / PU1 / VEXT General-purpose input GTM input CAN node 3 input PSIRX1A PSI5 input PSISRXA PSI5-S input SENT2B SENT input CC61INB CCU60 input CC61INA CCU61 input DSCIN3A DSADC channel 3 input A VADCG3.9 VADC analog input channel 9 of group 3 (MD) CIFD12 CIF input P00.3 O0 General-purpose output TOUT12 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved DSCOUT3 O4 DSADC channel 3 output – O5 Reserved SPC2 O6 SENT output CC61 O7 CCU61 output Data Sheet 2-109 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-37 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function J1 P00.4 I LP / PU1 / VEXT General-purpose input TIN13 REQ7 J2 GTM input SCU input SENT3B SENT input DSDIN3A DSADC channel 3 input A DSSGNA DSADC input VADCG3.8 VADC analog input channel 8 of group 3 CIFD13 CIF input P00.4 O0 General-purpose output TOUT13 O1 GTM output PSISTX O2 PSI5-S output TXDCAN4 O3 CAN node 4 output PSITX1 O4 PSI5 output VADCG2BFL0 O5 VADC output SPC3 O6 SENT output COUT61 O7 CCU61 output P00.5 I TIN14 PSIRX2A LP / PU1 / VEXT General-purpose input GTM input PSI5 input SENT4B SENT input RXDCAN4A CAN node 4 input CC62INB CCU60 input CC62INA CCU61 input DSCIN2A DSADC channel 2 input A VADCG3.7 VADC analog input channel 7 of group 3 CIFD14 CIF input P00.5 O0 General-purpose output TOUT14 O1 GTM output DSCGPWMN O2 DSADC output – O3 Reserved DSCOUT2 O4 DSADC channel 2 output VADCG2BFL1 O5 VADC output SPC4 O6 SENT output CC62 O7 CCU61 output Data Sheet 2-110 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-37 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function J4 P00.6 I LP / PU1 / VEXT General-purpose input TIN15 SENT5B K1 GTM input SENT input DSDIN2A DSADC channel 2 input A VADCG3.6 VADC analog input channel 6 of group 3 CIFD15 CIF input P00.6 O0 General-purpose output TOUT15 O1 GTM output DSCGPWMP O2 DSADC output VADCG2BFL2 O3 VADC output PSITX2 O4 PSI5 output VADCEMUX10 O5 VADC output SPC5 O6 SENT output COUT62 O7 CCU61 output P00.7 I TIN16 CC60INC LP / PU1 / VEXT General-purpose input GTM input CCU61 input CCPOS0A CCU61 input T12HRB CCU60 input T2INA GPT120 input VADCG3.5 VADC analog input channel 5 of group 3 CIFCLK CIF input P00.7 O0 General-purpose output TOUT16 O1 GTM output – O2 Reserved VADCG2BFL3 O3 VADC output – O4 Reserved VADCEMUX11 O5 VADC output – O6 Reserved CC60 O7 CCU61 output Data Sheet 2-111 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-37 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function K4 P00.8 I LP / PU1 / VEXT General-purpose input TIN17 CC61INC K2 GTM input CCU61 input CCPOS1A CCU61 input T13HRB CCU60 input T2EUDA GPT120 input VADCG3.4 VADC analog input channel 4 of group 3 CIFVSNC CIF input P00.8 O0 General-purpose output TOUT17 O1 GTM output SLSO36 O2 QSPI3 output – O3 Reserved – O4 Reserved VADCEMUX12 O5 VADC output – O6 Reserved CC61 O7 CCU61 output P00.9 I TIN18 CC62INC LP / PU1 / VEXT General-purpose input GTM input CCU61 input CCPOS2A CCU61 input T13HRC CCU60 input T12HRC CCU60 input T4EUDA GPT120 input VADCG3.3 VADC analog input channel 3 of group 3 DSITR3F DSADC channel 3 input F CIFHSNC CIF input P00.9 O0 General-purpose output TOUT18 O1 GTM output SLSO37 O2 QSPI3 output ARTS3 O3 ASCLIN3 output – O4 Reserved – O5 Reserved – O6 Reserved CC62 O7 CCU61 output Data Sheet 2-112 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-37 Port 00 Functions (cont’d) Pin Symbol Ctrl Type Function K5 P00.10 I LP / PU1 / VEXT General-purpose input TIN19 VADCG3.2 L1 VADC analog input channel 2 of group 3 (MD) P00.10 O0 General-purpose output TOUT19 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU61 output P00.11 I TIN20 CTRAPA L2 GTM input LP / PU1 / VEXT General-purpose input GTM input CCU60 input T12HRE CCU61 input VADCG3.1 VADC analog input channel of group 3 P00.11 O0 General-purpose output TOUT20 O1 GTM output – O2 Reserved – O3 Reserved DSCOUT0 O4 DSADC channel 0 output – O5 Reserved – O6 Reserved – O7 Reserved P00.12 I TIN21 ACTS3A VADCG3.0 LP / PU1 / VEXT General-purpose input GTM input ASCLIN3 input VADC analog input channel 0 of group 3 P00.12 O0 General-purpose output TOUT21 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU61 output Data Sheet 2-113 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-38 Port 02 Functions Pin Symbol Ctrl Type Function B1 P02.0 I MP+ / PU1 / VEXT General-purpose input TIN0 ARX2G C2 GTM input ASCLIN2 input REQ6 SCU input CC60INA CCU60 input CC60INB CCU61 input CIFD0 CIF input P02.0 O0 General-purpose output TOUT0 O1 GTM output ATX2 O2 ASCLIN2 output SLSO31 O3 QSPI3 output DSCGPWMN O4 DSADC output TXDCAN0 O5 CAN node 0 output TXDA O6 ERAY output CC60 O7 CCU60 output P02.1 I TIN1 LP / PU1 General-purpose input / VEXT GTM input REQ14 SCU input ARX2B ASCLIN2 input RXDCAN0A CAN node 0 input RXDA2 ERAY input CIFD1 CIF input P02.1 O0 General-purpose output TOUT1 O1 GTM output – O2 Reserved SLSO32 O3 QSPI3 output DSCGPWMP O4 DSADC output – O5 Reserved – O6 Reserved COUT60 O7 CCU60 output Data Sheet 2-114 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-38 Port 02 Functions (cont’d) Pin Symbol Ctrl Type Function C1 P02.2 I MP+ / PU1 / VEXT General-purpose input TIN2 CC61INA D2 GTM input CCU60 input CC61INB CCU61 input CIFD2 CIF input P02.2 O0 General-purpose output TOUT2 O1 GTM output ATX1 O2 ASCLIN1 output SLSO33 O3 QSPI3 output PSITX0 O4 PSI5 output TXDCAN2 O5 CAN node 2 output TXDB O6 ERAY output CC61 O7 CCU60 output P02.3 I TIN3 ARX1G LP / PU1 / VEXT General-purpose input GTM input ASCLIN1 input RXDCAN2B CAN node 2 input RXDB2 ERAY input PSIRX0B PSI5 input SDI11 MSC1 input CIFD3 CIF input P02.3 O0 General-purpose output TOUT3 O1 GTM output ASLSO2 O2 ASCLIN2 output SLSO34 O3 QSPI3 output – O4 Reserved – O5 Reserved – O6 Reserved COUT61 O7 CCU60 output Data Sheet 2-115 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-38 Port 02 Functions (cont’d) Pin Symbol Ctrl Type Function D1 P02.4 I MP+ / PU1 / VEXT General-purpose input TIN4 SLSI3A E2 GTM input QSPI3 input ECTT1 TTCAN input RXDCAN0D CAN node 0 input CC62INA CCU60 input CC62INB CCU61 input SDA0A I2C0 input CIFD4 CIF input P02.4 O0 General-purpose output TOUT4 O1 GTM output ASCLK2 O2 ASCLIN2 output SLSO30 O3 QSPI3 output PSISCLK O4 PSI5-S output SDA0 O5 I2C0 output TXENA O6 ERAY output CC62 O7 CCU60 output P02.5 I TIN5 MRST3A MP+ / PU1 / VEXT General-purpose input GTM input QSPI3 input ECTT2 TTCAN input PSIRX1B PSI5 input PSISRXB PSI5-S input SENT3C SENT input SCL0A I2C0 input CIFD5 CIF input P02.5 O0 General-purpose output TOUT5 O1 GTM output TXDCAN0 O2 CAN node 0 output MRST3 O3 QSPI3 output – O4 Reserved SCL0 O5 I2C0 output TXENB O6 ERAY output COUT62 O7 CCU60 output Data Sheet 2-116 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-38 Port 02 Functions (cont’d) Pin Symbol Ctrl Type Function E1 P02.6 I MP / PU1 / VEXT General-purpose input TIN6 MTSR3A F2 GTM input QSPI3 input SENT2C SENT input CC60INC CCU60 input CCPOS0A CCU60 input T12HRB CCU61 input T3INA GPT120 input CIFD6 CIF input P02.6 O0 General-purpose output TOUT6 O1 GTM output PSISTX O2 PSI5-S output MTSR3 O3 QSPI3 output PSITX1 O4 PSI5 output VADCEMUX00 O5 VADC output – O6 Reserved CC60 O7 CCU60 output P02.7 I TIN7 SCLK3A MP / PU1 / VEXT General-purpose input GTM input QSPI3 input PSIRX2B PSI5 input SENT1C SENT input CC61INC CCU60 input CCPOS1A CCU60 input T13HRB CCU61 input T3EUDA GPT120 input CIFD7 CIF input DSCIN3B DSADC channel 3 input B P02.7 O0 General-purpose output TOUT7 O1 GTM output – O2 Reserved SCLK3 O3 QSPI3 output DSCOUT3 O4 DSADC channel 3 output VADCEMUX01 O5 VADC output SPC1 O6 SENT output CC61 O7 CCU60 output Data Sheet 2-117 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-38 Port 02 Functions (cont’d) Pin Symbol Ctrl Type F1 P02.8 I SENT0C LP / PU1 General-purpose input / GTM input VEXT SENT input CC62INC CCU60 input CCPOS2A CCU60 input T12HRC CCU61 input T13HRC CCU61 input T4INA GPT120 input CIFD8 CIF input DSDIN3B DSADC channel 3 input B DSITR3E DSADC channel 3 input E TIN8 Function P02.8 O0 General-purpose output TOUT8 O1 GTM output SLSO35 O2 QSPI3 output – O3 Reserved PSITX2 O4 PSI5 output VADCEMUX02 O5 VADC output ETHMDC O6 ETH output CC62 O7 CCU60 output Table 2-39 Port 10 Functions Pin Symbol Ctrl Type Function A7 P10.0 I LP / PU1 / VEXT General-purpose input TIN102 T6EUDB GTM input GPT120 input P10.0 O0 General-purpose output TOUT102 O1 GTM output – O2 Reserved SLSO110 O3 QSPI1 output – O4 Reserved VADCG3BFL0 O5 VADC output – O6 Reserved – O7 Reserved Data Sheet 2-118 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-39 Port 10 Functions (cont’d) Pin B7 Symbol Ctrl Type Function P10.1 I MP+ / PU1 / VEXT General-purpose input TIN103 MRST1A T5EUDB A5 GTM input QSPI1 input GPT120 input P10.1 O0 General-purpose output TOUT103 O1 GTM output MTSR1 O2 QSPI1 output MRST1 O3 QSPI1 output EN01 O4 MSC0 output VADCG3BFL1 O5 VADC output END03 O6 MSC0 output – O7 Reserved P10.2 I TIN104 SCLK1A MP / PU1 / VEXT General-purpose input GTM input QSPI1 input T6INB GPT120 input REQ2 SCU input RXDCAN2E CAN node 2 input SDI01 MSC0 input P10.2 O0 General-purpose output TOUT104 O1 GTM output – O2 Reserved SCLK1 O3 QSPI1 output EN00 O4 MSC0 output VADCG3BFL2 O5 VADC output END02 O6 MSC0 output – O7 Reserved Data Sheet 2-119 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-39 Port 10 Functions (cont’d) Pin A6 Symbol Ctrl Type Function P10.3 I MP / PU1 / VEXT General-purpose input TIN105 MTSR1A B6 GTM input QSPI1 input REQ3 SCU input T5INB GPT120 input P10.3 O0 General-purpose output TOUT105 O1 GTM output VADCG3BFL3 O2 VADC output MTSR1 O3 QSPI1 output EN00 O4 MSC0 output END02 O5 MSC0 output TXDCAN2 O6 CAN node 2 output – O7 Reserved P10.4 I TIN106 MTSR1C MP+ / PU1 / VEXT General-purpose input GTM input QSPI1 input CCPOS0C CCU60 input T3INB GPT120 input P10.4 O0 General-purpose output TOUT106 O1 GTM output – O2 Reserved SLSO18 O3 QSPI1 output MTSR1 O4 QSPI1 output EN00 O5 MSC0 output END02 O6 MSC0 output – O7 Reserved Data Sheet 2-120 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-39 Port 10 Functions (cont’d) Pin B5 Symbol Ctrl Type Function P10.5 I LP / PU1 / VEXT General-purpose input TIN107 HWCFG4 A4 GTM input SCU input RXDCAN4B CAN node 4 input INJ01 MSC0 input P10.5 O0 General-purpose output TOUT107 O1 GTM output ATX2 O2 ASCLIN2 output SLSO38 O3 QSPI3 output SLSO19 O4 QSPI1 output T6OUT O5 GPT120 output ASLSO2 O6 ASCLIN2 output – O7 Reserved P10.6 I TIN108 ARX2D LP / PU1 / VEXT General-purpose input GTM input ASCLIN2 input MTSR3B QSPI3 input HWCFG5 SCU input P10.6 O0 General-purpose output TOUT108 O1 GTM output ASCLK2 O2 ASCLIN2 output MTSR3 O3 QSPI3 output T3OUT O4 GPT120 output TXDCAN4 O5 CAN node 4 output MRST1 O6 QSPI1 output VADCG3BFL0 O7 VADC output Data Sheet 2-121 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-39 Port 10 Functions (cont’d) Pin A3 Symbol Ctrl Type Function P10.7 I LP / PU1 / VEXT General-purpose input TIN109 ACTS2A B4 GTM input ASCLIN2 input MRST3B QSPI3 input REQ4 SCU input CCPOS1C CCU60 input T3EUDB GPT120 input P10.7 O0 General-purpose output TOUT109 O1 GTM output – O2 Reserved MRST3 O3 QSPI3 output VADCG3BFL1 O4 VADC output – O5 Reserved – O6 Reserved – O7 Reserved P10.8 I TIN110 SCLK3B LP / PU1 / VEXT General-purpose input GTM input QSPI3 input REQ5 SCU input CCPOS2C CCU60 input T4INB GPT120 input P10.8 O0 General-purpose output TOUT110 O1 GTM output ARTS2 O2 ASCLIN2 output SCLK3 O3 QSPI3 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet 2-122 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-40 Port 11 Functions Pin Symbol Ctrl Type Function A10 P11.2 I MPR / PU1 / VFLEX General-purpose input TIN95 B10 P11.2 O0 TOUT95 O1 GTM output END03 O2 MSC0 output SLSO05 O3 QSPI0 output SLSO15 O4 QSPI1 output EN01 O5 MSC0 output ETHTXD1 O6 ETH output COUT63 O7 CCU60 output P11.3 I TIN96 MRST1B MPR / PU1 / VFLEX SDI03 D9 GTM input General-purpose output General-purpose input GTM input QSPI1 input MSC0 input P11.3 O0 General-purpose output TOUT96 O1 GTM output – O2 Reserved MRST1 O3 QSPI1 output TXDA O4 ERAY output – O5 Reserved ETHTXD0 O6 ETH output COUT62 O7 CCU60 output P11.6 I TIN97 SCLK1B MPR / PU1 / VFLEX General-purpose input GTM input QSPI1 input P11.6 O0 General-purpose output TOUT97 O1 GTM output TXENB O2 ERAY output SCLK1 O3 QSPI1 output TXENA O4 ERAY output FCLP0 O5 MSC0 output ETHTXEN O6 ETH output COUT61 O7 CCU60 output Data Sheet 2-123 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-40 Port 11 Functions (cont’d) Pin A9 Symbol Ctrl Type Function P11.9 I MP+ / PU1 / VFLEX General-purpose input TIN98 MTSR1B B9 GTM input QSPI1 input RXDA1 ERAY input ETHRXD1 ETH input P11.9 O0 General-purpose output TOUT98 O1 GTM output – O2 Reserved MTSR1 O3 QSPI1 output – O4 Reserved SOP0 O5 MSC0 output – O6 Reserved COUT60 O7 CCU60 output P11.10 I TIN99 REQ12 LP / PU1 / VFLEX General-purpose input GTM input SCU input ARX1E ASCLIN1 input SLSI1A QSPI1 input RXDCAN3D CAN node 3 input RXDB1 ERAY input ETHRXD0 ETH input SDI00 MSC0 input P11.10 O0 General-purpose output TOUT99 O1 GTM output – O2 Reserved SLSO03 O3 QSPI0 output SLSO13 O4 QSPI1 output – O5 Reserved – O6 Reserved CC62 O7 CCU60 output Data Sheet 2-124 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-40 Port 11 Functions (cont’d) Pin A8 Symbol Ctrl Type Function P11.11 I MP+ / PU1 / VFLEX General-purpose input TIN100 ETHCRSDVA B8 GTM input ETH input P11.11 O0 General-purpose output TOUT100 O1 GTM output END02 O2 MSC0 output SLSO04 O3 QSPI0 output SLSO14 O4 QSPI1 output EN00 O5 MSC0 output TXENB O6 ERAY output CC61 O7 CCU60 output P11.12 I TIN101 ETHREFCLK MPR / PU1 / VFLEX General-purpose input GTM input ETH input ETHTXCLKB ETH input (Not for productive purposes) ETHRXCLKA ETH input (Not for productive purposes) P11.12 O0 General-purpose output TOUT101 O1 GTM output ATX1 O2 ASCLIN1 output GTMCLK2 O3 GTM output TXDB O4 ERAY output TXDCAN3 O5 CAN node 3 output EXTCLK1 O6 SCU output CC60 O7 CCU60 output Table 2-41 Port 13 Functions Pin Symbol Ctrl Type Function B12 P13.0 I LVDSM_N / PU1 / VEXT General-purpose input TIN91 Data Sheet GTM input P13.0 O0 TOUT91 O1 GTM output END03 O2 MSC0 output SCLK2N O3 QSPI2 output (LVDS) EN01 O4 MSC0 output FCLN0 O5 MSC0 output (LVDS) FCLND0 O6 MSC0 output (LVDS) TXDCAN4 O7 CAN node 4 output 2-125 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-41 Port 13 Functions (cont’d) Pin A12 Symbol Ctrl Type Function P13.1 I LVDSM_P / PU1 / VEXT General-purpose input TIN92 SCL0B RXDCAN4C B11 P13.1 O0 General-purpose output TOUT92 O1 GTM output – O2 Reserved SCLK2P O3 QSPI2 output (LVDS) – O4 Reserved FCLP0 O5 MSC0 output (LVDS) SCL0 O6 I2C0 output – O7 Reserved P13.2 I CAPINA LVDSM_N / PU1 / VEXT SDA0B General-purpose input GTM input GPT120 input I2C0 input P13.2 O0 General-purpose output TOUT93 O1 GTM output – O2 Reserved MTSR2N O3 QSPI2 output (LVDS) FCLP0 O4 MSC0 output SON0 O5 MSC0 output (LVDS) SDA0 O6 I2C0 output SOND0 O7 MSC0 output (LVDS) P13.3 I TIN94 Data Sheet I2C0 input CAN node 4 input TIN93 A11 GTM input LVDSM_P / PU1 / VEXT General-purpose input GTM input P13.3 O0 TOUT94 O1 GTM output – O2 Reserved MTSR2P O3 QSPI2 output (LVDS) – O4 Reserved SOP0 O5 MSC0 output (LVDS) – O6 Reserved – O7 Reserved 2-126 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-42 Port 14 Functions Pin Symbol Ctrl Type Function B16 P14.0 I MP+ / PU1 / VEXT General-purpose input TIN80 A15 P14.0 O0 TOUT80 O1 GTM output ATX0 O2 ASCLIN0 output Recommended as Boot loader pin. TXDA O3 ERAY output TXDB O4 ERAY output TXDCAN1 O5 CAN node 1 output Used for single pin DAP (SPD) function. ASCLK0 O6 ASCLIN0 output COUT62 O7 CCU60 output P14.1 I TIN81 REQ15 Data Sheet GTM input MP / PU1 / VEXT General-purpose output General-purpose input GTM input SCU input ARX0A ASCLIN0 input RXDCAN1B CAN node 1 input Used for single pin DAP (SPD) function. RXDA3 ERAY input RXDB3 ERAY input EVRWUPA SCU input P14.1 O0 General-purpose output TOUT81 O1 GTM output ATX0 O2 ASCLIN0 output Recommended as Boot loader pin. – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved COUT63 O7 CCU60 output 2-127 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-42 Port 14 Functions (cont’d) Pin E13 Symbol Ctrl Type Function P14.2 I LP / PU1 / VEXT General-purpose input TIN82 HWCFG2 EVR13 B14 SCU input Latched at cold power on reset to decide EVR13 activation. P14.2 O0 General-purpose output TOUT82 O1 GTM output ATX2 O2 ASCLIN2 output SLSO21 O3 QSPI2 output – O4 Reserved – O5 Reserved ASCLK2 O6 ASCLIN2 output – O7 Reserved P14.3 I TIN83 ARX2A Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input ASCLIN2 input REQ10 SCU input HWCFG3_BMI SCU input SDI02 MSC0 input P14.3 O0 General-purpose output TOUT83 O1 GTM output ATX2 O2 ASCLIN2 output SLSO23 O3 QSPI2 output ASLSO1 O4 ASCLIN1 output ASLSO3 O5 ASCLIN3 output – O6 Reserved – O7 Reserved 2-128 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-42 Port 14 Functions (cont’d) Pin B15 Symbol Ctrl Type Function P14.4 I LP / PU1 / VEXT General-purpose input TIN84 HWCFG6 A14 O0 General-purpose output TOUT84 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P14.5 I HWCFG1 MP+ / PU1 / VEXT EVR33 General-purpose input GTM input SCU input Latched at cold power on reset to decide EVR33 activation. P14.5 O0 General-purpose output TOUT85 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved TXDB O6 ERAY output – O7 Reserved P14.6 I TIN86 HWCFG0 DCLDO Data Sheet SCU input Latched at cold power on reset to decide default pad reset state (PU or HighZ). P14.4 TIN85 B13 GTM input MP+ / PU1 / VEXT General-purpose input GTM input SCU input If EVR13 active, latched at cold power on reset to decide between LDO and SMPS mode. P14.6 O0 General-purpose output TOUT86 O1 GTM output – O2 Reserved SLSO22 O3 QSPI2 output – O4 Reserved – O5 Reserved TXENB O6 ERAY output – O7 Reserved 2-129 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-42 Port 14 Functions (cont’d) Pin D13 Symbol Ctrl Type Function P14.7 I LP / PU1 / VEXT General-purpose input TIN87 RXDB0 A13 O0 General-purpose output TOUT87 O1 GTM output ARTS0 O2 ASCLIN0 output SLSO24 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P14.8 I ARX1D LP / PU1 / VEXT General-purpose input GTM input ASCLIN1 input RXDCAN2D CAN node 2 input RXDA0 ERAY input P14.8 O0 General-purpose output TOUT88 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P14.9 I TIN89 ACTS0A Data Sheet ERAY input P14.7 TIN88 D12 GTM input MP+ / PU1 / VEXT General-purpose input GTM input ASCLIN0 input P14.9 O0 General-purpose output TOUT89 O1 GTM output END03 O2 MSC0 output EN01 O3 MSC0 output – O4 Reserved TXENB O5 ERAY output TXENA O6 ERAY output – O7 Reserved 2-130 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-42 Port 14 Functions (cont’d) Pin D11 Symbol Ctrl Type Function P14.10 I MP+ / PU1 / VEXT General-purpose input TIN90 GTM input P14.10 O0 TOUT90 O1 GTM output END02 O2 MSC0 output EN00 O3 MSC0 output ATX1 O4 ASCLIN1 output TXDCAN2 O5 CAN node 2 output TXDA O6 ERAY output – O7 Reserved General-purpose output Table 2-43 Port 15 Functions Pin Symbol Ctrl Type Function B20 P15.0 I LP / PU1 / VEXT General-purpose input TIN71 A18 GTM input P15.0 O0 TOUT71 O1 GTM output ATX1 O2 ASCLIN1 output SLSO013 O3 QSPI0 output – O4 Reserved TXDCAN2 O5 CAN node 2 output ASCLK1 O6 ASCLIN1 output – O7 Reserved P15.1 I TIN72 REQ16 LP / PU1 / VEXT General-purpose output General-purpose input GTM input SCU input ARX1A ASCLIN1 input RXDCAN2A CAN node 2 input SLSI2B QSPI2 input EVRWUPB SCU input P15.1 O0 General-purpose output TOUT72 O1 GTM output ATX1 O2 ASCLIN1 output SLSO25 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet 2-131 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-43 Port 15 Functions (cont’d) Pin C19 Symbol Ctrl Type Function P15.2 I MP / PU1 / VEXT General-purpose input TIN73 SLSI2A B17 GTM input QSPI2 input MRST2E QSPI2 input HSIC2INA QSPI2 input P15.2 O0 General-purpose output TOUT73 O1 GTM output ATX0 O2 ASCLIN0 output SLSO20 O3 QSPI2 output – O4 Reserved TXDCAN1 O5 CAN node 1 output ASCLK0 O6 ASCLIN0 output – O7 Reserved P15.3 I TIN74 ARX0B MP / PU1 / VEXT General-purpose input GTM input ASCLIN0 input SCLK2A QSPI2 input RXDCAN1A CAN node 1 input HSIC2INB QSPI2 input P15.3 O0 General-purpose output TOUT74 O1 GTM output ATX0 O2 ASCLIN0 output SCLK2 O3 QSPI2 output END03 O4 MSC0 output EN01 O5 MSC0 output – O6 Reserved – O7 Reserved Data Sheet 2-132 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-43 Port 15 Functions (cont’d) Pin A17 Symbol Ctrl Type Function P15.4 I MP / PU1 / VEXT General-purpose input TIN75 MRST2A E14 QSPI2 input REQ0 SCU input SCL0C I2C0 input P15.4 O0 General-purpose output TOUT75 O1 GTM output ATX1 O2 ASCLIN1 output MRST2 O3 QSPI2 output – O4 Reserved – O5 Reserved SCL0 O6 I2C0 output CC62 O7 CCU60 output P15.5 I TIN76 ARX1B A16 GTM input MP / PU1 / VEXT General-purpose input GTM input ASCLIN1 input MTSR2A QSPI2 input SDA0C I2C0 input REQ13 SCU input P15.5 O0 General-purpose output TOUT76 O1 GTM output ATX1 O2 ASCLIN1 output MTSR2 O3 QSPI2 output END02 O4 MSC0 output EN00 O5 MSC0 output SDA0 O6 I2C0 output CC61 O7 CCU60 output P15.6 I TIN77 MTSR2B MP / PU1 / VEXT General-purpose input GTM input QSPI2 input P15.6 O0 General-purpose output TOUT77 O1 GTM output ATX3 O2 ASCLIN3 output MTSR2 O3 QSPI2 output – O4 Reserved SCLK2 O5 QSPI2 output ASCLK3 O6 ASCLIN3 output CC60 O7 CCU60 output Data Sheet 2-133 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-43 Port 15 Functions (cont’d) Pin D15 Symbol Ctrl Type Function P15.7 I MP / PU1 / VEXT General-purpose input TIN78 ARX3A MRST2B D14 GTM input ASCLIN3 input QSPI2 input P15.7 O0 General-purpose output TOUT78 O1 GTM output ATX3 O2 ASCLIN3 output MRST2 O3 QSPI2 output – O4 Reserved – O5 Reserved – O6 Reserved COUT60 O7 CCU60 output P15.8 I TIN79 SCLK2B REQ1 MP / PU1 / VEXT General-purpose input GTM input QSPI2 input SCU input P15.8 O0 General-purpose output TOUT79 O1 GTM output – O2 Reserved SCLK2 O3 QSPI2 output – O4 Reserved – O5 Reserved ASCLK3 O6 ASCLIN3 output COUT61 O7 CCU60 output Data Sheet 2-134 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-44 Port 20 Functions Pin Symbol Ctrl Type Function H20 P20.0 I MP / PU1 / VEXT General-purpose input TIN59 RXDCAN3C G19 GTM input CAN node 3 input T6EUDA GPT120 input REQ9 SCU input SYSCLK HSCT input TGI0 OCDS input P20.0 O0 General-purpose output TOUT59 O1 GTM output ATX3 O2 ASCLIN3 output ASCLK3 O3 ASCLIN3 output – O4 Reserved SYSCLK O5 HSCT output – O6 Reserved – O7 Reserved TGO0 HWOU T OCDS; ENx P20.1 I TIN60 TGI1 LP / PU1 / VEXT General-purpose input GTM input OCDS input P20.1 O0 General-purpose output TOUT60 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TGO1 HWOU T OCDS; ENx Data Sheet 2-135 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-44 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function H19 P20.2 I LP / PU / VEXT General-purpose input This pin is latched at power on reset release to enter test mode. TESTMODE G20 OCDS input P20.2 O0 Output function not available – O1 Output function not available – O2 Output function not available – O3 Output function not available – O4 Output function not available – O5 Output function not available – O6 Output function not available – O7 Output function not available P20.3 I TIN61 T6INA LP / PU1 / VEXT ARX3C F17 General-purpose input GTM input GPT120 input ASCLIN3 input P20.3 O0 General-purpose output TOUT61 O1 GTM output ATX3 O2 ASCLIN3 output SLSO09 O3 QSPI0 output SLSO29 O4 QSPI2 output TXDCAN3 O5 CAN node 3 output – O6 Reserved – O7 Reserved P20.6 I TIN62 LP / PU1 / VEXT General-purpose input GTM input P20.6 O0 TOUT62 O1 GTM output ARTS1 O2 ASCLIN1 output SLSO08 O3 QSPI0 output SLSO28 O4 QSPI2 output – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet General-purpose output 2-136 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-44 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function F19 P20.7 I LP / PU1 / VEXT General-purpose input TIN63 ACTS1A RXDCAN0B F20 ASCLIN1 input CAN node 0 input P20.7 O0 General-purpose output TOUT63 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved WDT1LCK O6 SCU output COUT63 O7 CCU61 output P20.8 I TIN64 E17 GTM input MP / PU1 / VEXT General-purpose input GTM input P20.8 O0 TOUT64 O1 GTM output ASLSO1 O2 ASCLIN1 output SLSO00 O3 QSPI0 output SLSO10 O4 QSPI1 output TXDCAN0 O5 CAN node 0 output WDT0LCK O6 SCU output CC60 O7 CCU61 output P20.9 I TIN65 ARX1C LP / PU1 / VEXT General-purpose output General-purpose input GTM input ASCLIN1 input RXDCAN3E CAN node 3 input REQ11 SCU input SLSI0B QSPI0 input P20.9 O0 General-purpose output TOUT65 O1 GTM output – O2 Reserved SLSO01 O3 QSPI0 output SLSO11 O4 QSPI1 output – O5 Reserved WDTSLCK O6 SCU output CC61 O7 CCU61 output Data Sheet 2-137 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-44 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function E19 P20.10 I MP / PU1 / VEXT General-purpose input TIN66 E20 O0 TOUT66 O1 GTM output ATX1 O2 ASCLIN1 output SLSO06 O3 QSPI0 output SLSO27 O4 QSPI2 output TXDCAN3 O5 CAN node 3 output ASCLK1 O6 ASCLIN1 output CC62 O7 CCU61 output P20.11 I TIN67 SCLK0A D19 GTM input P20.10 MP / PU1 / VEXT General-purpose output General-purpose input GTM input QSPI0 input P20.11 O0 General-purpose output TOUT67 O1 GTM output – O2 Reserved SCLK0 O3 QSPI0 output – O4 Reserved – O5 Reserved – O6 Reserved COUT60 O7 CCU61 output P20.12 I TIN68 MRST0A MP / PU1 / VEXT General-purpose input GTM input QSPI0 input P20.12 O0 General-purpose output TOUT68 O1 GTM output – O2 Reserved MRST0 O3 QSPI0 output MTSR0 O4 QSPI0 output – O5 Reserved – O6 Reserved COUT61 O7 CCU61 output Data Sheet 2-138 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-44 Port 20 Functions (cont’d) Pin Symbol Ctrl Type Function D20 P20.13 I MP / PU1 / VEXT General-purpose input TIN69 SLSI0A C20 GTM input QSPI0 input P20.13 O0 General-purpose output TOUT69 O1 GTM output – O2 Reserved SLSO02 O3 QSPI0 output SLSO12 O4 QSPI1 output SCLK0 O5 QSPI0 output – O6 Reserved COUT62 O7 CCU61 output P20.14 I TIN70 MTSR0A General-purpose input MP / PU1 / VEXT GTM input QSPI0 input P20.14 O0 General-purpose output TOUT70 O1 GTM output – O2 Reserved MTSR0 O3 QSPI0 output – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Table 2-45 Port 21 Functions Pin K17 Symbol Ctrl Type Function P21.0 I A2 / PU1 / VDDP3 General-purpose input TIN51 GTM input P21.0 O0 TOUT51 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved ETHMDC O6 ETH output – O7 Reserved Data Sheet 2-139 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-45 Port 21 Functions (cont’d) Pin J17 Symbol Ctrl Type Function P21.1 I A2 / PU1 / VDDP3 General-purpose input TIN52 ETHMDIOB K19 GTM input ETH input (Not for production purposes) P21.1 O0 General-purpose output TOUT52 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved ETHMDIO O6 ETH output (Not for production purposes) – O7 Reserved P21.2 I TIN53 MRST2CN LVDSH_N/ PU1 / VDDP3 General-purpose input GTM input QSPI2 input (LVDS) MRST3FN QSPI3 input (LVDS) EMGSTOPB SCU input RXDN HSCT input (LVDS) P21.2 O0 General-purpose output TOUT53 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved ETHMDC O5 ETH output – O6 Reserved – O7 Reserved Data Sheet 2-140 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-45 Port 21 Functions (cont’d) Pin J19 Symbol Ctrl Type Function P21.3 I LVDSH_P/ PU1 / VDDP3 General-purpose input TIN54 MRST2CP K20 QSPI2 input (LVDS) MRST3FP QSPI3 input (LVDS) RXDP HSCT input (LVDS) P21.3 O0 General-purpose output TOUT54 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved ETHMDIOD HWOU T ETH input/output P21.4 I TIN55 J20 GTM input LVDSH_N/ PU1 / VDDP3 General-purpose input GTM input P21.4 O0 TOUT55 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TXDN O HSCT output (LVDS) P21.5 I TIN56 LVDSH_P/ PU1 / VDDP3 General-purpose output General-purpose input GTM input P21.5 O0 TOUT56 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved TXDP O HSCT output (LVDS) Data Sheet 2-141 General-purpose output V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-45 Port 21 Functions (cont’d) Pin H17 Symbol Ctrl Type Function P21.6 I A2 / PU / VDDP3 General-purpose input TIN57 ARX3F GTM input ASCLIN3 input TGI2 OCDS input TDI OCDS (JTAG) input T5EUDA GPT120 input P21.6 O0 General-purpose output TOUT57 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved SYSCLK O5 HSCT output – O6 Reserved T3OUT O7 GPT120 output TGO2 HWOU T OCDS; ENx Data Sheet 2-142 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-45 Port 21 Functions (cont’d) Pin H16 Symbol Ctrl Type Function P21.7 I A2 / PU / VDDP3 General-purpose input TIN58 DAP2 GTM input OCDS (3-Pin DAP) input In the 3-Pin DAP mode this pin is used as DAP2. In the 2-PIN DAP mode this pin is used as P21.7 and controlled by the related port control logic. TGI3 OCDS input ETHRXERB ETH input T5INA GPT120 input P21.7 O0 General-purpose output TOUT58 O1 GTM output ATX3 O2 ASCLIN3 output ASCLK3 O3 ASCLIN3 output – O4 Reserved – O5 Reserved – O6 Reserved T6OUT O7 GPT120 output TGO3 HWOU T OCDS; ENx TDO OCDS (JTAG); ENx The JTAG TDO function is overlayed with P21.7 via a double bond. In JTAG mode this pin is used as TDO, after power-on reset it is HighZ. DAP2 OCDS (DAP2); ENx In the 3-Pin DAP mode this pin is used as DAP2. Table 2-46 Port 22 Functions Pin Symbol Ctrl Type Function P20 P22.0 I LVDSM_N / PU1 / VEXT General-purpose input TIN47 MTSR3E GTM input QSPI3 input P22.0 O0 General-purpose output TOUT47 O1 GTM output – O2 Reserved MTSR3 O3 QSPI3 output SCLK3N O4 QSPI3 output (LVDS) FCLN1 O5 MSC1 output (LVDS) FCLND1 O6 MSC1 output (LVDS) – O7 Reserved Data Sheet 2-143 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-46 Port 22 Functions (cont’d) Pin Symbol Ctrl Type Function P19 P22.1 I LVDSM_P / PU1 / VEXT General-purpose input TIN48 MRST3E R20 QSPI3 input P22.1 O0 General-purpose output TOUT48 O1 GTM output – O2 Reserved MRST3 O3 QSPI3 output SCLK3P O4 QSPI3 output (LVDS) FCLP1 O5 MSC1 output (LVDS) – O6 Reserved – O7 Reserved P22.2 I TIN49 SLSI3D R19 GTM input LVDSM_N / PU1 / VEXT General-purpose input GTM input QSPI3 input P22.2 O0 General-purpose output TOUT49 O1 GTM output – O2 Reserved SLSO312 O3 QSPI3 output MTSR3N O4 QSPI3 output (LVDS) SON1 O5 MSC1 output (LVDS) SOND1 O6 MSC1 output (LVDS) – O7 Reserved P22.3 I TIN50 SCLK3E LVDSM_P / PU1 / VEXT General-purpose input GTM input QSPI3 input P22.3 O0 General-purpose output TOUT50 O1 GTM output – O2 Reserved SCLK3 O3 QSPI3 output MTSR3P O4 QSPI3 output (LVDS) SOP1 O5 MSC1 output (LVDS) – O6 Reserved – O7 Reserved Data Sheet 2-144 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-47 Port 23 Functions Pin Symbol Ctrl Type Function V20 P23.0 I LP / PU1 / VEXT General-purpose input TIN41 U19 P23.0 O0 TOUT41 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P23.1 I TIN42 SDI10 U20 GTM input MP+ / PU1 / VEXT General-purpose output General-purpose input GTM input MSC1 input P23.1 O0 General-purpose output TOUT42 O1 GTM output ARTS1 O2 ASCLIN1 output SLSO313 O3 QSPI3 output GTMCLK0 O4 GTM output – O5 Reserved EXTCLK0 O6 SCU output – O7 Reserved P23.2 I TIN43 LP / PU1 / VEXT General-purpose input GTM input P23.2 O0 TOUT43 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved Data Sheet General-purpose output 2-145 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-47 Port 23 Functions (cont’d) Pin T19 Symbol Ctrl Type Function P23.3 I LP / PU1 / VEXT General-purpose input TIN44 INJ10 T20 MSC1 input P23.3 O0 General-purpose output TOUT44 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P23.4 I TIN45 T17 GTM input MP+ / PU1 / VEXT General-purpose input GTM input P23.4 O0 TOUT45 O1 GTM output – O2 Reserved SLSO35 O3 QSPI3 output END12 O4 MSC1 output EN10 O5 MSC1 output – O6 Reserved – O7 Reserved P23.5 I TIN46 MP+ / PU1 / VEXT General-purpose output General-purpose input GTM input P23.5 O0 TOUT46 O1 GTM output – O2 Reserved SLSO34 O3 QSPI3 output END13 O4 MSC1 output EN11 O5 MSC1 output – O6 Reserved – O7 Reserved Data Sheet General-purpose output 2-146 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-48 Port 32 Functions Pin Symbol Ctrl Type Function Y17 P32.0 I LP / PX/ VEXT General-purpose input TIN36 FDEST GTM input PMU input VGATE1N Y18 SMPS mode: analog output. External Pass Device gate control for EVR13 P32.0 O0 General-purpose output TOUT36 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved – O6 Reserved – O7 Reserved P32.2 I TIN38 ARX3D General-purpose input LP / PU1 / VEXT GTM input ASCLIN3 input RXDCAN3B Y19 CAN node 3 input P32.2 O0 General-purpose output TOUT38 O1 GTM output ATX3 O2 ASCLIN3 output – O3 Reserved – O4 Reserved – O5 Reserved DCDCSYNC O6 SCU output – O7 Reserved P32.3 I TIN39 Data Sheet General-purpose input LP / PU1 / VEXT GTM input P32.3 O0 TOUT39 O1 GTM output ATX3 O2 ASCLIN3 output – O3 Reserved ASCLK3 O4 ASCLIN3 output TXDCAN3 O5 CAN node 3 output – O6 Reserved – O7 Reserved General-purpose output 2-147 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-48 Port 32 Functions (cont’d) Pin Symbol Ctrl Type Function W18 P32.4 I MP+ / PU1 / VEXT General-purpose input TIN40 ACTS1B GTM input ASCLIN1 input SDI12 MSC1 input P32.4 O0 General-purpose output TOUT40 O1 GTM output – O2 Reserved END12 O3 MSC1 output GTMCLK1 O4 GTM output EN10 O5 MSC1 output EXTCLK1 O6 SCU output COUT63 O7 CCU60 output Table 2-49 Port 33 Functions Pin Symbol Ctrl Type Function W10 P33.0 I LP / PU1 / VEXT General-purpose input TIN22 DSITR0E Y10 DSADC channel 0 input E P33.0 O0 General-purpose output TOUT22 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved – O5 Reserved VADCG1BFL0 O6 VADC output – O7 Reserved P33.1 I TIN23 PSIRX0C DSCIN2B Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input PSI5 input DSADC channel 2 input B P33.1 O0 General-purpose output TOUT23 O1 GTM output ASLSO3 O2 ASCLIN3 output – O3 Reserved DSCOUT2 O4 DSADC channel 2 output VADCEMUX02 O5 VADC output VADCG1BFL1 O6 VADC output – O7 Reserved 2-148 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-49 Port 33 Functions (cont’d) Pin W11 Symbol Ctrl Type Function P33.2 I LP / PU1 / VEXT General-purpose input TIN24 DSDIN2B DSITR2E Y11 P33.2 O0 General-purpose output TOUT24 O1 GTM output ASCLK3 O2 ASCLIN3 output – O3 Reserved PSITX0 O4 PSI5 output VADCEMUX01 O5 VADC output VADCG1BFL2 O6 VADC output – O7 Reserved P33.3 I PSIRX1C LP / PU1 / VEXT General-purpose input GTM input PSI5 input P33.3 O0 General-purpose output TOUT25 O1 GTM output – O2 Reserved – O3 Reserved – O4 Reserved VADCEMUX00 O5 VADC output VADCG1BFL3 O6 VADC output – O7 Reserved P33.4 I TIN26 CTRAPC DSITR0F Data Sheet DSADC channel 2 input B DSADC channel 2 input E TIN25 W12 GTM input LP / PU1 / VEXT General-purpose input GTM input CCU61 input DSADC channel 0 input F P33.4 O0 General-purpose output TOUT26 O1 GTM output ARTS2 O2 ASCLIN2 output – O3 Reserved PSITX1 O4 PSI5 output VADCEMUX12 O5 VADC output VADCG0BFL0 O6 VADC output – O7 Reserved 2-149 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-49 Port 33 Functions (cont’d) Pin Y12 Symbol Ctrl Type Function P33.5 I LP / PU1 / VEXT General-purpose input TIN27 ACTS2B W13 ASCLIN2 input PSIRX2C PSI5 input PSISRXC PSI5-S input SENT5C SENT input CCPOS2C CCU61 input T4EUDB GPT120 input DSCIN0B DSADC channel 0 input B P33.5 O0 General-purpose output TOUT27 O1 GTM output SLSO07 O2 QSPI0 output SLSO17 O3 QSPI1 output DSCOUT0 O4 DSADC channel 0 output VADCEMUX11 O5 VADC output VADCG0BFL1 O6 VADC output – O7 Reserved P33.6 I TIN28 SENT4C Data Sheet GTM input LP / PU1 / VEXT General-purpose input GTM input SENT input CCPOS1C CCU61 input T2EUDB GPT120 input DSDIN0B DSADC channel 0 input B DSITR2F DSADC channel 2 input F P33.6 O0 General-purpose output TOUT28 O1 GTM output ASLSO2 O2 ASCLIN2 output – O3 Reserved PSITX2 O4 PSI5 output VADCEMUX10 O5 VADC output VADCG0BFL2 O6 VADC output PSISTX O7 PSI5-S output 2-150 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-49 Port 33 Functions (cont’d) Pin Y13 Symbol Ctrl Type Function P33.7 I LP / PU1 / VEXT General-purpose input TIN29 RXDCAN0E W14 SCU input CCPOS0C CCU61 input T2INB GPT120 input P33.7 O0 General-purpose output TOUT29 O1 GTM output ASCLK2 O2 ASCLIN2 output SLSO37 O3 QSPI3 output – O4 Reserved – O5 Reserved VADCG0BFL3 O6 VADC output – O7 Reserved P33.8 I ARX2E MP / HighZ/ VEXT EMGSTOPA General-purpose input GTM input ASCLIN2 input SCU input P33.8 O0 General-purpose output TOUT30 O1 GTM output ATX2 O2 ASCLIN2 output SLSO32 O3 QSPI3 output – O4 Reserved TXDCAN0 O5 CAN node 0 output – O6 Reserved COUT62 O7 CCU61 output SMUFSP HWOU T SMU P33.9 I TIN31 HSIC3INA Data Sheet CAN node 0 input REQ8 TIN30 Y14 GTM input LP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.9 O0 General-purpose output TOUT31 O1 GTM output ATX2 O2 ASCLIN2 output SLSO31 O3 QSPI3 output ASCLK2 O4 ASCLIN2 output – O5 Reserved – O6 Reserved CC62 O7 CCU61 output 2-151 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-49 Port 33 Functions (cont’d) Pin W15 Symbol Ctrl Type Function P33.10 I MP / PU1 / VEXT General-purpose input TIN32 SLSI3C HSIC3INB Y15 P33.10 O0 General-purpose output TOUT32 O1 GTM output SLSO16 O2 QSPI1 output SLSO311 O3 QSPI3 output ASLSO1 O4 ASCLIN1 output PSISCLK O5 PSI5-S output – O6 Reserved COUT61 O7 CCU61 output P33.11 I SCLK3D MP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.11 O0 General-purpose output TOUT33 O1 GTM output ASCLK1 O2 ASCLIN1 output SCLK3 O3 QSPI3 output – O4 Reserved – O5 Reserved DSCGPWMN O6 DSADC output CC61 O7 CCU61 output P33.12 I TIN34 MTSR3D Data Sheet QSPI3 input QSPI3 input TIN33 W16 GTM input MP / PU1 / VEXT General-purpose input GTM input QSPI3 input P33.12 O0 General-purpose output TOUT34 O1 GTM output ATX1 O2 ASCLIN1 output MTSR3 O3 QSPI3 output ASCLK1 O4 ASCLIN1 output – O5 Reserved DSCGPWMP O6 DSADC output COUT60 O7 CCU61 output 2-152 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-49 Port 33 Functions (cont’d) Pin Y16 Symbol Ctrl Type Function P33.13 I MP / PU1 / VEXT General-purpose input TIN35 ARX1F GTM input ASCLIN1 input MRST3D QSPI3 input DSSGNB DSADC input INJ11 MSC1 input P33.13 O0 General-purpose output TOUT35 O1 GTM output ATX1 O2 ASCLIN1 output MRST3 O3 QSPI3 output SLSO26 O4 QSPI2 output – O5 Reserved DCDCSYNC O6 SCU output CC60 O7 CCU61 output Table 2-50 Port 40 Functions Pin W2 Symbol Ctrl Type Function P40.0 I S/ HighZ / VDDM General-purpose input VADCG1.8 CCPOS0D SENT0A W1 P40.1 I CCPOS1B S/ HighZ / VDDM SENT1A P40.2 I CCPOS1D S/ HighZ / VDDM SENT2A P40.3 I CCPOS2B S/ HighZ / VDDM SENT3A P40.6 VADCG2.4 DS3PA Data Sheet VADC analog input channel 9 of group 1 (MD) CCU60 input General-purpose inpu.t VADC analog input channel 10 of group 1 (MD) CCU60 input SENT input VADCG1.11 N4 General-purpose inpu.t SENT input VADCG1.10 V1 CCU60 input SENT input VADCG1.9 V2 VADC analog input channel 8 of group 1 General-purpose input VADC analog input channel 11 of group 1 CCU60 input SENT input I S/ HighZ / VDDM General-purpose input VADC analog input channel 4 of group 2 DSADC: positive analog input of channel 3, pin A CCPOS1B CCU61 input SENT2D SENT input 2-153 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-50 Port 40 Functions (cont’d) Pin P2 Symbol Ctrl Type Function P40.7 I S/ HighZ / VDDM General-purpose input VADCG2.5 DS3NA N5 DSADC: negative analog input channel of DSADC 3, pin A CCPOS1D CCU61 input SENT3D SENT input P40.8 I VADCG2.6 DS3PB P1 VADC analog input channel 5 of group 2 S/ HighZ / VDDM General-purpose input VADC analog input channel 6 of group 2 DSADC: positive analog input of channel 3, pin B CCPOS2B CCU61 input SENT4A SENT input P40.9 I VADCG2.7 DS3NB S/ HighZ / VDDM General-purpose input VADC analog input channel 7 of group 2 DSADC: negative analog input channel of DSADC 3, pin B CCPOS2D CCU61 input SENT5A SENT input Table 2-51 Analog Inputs Pin Symbol Ctrl Type Function T10 AN0 I D/ HighZ / VDDM Analog input 0 D/ HighZ / VDDM Analog input 1 D/ HighZ / VDDM Analog input 2 D/ HighZ / VDDM Analog input 3 D/ HighZ / VDDM Analog input 4 D/ HighZ / VDDM Analog input 5 VADCG0.0 DS0PB U10 AN1 I VADCG0.1 DS0NB W9 AN2 I VADCG0.2 DS0PA U9 AN3 I VADCG0.3 DS0NA T9 AN4 I VADCG0.4 Y9 AN5 VADCG0.5 Data Sheet I VADC analog input channel 0 of group 0 DSADC: positive analog input of channel 0, pin B VADC analog input channel 1 of group 0 (MD) DSADC: negative analog input channel of DSADC 0, pin B VADC analog input channel 2 of group 0 (MD) DSADC: positive analog input of channel 0, pin A VADC analog input channel 3 of group 0 DSADC: negative analog input channel of DSADC 0, pin A VADC analog input channel 4 of group 0 VADC analog input channel 5 of group 0 2-154 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-51 Analog Inputs (cont’d) Pin T8 Symbol Ctrl Type Function AN6 I D/ HighZ / VDDM Analog input 6 VADCG0.6 U8 AN7 I VADCG0.7 W8 AN8 I VADCG0.8 Y8 AN10 I VADCG0.10 W7 AN11 I VADCG0.11 T7 AN12 I VADCG0.12 W6 AN13 I VADCG0.13 W5 AN16 I VADCG1.0 U5 AN17 I VADCG1.1 W4 AN18 I VADCG1.2 W3 AN19 I VADCG1.3 Y3 AN20 I VADCG1.4 DS2PA Y2 AN21 I VADCG1.5 DS2NA W2 AN24 VADCG1.8 SENT0A Data Sheet I VADC analog input channel 6 of group 0 D/ HighZ / VDDM Analog input 7 D/ HighZ / VDDM Analog input 8 D/ HighZ / VDDM Analog input 10 D/ HighZ / VDDM Analog input 11 D/ HighZ / VDDM Analog input 12 D/ HighZ / VDDM Analog input 13 D/ HighZ / VDDM Analog input 16 D/ HighZ / VDDM Analog input 17 D/ HighZ / VDDM Analog input 18 D/ HighZ / VDDM Analog input 19 D/ HighZ / VDDM Analog input 20 D/ HighZ / VDDM Analog input 21 S/ HighZ / VDDM Analog input 24 VADC analog input channel 7 of group 0 (with pull down diagnostics) VADC analog input channel 8 of group 0 VADC analog input channel 10 of group 0 (MD) VADC analog input channel 11 of group 0 VADC analog input channel 12 of group 0 VADC analog input channel 13 of group 0 VADC analog input channel 0 of group 1 VADC analog input channel 1 of group 1 (MD) VADC analog input channel 2 of group 1 (MD) VADC analog input channel 3 of group 1 (with pull down diagnostics) VADC analog input channel 4 of group 1 DSADC: positive analog input of channel 2, pin A VADC analog input channel 5 of group 1 DSADC: negative analog input channel of DSADC 2, pin A VADC analog input channel 8 of group 1 SENT input channel 0, pin A 2-155 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-51 Analog Inputs (cont’d) Pin Symbol Ctrl Type Function W1 AN25 I S/ HighZ / VDDM Analog input 24 VADCG1.9 SENT1A V2 AN26 I VADCG1.10 SENT2A V1 AN27 I VADCG1.11 SENT3A U2 AN28 I VADCG1.12 U1 AN29 I VADCG1.13 P4 AN32 I VADCG2.0 R1 AN33 I VADCG2.1 R2 AN35 I VADCG2.3 N4 AN36 I VADCG2.4 DS3PA S/ HighZ / VDDM AN37 I DS3NA VADCG2.6 DS3PB SENT4A Data Sheet VADC analog input channel 10 of group 1 (MD) SENT input channel 2, pin A Analog input 27 D/ HighZ / VDDM Analog input 28 D/ HighZ / VDDM Analog input 29 D/ HighZ / VDDM Analog input 32 D/ HighZ / VDDM Analog input 33 D/ HighZ / VDDM Analog input 35 S/ HighZ / VDDM Analog input 34 S/ HighZ / VDDM SENT3D AN38 Analog input 26 VADC analog input channel 11 of group 1 SENT input channel 3, pin A VADC analog input channel 12 of group 1 VADC analog input channel 13 of group 1 VADC analog input channel 0 of group 2 VADC analog input channel 1 of group 2 (MD) VADC analog input channel 3 of group 2 (with pull down diagnostics) VADC analog input channel 4 of group 2 DSADC: positive analog input of channel 3, pin A SENT input channel 2, pin D VADCG2.5 N5 SENT input channel 1, pin A S/ HighZ / VDDM SENT2D P2 VADC analog input channel 9of group 1 (MD) Analog input 37 VADC analog input channel 5 of group 2 DSADC: negative analog input channel of DSADC 3, pin A SENT input channel 3, pin D I S/ HighZ / VDDM Analog input 38 VADC analog input channel 6 of group 2 DSADC: positive analog input of channel 3, pin B SENT input channel 4, pin A 2-156 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-51 Analog Inputs (cont’d) Pin P1 Symbol Ctrl Type Function AN39 I S/ HighZ / VDDM Analog input 39 VADCG2.7 DS3NB VADC analog input channel 7 of group 2 DSADC: negative analog input channel of DSADC 3, pin B SENT5A N1 AN44 SENT input channel 5, pin A I VADCG2.10 DS3PC N2 AN45 I VADCG2.11 DS3NC M1 AN46 I VADCG2.12 DS3PD M2 AN47 I VADCG2.13 DS3ND M4 AN48 I VADCG2.14 M5 AN49 I VADCG2.15 D/ HighZ / VDDM Analog input 44 D/ HighZ / VDDM Analog input 45 D/ HighZ / VDDM Analog input 46 D/ HighZ / VDDM Analog input 47 D/ HighZ / VDDM Analog input 48 D/ HighZ / VDDM Analog input 49 VADC analog input channel 10 of group 2 (MD) DSADC: positive analog input of channel 3, pin C VADC analog input channel 11 of group 2 DSADC: negative analog input channel of DSADC 3, pin C VADC analog input channel 12 of group 24 DSADC: positive analog input of channel 3, pin D VADC analog input channel 13 of group 2 DSADC: negative analog input channel of DSADC 3, pin D VADC analog input channel 14 of group 2 VADC analog input channel 15 of group 2 Table 2-52 System I/O Pin Symbol Ctrl Type Function G17 PORST I PORST / PD / VEXT Power On Reset Input Additional strong PD in case of power fail. F16 ESR0 I/O MP / OD / VEXT External System Request Reset 0 Default configuration during and after reset is opendrain driver. The driver drives low during power-on reset. This is valid additionally after deactivation of PORST until the internal reset phase has finished. See also SCU chapter for details. Default after power-on can be different. See also SCU chapter ´Reset Control Unit´ and SCU_IOCR register description. EVRWUP I Data Sheet EVR Wakeup Pin 2-157 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-52 System I/O (cont’d) Pin Symbol Ctrl Type Function G16 ESR1 I/O MP / PU1 / VEXT External System Request Reset 1 Default NMI function. See also SCU chapter ´Reset Control Unit´ and SCU_IOCR register description. EVRWUP I W17 VGATE1P O VGATE1P / External Pass Device gate control for EVR13 -/ VEXT K16 TMS I DAP1 I/O A2 / PD / VDDP3 L19 TRST I A2 / PD / VDDP3 JTAG Module Reset/Enable Input J16 TCK I JTAG Module Clock Input DAP0 I A2 / PD / VDDP3 M20 XTAL1 I XTAL1 / -/- Main Oscillator/PLL/Clock Generator Input M19 XTAL2 O XTAL2 / -/- Main Oscillator/PLL/Clock Generator Output EVR Wakeup Pin JTAG Module State Machine Control Input Device Access Port Line 1 Device Access Port Line 0 Table 2-53 Supply Pin Symbol Ctrl Type Function Y6 VAREF1 I Vx Positive Analog Reference Voltage 1 Y7 VAGND1 I Vx Negative Analog Reference Voltage 1 Y5 VDDM I Vx ADC Analog Power Supply (3.3V / 5V) G8, H7 VDD / VDDSB I Vx Emulation Device: Emulation SRAM Standby Power Supply (1.3V) (Emulation Device only). Production Device: VDD (1.3V). P8, P13, N7, N14, H14, G13 VDD I Vx Digital Core Power Supply (1.3V) N19 VDD I Vx Digital Core Power Supply (1.3V). The supply pin inturn supplies the main XTAL Oscillator/PLL (1.3V) . A higher decoupling capacitor is therefore recommended to the VSS pin for better noise immunity. I Vx External Power Supply (5V / 3.3V) A2, B3, VEXT V19, W20 Data Sheet 2-158 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-53 Supply (cont’d) Pin Symbol Ctrl Type Function B18, A19 VDDP3 I Vx Digital Power Supply for Flash (3.3V). Can be also used as external 3.3V Power Supply for VFLEX. N20 VDDP3 I Vx Digital Power Supply for Oscillator, LVDSH and A2 pads (3.3V). The supply pin inturn supplies the main XTAL Oscillator/PLL (3.3V) . A higher decoupling capacitor is therefore recommended to the VSS pin for better noise immunity. E15, D16 VDDFL3 I Vx Flash Power Supply (3.3V) D5 VFLEX I Vx Digital Power Supply for Flex Port Pads (5V / 3.3V) Y4 VSSM I Vx Analog Ground for VDDM T11 VEVRSB I Vx Standby Power Supply (3.3V/5V) for the Standby SRAM (CPU0.DSPR). If Standby mode is not used: To be handled like VEXT (3.3V/5V). VSS B2, D4, E5, L20, T16, U17, W19, Y20 I Vx Digital Ground E16, D17, VSS B19, A20 I Vx Digital Ground (outer balls) VSS I Vx Digital Ground (center balls) M7, M8, VSS M10, M11, M13, M14 I Vx Digital Ground (center balls) VSS I Vx Digital Ground (center balls) K8, K9, VSS K10, K11, K12, K13 I Vx Digital Ground (center balls) VSS I Vx Digital Ground (center balls) H9, H10, VSS H11, H12, G9, G10, G11, G12 I Vx Digital Ground (center balls) P9, P12, N9, N10, N11, N12 L8, L9, L10, L11, L12, L13 J7, J8, J10, J11, J13, J14 Data Sheet 2-159 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-53 Supply (cont’d) Pin Symbol Ctrl Type Function P10 VSS I Vx Digital Ground (center balls) This ball is used in the Emulation Device as AGBT TX0N P11 VSS I Vx Digital Ground (center balls) This ball is used in the Emulation Device as AGBT TX0P L7 VSS I Vx Digital Ground (center balls) This ball is used in the Emulation Device as AGBT CLKN K7 VSS I Vx Digital Ground (center balls) This ball is used in the Emulation Device as AGBT CLKP L14 VSS I Vx Digital Ground (center balls) This ball is used in the Emulation Device as AGBT ERR K14 NC / VDDPSB I NCVDDP SB Emulation Device: Power Supply (3.3V) for DAP/JTAG pad group. Production Device: Not Connected. U16, U15, NC U14, U13, U12, U11, U7, U6 I NC Not Connected. These pins are reserved for future extensions and shall not be connected externally. T15, T14, NC T13, T12, T6, T5, T4, T2, T1 I NC Not Connected. These pins are reserved for future extensions and shall not be connected externally. E12, E11, NC E10, E9, E8, E7, E6, E4, D10, D8, D7, D6 I NC Not Connected. These pins are reserved for future extensions and shall not be connected externally. NC I NC Not Connected. These pins are reserved for future extensions and shall not be connected externally. R5, R4, P5, L5, L4, J5, H5, H4, G5, G4, F5, F4 Data Sheet 2-160 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: Table 2-53 Supply (cont’d) Pin Symbol Ctrl Type Function R17, R16, NC P17, P16, N17, N16, M17, M16, L17, L16 I NC Not Connected. These pins are reserved for future extensions and shall not be connected externally. A1, Y1, U4 NC I NC1 Not Connected. These pins are not connected on package level and will not be used for future extensions. Legend: Column “Ctrl.”: I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB) O = Output O0 = Output with IOCR bit field selection PCx = 1X000B O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1) O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2) O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3) O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4) O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5) O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6) O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7) Column “Type”: LP = Pad class LP (5V/3.3V, LVTTL) MP = Pad class MP (5V/3.3V, LVTTL) MP+ = Pad class MP (5V/3.3V, LVTTL) A2 = Pad class A2 (3.3V, LVTTL) LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V) LVDSH = Pad class LVDSH (LVDS/CMOS 3.3V) S = Pad class S (ADC overlayed with General Purpose Input) D = Pad class D (ADC) PU = with pull-up device connected during reset (PORST = 0) PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3) PD = with pull-down device connected during reset (PORST = 0) PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3) PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode OD = open drain during reset (PORST = 0) HighZ = tri-state during reset (PORST = 0) PORST = PORST input pad XTAL1 = XTAL1 input pad XTAL2 = XTAL2 input pad 1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”, “General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”. 2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active during and after reset. 3) If HWCFG[6] is connected to ground, the PD1/PU1 pins are predominantly in HighZ during and after reset. Data Sheet 2-161 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC267x Pin Definition and Functions: VGATE1P = VGATE1P VGATE3P = VGATE3P Vx = Supply NC = These pins are reserved for future extensions and shall not be connected externally NC1 = These pins are not connected on package level and will not be used for future extensions NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details pls. see Pin/Ball description of this pin. NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details pls. see Pin/Ball description of this pin. 2.3.2 Emergency Stop Function The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input signal (EMGSTOPA or EMGSTOPB) into a defined state: • Input state and • PU or High-Z depending on HWCFG[6] level latched during PORST active Control of the Emergency Stop function: • The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop Control”) • The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see chapter “SCU”, “Emergency Stop Control”) • On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, “Emergency Stop Register”). The Emergency Stop function is available for all GPIO Ports with the following exceptions: • Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode) • Not available for P40.x (analoge input ANx overlayed with GPI) • Not available for P32.0 EVR13 SMPS mode. • Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK) The Emergency Stop function can be overruled on the following GPIO Ports: • P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented. Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00 / P01) • P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00) • P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode). No Overruling in the DXCM (Debug over can message) mode • P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI • P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode • P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI 2.3.3 Data Sheet Pull-Up/Pull-Down Reset Behavior of the Pins 2-162 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-54 List of Pull-Up/Pull-Down Reset Behavior of the Pins Pins PORST = 0 all GPIOs Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0 TDI, TESTMODE Pull-up 1) PORST Pull-down with IPORST relevant TRST, TCK, TMS Pull-down ESR0 The open-drain driver is used to drive low.2) ESR1 Pull-up3) TDO Pull-up 1) 2) 3) 4) PORST = 1 Pull-down with IPDLI relevant Pull-up3) High-Z/Pull-up4) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation. Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details. See the SCU_IOCR register description. Depends on JTAG/DAP selection with TRST. In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on. 2.4 TC260 Bare Die Pad Definition: List of the TC260x Bare Die Pads describes the pads of the TC260 bare die. It describes also the mapping of VADC / DS-ADC channels to the analog inputs (ANx) and the mapping of Port functions to the pads. The detailed description of the port functions (Px.y) can be found in the User’s Manual chapter “General Purpose I/O Ports and Peripheral I/O LInes (Ports)“. Data Sheet 2-163 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Pad 132 Pad 65 Pad 64 Pad 133 Y 0.0 X Pad 1 Pad 197 Pad 260 Pad 198 Figure 2-4 TC 260 / 264 / 265 / 267 Logic Symbol for the Bare Die. Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 1 P10.8 LP / PU1 / VEXT 2756500 -2951000 GPIO 2 P02.0 MP+ / PU1 / VEXT 2865000 -2861000 GPIO 3 P02.1 LP / PU1 / VEXT 2756500 -2671000 GPIO 4 VSS Vx 2865000 -2581000 Must be bonded to VSS 5 P02.2 MP+ / PU1 / VEXT 2756500 -2446000 GPIO 6 VEXT Vx 2865000 -2311000 Must be bonded to VEXT 7 P02.3 LP / PU1 / VEXT 2756500 -2256000 GPIO 8 P02.4 MP+ / PU1 / VEXT 2865000 -2166000 GPIO 9 P02.5 MP+ / PU1 / VEXT 2756500 -1976000 GPIO Data Sheet 2-164 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 10 VSS Vx 2865000 -1891000 Must be bonded to VSS 11 P02.6 MP / PU1 / VEXT 2756500 -1826000 GPIO 12 P02.7 MP / PU1 / VEXT 2865000 -1746000 GPIO 13 VEXT Vx 2756500 -1681000 Must be bonded to VEXT 14 P02.8 LP / PU1 / VEXT 2865000 -1616000 GPIO 15 VDD Vx 2865000 -1229000 Must be bonded to VDD 16 VSS Vx 2865000 -1099000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 17. 17 VSS Vx 2865000 -1059000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 16. 18 VDD Vx 2865000 -929000 Must be bonded to VDD 19 P00.0 MP / PU1 / VEXT 2865000 -814000 GPIO 20 VSS Vx 2865000 -714000 Must be bonded to VSS 21 P00.1 LP / PU1 / VEXT 2756500 -443000 GPIO 22 P00.2 LP / PU1 / VEXT 2865000 -383000 GPIO 23 P00.3 LP / PU1 / VEXT 2756500 -263000 GPIO 24 VSS Vx 2865000 -208000 Must be bonded to VSS 25 P00.4 LP / PU1 / VEXT 2756500 -153000 GPIO 26 P00.5 LP / PU1 / VEXT 2865000 -93000 GPIO 27 P00.6 LP / PU1 / VEXT 2756500 27000 GPIO 28 VEXT Vx 2865000 82000 Must be bonded to VEXT 29 P00.7 LP / PU1 / VEXT 2756500 147000 GPIO 30 P00.8 LP / PU1 / VEXT 2865000 217000 GPIO 31 P00.9 LP / PU1 / VEXT 2756500 297000 GPIO 32 P00.10 LP / PU1 / VEXT 2865000 377000 GPIO 33 P00.11 LP / PU1 / VEXT 2756500 442000 GPIO 34 VSS Vx 2865000 497000 Must be bonded to VSS 35 P00.12 LP / PU1 / VEXT 2756500 552000 GPIO 36 VDD Vx 2865000 607000 Must be bonded to VDD 37 VSS Vx 2865000 707000 Must be bonded to VSS 38 VSS Vx 2865000 807000 Must be bonded to VSS 39 VDD Vx 2865000 907000 Must be bonded to VDD 40 VEXT Vx 2865000 1007000 Must be bonded to VEXT 41 VSS Vx 2865000 1107000 Must be bonded to VSS 42 AN49 (VADCG2.15) D 2865000 1227000 Analog input 43 AN48 (VADCG2.14) D 2756500 1287000 Analog input Data Sheet 2-165 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 44 VDDM Vx 2865000 1347000 ADC external supply 45 AN47 (VADCG2.13 D / DS3.N3) 2756500 1407000 Analog input, GPI (SENT, CCU6) 46 AN46 (VADCG2.12 D / DS3.P3) 2865000 1470000 Analog input, GPI (SENT, CCU6) 47 AN45 (VADCG2.11 D / DS3.N2) 2756500 1530000 Analog input, GPI (SENT, CCU6) 48 AN44 (VADCG2.10 D / DS3.P2) 2865000 1605000 Analog input, GPI (SENT, CCU6) 49 AN39 (VADCG2.7 / S DS3.N1), P40.9 (SENT5A) 2756500 1665000 Analog input, GPI (SENT, CCU6) 50 AN38 (VADCG2.6 / S DS3.P1), P40.8 (SENT4A) 2865000 1754000 Analog input, GPI (SENT, CCU6) 51 AN37 (VADCG2.5 / S DS3.N0), P40.7 (SENT3D) 2756500 1816000 Analog input, GPI (SENT, CCU6) 52 VDDM 2865000 1876000 ADC external supply 53 AN36 (VADCG2.4 / S DS3.P0), P40.6 (SENT2D) 2756500 1936000 Analog input, GPI (SENT, CCU6) 54 VSSM 2865000 1996000 ADC ground 55 AN35 (VADCG2.3) D 2865000 2096000 Analog input (mtm) (with pull down diagnostics) 56 AN33 (VADCG2.1) D 2865000 2196000 Analog input 57 AN32 (VADCG2.0) D 2865000 2296000 Analog input 58 AN29 (VADCG1.13) D 2865000 2396000 Analog input 59 AN28 (VADCG1.12) D 2865000 2496000 Analog input 60 AN27 (VADCG1.11), P40.3 (SENT3A) S 2865000 2596000 Analog input, GPI (SENT, CCU6) 61 AN26 (VADCG1.10), P40.2 (SENT2A) S 2865000 2696000 Analog input, GPI (SENT, CCU6) 62 AN25 (VADCG1.9), S P40.1 (SENT1A) 2865000 2796000 Analog input, GPI (SENT, CCU6) 63 AN24 (VADCG1.8), S P40.0 (SENT0A) 2865000 2896000 Analog input, GPI (SENT, CCU6) 64 VDDM Vx 2756500 2956000 ADC external supply 65 VSSM Vx 2685000 3136000 ADC ground Data Sheet Vx Vx 2-166 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name 66 X Y Comment AN21 (VADCG1.5 / D DS2NA) 2625000 3027500 Analog input 67 AN20 (VADCG1.4 / D DS2PA) 2525000 3027500 Analog input 68 AN19 (VADCG1.3) D 2425000 3027500 Analog input (with pull down diagnostics) 69 AN18 (VADCG1.2) D 2325000 3027500 Analog input 70 AN17 (VADCG1.1) D 2225000 3027500 Analog input 71 AN16 (VADCG1.0) D 2165000 3136000 Analog input 72 VAGND1 Vx 2105000 3027500 Negative Analog Reference Voltage 1 73 VAGND0 Vx 2045000 3136000 Negative Analog Reference Voltage 0 74 VAREF1 Vx 1985000 3027500 Positive Analog Reference Voltage 1 75 VAREF0 Vx 1925000 3136000 Positive Analog Reference Voltage 0 76 VSSM Vx 1865000 3027500 ADC ground 77 VSSMREF Vx 1805000 3136000 ADC reference ground. 78 VSSM_DS Vx 1745000 3027500 DS-ADC ground. Must be bonded with VSSM. 79 VDDM Vx 1675000 3136000 ADC external supply 80 VDDM_DS Vx 1585000 3027500 DS-ADC external supply. Must be bonded with VDDM. 81 AN13 (VADCG0.13) D 1525000 3136000 Analog input 82 AN12 (VADCG0.12) D 1465000 3027500 Analog input 83 AN11 (VADCG0.11) D 1405000 3136000 Analog input 84 AN10 (VADCG0.10) D 1345000 3027500 Analog input 85 AN8 (VADCG0.8) D 1285000 3136000 Analog input 86 AN7 (VADCG0.7) D 1225000 3027500 Analog input (with pull down diagnostics) 87 AN6 (VADCG0.6) D 1165000 3136000 Analog input 88 AN5 (VADCG0.5) D 1105000 3027500 Analog input 89 AN4 (VADCG0.4) D 1043000 3136000 Analog input 90 AN3 (VADCG0.3 / DS0NA) D 983000 3027500 Analog input 91 VSSM Vx 923000 3136000 ADC ground Data Sheet Pad Type 2-167 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 92 AN2 (VADCG0.2 / DS0PA) D 863000 3027500 Analog input 93 VDDM Vx 803000 3136000 ADC external supply 94 AN1 (VADCG0.1 / DS0NB) D 743000 3027500 Analog input 95 AN0 (VADCG0.0 / DS0PB) D 656000 3136000 Analog input 96 VSS Vx 536000 3136000 Must be bonded to VSS 97 VEXT Vx 486000 3027500 Must be bonded to VEXT 98 VDD Vx 436000 3136000 Must be bonded to VDD 99 VSS Vx 306000 3136000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 98. 100 VSS Vx 266000 3136000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 97. 101 VDD Vx 136000 3136000 Must be bonded to VDD 102 VEXT Vx -250000 3027500 Must be bonded to VEXT 103 VEXT Vx -315000 3136000 Must be bonded to VEXT 104 EVR_OFF Vx -415000 3136000 Must be bonded to VSS 105 P33.0 LP / PU1 / VEXT -470000 3027500 GPIO 106 P33.1 LP / PU1 / VEXT -540000 3136000 GPIO 107 P33.2 LP / PU1 / VEXT -600000 3027500 GPIO 108 P33.3 LP / PU1 / VEXT -710000 3136000 GPIO 109 P33.4 LP / PU1 / VEXT -770000 3027500 GPIO 110 VSS Vx -825000 3136000 Must be bonded to VSS 111 P33.5 LP / PU1 / VEXT -880000 3027500 GPIO 112 P33.6 LP / PU1 / VEXT -1000000 3136000 GPIO 113 P33.7 LP / PU1 / VEXT -1060000 3027500 GPIO 114 P33.8 MP / HighZ / VEXT -1190000 3136000 GPIO 115 P33.9 LP / PU1 / VEXT -1260000 3027500 GPIO 116 VEXT Vx -1315000 3136000 Must be bonded to VEXT 117 P33.10 MP / PU1 / VEXT -1380000 3027500 GPIO 118 P33.11 MP / PU1 / VEXT -1520000 3136000 GPIO 119 P33.12 MP / PU1 / VEXT -1600000 3027500 GPIO 120 VSS Vx -1665000 3136000 Must be bonded to VSS 121 P33.13 MP / PU1 / VEXT -1730000 3027500 GPIO 122 VSS Vx -1795000 3136000 Must be bonded to VSS 123 VDD Vx -1895000 3136000 Must be bonded to VDD Data Sheet 2-168 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 124 P32.0 LP / EVR13 SMPS -> PD, GPIO -> PU1 / VEXT -1950000 3027500 GPIO 125 VGATE1N (SMPS) VGATE1N -2005000 3136000 Must be bonded to VSS if EVR13 SMPS is not used. Must be bonded to NMOS gate if EVR13 SMPS is used. 126 VGATE1P (SMPS) VGATE1P -2055000 3027500 Must be bonded to VEXT if EVR13 SMPS is not used. Must be bonded to PMOS gate if EVR13 SMPS is used. 127 VGATE3P (LDO) VGATE3P -2105000 3136000 Must be bonded to VSS 128 VGATE1P (LDO) VGATE1P -2155000 3027500 Must be bonded to VSS if no external P channel MOSFET is used for EVR13 LDO generation. Must be bonded to external P channnel MOSFET if external LDO pass device is used. 129 VEXT Vx -2205000 3136000 Must be bonded to VEXT 130 P32.2 LP / PU1 / VEXT -2260000 3027500 GPIO 131 P32.3 LP / PU1 / VEXT -2360000 3027500 GPIO 132 VSS Vx -2415000 3136000 Must be bonded to VSS 133 P32.4 MP+ / PU1 / VEXT -2570000 3027500 GPIO 134 P23.0 LP / PU1 / VEXT -2670000 3027500 GPIO 135 P23.1 MP+ / PU1 / VEXT -2865000 2921000 GPIO 136 VEXT Vx -2756500 2846000 Must be bonded to VEXT 137 P23.2 LP / PU1 / VEXT -2865000 2791000 GPIO 138 P23.3 LP / PU1 / VEXT -2865000 2689000 GPIO 139 P23.4 MP+ / PU1 / VEXT -2865000 2589000 GPIO 140 P23.5 MP+ / PU1 / VEXT -2756500 2489000 GPIO 141 VSS Vx -2865000 2414000 Must be bonded to VSS 142 P22.0 MP / LVDSM_N / -2756500 PU1 / VEXT 2349000 GPIO Data Sheet 2-169 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 143 P22.1 MP / LVDS_P / PU1 / VEXT -2756500 1999000 GPIO 144 P22.2 MP / LVDSM_N / -2756500 PU1 / VEXT 1899000 GPIO 145 P22.3 MP / LVDS_P / PU1 / VEXT -2756500 1549000 GPIO 146 VEXT Vx -2865000 1484000 Must be bonded to VEXT 147 VEXT Vx -2756500 1434000 Must be bonded to VEXT 148 VDD Vx -2865000 1384000 Must be bonded to VDD 149 VSS Vx -2865000 1284000 Must be bonded to VSS 150 VSS Vx -2865000 1184000 Must be bonded to VSS 151 VDD Vx -2865000 1084000 Must be bonded to VDD 152 VDDOSC Vx -2865000 818000 Must be bonded to VDD 153 VSSOSC Vx -2865000 718000 Must be bonded to VSS 154 XTAL1 XTAL1 -2756500 610500 Main Oscillator/PLL/Clock Generator Input. Must be bonded to external quartz or resonator. 155 XTAL2 XTAL2 -2756500 510500 Main Oscillator/PLL/Clock Generator Input. Must be bonded to external quartz or resonator. 156 VSSOSC Vx -2865000 403000 Must be bonded to VSS 157 VDDOSC3 Vx -2756500 353000 Must be bonded to VDDP3 158 VDDP3 Vx -2756500 253000 Must be bonded to VDDP3 159 VSSP Vx -2865000 203000 Must be bonded to VSS 160 P21.0 A2 / PU1 / VDDP3 -2756500 153000 GPIO 161 P21.1 A2 / PU1 / VDDP3 -2756500 53000 GPIO 162 VSSP Vx 3000 Must be bonded to VSS 163 P21.2 LVDSH_N / PU1 / -2756500 VDDP3 -59500 GPIO 164 P21.3 LVDSH_P / PU1 / -2756500 VDDP3 -159500 GPIO 165 VDDP3 Vx -2865000 -222000 Must be bonded to VDDP3 166 P21.4 LVDSH_N / PU1 / -2756500 VDDP3 -296500 GPIO 167 P21.5 LVDSH_P / PU1 / -2756500 VDDP3 -447500 GPIO 168 P21.6 A2 / PU / VDDP3 -2756500 -547000 GPIO, TDI 169 VDDP3 Vx -2865000 -597000 Must be bonded to VDDP3 170 VSSP Vx -2865000 -812000 Must be bonded to VSS Data Sheet -2865000 2-170 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type 171 TMS /DAP1 172 Y Comment A2 / PD / VDDP3 -2756500 -862000 JTAG Module TMS Input / Device Access Port Line 1 P21.7 A2 / PU / VDDP3 -2865000 -912000 GPIO, TDO 173 TRST (N) A2 / PD / VDDP3 -2756500 -982000 JTAG Module Reset/Enable Input 174 TCK /DAP0 A2 / PD / VDDP3 -2865000 -1032000 JTAG Module Clock Input / Device Access Port Line 0 175 P20.0 MP / PU1 / VEXT -2756500 -1167000 GPIO 176 P20.1 LP / PU1 / VEXT -2865000 -1237000 GPIO 177 P20.2 LP / PU / VEXT -2756500 -1292000 Testmode pin must be bonded 178 VSS Vx -2865000 -1342000 Must be bonded to VSS 179 P20.3 LP / PU1 / VEXT -2756500 -1397000 GPIO 180 ESR1 (N) /EVRWUP MP / PU1 -2865000 -1472000 External System Request Reset 1. Default NMI function. / EVR Wakeup Pin 181 PORST (N) PORST / PD / VEXT -2756500 -1554500 Power On Reset Input. Additional strong PD in case of power fail. 182 ESR0 (N) /EVRWUP MP / OD -2865000 -1642000 External System Request Reset 0. Default configuration during and after reset is open-drain driver. The driver drives low during power-on reset. /EVR Wakeup Pin 183 VEXT Vx -2756500 -1707000 Must be bonded to VEXT 184 VDD Vx -2865000 -1757000 Must be bonded to VDD 185 VSS Vx -2865000 -1887000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 184. 186 VSS Vx -2865000 -1927000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 183. 187 VDD Vx -2865000 -2057000 Must be bonded to VDD 188 P20.6 LP / PU1 / VEXT -2756500 -2112000 GPIO 189 VSS Vx -2865000 -2167000 Must be bonded to VSS 190 P20.7 LP / PU1 / VEXT -2756500 -2222000 GPIO 191 P20.8 MP / PU1 / VEXT -2865000 -2317000 GPIO 192 P20.9 LP / PU1 / VEXT -2756500 -2387000 GPIO 193 P20.10 MP / PU1 / VEXT -2865000 -2497000 GPIO 194 VEXT Vx -2562000 Must be bonded to VEXT Data Sheet X -2756500 2-171 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type 195 P20.11 196 Y Comment MP / PU1 / VEXT -2865000 -2627000 GPIO P20.12 MP / PU1 / VEXT -2756500 -2707000 GPIO 197 VSS Vx -2865000 -2772000 Must be bonded to VSS 198 P20.13 MP / PU1 / VEXT -2756500 -2837000 GPIO 199 P20.14 MP / PU1 / VEXT -2756500 -2937000 GPIO 200 P15.0 LP / PU1 / VEXT -2680000 -3027500 GPIO 201 P15.1 LP / PU1 / VEXT -2580000 -3027500 GPIO 202 P15.2 MP / PU1 / VEXT -2510000 -3136000 GPIO 203 P15.3 MP / PU1 / VEXT -2410000 -3136000 GPIO 204 VEXT Vx -2345000 -3027500 Must be bonded to VEXT 205 P15.4 MP / PU1 / VEXT -2280000 -3136000 GPIO 206 P15.5 MP / PU1 / VEXT -2180000 -3136000 GPIO 207 P15.6 MP / PU1 / VEXT -2059000 -3027500 GPIO 208 VSS Vx -1994000 -3136000 Must be bonded to VSS 209 P15.7 MP / PU1 / VEXT -1929000 -3027500 GPIO 210 P15.8 MP / PU1 / VEXT -1849000 -3136000 GPIO 211 P14.0 MP+ / PU1 / VEXT -1741000 -3027500 GPIO 212 P14.1 MP / PU1 / VEXT -1641000 -3027500 GPIO 213 VEXT Vx -1576000 -3136000 Must be bonded to VEXT 214 P14.2 LP / PU1 / VEXT -1521000 -3027500 Must be bonded to VEXT if EVR13 active. Must be bonded to VSS if EVR13 inactive. 215 P14.3 LP / PU1 / VEXT -1461000 -3136000 GPIO 216 P14.4 LP / PU1 / VEXT -1386000 -3027500 GPIO 217 VSS Vx -1331000 -3136000 Must be bonded to VSS 218 P14.5 MP+ / PU1 / VEXT -1256000 -3027500 GPIO 219 P14.6 MP+ / PU1 / VEXT -1156000 -3136000 GPIO 220 P14.7 LP / PU1 / VEXT -1076000 -3027500 GPIO 221 P14.8 LP / PU1 / VEXT -1016000 -3136000 GPIO 222 P14.9 MP+ / PU1 / VEXT -936000 -3027500 GPIO 223 P14.10 MP+ / PU1 / VEXT -836000 -3027500 GPIO 224 Reserved Vx -761000 -3136000 Must be bonded to VSS 225 VEXT Vx -711000 -3027500 Must be bonded to VEXT 226 VSS Vx -661000 -3136000 Must be bonded to VSS Data Sheet X 2-172 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 227 VEXT Vx -611000 -3027500 Must be bonded to VEXT 228 VSS Vx -531000 -3136000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 228. 229 VDDP3 Vx -508500 -3027500 Must be bonded to VDDP3 230 VSS Vx -486000 -3136000 Must be bonded to VSS. Double Pad (Elephant Pad), shared with Pad Nr. 226. 231 VDDP3 Vx -391000 -3027500 Must be bonded to VDDP3 232 VDDFL3 Vx -311000 -3136000 Must be bonded to VDDP3 233 VDDFL3 Vx -211000 -3136000 Must be bonded to VDDP3 234 VDDFL3 Vx -143500 -3027500 Must be bonded to VDDP3 235 VSS Vx -91000 -3136000 Must be bonded to VSS 236 P13.0 MP / LVDSM_N / -26000 PU1 / VEXT -3027500 GPIO 237 P13.1 MP / LVDSM_P / 324000 PU1 / VEXT -3027500 GPIO 238 VEXT Vx 389000 -3136000 Must be bonded to VEXT 239 P13.2 MP / LVDSM_N / 454000 PU1 / VEXT -3027500 GPIO 240 P13.3 MP / LVDSM_P / 804000 PU1 / VEXT -3027500 GPIO 241 P11.2 MPR / PU1 / VFLEX 964000 -3027500 GPIO 242 P11.3 MPR / PU1 / VFLEX 1064000 -3027500 GPIO 243 P11.6 MPR / PU1 / VFLEX 1164000 -3027500 GPIO 244 P11.9 MP+ / PU1 / VFLEX 1264000 -3027500 GPIO 245 VSSFLEX Vx 1339000 -3136000 Must be bonded to VSS 246 VDDFLEX Vx 1389000 -3027500 Must be bonded to VEXT or VDDP3 247 VDD Vx 1439000 -3136000 Must be bonded to VDD 248 VSS Vx 1539000 -3136000 Must be bonded to VSS 249 P11.10 LP / PU1 / VFLEX 1594000 -3027500 GPIO 250 P11.11 MP+ / PU1 / VFLEX 1682000 -3136000 GPIO 251 P11.12 MPR / PU1 / VFLEX 1782000 -3027500 GPIO 252 P10.0 LP / PU1 /VEXT 1932000 -3136000 GPIO Data Sheet 2-173 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: Table 2-55 List of the TC260x Bare Die Pads Number Pad Name Pad Type X Y Comment 253 P10.1 MP+ / PU1 / VEXT 2012000 -3027500 GPIO 254 P10.2 MP / PU1 / VEXT 2112000 -3027500 GPIO 255 VSS Vx 2177000 -3136000 Must be bonded to VSS 256 P10.3 MP / PU1 / VEXT 2242000 -3027500 GPIO 257 P10.4 MP+ / PU1 / VEXT 2360000 -3136000 GPIO 258 P10.5 LP / PU1 / VEXT 2460000 -3136000 GPIO 259 VEXT Vx 2515000 -3027500 Must be bonded to VEXT 260 P10.6 LP / PU1 / VEXT 2570000 -3136000 GPIO 261 P10.7 LP / PU1 / VEXT 2630000 -3027500 GPIO 262 VSS Vx 2685000 -3136000 Must be bonded to VSS Data Sheet 2-174 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: 2.4.1 TC 260 / 264 / 265 / 267 Bare Die Pad Description Legend: Column “Number”: Running number of pads in the pad frame Column “Name”: Symbolic name of the pad. The functions mapped on GPIO pads “Px.y” are described in the User’s Manual chapter ”General Purpose I/O Ports and Peripheral I/O LInes (Ports)” Column “Type”: LP = Pad class LP (5V/3.3V, LVTTL) MP = Pad class MP (5V/3.3V, LVTTL) MP+ = Pad class MP (5V/3.3V, LVTTL) A2 = Pad class A2 (3.3V, LVTTL) LVDSM = Pad class LVDSM (LVDS/CMOS 5V/3.3V) LVDSH = Pad class LVDSM (LVDS/CMOS 3.3V) S = Pad class D (ADC) D = Pad class D (ADC) PU = with pull-up device connected during reset (PORST = 0)1) PD = with pull-down device connected during reset (PORST = 0) OD = open drain during reset (PORST = 0) High-Z = tri-state during reset (PORST = 0) Column “X” / “Y”: Pad opening center coordinates 2.4.2 Pull-Up/Pull-Down Reset Behavior of the Pins Table 2-56 List of Pull-Up/Pull-Down Reset Behavior of the Pins Pins PORST = 0 all GPIOs Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0 TDI, TESTMODE Pull-up 1) PORST Pull-down with IPORST relevant TRST, TCK, TMS Pull-down ESR0 The open-drain driver is used to drive low.2) ESR1 Pull-up3) TDO Pull-up 1) 2) 3) 4) PORST = 1 Pull-down with IPDLI relevant Pull-up3) High-Z/Pull-up4) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation. Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details. See the SCU_IOCR register description. Depends on JTAG/DAP selection with TRST. 1) The default pad reset state (PU or High-Z) can be controlled via HWCFG6 (P14.4). Data Sheet 2-175 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Package and Pinning DefinitionsTC260 Bare Die Pad Definition: In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on. Data Sheet 2-176 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationParameter Interpretation 3 Electrical Specification 3.1 Parameter Interpretation The parameters listed in this section partly represent the characteristics of the TC 260 / 264 / 265 / 267 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are marked with an two-letter abbreviation in column “Symbol”: • CC Such parameters indicate Controller Characteristics which are a distinctive feature of the TC 260 / 264 / 265 / 267 and must be regarded for a system design. • SR Such parameters indicate System Requirements which must provided by the microcontroller system in which the TC 260 / 264 / 265 / 267 designed in. Data Sheet 4-177 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationAbsolute Maximum Ratings 3.2 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the Operational Conditions of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 3-1 Absolute Maximum Ratings Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition upto 65h @ TJ = 150°C; upto 15h @ TJ = 170°C Storage Temperature TST SR -65 - 170 °C Voltage at VDD power supply pins with respect to VSS 1) VDD SR - - 1.9 V VDDP3 SR Voltage at VDDP3 and VDDFL3 power supply pins with respect to VSS 1) - - 4.43 V Voltage at VDDM, VEXT and VFLEX power supply pins with respect to VSS 1) VDDM SR - - 7.0 V Voltage on any class A2 and LVDSH input pin with respect to VSS 1)2) VIN SR -0.5 - min( V Voltage on all other input pins with respect to VSS 1)2) VIN SR 0.6 , 4.23 ) Input current on any pin during IIN SR overload condition 3) Absolute maximum sum of all input circuit currents during overload condition 3) Whatever is lower VDDP3 + ΣIIN SR -0.5 - 7.0 V -10 - 10 mA -100 - 100 mA 1) Valid for cumulated for up to 2.8h and pulse forms following a power supply switch on phase, where the rise and fall times are releated to the system capacities and coils. 2) Voltages below VINmin have no Impact to the device reliabiltiy as Long as the times and currents defined in section Pin Reliability in Overload for the affected pad(s) are not violated. 3) This parameter is an Absolute Maximum Rating. Exposure to Absolute Maximum Ratings for extended periods of time may damage the device. Data Sheet 4-178 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPin Reliability in Overload 3.3 Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. The following table defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • full operation life-time is not exceeded • Operating Conditions are met for – pad supply levels – temperature If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Table 3-2 Overload Parameters Parameter Symbol Input current on any digital pin IIN during overload condition Values Min. Typ. Max. -5 - 5 -15 1) - 15 1) Unit Note / Test Condition mA except LVDS pins mA except LVDS pins; limited to max. 20 pulses with 1ms pulse length Input current on LVDS pin during overload condition IINLVDS -3 - 3 mA Absolute maximum sum of all input circuit currents during overload condition IING -50 - 50 mA Input current on analog input pin during overload condition IINANA -3 - 3 mA -5 - 5 mA Absolute sum of all ADC inputs IINSCA during overload condition -20 - 20 mA Absolute maximum sum of all input circuit currents during overload condition -100 - 100 mA Signal voltage over/undershoot VOUS at GPIOs VSS - 2 - VEXT/FLEX V limited to 60h over lifetime; Valid for LP, MP, MP+, and MPR pads Inactive device pin current during overload condtion 2) IID -1 - 1 mA All power supply voltages VDDx = 0 Sum of all inactive device pin currents 2) IIDS -100 - 100 mA Data Sheet ΣIINS +2 4-179 limited to 60h over lifetime V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPin Reliability in Overload Table 3-2 Overload Parameters (cont’d) Parameter Symbol Values Min. Overload coupling factor for digital inputs, negative 3) Overload coupling factor for digital inputs, positive 3) Data Sheet KOVDN CC KOVDP CC Typ. Unit Note / Test Condition Max. 6*10-4 Overload injected on GPIO non LVDS pad and affecting neighbor LP and A2 pads; -2mA < IIN < 0mA - 1*10-2 Overload injected on GPIO non LVDS pad and affecting neighbor LP and A2 pads; -5mA < IIN < -2mA - - 1.7*10-3 Overload injected on GPIO non LVDS pad and affecting neighbor MP, MP+, and MPR pads; -2mA < IIN < 0mA - - 2*10-2 Overload injected on GPIO non LVDS pad and affecting neighbor MP, MP+, and MPR pads; -5mA < IIN < 2mA - - 0.3 Overload injected on LVDS pad and affecting neighbor LVDS pads - - 0.93 coupling between pads 21.2 and 21.3 - - 1*10-5 Overload injected on GPIO non LVDS pad and affecting neighbor GPIO non LVDS pads - - 1*10-4 Overload injected on GPIO pad and affecting neighbor P32.0 pad - - 5*10-4 Overload injected on LVDS pad and affecting neighbor LVDS pads - 2*10 - 4-180 -4 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPin Reliability in Overload Table 3-2 Overload Parameters (cont’d) Parameter Symbol Overload coupling factor for analog inputs, negative Overload coupling factor for analog inputs, positive 1) 2) 3) 4) KOVAN CC KOVAP CC Values Unit Note / Test Condition Min. Typ. Max. - - 6*10-4 4) Analog Inputs overlaid with class LP pads or pull down diagnostics; -1mA < IIN < 0mA - - 1*10-2 Analog Inputs overlaid with class LP pads or pull down diagnostics; -5mA < IIN < -1mA - - 1*10-4 else; -5mA < IIN < 0mA - - 1*10-5 5mA < IIN < 0mA Reduced VADC / DSADC result accuracy and / or GPIO input levels (VIL and VIH) can differ from specified parameters. Limitations for time and supply levels specified in this section are not valid for this parameter. Overload is measured as increase of pad leakage caused by injection on neighbor pad. For analogue inputs overlaid with DSADC function the VCM holdbuffer shall be enabled, in case DSADCs are enabled. Note: DSADC input pins count as analog pins as they are overlaid with VADC pins. Table 3-3 PN-Junction Characteristics for positive Overload Pad Type IIN = 3 mA IIN = 5 mA F / A2 UIN = VDDP3 + 0.5 V UIN = VDDP3 + 0.6 V LP / MP / MP+ / MPR UIN = VEXT / FLEX + 0.75 V UIN = VEXT / FLEX + 0.8 V LVDSM UIN = VEXT + 0.75 V - LVDSH UIN = VDDP3 + 0.5 V - D UIN = VDDM + 0.75 V - Table 3-4 PN-Junction Characteristics for negative Overload Pad Type IIN = -3 mA IIN = -5 mA F / A2 UIN = VSS - 0.5 V UIN = VSS - 0.6 V LP / MP / MP+ / MPR UIN = VSS - 0.75 V UIN = VSS - 0.8 V LVDSM UIN = VSS - 0.75 V - LVDSH UIN = VSS - 0.5 V - D UIN = VSS - 0.75 V - Data Sheet 4-181 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationOperating Conditions 3.4 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the TC 260 / 264 / 265 / 267. All parameters specified in the following tables refer to these operating conditions, unless otherwise noticed. Digital supply voltages applied to the TC 260 / 264 / 265 / 267 must be static regulated voltages. All parameters specified in the following tables refer to these operating conditions (see table below), unless otherwise noticed in the Note / Test Condition column. Table 3-5 Operating Conditions Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition SRI frequency fSRI SR - - 200 MHz Max System Frequency fMAX SR - - 200 MHz CPU0 Frequency fCPU0 SR - - 200 MHz CPU1 Frequency fCPU1 SR - - 200 MHz PLL output frequency fPLL SR 20 - 200 MHz PLL_ERAY output frequency fPLLERAY SR 20 - 400 MHz SPB frequency fSPB SR - - 100 MHz ASCLIN fast frequency fASCLINF SR - - 200 MHz ASCLIN slow frequency fASCLINS SR - - 100 MHz Baud2 frequency fBAUD2 SR - - 200 MHz Baud1 frequency fBAUD1 SR - - 100 MHz FSI2 frequency fFSI2 SR - - 200 MHz FSI frequency fFSI SR - - 100 MHz GTM frequency fGTM SR - - 100 MHz STM frequency fSTM SR - - 100 MHz ERAY frequency fERAY SR - - 80 MHz BBB frequency fBBB SR - - 100 MHz MultiCAN frequency fCAN SR - - 100 MHz Absolute sum of short circuit currents of the device ΣISC_D SR - - 100 mA Ambient Temperature TA SR -40 - 125 °C valid for all SAK products -40 - 150 °C valid for all SAL products -40 - 170 °C valid for all SAL products without package -40 - 150 °C valid for all SAK products -40 - 170 °C valid for all SAL products Junction Temperature Data Sheet TJ SR 4-182 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationOperating Conditions Table 3-5 Operating Conditions (cont’d) Parameter Symbol Values Unit Note / Test Condition Only required if externally supplied Min. Typ. Max. VDD SR 1.17 1.3 1.43 2) V ADC analog supply voltage VDDM SR 2.97 5.0 5.5 3) V Digital external supply voltage for LP, MP, MP+ and LVDSM pads and EVR 4) VEXT SR 2.97 - 4.5 V 3.3V pad parameters are valid 4.5 5.0 5.5 3) V 5V pad parameters are valid Digital supply voltage for Flex port VFLEX SR 2.97 - 4.5 V 3.3V pad parameters are valid 4.5 5.0 5.5 3) V 5V pad parameters are valid Core Supply Voltage 1) Digital supply voltage for LVDSH and A2 pads 5) VDDP3 SR 2.97 3.3 3.63 6) V 3.3V pad parameters are valid; only required if externally supplied Flash supply voltage 3.3V 1) VDDFL3 SR 2.97 3.3 3.63 V Only required if externally supplied Digital ground voltage VSS SR 0 - - V Analog ground voltage for VDDM VSSM CC -0.1 0 0.1 V Voltage to ensure defined pad states 7) 0.72 - - V A2 and LVDSH 1.4 - - V LP, MP, MP+, MPR and LVDSM 2.97 3.3 3.63 V VDDPPA CC Digital supply voltage for GPIO VDDP3 SR pads and EVR 5) SCR CCLK frequency fCCLK SR 0.07 - 20 MHz SCR PCLK frequency fPCLK SR 0.07 - 20 MHz SCR RTC frequency fRTC SR 0.0002 - 20 MHz SCR WDT frequency fWDTCLK SR 0.00078 - 20 MHz 1) No external inductive load permissible if EVR is used. All VDD pins shall be connected together externally on the PCB. 2) Voltage overshoot to 1.69V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and leakage is increased. 3) Voltage overshoot to 6.5V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and leakage is increased. 4) All VEXT pins shall be connected together externally on the PCB. 5) All VDDP3 pins shall be connected together externally on the PCB. 6) Voltage overshoot to 4.29V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and leakage is increased. 7) This parameter is valid under the assumption the PORST signal is constantly at low level during the power-up/power-down of VDDP3. Data Sheet 4-183 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads 3.5 5 V / 3.3 V switchable Pads Pad classes LP, MP, MP+, and MPR support both Automotive Level (AL) or TTL level (TTL) operation. Parameters are defined for AL operation and degrade in TTL operation. Table 3-6 Standard_Pads Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Pin capacitance (digital inputs/outputs) CIO CC - 6 10 pF Spike filter always blocked pulse duration tSF1 CC - - 80 ns PORST only Spike filter pass-through pulse tSF2 CC duration 220 - - ns PORST only PORST pad output current 1) 11 - - mA VEXT = 3.0V; VPORST = 0.9V; TJ = 165°C 13 - - mA IPORST CC VEXT = 4.5V; VPORST = 1.0V 1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation. Table 3-7 Class LP 5V Parameter Symbol Input frequency Input Hysteresis for LP pad fIN SR 1) Values Unit Note / Test Condition Min. Typ. Max. - - 75 MHz Hysteresis active - - 150 MHz Hysteresis inactive - - V AL - - V TTL -150 - 150 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -350 - 350 nA else -4900 - 4900 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -9400 - 9400 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX); for TJ > 150°C -5800 - 5800 nA else -12000 - 12000 nA else; for TJ > 150°C |30| - - µA VIHmin; AL |43| - - µA VIHmin; TTL - - |107| µA VILmax; AL and TTL HYSLP CC 0.09 * VEXT/FLEX 0.075 * VEXT/FLEX Input Leakage current for LP pad IOZLP CC Input leakage current for P32.0 IOZP320 CC Pull-up current for LP pad Data Sheet IPUHLP CC 4-184 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-7 Class LP 5V (cont’d) Parameter Symbol Pull-down current for LP pad On-Resistance for LP pad, weak driver 2) On-Resistance for LP pad, medium driver 2) Rise / fall time for LP pad 3) IPDLLP CC RDSONLPW Values Input low voltage for LP pad Note / Test Condition Min. Typ. Max. - - |100| µA VIHmin; AL and TTL |46| - - µA VILmax; AL |21| - - µA VILmax; TTL 200 620 1040 Ohm CC RDSONLPM 50 155 260 Ohm PMOS/NMOS ; IOH=2mA; IOL=2mA - - 95+2.1 * ns CL CL≤50pF; pin out driver=weak CC tLP CC VIHLP SR VILLP SR PMOS/NMOS ; IOH=0.5mA; IOL=0.5mA - - 200+2.9 * ns ( CL - 50 ) CL≥50pF; CL≤200pF; pin out driver=weak - - 25+0.5 * CL CL≤50pF; pin out driver=medium 50+0.75 * ns ( CL - 50 ) CL≥50pF; CL≤200pF; pin out driver=medium (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 2.03 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.8 5) V Hysteresis active, TTL Hysteresis inactive; not available for P14.2, P14.4, and P15.1 Input high voltage for LP pad Unit - ns Input low / high voltage for LP pad VILHLP CC 1.85 - 3.0 V Pad set-up time for LP pad tSET_LP CC - - 100 ns -150 - 1030 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX); TJ > 150°C -150 - 340 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX); TJ = 150°C -420 - 1100 nA else; TJ > 150°C -350 - 380 nA else; TJ = 150°C - |105| µA VIHmin; AL and TTL |41| - - µA VILmax; AL |16| - - µA VILmax; TTL IPUHP320 CC |25| - - µA VIHmin; AL |38| - - µA VIHmin; TTL - - |112| µA VILmax; AL and TTL Input leakage current for P02.1 IOZ021 CC Pull down current for P32_0 pin IPDLP320 CC - Pull Up Current for P32_0 pin Data Sheet 4-185 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-7 Class LP 5V (cont’d) Parameter Symbol Values Unit Note / Test Condition absolute max value (PSI5) Min. Typ. Max. Short Circuit current for LP pad ISC SR -10 - 10 mA Deviation of symmetry for rising SYM CC and falling edges - - 20 % 6) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VEXT/FLEX. 4) VIHx = 0.27 * VEXT/FLEX + 0.545V 5) VILx = 0.17 * VEXT/FLEX 6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation. Table 3-8 Class LP 3.3V Parameter Symbol Input frequency Input Hysteresis for LP pad Input Leakage current for LP pad Pull-down current for LP pad Max. - - 50 MHz Hysteresis active - - 100 MHz Hysteresis inactive HYSLP CC 0.05 * VEXT/FLEX - - V AL and TTL IOZLP CC -150 - 150 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -350 - 350 nA else -4900 - 4900 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -9400 - 9400 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX); for TJ > 150 °C -5800 - 5900 nA else -12000 - 12000 nA else; for TJ > 150°C |17| - - µA VIHmin; AL |19| - - µA VIHmin; TTL - - |75| µA VILmax; AL and TTL - - |75| µA VIHmin; AL and TTL |22| - - µA VILmax; AL |11| - - µA VILmax; TTL 250 875 1500 Ohm IPUHLP CC IPDLLP CC On-Resistance for LP pad, weak driver 2) CC On-Resistance for LP pad, medium driver 2) CC Data Sheet Note / Test Condition Typ. Input leakage current for P32.0 IOZP320 CC Pull-up current for LP pad Unit Min. fIN SR 1) Values RDSONLPW RDSONLPM ; NMOS/PMOS ; IOH=0.25mA; IOL=0.25mA 70 235 400 Ohm ; NMOS/PMOS ; IOH=1mA; IOL=1mA 4-186 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-8 Class LP 3.3V (cont’d) Parameter Rise / fall time for LP pad Symbol 3) tLP CC Values Min. Typ. Max. - - 150+3.4 * ns Input low voltage for LP pad VIHLP SR VILLP SR Note / Test Condition CL CL≤50pF; pin out driver=weak - - 320+4.5 * ns ( CL - 50 ) CL≥50pF; CL≤200pF; pin out driver=weak - - 30+0.8*C ns CL≤50pF; pin out L driver=medium 70+1.1 * ( ns CL - 50 ) CL≥50pF; CL≤200pF; pin out driver=medium (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 1.6 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.5 5) V Hysteresis active, TTL Hysteresis inactive; not available for P14.2, P14.4, and P15.1 Input high voltage for LP pad Unit - Input low / high voltage for LP pad VILHLP CC 1.1 - 1.9 V Pad set-up time for LP pad tSET_LP CC - - 100 ns -150 - 920 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX); TJ > 150°C -150 - 330 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX); TJ = 150°C -360 - 1000 nA else; TJ > 150°C -350 - 375 nA else; TJ = 150°C - |80| µA VIHmin; AL and TTL |17| - - µA VILmax; AL |6| - - µA VILmax; TTL IPUHP320 CC |12| - - µA VIHmin; AL |14| - - µA VIHmin; TTL - - |80| µA VILmax; AL and TTL Short Circuit current for LP pad ISC SR -10 - 10 mA absolute max value (PSI5) Deviation of symmetry for rising SYM CC and falling edges - - 20 % Input leakage current for P02.1 IOZ021 CC Pull down current for P32_0 pin IPDLP320 CC - Pull Up Current for P32_0 pin 6) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. Data Sheet 4-187 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads 3) 4) 5) 6) Rise / fall times are defined 10% - 90% of VEXT/FLEX. VIHx = 0.27 * VEXT/FLEX + 0.545V VILx = 0.17 * VEXT/FLEX The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation. Table 3-9 Class MP 5V Parameter Symbol Input frequency Input Hysteresis for MP pad fIN SR 1) Values Unit Note / Test Condition Min. Typ. Max. - - 75 MHz Hysteresis active - - 150 MHz Hysteresis inactive - - V AL - - V TTL -500 - 500 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -1000 - 1000 nA else |30| - - µA VIHmin; AL |43| - - µA VIHmin; TTL - - |107| µA VILmax; AL and TTL - - |100| µA VIHmin; AL and TTL |46| - - µA VILmax; AL |21| - - µA VILmax; TTL 200 620 1040 Ohm HYSMP CC 0.09 * VEXT/FLEX 0.075 * VEXT/FLEX Input Leakage current for MP pad Pull-up current for MP pad Pull-down current for MP pad IOZMP CC IPUHMP CC IPDLMP CC On-Resistance for MP pad, weak driver 2) RDSONMPW On-Resistance for MP pad, medium driver 2) RDSONMPM On-Resistance for MP pad, strong driver 2) Data Sheet CC 50 155 260 Ohm PMOS/NMOS ; IOH=2mA; IOL=2mA CC RDSONMPS PMOS/NMOS ; IOH=0.5mA; IOL=0.5mA 20 75 CC 130 Ohm PMOS/NMOS ; IOH=8mA; IOL=8mA 4-188 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-9 Class MP 5V (cont’d) Parameter Rise / fall time for MP pad Symbol 3) tMP CC Values Unit Note / Test Condition Min. Typ. Max. - - 95+2.1*C ns L CL≤50pF; pin out driver=weak - - 200+2.9*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=weak - - 25+0.5*C ns CL≤50pF; pin out L driver=medium - - 50 + 0.75 ns * ( CL - 50 ) CL≥50pF; CL≤200pF; pin out driver=medium - - 17.5+0.25 ns *CL CL≤50pF; edge=medium ; pin out driver=strong - - 30+0.3*( CL-50) ns CL≥50pF; CL≤200pF; edge=medium ; pin out driver=strong - - 7+0.2*CL ns CL≤50pF; edge=sharp ; pin out driver=strong - - 17+0.3*( CL-50) ns CL≥50pF; CL≤200pF; edge=sharp ; pin out driver=strong (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 2.03 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.8 5) V Hysteresis active, TTL 1.85 - 3.0 V Hysteresis inactive - - 100 ns Short Circuit current for MP pad ISC SR -10 - 10 mA Deviation of symmetry for rising SYM CC and falling edges - - 20 % Input high voltage for MP pad Input low voltage for MP pad VIHMP SR VILMP SR Input low / high voltage for MP VILHMP CC pad Pad set-up time for MP pad tSET_MP CC 6) absolute max value (PSI5) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VEXT/FLEX. 4) VIHx = 0.27 * VEXT/FLEX + 0.545V 5) VILx = 0.17 * VEXT/FLEX 6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation. Data Sheet 4-189 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-10 Class MP 3.3V Parameter Symbol Input frequency Input Hysteresis for MP pad Input Leakage current for MP pad Pull-up current for MP pad Pull-down current for MP pad Unit Note / Test Condition Min. Typ. Max. - - 50 MHz Hysteresis active - - 100 MHz Hysteresis inactive HYSMP CC 0.05 * VEXT/FLEX - - V AL and TTL IOZMP CC -500 - 500 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -1000 - 1000 nA else |17| - - µA VIHmin; AL |19| - - µA VIHmin; TTL - - |75| µA VILmax; AL and TTL - - |75| µA VIHmin; AL and TTL |22| - - µA VILmax; AL |11| - - µA VILmax; TTL 250 875 1500 Ohm fIN SR 1) Values IPUHMP CC IPDLMP CC On-Resistance for MP pad, weak driver 2) RDSONMPW On-Resistance for MP pad, medium driver 2) RDSONMPM CC 70 235 400 Ohm 20 110 200 Ohm CC On-Resistance for MP pad, strong driver 2) CC Rise / fall time for MP pad 3) tMP CC RDSONMPS ; NMOS/PMOS ; IOH=1mA; IOL=1mA PMOS/NMOS ; IOH=4mA; IOL=4mA - - 150+3.4* CL CL≤50pF; pin out driver=weak ns - - 320+4.5*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=weak - - 30+0.8*C ns CL≤50pF; pin out driver=medium - - 70+1.1*( CL-50) L Data Sheet ; NMOS/PMOS ; IOH=0.25mA; IOL=0.25mA ns CL≥50pF; CL≤200pF; pin out driver=medium - - 32.5+0.35 ns *CL CL≤50pF; edge=medium ; pin out driver=strong - - 50+0.45*( ns CL-50) CL≥50pF; CL≤200pF; edge=medium ; pin out driver=strong - - 14.5+0.35 ns *CL CL≤50pF; edge=sharp ; pin out driver=strong - - 32+0.5*( CL-50) CL≥50pF; CL≤200pF; 4-190 ns edge=sharp ; pin out driver=strong V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-10 Class MP 3.3V (cont’d) Parameter Symbol Values Min. Input high voltage for MP pad Note / Test Condition Max. (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 1.6 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.5 5) V Hysteresis active, TTL Input low / high voltage for MP VILHMP CC pad 1.1 - 1.9 V Hysteresis inactive Pad set-up time for MP pad - - 100 ns Short Circuit current for MP pad ISC SR -10 - 10 mA Deviation of symmetry for rising SYM CC and falling edges - - 20 % Input low voltage for MP pad VIHMP SR Typ. Unit VILMP SR tSET_MP CC 6) absolute max value (PSI5) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VEXT/FLEX. 4) VIHx = 0.27 * VEXT/FLEX + 0.545V 5) VILx = 0.17 * VEXT/FLEX 6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation. Table 3-11 Class MP+ 5V Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - - 75 MHz Hysteresis active - - 150 MHz Hysteresis inactive HYSMPP 0.09 * - - V AL CC VEXT/FLEX - - V TTL -750 - 750 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -1500 - 1500 nA else IPUHMPP CC |30| - - µA VIHmin; AL |43| - - µA VIHmin; TTL - - |107| µA VILmax; AL and TTL Pull-down current for MP+ pad IPDLMPP CC - - |100| µA VIHmin; AL and TTL |46| - - µA VILmax; AL |21| - - µA VILmax; TTL Input frequency Input hysteresis for MP+ pad fIN SR 1) 0.075 * VEXT/FLEX Input leakage current for MP+ pad Pull-up current for MP+ pad Data Sheet IOZMPP CC 4-191 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-11 Class MP+ 5V (cont’d) Parameter Symbol On-resistance for MP+ pad, weak driver 2) RDSONMPPW RDSONMPPM On-resistance for MP+ pad, strong driver 2) RDSONMPPS Rise/fall time for MP+ pad Unit Min. Typ. Max. 200 620 1040 Ohm CC On-resistance for MP+ pad, medium driver 2) 3) Values PMOS/NMOS ; IOH=0.5mA; IOL=0.5mA 50 155 260 Ohm CC PMOS/NMOS ; IOH=2mA; IOL=2mA 20 55 90 Ohm - - 95+2.1*C ns L CL≤50pF; pin out driver=weak - - 200+2.9*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=weak - - 25+0.5*C ns L CL≤50pF; pin out driver=medium CC tMPP CC Note / Test Condition PMOS/NMOS ; IOH=8mA; IOL=8mA - - 50+0.75*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=medium - - 9+0.16*C ns CL≤50pF; L edge=medium ; pin out driver=strong - - 17+0.2*( CL-50) ns CL≥50pF; CL≤200pF; edge=medium ; pin out driver=strong - - 4+0.16*C ns CL≤50pF; edge=sharp ; pin out driver=strong L - - 12+0.21*( ns CL-50) CL≥50pF; CL≤200pF; edge=sharp ; pin out driver=strong - - 5 ns from 0.8V to 2.0V (RMII) ; CL=25pF; edge=sharp ; pin out driver=strong - - 4.5 ns CL=15pF; edge=sharp ; pin out driver=strong Input high voltage for MP+ pad VIHMPP SR Input low voltage for MP+ pad VILMPP SR (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 2.03 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.8 5) V Hysteresis active, TTL - 3.0 V Hysteresis inactive - 100 ns Input low / high voltage for MP+ VILHMPP CC 1.85 pad Pad set-up time for MP+ pad Data Sheet tSET_MPP CC - 4-192 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-11 Class MP+ 5V (cont’d) Parameter Symbol Short circuit current for MP+ pad 6) ISCMPP SR Deviation of symmetry for rising SYM CC and falling edges Values Unit Note / Test Condition absolute max value (PSI5) Min. Typ. Max. -10 - 10 mA - - 20 % 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VEXT/FLEX. 4) VIHx = 0.27 * VEXT/FLEX + 0.545V 5) VILx = 0.17 * VEXT/FLEX 6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation. Table 3-12 Class MP+ 3.3V Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - - 50 MHz Hysteresis active - - 100 MHz Hysteresis inactive HYSMPP 0.05 * - - V AL and TTL CC VEXT/FLEX IOZMPP CC -750 - 750 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -1500 - 1500 nA else IPUHMPP CC |17| - - µA VIHmin; AL |19| - - µA VIHmin; TTL - - |75| µA VILmax; AL and TTL Pull-down current for MP+ pad IPDLMPP CC - - |75| µA VIHmin; AL and TTL |22| - - µA VILmax; AL |11| - - µA VILmax; TTL 250 875 1500 Ohm Input frequency Input hysteresis for MP+ pad fIN SR 1) Input leakage current for MP+ pad Pull-up current for MP+ pad On-resistance for MP+ pad, weak driver 2) RDSONMPPW CC On-resistance for MP+ pad, medium driver 2) RDSONMPPM On-resistance for MP+ pad, strong driver 2) RDSONMPPS Data Sheet ; NMOS/PMOS ; IOH=0.25mA; IOL=0.25mA 70 235 400 Ohm CC ; NMOS/PMOS ; IOH=1mA; IOL=1mA 20 75 CC 130 Ohm PMOS/NMOS ; IOH=4mA; IOL=4mA 4-193 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-12 Class MP+ 3.3V (cont’d) Parameter Rise/fall time for MP+ pad Symbol 3) tMPP CC Values Unit Note / Test Condition ns CL CL≤50pF; pin out driver=weak Min. Typ. Max. - - 150+3.4* - - 320+4.5*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=weak - - 30+0.8*C ns CL≤50pF; pin out L driver=medium - - 70+1.1*( CL-50) ns CL≥50pF; CL≤200pF; pin out driver=medium - - 20+0.2*C ns CL≤50pF; edge=medium ; pin out driver=strong L - - 30+0.3*( CL-50) ns CL≥50pF; CL≤200pF; edge=medium ; pin out driver=strong - - 13+0.2*C ns CL≤50pF; edge=sharp L ; pin out driver=strong - - 7.65 ns CL = 15pF; VEXT/FLEX = 3.135V; V = 0V to 2.0V; edge=sharp ; pin out driver=strong - - 5.42 ns CL = 15pF; VEXT/FLEX = 3.135V; V = 3.135V to 0.8V; edge=sharp ; pin out driver=strong - - 7.36 ns CL = 15pF; VEXT/FLEX = 3.201V; V = 0V to 2.0V; edge=sharp ; pin out driver=strong - - 5.32 ns CL = 15pF; VEXT/FLEX = 3.201V; V = 3.201V to 0.8V; edge=sharp ; pin out driver=strong - - 5.9 ns CL = 15pF; VEXT/FLEX = 3.63V; V = 0V to 2.0V; edge=sharp ; pin out driver=strong - - 4.8 ns CL = 15pF; VEXT/FLEX = 3.63V; V = 3.63V to 0.8V; edge=sharp ; pin out driver=strong - - 23+0.3*( CL-50) ns CL≥50pF; CL≤200pF; edge=sharp ; pin out driver=strong - - 5 ns from 0.8V to 2.0V (RMII) ; CL=25pF; V 1.0 2017-06 edge=sharp ; pin out driver=strong 4.5 ns from 0.2 * VEXT/FLEX to Data Sheet 4-194 - - TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-12 Class MP+ 3.3V (cont’d) Parameter Symbol Values Min. Input high voltage for MP+ pad VIHMPP SR Typ. Unit Note / Test Condition Max. (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 1.6 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.5 5) V Hysteresis active, TTL Input low / high voltage for MP+ VILHMPP CC 1.1 pad - 1.9 V Hysteresis inactive Pad set-up time for MP+ pad tSET_MPP CC - - 100 ns Short circuit current for MP+ pad 6) ISCMPP SR -10 - 10 mA - - 20 % Input low voltage for MP+ pad VILMPP SR Deviation of symmetry for rising SYM CC and falling edges absolute max value (PSI5) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VEXT/FLEX. 4) VIHx = 0.27 * VEXT/FLEX + 0.545V 5) VILx = 0.17 * VEXT/FLEX 6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation. Table 3-13 Class MPR 5V Parameter Input frequency Symbol Values Unit Note / Test Condition Min. Typ. Max. - - 75 MHz Hysteresis active - - 150 MHz Hysteresis inactive 0.09 * - - V AL - - V TTL -750 - 750 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -1500 - 1500 nA else IPUHMPR CC |30| - - µA VIHmin; AL |43| - - µA VIHmin; TTL - - |107| µA VILmax; AL and TTL IPDLMPR CC - - |100| µA VIHmin; AL and TTL |46| - - µA VILmax; AL |21| - - µA VILmax; TTL fIN SR Input Hysteresis for MPR pads HYSMPR 1) CC VEXT/FLEX 0.075* VEXT/FLEX Input leakage current class MPR Pull-up current Pull-down current Data Sheet IOZMPR CC 4-195 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-13 Class MPR 5V (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. On-resistance of the MPR pad, RDSONMPRW weak driver 2) CC 200 620 1040 On-resistance of the MPR pad, RDSONMPRM medium driver 2) CC 50 On-resistance of the MPR pad, RDSONMPRS strong driver 2) CC 20 55 90 Rise/fall time 3) - - 95+2.1*C ns L CL≤50pF; pin out driver=weak - - 200+2.9*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=weak - - 25+0.5*C ns L CL≤50pF; pin out driver=medium tMPR CC Ohm 155 260 Ohm Input low voltage, class MPR pads Input low / high voltage, class MPR pads Data Sheet VIHMPR SR VILMPR SR PMOS/NMOS ; IOH=2mA; IOL=2mA Ohm PMOS/NMOS ; IOH=8mA; IOL=8mA - - 50+0.75*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=medium - - 9+0.16*C ns CL≥0pF; CL≤50pF; L edge=medium ; pin out driver=strong - - 17+0.2*( CL-50) ns CL≥50pF; CL≤200pF; edge=medium ; pin out driver=strong - - 4+0.16*C ns CL≤50pF; edge=sharp ; pin out driver=strong L Input high voltage, class MPR pads PMOS/NMOS ; IOH=0.5mA; IOL=0.5mA - - 12+0.21*( ns CL-50) CL≥50pF; CL≤200pF; edge=sharp ; pin out driver=strong - - 5 ns from 0.8V to 2.0V (RMII) ; CL=25pF; edge=sharp ; pin out driver=strong - - 4.5 ns from 0.2 * VEXT/FLEX to 0.8 * VEXT/FLEX; CL=15pF; edge=sharp ; pin out driver=strong (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 2.03 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.8 5) V Hysteresis active, TTL - 2.3 V Hysteresis inactive VILHMPR SR 1.2 4-196 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-13 Class MPR 5V (cont’d) Parameter Symbol Values Min. Pad set-up time tSET_MPR CC - Unit Typ. Max. - 100 ns Short circuit current Class MPR ISC SR -10 - 10 mA Deviation of symmetry for rising SYM CC and falling edges - - 20 % Note / Test Condition absolute max value (PSI5) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VEXT/FLEX. 4) VIHx = 0.27 * VEXT/FLEX + 0.545V 5) VILx = 0.17 * VEXT/FLEX Table 3-14 Class MPR 3.3V Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - - 50 MHz Hysteresis active - - 100 MHz Hysteresis inactive Input Hysteresis for MPR pads HYSMPR 1) CC 0.05 * - - V AL and TTL Input leakage current class MPR -750 - 750 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -1500 - 1500 nA else IPUHMPR CC |17| - - µA VIHmin; AL |19| - - µA VIHmin; TTL - - |75| µA VILmax; AL and TTL IPDLMPR CC - - |75| µA VIHmin; AL and TTL |22| - - µA VILmax; AL |11| - - µA VILmax; TTL On-resistance of the MPR pad, RDSONMPRW weak driver 2) CC 250 875 1500 Ohm On-resistance of the MPR pad, RDSONMPRM medium driver 2) CC 70 235 400 Ohm On-resistance of the MPR pad, RDSONMPRS strong driver 2) CC 20 75 130 Ohm Input frequency Pull-up current Pull-down current Data Sheet fIN SR IOZMPR CC VEXT/FLEX ; NMOS/PMOS ; IOH=0.25mA; IOL=0.25mA ; NMOS/PMOS ; IOH=1mA; IOL=1mA PMOS/NMOS ; IOH=4mA; IOL=4mA 4-197 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-14 Class MPR 3.3V (cont’d) Parameter Rise/fall time Symbol 3) tMPR CC Values Unit Note / Test Condition ns CL CL≤50pF; pin out driver=weak Min. Typ. Max. - - 150+3.4* - - 320+4.5*( ns CL-50) CL≥50pF; CL≤200pF; pin out driver=weak - - 30+0.8*C ns CL≤50pF; pin out L driver=medium - - 70+1.1*( CL-50) ns CL≥50pF; CL≤200pF; pin out driver=medium - - 20+0.2*C ns CL≥0pF; CL≤50pF; edge=medium ; pin out driver=strong L Input high voltage, class MPR pads Input low voltage, class MPR pads VIHMPR SR VILMPR SR - - 30+0.3*( CL-50) ns CL≥50pF; CL≤200pF; edge=medium ; pin out driver=strong - - 13+0.2*C ns CL≤50pF; edge=sharp L ; pin out driver=strong - - 23+0.3*( CL-50) ns CL≥50pF; CL≤200pF; edge=sharp ; pin out driver=strong - - 5 ns from 0.8V to 2.0V (RMII) ; CL=25pF; edge=sharp ; pin out driver=strong - - 4.5 ns from 0.2 * VEXT/FLEX to 0.8 * VEXT/FLEX; CL=15pF; edge=sharp ; pin out driver=strong (0.73*VEX T/FLEX)0.25 - V Hysteresis active, AL 1.6 4) - - V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active, AL - - 0.5 5) V Hysteresis active, TTL Hysteresis inactive Input low / high voltage, class MPR pads VILHMPR SR 0.8 - 1.7 V Pad set-up time tSET_MPR CC - - 100 ns - 10 mA Short circuit current Class MPR ISC SR -10 absolute max value (PSI5) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. Data Sheet 4-198 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads 3) Rise / fall times are defined 10% - 90% of VEXT/FLEX. 4) VIHx = 0.27 * VEXT/FLEX + 0.545V 5) VILx = 0.17 * VEXT/FLEX Table 3-15 Class S Parameter Symbol Input frequency Input Hysteresis for S pad Pull-up current for S pad Pull-down current for S pad Unit Note / Test Condition Min. Typ. Max. - - 75 MHz Hysteresis active - - 150 MHz Hysteresis inactive HYSS CC 0.3 - - V IPUHS CC |30| - - µA VIHmin - - |107| µA VILmax - - |100| µA VIHmin |46| - - µA VILmax -350 - 350 nA Analog Inputs with pull down diagnostics -150 - 150 nA else - (0.73*VDD V M)-0.25 Hysteresis active fIN SR 1) Values IPDLS CC Input Leakage current Class S IOZS CC Input voltage high for S pad VIHS SR - Input voltage low for S pad VILS SR (0.52*VDD M)-0.25 - V Hysteresis active Input low threshold variation for VILSD SR S pad 2) -50 - 50 mV max. variation of 1ms; VDDM=constant Input capacitance for S pad CINS CC - - 10 pF Pad set-up time for S pad tSETS CC - - 100 ns 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) VILSD is implemented to ensure J2716 specification. For details of dedicated pins please see AP32286 for details. Table 3-16 Class I 5V Parameter Input frequency Input Hysteresis for I pad 1) Symbol fIN SR HYSI CC Values Unit Note / Test Condition Min. Typ. Max. - - 75 MHz Hysteresis active - - 150 MHz Hysteresis inactive 0.07 * - - V PORST pad only - - V AL - - V TTL |30| - - µA VIHmin; AL |43| - - µA VIHmin; TTL - - |107| µA VILmax; AL and TTL VEXT/FLEX 0.09 * VEXT/FLEX 0.075 * VEXT/FLEX Pull-up current for I pad Data Sheet IPUHI CC 4-199 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-16 Class I 5V (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - - |100| µA VIHmin; AL and TTL |46| - - µA VILmax; AL |21| - - µA VILmax; TTL -150 - 150 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -350 - 350 nA else 2.03 2) - - V Hysteresis active, TTL (0.73*VEX T/FLEX)0.25 - V Hysteresis active; AL; not available for the PORST pad - - 0.8 3) V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active; AL; not available for the PORST pad Input low / high voltage for I pad VILHI CC 1.85 - 3.0 V Hysteresis inactive Pad set-up time for I pad - - 100 ns Pull-down current for I pad IPDLI CC Input Leakage Current for I pad IOZI CC Input high voltage for I pad Input low voltage for I pad VIHI SR VILI SR tSETI CC 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) VIHx = 0.27 * VEXT/FLEX + 0.545V 3) VILx = 0.17 * VEXT/FLEX Table 3-17 Class I 3.3V Parameter Symbol Input frequency Input Hysteresis for I pad fIN SR 1) HYSI CC Values Unit Note / Test Condition Min. Typ. Max. - - 50 MHz Hysteresis active - - 100 MHz Hysteresis inactive 0.045 * - - V PORST pad only - - V AL and TTL |17| - - µA VIHmin; AL |19| - - µA VIHmin; TTL - - |75| µA VILmax; AL and TTL - - |75| µA VIHmin; AL and TTL |22| - - µA VILmax; AL |11| - - µA VILmax; TTL -150 - 150 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -350 - 350 nA else VEXT/FLEX 0.05 * VEXT/FLEX Pull-up current for I pad Pull-down current for I pad IPUHI CC IPDLI CC Input Leakage Current for I pad IOZI CC Data Sheet 4-200 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification5 V / 3.3 V switchable Pads Table 3-17 Class I 3.3V (cont’d) Parameter Symbol Values Min. Unit Note / Test Condition Typ. Max. - - V Hysteresis active, TTL (0.73*VEX T/FLEX)0.25 - V Hysteresis active; AL; not available for the PORST pad - - 0.5 3) V Hysteresis active, TTL - - (0.52*VEX V T/FLEX)0.25 Hysteresis active; AL; not available for the PORST pad Input low / high voltage for I pad VILHI CC 1.1 - 1.9 V Hysteresis inactive Pad set-up time for I pad - - 100 ns Input high voltage for I pad VIHI SR Input low voltage for I pad VILI SR tSETI CC 1.6 2) 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) VIHx = 0.27 * VEXT/FLEX + 0.545V 3) VILx = 0.17 * VEXT/FLEX Table 3-18 Driver Mode Selection for LP Pads PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting X X 0 Speed grade 1 medium (LPm) X X 1 Speed grade 2 weak (LPw) Table 3-19 Driver Mode Selection for MP / MP+ Pads PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting X 0 0 Speed grade 1 Strong sharp edge (MPss / MP+ss / MPRss) X 0 1 Speed grade 2 Strong medium edge (MPsm / MP+sm / MPRsm) X 1 0 Speed grade 3 medium (MPm / MP+m / MPRm) X 1 1 Speed grade 4 weak (MPw / MP+w / MPRw) Data Sheet 4-201 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification3.3 V only Pads 3.6 3.3 V only Pads Pad classes LP, MP and MP+ support both Automotive Level (AL) or TTL level (TTL) operation. Parameters are defined for AL operation and degrade in TTL operation. Table 3-20 Class A2 Parameter Symbol Values Unit Min. Typ. Max. - - 160 MHz Note / Test Condition Input frequency fIN SR Input Hysteresis for A2 pad 1) HYSA2 CC 0.1 * VDDP3 - - V TTL;else 0.06 * - - V valid for P21.6 and P21.7 -300 - 300 nA (0.1*VEXT/FLEX) < VIN < (0.9*VEXT/FLEX) -800 - 500 nA else - - |100| µA VIHmin |25| - - µA VILmax |23| - - µA VIHmin - - |100| µA VILmax 100 200 325 Ohm PMOS/NMOS ; IOH=0.5mA; IOL=0.5mA 40 70 100 Ohm VDDP3 Input Leakage current for A2 pad Pull-up current for A2 pad Pull-down current for A2 pad IOZA2 CC IPUHA2 CC IPDLA2 CC On-Resistance for A2 pad, weak driver 2) CC On-Resistance for A2 pad, medium driver 2) CC RDSONA2W RDSONA2M On-Resistance for A2 pad, strong driver 2) RDSONA2S Rise/fall time for A2 pad 3) tA2 CC 20 35 50 Ohm CC PMOS/NMOS ; IOH=8mA; IOL=8mA - - 20+0.8*C ns CL≤50pF; pin out L driver=weak - - 17.5+0.85 ns *CL CL≥50pF; CL≤200pF; pin out driver=weak - - 12+0.16* CL CL≤50pF; pin out driver=medium ns - - 11.5+0.17 ns *CL CL≥50pF; CL≤200pF; pin out driver=medium - - 6+0.06*C ns CL≤50pF; edge=medium ; pin out driver=strong L - - 5.5+0.07* ns CL - - 0.0+0.12* ns CL - - 0.0+0.12* ns CL Data Sheet PMOS/NMOS ; IOH=2mA; IOL=2mA 4-202 CL≥50pF; CL≤200pF; edge=medium ; pin out driver=strong CL≤50pF; edge=sharp ; pin out driver=strong CL≥50pF; CL≤200pF; edge=sharp ; pin out driver=strong V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical Specification3.3 V only Pads Table 3-20 Class A2 (cont’d) Parameter Symbol Values Min. Input high voltage for A2 pad VIHA2 SR Unit Note / Test Condition Typ. Max. - - V TTL;valid for all A2 pads except TMS/DAP1, TRST, and TCK/DAP0 - - V valid for TMS/DAP1, TRST, and TCK/DAP0 - - 0.8 5) V TTL;valid for all A2 pads except TMS/DAP1, TRST, and TCK/DAP0 - - 0.3 * V valid for TMS/DAP1, TRST, and TCK/DAP0 2.04 4) 0.7 * VDDP3 Input low voltage for A2 pad VILA2 SR VDDP3 Pad set-up time for A2 pad tSETA2 CC Deviation of symmetry for rising SYM CC and falling edges - - 100 ns - - 20 % 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VDDP3. 4) VIHx = 0.57 * VDDP3 - 0.03V 5) VILx = 0.25 * VDDP3 + 0.058V Table 3-21 Driver Mode Selection for A2 Pads PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting X 0 0 Speed grade 1 Strong sharp edge X 0 1 Speed grade 2 Strong medium edge X 1 0 Speed grade 3 medium X 1 1 Speed grade 4 weak Table 3-22 Driver Mode Selection for F Pads PDx.2 PDx.1 PDx.0 Port Functionality Driver Setting X 0 0 Speed grade 1 Reduced Strong sharp edge X 0 1 Speed grade 2 Reduced Strong medium edge X 1 0 Speed grade 3 medium X 1 1 Speed grade 4 weak Data Sheet 4-203 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationHigh performance LVDS Pads (LVDSH) 3.7 High performance LVDS Pads (LVDSH) This LVDS pad type is used for the high speed chip to chip communication inferface of the new TC 260 / 264 / 265 / 267. It compose out of a LVDSH pad and a Class F pad. This pad combination is always supplied by the 3.3V supply rail. Table 3-23 Class F Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Input frequency fIN SR - - 75 MHz Input Hysteresis for F pad 1) HYSF CC 0.1 * - - V TTL -1000 - 1000 nA (0.1*VDDP3) < VIN < (0.9*VDDP3); valid for P21.2 and P21.3; TJ = 150°C -1500 - 1500 nA (0.1*VDDP3) < VIN < (0.9*VDDP3); valid for P21.2 and P21.3; TJ = 170°C -300 - 300 nA (0.1*VDDP3) < VIN < (0.9*VDDP3); valid for P21.4 and P21.5 -2000 - 2000 nA else; valid for P21.2 and P21.3; TJ = 150°C -3000 - 3000 nA else; valid for P21.2 and P21.3; TJ = 170°C -600 - 600 nA else; valid for P21.4 and P21.5 |25| - - µA VIHmin - - |100| µA VILmax - - |100| µA VIHmin |25| - - µA VILmax 100 200 325 Ohm VDDP3 Input Leakage Current for F pad Pull-up current for F pad IOZF CC IPUHF CC Pull-down current for class F pads IPDLF CC On resistance for F pad, weak driver 2) RDSONFW On resistance for F pad, medium driver 2) RDSONFM CC 40 70 100 Ohm On resistance for F pad, strong RDSONFS CC 20 driver 2) 50 80 Ohm Data Sheet PMOS/NMOS ; IOH=0.5mA; IOL=0.5mA CC PMOS/NMOS ; IOH=2mA; IOL=2mA PMOS/NMOS ; IOH=4mA; IOL=4mA 4-204 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationHigh performance LVDS Pads (LVDSH) Table 3-23 Class F (cont’d) Parameter Rise/fall time for F pad Symbol 3) trfF CC Values Unit Min. Typ. Max. - - 20+0.8*C ns L CL≤50pF; pin out driver=weak - - 17.5+0.85 ns *CL CL≥50pF; CL≤200pF; pin out driver=weak - - 12+0.16* CL≤50pF; pin out ns CL driver=medium - - 11.5+0.17 ns *CL CL≥50pF; CL≤200pF; pin out driver=medium - - 7+0.16*C ns CL≤50pF; edge=medium ; pin out driver=reduced strong L - - - - 6.5+0.17* ns - - CL CL≥50pF; CL≤200pF; edge=meduim ; pin out driver>reduced strong 4+0.16*C ns CL≤50pF; edge=sharp L ; pin out driver=reduced strong 3.5+0.17* ns CL Input high voltage for F pad VIHF SR Note / Test Condition 2.04 4) - 5) CL≥50pF; CL≤200pF; edge=sharp ; pin out driver=reduced strong V TTL V TTL Input low voltage for F pad VILF SR - - 0.8 Pad set-up time for F pad tSETF CC - - 100 ns Deviation of symmetry for rising SYM CC and falling edges - - 20 % 1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed that it suppresses switching due to external system noise. 2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged. 3) Rise / fall times are defined 10% - 90% of VDDP3. 4) VIHx = 0.57 * VDDP3 - 0.03V 5) VILx = 0.25 * VDDP3 + 0.058V CL = 2.5 pF for all LVDSH parameters. Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. R0 CC 40 - 140 Ohm Vcm = 1.0 V and 1.4 V trise20 CC - - 0.5 ns ZL = 100 Ohm ±5% @2 pF Fall time 1) tfall20 CC - - 0.5 ns ZL = 100 Ohm ±5% @ 2 pF Output differential voltage VOD CC 250 - 400 mV RT = 100 Ohm ±5% Output impedance Rise time 1) Data Sheet 4-205 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationHigh performance LVDS Pads (LVDSH) Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL) (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Output voltage high VOH CC - - 1475 mV RT = 100 Ohm ±5% (400 mV/2) + 1275 mV Output voltage low VOL CC 925 - - mV RT = 100 Ohm ±5% Output offset (Common mode) VOS CC voltage 1125 - 1275 mV RT = 100 Ohm ±5% Input voltage range 0 - 1600 mV Driver ground potential difference < 925 mV; RT = 100 Ohm ±10% 0 - 2000 mV Driver ground potential difference < 925 mV; RT = 100 Ohm ±20% VI SR Input differential threshold Vidth SR -100 - 100 mV Driver ground potential difference < 925 mV Delta output impedance dR0 SR - - 10 % Vcm = 1.0 V and 1.4 V (mismatch Pd and Pn) Change in VOS between 0 and dVOS CC 1 - - 25 mV RT = 100 Ohm ±5% Change in Vod between 0 and dVod CC 1 - - 25 mV RT = 100 Ohm ±5% - 55 % 45 1) Rise / fall times are defined for 20% - 80% of VOD Duty cycle tduty CC Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Output impedance R0 CC 40 - 140 Ohm Vcm = 1.0 V and 1.4 V Output differential voltage VOD CC 150 - 250 mV RT = 100 Ohm ±5% Output voltage high VOH CC - - 1375 mV RT = 100 Ohm ±5% Output voltage low VOL CC 1025 - - mV RT = 100 Ohm ±5% Output offset (Common mode) VOS CC voltage 1125 - 1275 mV RT = 100 Ohm ±5% Input voltage range VI SR 825 - 1575 mV Driver ground potential difference < 50 mV Input differential threshold Vidth SR -100 - 100 mV Driver ground potential difference < 50 mV Change in VOS between 0 and dVOS CC 1 - - 25 mV RT = 100 Ohm ±5% Change in Vod between 0 and dVod CC 1 - - 25 mV RT = 100 Ohm ±5% 45 - 55 % Duty cycle Data Sheet tduty CC 4-206 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationHigh performance LVDS Pads (LVDSH) Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL) (cont’d) Parameter VOD Fall time VOD Rise time Symbol 1) 1) Values Unit Note / Test Condition Min. Typ. Max. tfall10 CC - - 0.5 ns ZL = 100 Ohm ±5% @ 2pF trise10 CC - - 0.5 ns ZL = 100 Ohm ±5% @ 2pF 1) Rise / fall times are defined for 10% - 90% of VOD default after start-up = CMOS function P Htotal=5nH Ctotal=3.5pF Cext=2pF Rin LVDSH IN RT=100Ohm N Htotal=5nH Ctotal=3.5pF Cext=2pF LVDSH _Input _Pad _Model .vsd Figure 3-1 LVDSH pad Input model Data Sheet 4-207 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMedium performance LVDS Pads (LVDSM) 3.8 Medium performance LVDS Pads (LVDSM) This LVDS pad type is used for the medium speed chip to chip communication inferface of the new TC 260 / 264 / 265 / 267. It compose out of a LVDSM pad and a MP pad. This pad combination is always supplied by the 5V or 3.3V. For the parameters of the MP pad please see Chapter 3.5. Table 3-26 LVDSM Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Output impedance RO CC 40 100 140 Ohm Fall time tF CC - - 2.5 ns Zload = 100 Ohm; termination 100 Ohm ±1% Rise time tR CC - - 2.5 ns Zload = 100 Ohm; termination 100 Ohm ±1% tSET_LVDS - 10 13 µs Pad set-up time CC Output Differential Voltage VOD CC 250 - 400 mV termination 100 Ohm ±1% Output voltage high VOH CC - - 1475 mV termination 100 Ohm ±1% Output voltage low VOL CC 925 - - mV termination 100 Ohm ±1% Output Offset Voltage VOS CC 1125 - 1275 mV termination 100 Ohm ±1% default after start-up = CMOS function Data Sheet 4-208 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationVADC Parameters 3.9 VADC Parameters VADC parameter are valid for VDDM = 4.5 V to 5.5 V. This tables also covers the parameters for Class D pads. Table 3-27 VADC Parameter Symbol Analog reference voltage 1) VAREF SR Values Min. Typ. Max. VAGND + - VDDM + 1.0 Analog reference ground VAGND SR Unit VSSM - Note / Test Condition V 0.05 - 0.05 VSSM + V 0.05 Analog input voltage range VAIN SR VAGND - VAREF V Converter reference clock fADCI SR 2 - 20 MHz Charge consumption per conversion 2) 3) QCONV CC - 50 75 pC VAIN = 5 V, charge consumed from reference pin, precharging disabled - 10 22 pC VAIN = 5 V, charge consumed from reference pin, precharging enabled Conversion time for 12-bit result tC12 CC - (16 + STC) x tADCI + 2 x Includes sample time and post calibration tVADC Conversion time for 10-bit result tC10 CC - (14 + STC) x tADCI + 2 x Includes sample time tVADC Conversion time for 8-bit result tC8 CC - (12 + STC) x tADCI + 2 x Includes sample time tVADC Conversion time for fast compare mode tCF CC - (4 + STC) x tADCI + 2 x tVADC Broken wire detection delay against VAGND 4) tBWG CC - - 120 cycles Result below 10% Broken wire detection delay against VAREF 5) tBWR CC - - 60 cycles Result above 80% Input leakage at analog inputs IOZ1 CC -350 - 350 nA Analog Inputs overlaid with class LP pads or pull down diagnostics -150 - 150 nA else LSB 12-bit resolution Total Unadjusted Error Data Sheet 1) TUE CC -4 6) - 4-209 4 Includes sample time 6) V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationVADC Parameters Table 3-27 VADC (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. EAINL CC -3 - 3 LSB 12-bit resolution EAGAIN CC -3.5 - 3.5 LSB 12-bit resolution EADNL CC -3 - 3 LSB 12-bit resolution EAOFF CC -4 - 4 LSB 12-bit resolution Total capacitance of an analog CAINT CC input - - 30 pF CAINS CC 2 4 7 pF Resistance of the analog input RAIN CC path - - 1.5 kOhm else - - 1.8 kOhm valid for analog inputs mapped to GPIOs Switched capacitance of a reference input CAREFS CC - - 30 pF RMS Noise 7) ENRMS CC - 0.5 0.8 6)8) LSB Positive reference VAREFx pin leakage IOZ2 CC -2 - 2 µA VAREFx = VAREF1; VAREF≤VDDMV; TJ≤150°C -3 - 3 µA VAREFx = VAREF1; VAREF≤VDDMV; TJ>150°C -4 - 4 µA VAREFx = VAREF1; VAREF>VDDMV; TJ≤150°C -7 - 7 µA VAREFx = VAREF1; VAREF>VDDMV; TJ>150°C -13 - 13 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ > 150 INL Error Gain Error DNL error 1) 1) Offset Error 1) Switched capacitance of an analog input Negative reference VAGNDx pin leakage IOZ3 CC °C -7 - 7 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ ≤ 150 °C -3 - 3 µA VAGNDx = VAGND1 ; VAGND ≥ VSSM ; TJ > 150 °C -2.5 - 2.5 µA VAGNDx = VAGND1 ; VAGND ≥ VSSM ; TJ ≤ 150 °C Resistance of the reference input path RAREF CC - - 1 kOhm CSD resistance 9) RCSD CC - - 28 kOhm Data Sheet 4-210 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationVADC Parameters Table 3-27 VADC (cont’d) Parameter Symbol Values Min. Resistance of the multiplexer diagnostics pull-down device RMDD CC Resistance of the multiplexer diagnostics pull-up device RMDU CC Typ. Unit Note / Test Condition Max. 25 + 1*VIN - 35 + 8*VIN kOhm 0 V ≤ VIN ≤ 2.5 V -5 + 13*VIN - 15 + 16*VIN kOhm 2.5 V ≤ VIN ≤ VDDM 45 - 6*VIN - 90 16*VIN kOhm 0 V ≥ VIN ≤ 2.5 V 40 - 4*VIN - 65 - 6*VIN kOhm Resistance of the pull-down test device 10) RPDD CC - - 0.3 kOhm CSD voltage accuracy 11) 12) dVCSD CC - - 10 % Wakeup time tWU CC - 12 µs - 2.5 V ≤ VIN ≤ VDDM 1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor 1/k. VAREF must be decoupled with an external capacitor. 2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx. 3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual. 4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion rate higher than 1 conversion per 500 ms. 5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature. 6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS. 7) This parameter is valid for soldered devices and requires careful analog board design. 8) Value is defined for one sigma Gauss distribution. 9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS. 10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad itself adds another 200-Ohm series resistance, when measuring through the pin. 11) CSD: Converter Self Diagnostics, for details please consult the User's Manual. 12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current of max. VAREF / 45 kOhm. The following VADC parameter are valid for VDDM = 2.97 V to 4.5 V. Table 3-28 VADC_33V Parameter Analog reference voltage Symbol 1) VAREF SR Values Min. Typ. Max. VAGND + - VDDM + 1.0 Analog reference ground VAGND SR Unit VSSM - V 0.05 - 0.05 VSSM + V 0.05 Analog input voltage range VAIN SR VAGND - VAREF V Converter reference clock fADCI SR 2 - 20 MHz Data Sheet Note / Test Condition 4-211 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationVADC Parameters Table 3-28 VADC_33V (cont’d) Parameter Symbol Charge consumption per conversion 2) 3) QCONV CC Values Min. Typ. Max. - 35 50 Unit Note / Test Condition pC VAIN = 3.3 V, charge consumed from reference pin, precharging disabled - 8 17 pC VAIN = 3.3 V, charge consumed from reference pin, precharging enabled Conversion time for 12-bit result tC12 CC - (16 + STC) x tADCI + 2 x Includes sample time and post calibration tVADC Conversion time for 10-bit result tC10 CC - (14 + STC) x tADCI + 2 x Includes sample time tVADC Conversion time for 8-bit result tC8 CC - (12 + STC) x tADCI + 2 x Includes sample time tVADC Conversion time for fast compare mode tCF CC - (4 + STC) x tADCI + 2 x tVADC Broken wire detection delay against VAGND 4) tBWG CC - - 120 cycles Result below 10% Broken wire detection delay against VAREF 5) tBWR CC - - 60 cycles Result above 80% Input leakage at analog inputs IOZ1 CC -350 - 350 nA Analog Inputs overlaid with class LP pads or pull down diagnostics -150 - 150 nA else LSB 12-bit Resolution; TJ > 150 °C Total Unadjusted Error INL Error Gain Error 1) Data Sheet 1) TUE CC EAINL CC EAGAIN CC -12 6) Includes sample time 6) - 12 -6 6) - 6 6) LSB 12-bit Resolution; TJ ≤ 150 °C -12 - 12 LSB 12-bit Resolution; TJ > 150 °C -5 - 5 LSB 12-bit Resolution; TJ ≤ 150 °C -6 - 6 LSB 12-bit Resolution; TJ > 150 °C -5.5 - 5.5 LSB 12-bit Resolution; TJ ≤ 150 °C 4-212 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationVADC Parameters Table 3-28 VADC_33V (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. EADNL CC -4 - 4 LSB 12-bit resolution EAOFF CC -6 - 6 LSB 12-bit Resolution; TJ > 150 °C -5 - 5 LSB 12-bit Resolution; TJ ≤ 150 °C Total capacitance of an analog CAINT CC input - - 30 pF CAINS CC 2 4 7 pF Resistance of the analog input RAIN CC path - - 4.5 kOhm Switched capacitance of a reference input CAREFS CC - - 30 pF RMS Noise 7) ENRMS CC - - 1.7 6)8) LSB Positive reference VAREFx pin leakage IOZ2 CC -6 - 6 µA VAREFx = VAREF1; VAREF>VDDMV; TJ>150°C -3.5 - 3.5 µA VAREFx = VAREF1; VAREF>VDDMV; TJ≤150°C -3 - 3 µA VAREFx = VAREF1; VAREF≤VDDMV; TJ>150°C -2 - 2 µA VAREFx = VAREF1; VAREF≤VDDMV; TJ≤150°C -12 - 12 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ > 150 DNL error 1) Offset Error 1) Switched capacitance of an analog input Negative reference VAGNDx pin leakage IOZ3 CC °C -6.5 - 6.5 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ ≤ 150 °C -3 - 3 µA VAGNDx = VAGND1 ; VAGND ≥ VSSM ; TJ > 150 °C -2 - 2 µA VAGNDx = VAGND1 ; VAGND ≥ VSSM ; TJ ≤ 150 °C Resistance of the reference input path RAREF CC - - 3 kOhm CSD resistance 9) RCSD CC - - 28 kOhm Data Sheet 4-213 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationVADC Parameters Table 3-28 VADC_33V (cont’d) Parameter Symbol Values Min. Resistance of the multiplexer diagnostics pull-down device Resistance of the multiplexer diagnostics pull-up device RMDD CC RMDU CC Typ. Unit Note / Test Condition kOhm 0 V ≤ VIN ≤ 1.667 V Max. 25 + 3*VIN - 40 + 12*VIN 0 + 18*VIN - 0 + 18*VIN kOhm 1.667 V ≤ VIN ≤ VDDM 60 12*VIN - 120 30*VIN kOhm 0 V ≤ VIN ≤ 1.667 V 55 - 9*VIN - 95 15*VIN kOhm 1.667 V ≤ VIN ≤ VDDM Resistance of the pull-down test device 10) RPDD CC - - 0.9 kOhm CSD voltage accuracy 11) 12) dVCSD CC - - 10 % Wakeup time tWU CC - 12 µs - 1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor 1/k. VAREF must be decoupled with an external capacitor. 2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx. 3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual. 4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion rate higher than 1 conversion per 500 ms. 5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature. 6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS. 7) This parameter is valid for soldered devices and requires careful analog board design. 8) Value is defined for one sigma Gauss distribution. 9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS. 10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad itself adds another 200-Ohm series resistance, when measuring through the pin. 11) CSD: Converter Self Diagnostics, for details please consult the User's Manual. 12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current of max. VAREF / 45 kOhm. RSource V AIN R AIN, On C AINT - C AINS C Ext A/D Converter CAINS MCS05570 Figure 3-2 Equivalent Circuitry for Analog Inputs Data Sheet 4-214 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDSADC Parameters 3.10 DSADC Parameters The following DSADC parameter are valid for VDDM = 4.5 V to 5.5 V. Table 3-29 DSADC Parameter Symbol Analog input voltage range 1) VDSIN SR Values Unit Note / Test Condition Min. Typ. Max. 0 - 5 V single ended 0 - 10 V differential;VDSxP - VDSxN Reference load current IREF SR - 4.5 Modulator clock frequency 3) fMOD SR 10 - Gain error EDGAIN CC -1 -3.5 DC offset error EDOFF CC Input impedance Signal-Noise Ratio 9) 10) 11) 12) 1 - % Calibrated once 3.5 % Uncalibrated 6) % calibrated; GAIN = 1; MODCFG.INCFGx=01 mV calibrated mV calibrated once mV gain = 1; uncalibrated 0.2 -5 - 5 6) 0 50 5)7) per twin-modulator (1 or 2 channels) 5) - 5)7) µA MHz 4) -0.2 -100 8) 7.8 2) 20 5) -50 Common Mode Rejection Ratio EDCM CC 2) 100 5) 200 500 - RDAIN CC 100 130 170 kOhm Exact value (±1%) available in UCB SNR CC 80 - - dB fPB = 30 kHz; VDDM = ±5%; fMOD = 20 MHz; GAIN = 1 78 - - dB fPB = 50 kHz; VDDM = ±5%; fMOD = 20 MHz; GAIN = 1 70 - - dB fPB = 100 kHz; VDDM = ±10%; fMOD = 20 MHz; GAIN = 1 74 - - dB fPB = 100 kHz; VDDM = ±5%; fMOD = 20 MHz; GAIN = 1 76 - - dB fPB = 30 kHz; VDDM = ±10%; fMOD = 20 MHz; GAIN = 1 74 - - dB fPB = 50 kHz; VDDM = ±10%; fMOD = 20 MHz; GAIN = 1 Output data rate fD = fPB * 3 Pass band fPB CC 10 13) - 100 kHz Pass band ripple 10) dfPB CC -1 - 1 % Output sampling rate fD CC 30 - 330 kHz Data Sheet 4-215 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDSADC Parameters Table 3-29 DSADC (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition DC compensation factor DCF CC -3 - - dB 10-5 fD Positive reference VAREF1 pin leakage IOZ5 CC -2 - 2 µA VVAREFx = VVAREF1 ; VVAREF ≤ VDDM ; TJ ≤ 150 °C -3 - 3 µA VVAREFx = VVAREF1 ; VVAREF ≤ VDDM ; TJ > 150 °C -4 - 4 µA VVAREFx = VVAREF1 ; VVAREF > VDDM ; TJ ≤ 150 °C -7 - 7 µA VVAREFx = VVAREF1 ; VVAREF > VDDM ; TJ > 150 °C Negative reference VAGND1 pin leakage IOZ6 CC -2.5 - 2.5 µA VAGNDx = VAGND1 ; VAGND > VSSM ; TJ ≤ 150 °C -3 - 3 µA VAGNDx = VAGND1 ; VAGND > VSSM ; TJ > 150 °C -7 - 7 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ ≤ 150 °C -13 - 13 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ > 150 °C Stop band attenuation 10) Reference ground voltage Positive reference voltage SBA CC VAGND SR VAREF SR 40 - - dB 0.5 ... 1 fD 45 - - dB 1 ... 1.5 fD 50 - - dB 1.5 ... 2 fD 55 - - dB 2 ... 2.5 fD 60 - - dB 2.5 ... OSR/2 fD VSSM - - VSSM + V 0.05 0.05 VDDMnom * - VDDM + 0.9 0.05 V Common mode voltage accuracy dVCM CC -100 - 100 mV from selected voltage Common mode hold voltage deviation 14) dVCMH CC -200 - 200 mV From common mode voltage Analog filter settling time tAFSET CC - 2 4 µs If enabled Modulator recovery time tMREC CC - 3.5 5.5 µs After leaving overdrive state Data Sheet 4-216 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDSADC Parameters Table 3-29 DSADC (cont’d) Parameter Modulator settling time Symbol 15) tMSET CC Spurious Free Dynamic Range SFDR CC Values Unit Note / Test Condition Min. Typ. Max. - 1 - µs After switching on, voltage regulator already running 60 - - dB VCM = 2.2 V, DC coupled; VDDM = ±10% 9)16) 1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external common mode voltage. In this case the Amplitude is limited to VCM * 2. 2) When measuring at pin VAREF1, leakage/operating currents of the VADC must be added to IREF. 3) All modulators must run on the same frequency. 4) The calibration sequence must be executed once after an Application Reset 5) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF 6) Recalibration needed in case of a temperature change > 20ºC 7) Systematic offset shift 8) The variation of the impedance between different channels is < 1.5%. 9) Derating factors: -2 dB in standard-performance mode. -3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0. 10) CIC3, FIR0, FIR1 filters enabled. 11) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM (GAIN = 2). 12) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM. 13) 10 kHz only reachable with 10 MHz modulator clock frequency. 14) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM. 15) The modulator needs to settle after being switched on and after leaving the overdrive state. 16) SFDR = 20 * log(INL / 2N); N = amount of bits The following DSADC parameter are valid for VDDM = 2.97 V to 3.63 V. Table 3-30 DSADC_33V Parameter Analog input voltage range Symbol 1) VDSIN SR Values Unit Note / Test Condition Min. Typ. Max. 0 - 3.3 V single ended 0 - 6.6 V differential;VDSxP - VDSxN Reference load current IREF SR - 4.5 Modulator clock frequency 3) fMOD SR 10 - Gain error EDGAIN CC -1.5 -10 DC offset error EDOFF CC 6.9 1.5 - 10 5) - 0.3 -5 - 5 6) -100 5) 0 6) 50 5) 4-217 µA per twin-modulator (1 or 2 channels) MHz 4) -0.3 -50 Data Sheet 2) 20 - 5) 2) 100 5) % Calibrated once % Uncalibrated % calibrated; GAIN = 1; MODCFG.INCFGx=01 mV calibrated mV calibrated once mV gain = 1; uncalibrated V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDSADC Parameters Table 3-30 DSADC_33V (cont’d) Parameter Symbol Input impedance Signal-Noise Ratio 8) 9) 10) 11) Unit Note / Test Condition Min. Typ. Max. 200 500 - RDAIN CC 100 130 170 kOhm Exact value (±1%) available in UCB SNR CC 45 63 - dB fPB = 100kHz; VDDM = ±10%; fMOD = 20 MHz; GAIN = 1 60 69 - dB fPB = 100kHz; VDDM = ±5%; fMOD = 20 MHz; GAIN = 1 60 68 - dB fPB = 30kHz; VDDM = ±10%; fMOD = 20 MHz; Common Mode Rejection Ratio EDCM CC 7) Values GAIN = 1 69 74 - dB fPB = 30kHz; VDDM = ±5%; fMOD = 20 MHz; GAIN = 1 55 66 - dB fPB = 50kHz; VDDM = ±10%; fMOD = 20 MHz; GAIN = 1 65 72 - dB fPB = 50kHz; VDDM = ±5%; fMOD = 20 MHz; GAIN = 1 Pass band fPB CC 10 12) - 100 kHz Output data rate fD = fPB * 3 Pass band ripple 9) dfPB CC -1 - 1 % Output sampling rate fD CC 30 - 330 kHz DC compensation factor DCF CC -3 - - dB 10-5 fD Positive reference VAREF1 pin leakage IOZ5 CC -6 - 6 µA VAREFx = VAREF1 ; VAREF > VDDM ; TJ > 150 °C -3.5 - 3.5 µA VAREFx = VAREF1 ; VAREF > VDDM ; TJ ≤ 150 °C -3 - 3 µA VAREFx = VAREF1 ; VAREF ≤ VDDM ; TJ > 150 °C -2 - 2 µA VAREFx = VAREF1 ; VAREF ≤ VDDM ; TJ ≤ 150 °C Data Sheet 4-218 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDSADC Parameters Table 3-30 DSADC_33V (cont’d) Parameter Symbol Negative reference VAGND1 pin leakage IOZ6 CC Values Min. Typ. Max. -2 - 2 Unit Note / Test Condition µA VAGNDx = VAGND1 ; VAGND ≥ VSSM ; TJ ≤ 150 °C -3 - 3 µA VAGNDx = VAGND1 ; VAGND ≥ VSSM ; TJ > 150 °C -6.5 - 6.5 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ ≤ 150 °C -12 - 12 µA VAGNDx = VAGND1 ; VAGND < VSSM ; TJ > 150 °C Stop band attenuation 9) Reference ground voltage Positive reference voltage SBA CC VAGND SR VAREF SR 40 - - dB 0.5 ... 1 fD 45 - - dB 1 ... 1.5 fD 50 - - dB 1.5 ... 2 fD 55 - - dB 2 ... 2.5 fD 60 - - dB 2.5 ... OSR/2 fD VSSM - - VSSM + V 0.05 0.05 VDDMnom * - VDDM + 0.9 0.05 V Common mode voltage accuracy dVCM CC -100 - 100 mV from selected voltage Common mode hold voltage deviation 13) dVCMH CC -200 - 200 mV From common mode voltage Analog filter settling time tAFSET CC - 2 4 µs If enabled Modulator recovery time tMREC CC - 3.5 - µs After leaving overdrive state Modulator settling time 14) tMSET CC - 1 - µs After switching on, voltage regulator already running 52 - - dB VCM = 2.2 V, DC coupled; VDDM = ±10% 60 - - dB VCM = 2.2 V, DC coupled; VDDM = ±5% Spurious Free Dynamic Range SFDR CC 8)15) 1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external common mode voltage. In this case the Amplitude is limited to VCM * 2. 2) When measuring at pin VAREF1, leakage/operating currents of the VADC must be added to IREF. 3) All modulators must run on the same frequency. 4) The calibration sequence must be executed once after an Application Reset 5) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF 6) Recalibration needed in case of a temperature change > 20ºC. 7) The variation of the impedance between different channels is < 1.5%. Data Sheet 4-219 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDSADC Parameters 8) Derating factors: -2 dB in standard-performance mode. -3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0. 9) CIC3, FIR0, FIR1 filters enabled. 10) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM (GAIN = 2). 11) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM. 12) 10 kHz bandwidth only with 10Mhz modulator clock frequency reachable 13) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM. 14) The modulator needs to settle after being switched on and after leaving the overdrive state. 15) SFDR = 20 * log(INL / 2N); N = amount of bits 37 kΩ 37 kΩ V CM Gain Inp ut V OFFSET 130 kΩ = 130 kΩ Modulator Gain MC_DSADC_MODULATORBLOCK Figure 3-3 DSADC Analog Inputs Data Sheet 4-220 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMHz Oscillator 3.11 MHz Oscillator OSC_XTAL is used as accurate and exact clock source. OSC_XTAL supports 8 MHz to 40 MHz crystals external outside of the device. Support of ceramic resonators is also provided. Table 3-31 OSC_XTAL Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Input current at XTAL1 IIX1 CC -25 - 25 µA VIN>0V; VIN 25MHz V If shaper is not bypassed; fOSC ≤ 25MHz 0.5 Input low voltage at XTAL1 VILBX SR -0.5 - Input voltage at XTAL1 VIX SR -0.5 - 0.5 Input amplitude (peak to peak) VPPX SR at XTAL1 0.3 * - 1.0 VDDP3 0.4 * VDDP3 + - VDDP3 + 1.0 VDDP3 Internal load capacitor CL0 CC 2 2.35 2.7 pF Internal load capacitor CL1 CC 2 2.35 2.7 pF Internal load capacitor CL2 CC 3 3.5 4 pF Internal load capacitor CL3 CC 5.1 5.9 6.6 pF 1) tOSCS is defined from the moment when VDDP3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDP3. The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended and specified by crystal suppliers. 2) This value depends on the frequency of the used external crystal. For faster crystal frequencies this value decrease. Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier. Data Sheet 4-221 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationBack-up Clock 3.12 Back-up Clock The back-up clock provides an alternative clock source. Table 3-32 Back-up Clock Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. 75 100 125 MHz VEXT≥2.97V Slow speed Back-up clock fBACKSS CC 75 100 125 kHz VEXT≥2.97V Back-up clock after trimming fBACKT CC 100 102.5 MHz VEXT≥2.97V Back-up clock before trimming fBACKUT CC Data Sheet 97.5 4-222 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationTemperature Sensor 3.13 Temperature Sensor Table 3-33 DTS Parameter Symbol Values Unit Min. Typ. Max. - - 100 µs Calibration reference accuracy TCALACC CC -1 - 1 °C Non-linearity accuracy over temperature range TNL CC -2 - 2 °C Temperature sensor range TSR SR -40 - 170 °C Start-up time after resets inactive tTSST SR - - 20 µs Measurement time tM CC Note / Test Condition calibration points @ TJ=-40°C and TJ=127°C The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the DTSSTAT register. (3.1) DTSSTATRESULT – ( 607 ) Tj = ---------------------------------------------------------------------------2, 13 Data Sheet 4-223 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower Supply Current 3.14 Power Supply Current The total power supply current defined below consists of leakage and switching component. Application relevant values are typically lower than those given in the following table and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). The operating conditions for the parameters in the following table are: The real (realisic) power pattern defines the following conditions: • • TJ = 150 °C fCPU0 = 80 MHz fSRI = fMAX = fCPU1 = 160 MHz fSPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 40 MHz VDD = 1.326 V VDDP3 = 3.366 V VEXT / FLEX = VDDM = 5.1 V • all cores are active including one lockstep core • the following peripherals are inactive: HSM, HSCT, Ethernet, PSI5, I2C, FCE, MTU, and 50% of the DSADC channels • • • • • The max power pattern defines the following conditions: • • TJ = 150 °C fSRI = fMAX = fCPU0 = 200 MHz fSPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 100 MHz VDD = 1.43 V VDDP3 = 3.63 V VEXT / FLEX = VDDM = 5.5 V • all cores and lockstep cores are active • all peripherals are active • • • • Table 3-34 Power Supply Parameter ∑ Sum of IDD 1.3 V core and peripheral supply currents Data Sheet Symbol IDD CC Values Unit Note / Test Condition Min. Typ. Max. - - 380 1) mA valid for Feature Package D and DC; max power pattern - - 198 1) mA valid for Feature Package D and DC; real power pattern - - 432 mA valid for Feature Package DA; max power pattern - - 250 mA valid for Feature Package DA; real power pattern 4-224 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower Supply Current Table 3-34 Power Supply (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - - 60 mA valid for Feature Package D and DC; TJ=125°C - - 112 mA valid for Feature Package D and DC; TJ=150°C - - 103 mA valid for Feature Package DA; TJ=125°C - - 160 mA valid for Feature Package D and DC; TJ=165°C - - 154 mA valid for Feature Package DA; TJ=150°C - - 216 mA valid for Feature Package DA; TJ=165°C - - 38 mA real power pattern IDD core current of CPU1 main IDDC11 CC core with lockstep core active - - IDDC10 + mA real power pattern IDD core current added by FFT IDDFFT CC - - 40 mA FFT running at 200MHz ∑ Sum of 3.3 V supply currents IDDx3RAIL CC without pad activity - 46 2) mA real power pattern IDDFL3 Flash memory current - 33 3) mA flash read current - - 33 4) mA flash read current while programming Dflash - - 13 3) mA real power pattern; incl. OSC & flash read current - - 27 5) mA incl. OSC current and flash 3.3V programming current when using external 5V supply - - 31 4) mA incl. OSC current and flash programming current when using 3.3V supply only IDD core current during active power-on reset (PORST held low) IDDPORST CC IDD core current of CPU1 main IDDC10 CC core with CPU1 lockstep core inactive IDDP3 supply current without IDDFL3 CC IDDP3 CC 32 - pad activity Data Sheet 4-225 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower Supply Current Table 3-34 Power Supply (cont’d) Parameter Symbol IDDP3 supply current for LVDSH IDDP3LVDSH Values Unit Min. Typ. Max. Note / Test Condition - - 16 mA pads in LVDS mode CC Σ Sum of external and ADC supply currents (incl. IEXTFLEX+IDDM+IEXTLVDSM) IEXTRAIL CC - - 31 mA real power pattern Sum of IEXT and IFLEX supply current without pad activity IEXT/FLEX CC - - 11 mA real power pattern; PORST output inactive. - - 6 6) mA real power pattern - - 14 mA real power pattern; sum of currents of DSADC and VADC modules - - 12 mA current for DSADC module only; 50% DSADC channels active. - - 32 7) mA max power pattern; All DSADC channels active 100% time. - - 2 mA real pattern; current for VADC only - - 7 8) mA max power pattern; All VADC converters are active 100% time - - 275 mA valid for Feature Package D and DC; real power pattern - - 327 mA valid for Feature Package DA; real power pattern - - 180 mA real power pattern; VEXT = 3.3V - - 150 mA real power pattern; VEXT = 5V - - 150 10) µA Standby RAM is active. Power to remaining domains switched off. TJ = 25°C; VEVRSB = 5V IEXT supply current for LVDSM IEXTLVDSM pads in LVDS mode CC IDDM supply current IDDM CC Σ Sum of all currents (incl. IDDTOT CC IEXTRAIL+IDDx3RAIL+IDD) Σ Sum of all currents with DCDC EVR13 regulator active 9) IDDTOTDC3 Σ Sum of all currents with DCDC EVR13 regulator active 9) IDDTOTDC5 ∑ Sum of all currents (STANDBY mode) IEVRSB CC Data Sheet CC CC 4-226 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower Supply Current Table 3-34 Power Supply (cont’d) Parameter ∑ Sum of all currents (SLEEP mode) Maximum power dissipation Symbol Unit Note / Test Condition Min. Typ. Max. - - 15 mA All CPUs in idle, All peripherals in sleep, fSRI/SPB = 1 MHz via LPDIV divider; TJ = 25°C; valid for Feature Package D and DC - - 19 mA All CPUs in idle, All peripherals in sleep, fSRI/SPB = 1 MHz via LPDIV divider; TJ = 25°C; valid for Feature Package DA - - 1090 mW valid for Feature Package D and DC; max power pattern - - 614 mW valid for Feature Package D and DC; real power pattern - - 1145 mW valid for Feature Package DA; max power pattern - - 669 mW valid for Feature Package DA; real power pattern - 25 - µA fSYS_SCR = 100KHz; TJ=25°C - - 4 mA fSYS_SCR = 20MHz; TJ=25°C ISCRIDLE CC - - 1 mA ISLEEP CC PD CC SCR 8-bit Standby Controller in ISCRSB CC STANDBY Mode SCR 8-bit Standby Controller CPU in IDLE mode Values 1) The real pattern usecase is limited to 160 MHz in TC26x to limit the IDD current to less than 200 mA to ensure that internal pass devices of EVR13 LDO can deliver the required IDD current. The max pattern IDD current can only be met with EVR13 LDO using external pass devices or EVR13 SMPS mode. 2) In case EVR33 is not used, Injection current into 3.3V VDDP3 supply rail with active sink on 5V VEXT rail should be limited to 500 mA if during power sequencing 3.3V is supplied before 5V by external regulator. 3) Realistic Pflash read pattern with 70% Pflash bandwidth utlilization and a code mix of 50% 0s and 50% 1s. Dynamic Flash Idle via FCON.IDLE is activated bringing a benefit of 8 mA. A common decoupling capacitor of atleast 100nF for (VDDFL3+VDDP3) is used. Dflash read current is also included. Flash read current is predominantly drawn from VDDFL3 pin and a minor part drawn from the neighbouring VDDP3 pin. 4) Continuous Dflash programming in burst mode with 3.3 V supply and realistic Pflash read access in parallel. Dynamic Flash Idle via FCON.IDLE is activated bringing a benefit of 8 mA. Erase currents of the corresponding flash modules are less than the respective programming currents at VDDP3 pin. Programming and erasing flash may generate transient current spikes of up to x mA for maximum x us which is handled by the decoupling and buffer capacitors. This parameter is relevant for external power supply dimensioning and not for thermal considerations. 5) In addition to the current specified, upto 4 mA is additionally drawn at VEXT supply in burst programming mode with 5V external supply. Erase currents of the corresponding flash modules are less than the respective programming currents at VDDP3 supply. This parameter is relevant for external power supply dimensioning and not for thermal considerations. Data Sheet 4-227 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower Supply Current 6) The current consumption is for 1 pair of LVDSM differential pads (4 pins). 7) The current consumption is for 6 DS channels with standard performance (MCFG=11b). A single DS channel instance consumes 6-8 mA. 8) A single converter instance of VADC unit consumes 2 mA. 9) The total current drawn from external regulator is estimated with 72% EVR13 SMPS regulator Efficiency. IDDTOTDCx is calculated from IDDTOT using the scaled core current [(IDD x VDD)/(VinxEfficiency)] and constitutes all other rail currents and IDDM. 10) Current at VEVRSB supply pin during normal RUN mode is less than 5 mA at TJ =150 °C. The transition between RUN mode to STANDBY mode has a duration of less than 100us during which the current is higher but is less than 8 mA at TJ =150 °C. Once STANDBY mode is entered with only Standby RAM active the current is less than 5mA at TJ = 150 °C. It is recommended to have atleast 100 nF decoupling capacitor at this pin. The standby current indicated is solely drawn from VEVRSB pin. 3.14.1 Calculating the 1.3 V Current Consumption The current consumption of the 1.3 V rail compose out of two parts: • Static current consumption • Dynamic current consumption The static current consumption is related to the device temperature TJ and the dynamic current consumption depends of the configured clocking frequencies and the software application executed. These two parts needs to be added in order to get the rail current consumption. Valid for Feature Package D and DC products: (3.2) mA I 0 = 0, 741 --------- × e 0, 0255 × T J [ C ] C (3.3) mA I 0 = 2, 86 --------- × e 0, 0244 × T J [ C ] C Valid for Feature Package DA products: (3.4) mA I 0 = 0, 99 --------- × e 0, 02483 × T J [ C ] C (3.5) mA I 0 = 4, 8 --------- × e 0, 02308 × T J [ C ] C Function 2 defines the typical static current consumption and Function 3 defines the maximum static current consumption. Both functions are valid for VDD = 1.326 V. Data Sheet 4-228 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down 3.15 Power-up and Power-down 3.15.1 External Supply Mode 5 V & 1.3 V supplies are externally supplied. 3.3V is generated internally by EVR33. • External supplies VEXT and VDD may ramp-up or ramp-down independent of each other with regards to start, rise and fall time(s). Voltage Ramp-up from a residual threshold (Eg : up to 1 V) should also lead to a normal startup of the device. • The rate at which current is drawn from the external regulator (dIEXT /dt or dIDD /dt) is limited in the Start-up phase to a maximum of 50 mA/100 us. • PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted. • PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It is recommended to keep the PORST (input) asserted until all the external supplies are above their primary reset thresholds. • PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the basic supply and clock infrastructure is available. • The power sequence as shown in Figure 3-4 is enumerated below – T1 refers to the point in time when basic supply and clock infrastructure is available as the external supplies ramp up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of EVR33 regulator is initiated. – T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR33 regulator has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated. – T3 refers to the point in time when Firmware execution is completed. User code execution starts with a default frequency of 100 MHz. – T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds. Please note that there is no special requirements for PORST slew rates. Data Sheet 4-229 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down VEXT (externally supplied ) 0 1 2 3 4 5.5 V 5.0 V 4.5 V 2.97 V Primary Reset Threshold 0V VDD (externally supplied ) 1.33 V 1.30 V 1.17 V Primary Reset Threshold 0V PORST (output ) PORST (input) VDDP3 (internally generated by EVR33) 3.63 V 3.30 V 2.97 V Primary Reset Threshold 0V T0 T2 T1 Basic Supply & Clock Infrastructure EVR33 Ramp-up Phase T3 Firmware Execution User Code Execution fCPU =100MHz default on firmware exit T4 Power Ramp-down phase Startup_Diag_1 v 0.1 Figure 3-4 External Supply Mode - 5 V and 1.3 V externally supplied Data Sheet 4-230 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down 3.15.2 Single Supply Mode 5 V single supply mode. 1.3 V & 3.3 V are generated internally by EVR13 & EVR33. • The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a maximum of 50 mA/100 us. • PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted. • PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It is recommended to keep the PORST (input) asserted until the external supply is above the respective primary reset threshold. • PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the basic supply and clock infrastructure is available. • The power sequence as shown in Figure 3-5 is enumerated below – T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of EVR13 and EVR33 regulators are initiated. – T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 and EVR33 regulators have ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated. – T3 refers to the point in time when Firmware execution is completed. User code execution starts with a default frequency of 100 MHz. – T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds. Please note that there is no special requirements for PORST slew rates. Data Sheet 4-231 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down VEXT (externally supplied ) 0 1 2 3 4 5.5 V 5.0 V 4.5 V 2.97 V Primary Reset Threshold 0V PORST (output ) PORST (input) VDD 1.33 V (internally generated by EVR13) 1.30 V 1.17 V Primary Reset Threshold 0V VDDP3 (internally generated by EVR33) 3.63 V 3.30 V 2.97 V Primary Reset Threshold 0V T0 T1 Basic Supply & Clock Infrastructure T2 EVR13 & EVR 33 Ramp-up Firmware Execution Phase T3 User Code Execution fCPU =100MHz default on firmware exit T4 Power Ramp-down phase Startup_Diag_2 v 0.1 Figure 3-5 Single Supply Mode - 5 V single supply Data Sheet 4-232 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down 3.15.3 External Supply Mode All supplies, namely 5 V, 3.3 V & 1.3 V, are externally supplied. • External supplies VEXT ,, VDDP3 & VDD may ramp-up or ramp-down independent of each other with regards to start, rise and fall time(s). • The rate at which current is drawn from the external regulator (dIEXT /dt, dIDD /dt or dIDDP3 /dt) is limited in the Start-up phase to a maximum of 50 mA/100 us. • PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted. • PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It is recommended to keep the PORST (input) asserted until all the external supplies are above their primary reset thresholds. • PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the basic supply and clock infrastructure is available. • The power sequence as shown in Figure 3-6 is enumerated below – T1 refers to the point in time when all supplies are above their primary reset thresholds and basic clock infrastructure is available. The supply mode is evaluated based on the HWCFG [0:2] pins. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated. – T2 refers to the point in time when Firmware execution is completed. User code execution starts with a default frequency of 100 MHz. – T3 refers to the point in time during the Ramp-down phase when atleast one of the externally provided supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds. Please note that there is no special requirements for PORST slew rates. Data Sheet 4-233 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down VEXT (externally supplied ) 0 1 2 3 5.5 V 5.0 V 4.5 V 2.97 V Primary Reset Threshold 0V VDD (externally supplied ) 1.33 V 1.30 V 1.17 V Primary Reset Threshold 0V VDDP3 (externally supplied) 3.63 V 3.30 V 2.97 V Primary Reset Threshold 0V PORST (output ) PORST (input) T0 T1 Basic Supply & Clock Infrastructure T3 T2 User Code Execution fCPU =100 MHz default on firmware exit Firmware Execution Power Ramp-down phase Startup_Diag_3 v 0.1 Figure 3-6 External Supply Mode - 5 V, 3.3 V & 1.3 V externally supplied Data Sheet 4-234 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down 3.15.4 Single Supply Mode 3.3 V single supply mode. 1.3 V is generated internally by EVR13. • The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a maximum of 50 mA/100 us. • PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted. • PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It is recommended to keep the PORST (input) asserted until the external supply is above the respective primary reset threshold. • PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among the three supply domains (1.3 V or 3.3 V) violate their primary under-voltage reset thresholds.The PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the basic supply and clock infrastructure is available. • The power sequence as shown in Figure 3-7 is enumerated below – T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of EVR13 regulator is initiated. – T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 regulator has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated. – T3 refers to the point in time when Firmware execution is completed. User code execution starts with a default frequency of 100 MHz. – T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or generated supplies (1.3 V or 3.3 V) drop below their respective primary under-voltage reset thresholds. Please note that there is no special requirements for PORST slew rates. Data Sheet 4-235 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPower-up and Power-down VEXT (externally supplied ) 0 & VDDP3 (externally supplied ) 1 2 3 4 T3 User Code Execution fCPU =100MHz default on firmware exit T4 3.63 V 3.30 V 2.97 V Primary Reset Threshold 0V PORST (output ) PORST (input) VDD (internally generated 1.33 V 1.30 V 1.17 V by EVR 13) Primary Reset Threshold 0V T2 T1 T0 Basic Supply & Clock Infrastructure EVR13 Ramp-up Phase Firmware Execution Power Ramp-down phase Startup_Diag_4 v 0.1 Figure 3-7 Single Supply Mode - 3.3 V single supply Data Sheet 4-236 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationReset Timing 3.16 Reset Timing Table 3-35 Reset Timings Parameter Symbol Application Reset Boot Time 1) System Reset Boot Time Power on Reset Boot Time 3) Values Note / Test Condition operating with max. frequencies. Min. Typ. Max. tB CC - - 350 2) µs tBS CC - - 1 2) ms tBP CC - - 2.5 ms dV/dT=1V/ms. including EVR rampup and Firmware execution time - - 1.1 2) ms Firmware execution time; without EVR operation (external supply only) - - µs - - 1 ms 1 - - ms - 1200 ns Minimum PORST hold time tEVRPOR CC 10 incase of power fail event issued by EVR primary monitor EVR start-up or ramp-up time Unit tEVRstartup CC Minimum PORST active hold time after power supplies are stable at operating levels 4) tPOA CC tPORSTDF CC 600 Configurable PORST digital filter delay in addition to analog pad filter delay dV/dT=1V/ms. EVR13 and EVR33 active HWCFG pins hold time from ESR0 rising edge tHDH CC 16 / fSPB - - ns HWCFG pins setup time to ESR0 rising edge tHDS CC 0 - - ns Ports inactive after ESR0 reset tPI CC active - - 8/fSPB ns Ports inactive after PORST reset active 5) tPIP CC - - 150 ns Hold time from PORST rising edge tPOH SR 150 - - ns Setup time to PORST rising edge tPOS SR 0 - - ns SCR reset boot time tSCR CC - - 300 µs User Mode 0 - - 300 µs User Mode 1 - 13.3 - µs WDT double bit ECC, soft reset Data Sheet 4-237 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationReset Timing 1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. 2) The timing values assumes programmed BMI with ESR0CNT inactive. 3) The duration of the boot time is defined by all external supply voltages are inside there operation condictions and the clock cycle when the first user instruction has entered the CPU pipeline and its processing starts. 4) The regulator that supplies VEXT should ensure that VEXT is in the operational region before PORST is externally released by the regulator. Incase of 5V nominal supply, it should be ensured that VEXT > 4V before PORST is released. Incase of 3.3V nominal supply , it should be ensured that VEXT > 3V before PORST is released. The additional minimum PORST hold time is required as an additional mechanism to avoid consecutive PORST toggling owing to slow supply slopes or residual supply ramp-ups. It is also required to activate external PORST atleast 100us before power-fail is recognised to avoid consecutive PORST toggling on a power fail event. 5) This parameter includes the delay of the analog spike filter in the PORST pad. VDDP V D DPPA VDD PPA V DDPR VDD tPOA tPOA PORST Warm Cold ESR0 t PI tP I tP IP Tristate Z / pullup H Pads Programmed Z/ H Programmed Z /H Programmed Padstate undefined TRST Padstate undefined t P OS t P OS t P OH tP OH TESTMODE t HDH HWCFG power -on config t HDA t HDH config t HDA t HDH config reset_beh_aurix Figure 3-8 Power, Pad and Reset Timing Data Sheet 4-238 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEVR 3.17 EVR Table 3-36 3.3V Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. VIN SR 4 - 5.50 V pass device=on chip VOUT CC 2.97 3.3 3.63 V pass device=on chip 3.225 3.3 3.375 V pass device=on chip COUT CC - 1 - µF pass device=on chip Primary Undervoltage Reset threshold for VDDx3 3) VRST33 CC - - 3.0 V by reset release before EVR trimming on supply ramp-up. Startup time tSTR CC - - 1000 µs pass device=on chip dVin/dT - 1 50 V/ms pass device=on chip dVout/dIout - - 240 mV dI=-70mA/20ns; Tsettle=20us; pass Input voltage range 1) Output voltage operational range including load/line regulation and aging incase of LDO regulator VOUTT CC Output VDDx3 static voltage accuracy after trimming and aging without dynamic load/line Regulation incase of LDO regulator. Output buffer capacitance on VOUT 2) External VIN supply ramp 4) SR Load step response CC device=on chip -240 - - mV dI=50mA/20ns; Tsettle=100us; pass device=on chip Line step response dVout/dVin -20 - CC 20 mV dV/dT=1V/ms; pass device=on chip 1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device operation. 2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm. 3) The reset release on supply ramp-up is delayed by a time duration 20-40 us after reaching undervoltage reset threshold. This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to voltage drop/current jumps when reset is released. The reset limit of 2,97V at pin is for the case with 3.3V generated internally from EVR33. In case the 3.3V supply is provided externally, the bondwire drop will cause a reset at a higher voltage of 3.0V at the VDDP3 pin. 4) EVR robust against residual voltage ramp-up starting between 0-1 V. Data Sheet 4-239 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEVR Table 3-37 1.3V Parameter Input voltage range Symbol 1) VIN SR Values Min. Typ. Max. 2.97 - 5.5 Unit Note / Test Condition V VIN≥; pass device=on chip Output voltage operational range including load/line regulation and aging incase of LDO regulator VOUT CC VOUT 2) Primary undervoltage reset threshold for VDD 3) Startup time - 5.5 V pass device=off chip 1.17 1.3 1.43 V VIN≥; pass device=on chip VOUTT CC Output VDD static voltage accuracy after trimming without dynamic load/line regulation with aging incase of LDO regulator. Output buffer capacitance on 2.97 COUT CC VRST13 CC 1.17 1.3 1.43 V pass device=off chip 1.275 1.3 1.325 V VIN≥; pass device=on chip 1.275 1.3 1.325 V pass device=off chip 1.4 2.2 3 µF On chip pass device usage restricted to IDD < 200mA. If IDD > 200mA, off chip pass device to be used.; VIN≥; pass device=on chip 3 4.7 6.3 µF pass device=off chip - - 1.17 V VIN≥; pass device=on chip tSTR CC - - 1.17 V by reset release before EVR trimming on supply ramp-up. pass device=off chip - - 1000 µs VIN≥; pass device=on chip External VIN supply ramp 4) dVin/dT - - 1000 µs pass device=off chip - 1 50 V/ms VIN≥; pass device=on SR chip - Data Sheet 1 4-240 50 V/ms pass device=off chip V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEVR Table 3-37 1.3V (cont’d) Parameter Symbol Values Min. Load step response dVout/dIout - Typ. Max. - 100 Unit Note / Test Condition mV dI=-125mA; Tsettle=20µs; VIN≥; CC pass device=on chip - - 100 mV dI=-150mA; Tsettle=20µs; pass device=off chip -100 - - mV dI=100mA; Tsettle=20µs; pass device=off chip -100 - - mV dI=75mA; Tsettle=20µs; VIN≥; pass device=on chip Line step response dVout/dVin -10 - 10 mV CC dV/dT=1V/ms; VIN≥; pass device=on chip -10 - 10 mV dV/dT=1V/ms; pass device=off chip 1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device operation. 2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm. 3) The reset release on supply ramp-up is delayed by a time duration 30-60 µs after reaching undervoltage reset threshold. This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to voltage drop/current jumps when reset is released.The reset limit of 1,17V at pin is for the case with 1.3V generated internally from EVR13. In case the 1.3V supply is provided externally, the bondwire drop will cause a reset at a higher voltage of 1.18V at the VDD pin. 4) EVR robust against residual voltage ramp-up starting between 0-1 V. Table 3-38 Supply Monitoring Parameter Symbol VEXT primary undervoltage VEXTPRIUV monitor accuracy after trimming 1) SR VDDP3 primary undervoltage VDDP3PRIUV monitor accuracy after trimming 1) SR VDD primary undervoltage VDDPRIUV monitor accuracy after trimming 1) SR Values Note / Test Condition Min. Typ. Max. 2.86 2.92 2.97 V VEXT = Undervoltage Reset Threshold 2.86 2.90 2.97 V VDDP3 = Undervoltage Reset Threshold 1.13 VEXT secondary supply monitor VEXTMON CC 4.9 1.15 1.17 V VDD = Undervoltage Reset Threshold 5.0 accuracy Data Sheet Unit 4-241 5.1 V SWDxxVAL VEXT monitoring threshold=5V=DBh V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEVR Table 3-38 Supply Monitoring (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. 3.23 3.30 3.37 V EVR33xxVAL VDDP3 monitoring threshold=3.3V=91h VDD secondary supply monitor VDDMON CC 1.27 1.30 1.33 V EVR13xxVAL VDD monitoring threshold=1.3V=E4h - 1.8 µs after trimming VDDP3 secondary supply monitor accuracy VDDP3MON CC accuracy EVR primary and secondary monitor measurement latency for a new supply value tEVRMON CC - 1) The monitor tolerances constitute the inherent variation of the bandgap and ADC over process, voltage and temperature operational ranges. The xxxPRIUV parameters are device individually tested in production with ±1% tolerance about the min and max xxxPRIUV limits. In TQFP100 and QFP80 pin packages, VDDPRIUV is not tested as HWCFG2 pin is absent. Table 3-39 EVR13 SMPS External components Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. 15.4 22 29.7 µF IDDDC=1A 6.5 10 13.5 µF IDDDC=400mA External output capacitor ESR CDC_ESR SR - - 50 mOhm f≥0.5MHz; f≤10MHz - - 100 Ohm f=10Hz 6.5 10 13.5 µF IDDDC=1A 4.42 6.8 9.18 µF IDDDC=400mA CIN_ESR SR - - 50 mOhm f≥0.5MHz; f≤10MHz - - 100 Ohm f=100Hz 2.31 3.3 4.29 µH fDCDC=1.5MHz 3.29 4.7 6.11 µH fDCDC=1MHz External output capacitor value COUTDC SR 1) External input capacitor value 1) External input capacitor ESR External inductor value 2) CIN SR LDC SR External inductor ESR LDC_ESR SR - - 0.2 Ohm P + N-channel MOSFET logic level VLL SR - - 2.5 V P + N-channel MOSFET drain source breakdown voltage |VBR_DS| SR - - 7 V P + N-channel MOSFET drain source ON-state resistance RON SR - - 150 mOhm IDDDC=1A;VGS=2.5V ; TA=25°C - - 200 mOhm IDDDC=400mA;VGS=2.5 V ; TA=25°C - 4 - nC IDDDC=1A; MOSVGS=5V - 8 - nC IDDDC=400mA; MOSVGS=5V P + N-channel MOSFET Gate Charge Data Sheet Qac SR 4-242 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEVR Table 3-39 EVR13 SMPS External components (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition configurable External MOSFET commutation time tc SR 10 30 40 ns N-channel MOSFET reverse diode forward voltage VRDN SR - 0.8 - V 1) Capacitor min-max range represent typical ±35% tolerance including DC bias effect. The trace resistance from the capacitor to the supply or ground rail should be limited to 25 mOhm. 2) External inductor min-max range represent typical ±30% tolerance at a DC bias current of 100mA. Table 3-40 EVR13 SMPS Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. 2.97 - 5.5 V SMPS regulator output voltage VDDDC CC range including load/line regulation and aging 1) 1.17 - 1.43 V VDD≥2.97V; VDD≤5.5V; IDDDC≥1mA; IDDDC≤1A SMPS regulator static voltage VDDDCT CC output accuracy after trimming without dynamic load/line Regulation with aging. 2) 1.275 1.3 1.325 V VDD≥2.97V; VDD≤5.5V; IDDDC≥1mA; IDDDC≤1A 0.4 - 2.0 MHz Input VEXT Voltage range VIN SR Programmable switching frequency fDCDC CC Switching frequency modulation spread ∆fDCSPR CC - - 2% MHz Maximum ripple at IMAX (peak- ∆VDDDC CC to-peak) 3) - 15 mV VDD≥2.97V; VDD≤5.5V; IDDDC≥300mA; IDDDC≤1A No load current consumption of IDCNL CC SMPS regulator 5 10 mA fDCDC=1MHz - 25 mV dI < 200mA ; fDCDC=1MHz; tr=0.1us; tf=0.1us; VDDDC=1.3V -65 - 65 mV dI < 400mA ; fDCDC=1MHz; tr=0.1us; tf=0.1us; VDDDC=1.3V - - 1 A limited by thermal constraints and component choice SMPS regulator load transient response dVout/dIout -25 CC Maximum output current of the IMAX SR regulator Data Sheet - 4-243 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEVR Table 3-40 EVR13 SMPS (cont’d) Parameter SMPS regulator efficiency Symbol nDC CC Values Unit Note / Test Condition Min. Typ. Max. - 85 - % VIN=3.3V; IDDDC=300mA; fDCDC=1MHz - 75 - % VIN=5V; IDDDC=400mA; fDCDC=1.5MHz - 80 - % VIN=5V; IDDDC=400mA; fDCDC=1MHz 1) Incase of SMPS mode, It shall be ensured that the VDD output pin shall be connected on PCB level to all other VDD Input pins. 2) Incase of fSRI running with max frequency, it shall be ensured that the VDD operating range is limited to 1.235V upto 1.430V. The DCDC may be configured in this case with a nominal voltage of 1.33V±7.5%. The static accuracy and regulation parameter ranges remain also valid for this case. 3) If frequency spreading (SDFREQSPRD = 1) is activated, an additional ripple of 1% need to be considered. Data Sheet 4-244 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPhase Locked Loop (PLL) 3.18 Phase Locked Loop (PLL) Table 3-41 PLL Parameter Symbol Values Min. Unit Typ. Max. Note / Test Condition PLL base frequency fPLLBASE CC 80 150 360 MHz VCO frequency range fVCO SR 400 - 800 MHz VCO Input frequency range fREF CC 8 - 24 MHz Modulation Amplitude MA CC 0 - 2 % Peak Period jitter DP CC -200 - 200 ps Peak Accumulated Jitter DPP CC -5 - 5 ns without modulation Total long term jitter JTOT CC - - 11.5 ns including modulation; MA ≤ 1% System frequency deviation fSYSD CC - - 0.01 % with active modulation 2 3.6 5.4 MHz 11.5 - 200 µs Modulation variation frequency fMV CC PLL lock-in time tL CC Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Data Sheet 4-245 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationERAY Phase Locked Loop (ERAY_PLL) 3.19 ERAY Phase Locked Loop (ERAY_PLL) Table 3-42 PLL_ERAY Parameter Symbol Values Min. PLL Base Frequency of the ERAY PLL VCO frequency range of the ERAY PLL Unit Typ. Max. 200 320 MHz 400 - 480 MHz fPLLBASE_ERA 50 Note / Test Condition Y CC fVCO_ERAY SR VCO input frequency of the ERAY PLL fREF SR 16 - 24 MHz Accumulated_Jitter DP CC -0.5 - 0.5 ns Accumulated jitter at SYSCLK pin DPP CC -0.8 - 0.8 ns PLL lock-in time tL CC 5.6 - 200 µs Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the maximum driver and sharp edge. Note: The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz. These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the supply pins and using PCB supply and ground planes. Data Sheet 4-246 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationAC Specifications 3.20 AC Specifications All AC parameters are specified for the complette operating range defined in Chapter 3.4 unless otherwise noted in colum Note / test Condition. Unless otherwise noted in the figures the timings are defined with the following guidelines: VEXT/FL EX / VD DP3 90% VSS 90% 10% 10% tr tf rise_fall Figure 3-9 Definition of rise / fall times VEXT/FL EX / VD D P3 VEXT/FL EX / VD D P3 2 VSS Timing Reference Points VEXT /FL EX / VD D P3 2 timing_reference Figure 3-10 Time Reference Point Definition Data Sheet 4-247 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationJTAG Parameters 3.21 JTAG Parameters The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Table 3-43 JTAG Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition TCK clock period t1 SR 25 - - ns TCK high time t2 SR 10 - - ns TCK low time t3 SR 10 - - ns TCK clock rise time t4 SR - - 4 ns TCK clock fall time t5 SR - - 4 ns TDI/TMS setup to TCK rising edge t6 SR 6.0 - - ns TDI/TMS hold after TCK rising t7 SR edge 6.0 - - ns TDO valid after TCK falling edge (propagation delay) 1) t8 CC 3.0 - - ns CL≤20pF - - 16 ns CL≤50pF TDO hold after TCK falling edge 1) t18 CC 2 - - ns TDO high impedance to valid from TCK falling edge 1)2) t9 CC - - 17.5 ns CL≤50pF TDO valid output to high impedance from TCK falling edge 1) t10 CC - - 17 ns CL≤50pF 1) The falling edge on TCK is used to generate the TDO timing. 2) The setup time for TDO is given implicitly by the TCK cycle time. t1 0.9 VD D P 0.5 VD D P t5 t2 t4 0.1 VD D P t3 MC_ JTAG_ TCK Figure 3-11 Test Clock Timing (TCK) Data Sheet 4-248 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationJTAG Parameters TCK t6 t7 t6 t7 TMS TDI t9 t8 t1 0 TDO t18 MC_JTAG Figure 3-12 JTAG Timing Data Sheet 4-249 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDAP Parameters 3.22 DAP Parameters The following parameters are applicable for communication through the DAP debug interface. Table 3-44 DAP Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition DAP0 clock period t11 SR 6.25 - - ns DAP0 high time t12 SR 2 - - ns DAP0 low time t13 SR 2 - - ns DAP0 clock rise time t14 SR - - 1 ns f=160MHz - - 2 ns f=80MHz - - 1 ns f=160MHz - - 2 ns f=80MHz DAP0 clock fall time t15 SR DAP1 setup to DAP0 rising edge t16 SR 4 - - ns DAP1 hold after DAP0 rising edge t17 SR 2 - - ns DAP1 valid per DAP0 clock period 1) t19 CC 3 - - ns CL=20pF; f=160MHz 8 - - ns CL=20pF; f=80MHz 10 - - ns CL=50pF; f=40MHz 1) The Host has to find a suitable sampling point by analyzing the sync telegram response. t11 0.9 VD D P 0.5 VD D P t1 5 t1 2 t14 0.1 VD D P t1 3 MC_DAP0 Figure 3-13 Test Clock Timing (DAP0) DAP0 t1 6 t1 7 DAP1 MC_ DAP1_RX Figure 3-14 DAP Timing Host to Device Data Sheet 4-250 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationDAP Parameters t1 1 DAP1 t1 9 MC_ DAP1_TX Figure 3-15 DAP Timing Device to Host (DAP1 and DAP2 pins) Note: The DAP1 and DAP2 device to host timing is individual for both pins. There is no guaranteed max. signal skew. Data Sheet 4-251 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationASCLIN SPI Master Timing 3.23 ASCLIN SPI Master Timing This section defines the timings for the ASCLIN in the TC 260 / 264 / 265 / 267, for 5V power supply. Note: Pad asymmetry is already included in the following timings. Table 3-45 Master Mode MP+ss/MPRss output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 20 - - ns CL=25pF -3 - 3 ns 0 < CL < 50pF 2) MTSR delay from ASCLKO shifting edge t51 CC -7 - 6 ns CL=25pF ASLSOn delay from the first ASCLKO edge t510 CC 5 - 35 ns CL=25pF; pad used = LPm MRST setup to ASCLKO latching edge t52 SR 28 - - ns CL=25pF MRST hold from ASCLKO latching edge t53 SR -6 - - ns CL=25pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-46 Master Mode MPss output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition ns CL=25pF Min. Typ. Max. 20 - - -2 - 3.5+0.035 ns * CL 0 < CL < 200pF 2) MTSR delay from ASCLKO shifting edge t51 CC -7 - 6 ns CL=25pF ASLSOn delay from the first ASCLKO edge t510 CC -7 - 6 ns CL=25pF MRST setup to ASCLKO latching edge t52 SR 30 - - ns CL=25pF, else - - ns CL=25pF, for P14.2, P14.4, and P15.1 MRST hold from ASCLKO latching edge t53 SR - - ns CL=25pF 33 -5 3) 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 3) Please note that these pins didn't support the hystereses inactive feature. Data Sheet 4-252 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationASCLIN SPI Master Timing Table 3-47 Master Mode MPsm output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 100 - - ns CL=50pF -3 - 4+0.04 * ns 0 < CL < 200pF 2) CL MTSR delay from ASCLKO shifting edge t51 CC -11 - 10 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -11 - 10 ns CL=50pF MRST setup to ASCLKO latching edge t52 SR 60 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR -10 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-48 Master Mode medium output pads Parameter Symbol ASCLKO clock period 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 200 - - ns CL=50pF -8 - 4+0.04 * ns 0 < CL < 200pF 2) CL MTSR delay from ASCLKO shifting edge t51 CC -20 - 15 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -20 - 20 ns CL=50pF MRST setup to ASCLKO latching edge t52 SR 70 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR -10 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-49 Master Mode weak output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Min. Typ. Max. 1000 - - -30 - 2) Data Sheet Unit Note / Test Condition ns CL=50pF 30+0.15 * ns 0 < CL < 200pF CL 4-253 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationASCLIN SPI Master Timing Table 3-49 Master Mode weak output pads (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition MTSR delay from ASCLKO shifting edge t51 CC -75 - 75 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -65 - 65 ns CL=50pF MRST setup to ASCLKO latching edge t52 SR 510 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR -50 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. t50 ASCLKO t51 t500 t51 MTSR t52 MRST t53 Data valid Data valid t510 ASLSO ASCLIN_TmgMM.vsd Figure 3-16 ASCLIN SPI Master Timing Data Sheet 4-254 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationASCLIN SPI Master Timing 3.24 ASCLIN SPI Master Timing This section defines the timings for the ASCLIN in the TC 260 / 264 / 265 / 267, for 3.3V power supply, Medium Performance pads, strong sharp edge (MPss), CL=25pF. Note: Pad asymmetry is already included in the following timings. Table 3-50 Master Mode MP+ss/MPRss output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 40 - - ns CL=25pF -5 - 5 ns 0 < CL < 50pF 2) MTSR delay from ASCLKO shifting edge t51 CC -12 - 12 ns CL=25pF ASLSOn delay from the first ASCLKO edge t510 CC 0 - 60 ns CL=25pF; pad used = MRST setup to ASCLKO latching edge t52 SR 50 - - ns CL=25pF MRST hold from ASCLKO latching edge t53 SR -5 - - ns CL=25pF LPm 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-51 Master Mode MPss output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 40 - - ns CL=25pF -5 - 7+0.07 * ns 0 < CL < 200pF 2) CL MTSR delay from ASCLKO shifting edge t51 CC -12 - 12 ns CL=25pF ASLSOn delay from the first ASCLKO edge t510 CC -12 - 12 ns CL=25pF MRST setup to ASCLKO latching edge t52 SR 50 - - ns CL=25pF MRST hold from ASCLKO latching edge t53 SR -5 - - ns CL=25pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Data Sheet 4-255 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationASCLIN SPI Master Timing Table 3-52 Master Mode MPsm output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 200 - - ns CL=50pF -5 - 9+0.06 * ns 0 < CL < 200pF 2) CL MTSR delay from ASCLKO shifting edge t51 CC -19 - 17 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -19 - 17 ns CL=50pF MRST setup to ASCLKO latching edge t52 SR 100 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR -13 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-53 Master Mode medium output pads Parameter Symbol ASCLKO clock period 1) t50 CC Deviation from ideal duty cycle t500 CC 2) Values Unit Note / Test Condition Min. Typ. Max. 400 - - ns CL=50pF -6-0.07 * - 6+0.07 * ns 0 < CL < 200pF CL CL MTSR delay from ASCLKO shifting edge t51 CC -33 - 25 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -35 - 35 ns CL=50pF MRST setup to ASCLKO latching edge t52 SR 120 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR -13 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-54 Master Mode weak output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Note / Test Condition Min. Typ. Max. 2000 - - ns CL=50pF -110 - 150 ns 0 < CL < 200pF 2) Data Sheet Unit 4-256 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationASCLIN SPI Master Timing Table 3-54 Master Mode weak output pads (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition MTSR delay from ASCLKO shifting edge t51 CC -170 - 170 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -170 - 170 ns CL=50pF MRST setup to ASCLKO latching edge t52 SR 510 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR -40 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-55 Master Mode A2ss output pads Parameter Symbol ASCLKO clock period 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 20 - - ns CL=50pF -3 - 3 ns CL=50pF 2) MTSR delay from ASCLKO shifting edge t51 CC -4 - 4 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -5 - 4 ns CL=50pF MRST setup to ASCLKO latching edge t52 SR 17 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR 0 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Table 3-56 Master Mode A2sm output pads Parameter ASCLKO clock period Symbol 1) t50 CC Deviation from ideal duty cycle t500 CC Values Unit Note / Test Condition Min. Typ. Max. 40 - - ns CL=50pF -4 - 4 ns CL=50pF 2) MTSR delay from ASCLKO shifting edge t51 CC -8 - 6 ns CL=50pF ASLSOn delay from the first ASCLKO edge t510 CC -8 - 9 ns CL=50pF Data Sheet 4-257 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationASCLIN SPI Master Timing Table 3-56 Master Mode A2sm output pads (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition MRST setup to ASCLKO latching edge t52 SR 26 - - ns CL=50pF MRST hold from ASCLKO latching edge t53 SR 0 - - ns CL=50pF 1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX. 2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. t50 ASCLKO t51 t500 t51 MTSR t52 MRST t53 Data valid Data valid t510 ASLSO ASCLIN_TmgMM.vsd Figure 3-17 ASCLIN SPI Master Timing Data Sheet 4-258 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 3.25 QSPI Timings, Master and Slave Mode This section defines the timings for the QSPI in the TC 260 / 264 / 265 / 267, for 5V pad power supply. It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings: • LVDSM output pads,LVDSH input pad, master mode, CL=25pF • Medium Performance Plus Pads (MP+): • • – strong sharp edge (MP+ss), CL=25pF – strong medium edge (MP+sm), CL=50pF – medium edge (MP+m), CL=50pF – weak edge (MP+w), CL=50pF Medium Performance Pads (MP): – strong sharp edge (MPss), CL=25pF – strong medium edge (MPsm), CL=50pF Medium and Low Performance Pads (MP/LP), the identical output strength settings: – medium edge (LP/MPm), CL=50pF – weak edge (MPw), CL=50pF Note: Pad asymmetry is already included in the following timings. Table 3-57 Master Mode Timing, LVDSM output pads for data and clock Parameter Symbol Values Min. SCLKO clock period 1) 2) Unit Note / Test Condition Typ. Max. - - ns CL=25pF t50 CC 20 Deviation from the ideal duty cycle 3) 4) t500 CC -1 - 1 ns CL=25pF MTSR delay from SCLKO shifting edge t51 CC -3 - 3 ns CL=25pF 0 - 30 ns CL=25pF; MPsm -5 - 7 ns CL=25pF; MPss -4 - 7 ns MP+ss; CL=25pF - 15 ns MP+sm; CL=25pF - - ns CL=25pF; LVDSM 5V output and LVDSH 3.3V input - - ns CL=25pF; LVDSM 5V SLSOn deviation from the ideal t510 CC programmed position -1 MRST setup to SCLK latching edge 5) t52 SR MRST hold from SCLK latching t53 SR edge 19 5) -6 5) output and LVDSH 3.3V input 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended. 3) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 4) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 5) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. Data Sheet 4-259 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode Table 3-58 Master Mode MP+ss/MPRss output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 20 - - ns CL=25pF Deviation from the ideal duty cycle 2) 3) t500 CC -3 - 3 ns 0 < CL < 50pF MTSR delay from SCLKO shifting edge t51 CC -7 - 6 ns CL=25pF -7 - 6 ns CL=25pF t52 SR 27 4)5) - - ns CL=25pF MRST hold from SCLK latching t53 SR edge -6 4)5) - - ns CL=25pF SCLKO clock period 1) SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-59 Master Mode MP+sm/MPRsm output pads for data and clock Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 50 - - ns CL=50pF Deviation from the ideal duty cycle 2) 3) t500 CC -2 - 3+0.01 * ns 0 < CL < 200pF MTSR delay from SCLKO shifting edge t51 CC SCLKO clock period 1) CL SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) t52 SR MRST hold from SCLK latching t53 SR edge -10 - 10 ns CL=50pF -10 - 10 ns MP+sm; CL=50pF -13 - 1 ns MPss; CL=50pF 0 - 40 ns MP+m, MPm, LPm; CL=50pF 50 4)5) - - ns CL=50pF -10 4)5) - - ns CL=50pF 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Data Sheet 4-260 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-60 Master Mode timing MPss output pads for data and clock, CL=50pF Parameter Symbol Values Unit Note / Test Condition ns CL=50pF Min. Typ. Max. t50 CC 40 - - Deviation from the ideal duty cycle 2) 3) t500 CC -2 - 3.5+0.035 ns * CL 0 < CL < 200pF MTSR delay from SCLKO shifting edge t51 CC -8 - 8 ns CL=50pF -8 - 8 ns MPss; CL=50pF -1 - 15 ns MP+sm; CL=50pF 0 - 50 ns MP+m, MPm, LPm; CL=50pF t52 SR 40 4)5) - - ns CL=50pF MRST hold from SCLK latching t53 SR edge -5 4)5) - - ns CL=50pF SCLKO clock period 1) SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-61 Master Mode timing MPsm output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 100 - - ns CL=50pF Deviation from the ideal duty cycle 2) 3) t500 CC -3 - 4+0.04 * ns 0 < CL < 200pF MTSR delay from SCLKO shifting edge t51 CC SCLKO clock period 1) CL -11 - 10 ns CL=50pF SLSOn deviation from the ideal t510 CC programmed position -11 - 10 ns CL=50pF MRST setup to SCLK latching edge 4) 60 4)5) - - ns CL=50pF -10 4)5) - - ns CL=50pF t52 SR MRST hold from SCLK latching t53 SR edge 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. Data Sheet 4-261 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-62 Master Mode timing MPRm/MP+m/MPm/LPm output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 200 - - ns CL=50pF Deviation from the ideal duty cycle 2) 3) t500 CC -10 - 4+0.04 * ns 0 < CL < 200pF MTSR delay from SCLKO shifting edge t51 CC SCLKO clock period 1) CL SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) t52 SR MRST hold from SCLK latching t53 SR edge -15 - 17 ns CL=50pF -20 - 20 ns CL=50pF 70 4)5) - - ns CL=50pF -10 4)5) - - ns CL=50pF 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-63 Master Mode Weak output pads Parameter Symbol Values Min. Typ. Max. - SCLKO clock period 1) t50 CC 1000 - Deviation from the ideal duty cycle 2) 3) t500 CC -30 - MTSR delay from SCLKO shifting edge t51 CC Unit Note / Test Condition ns CL=50pF 30+0.15 * ns 0 < CL < 200pF CL -65 - 65 ns CL=50pF -65 - 65 ns CL=50pF t52 SR 300 4)5) - - ns CL=50pF MRST hold from SCLK latching t53 SR edge -40 4)5) - - ns CL=50pF SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. Data Sheet 4-262 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-64 Slave mode timing Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition SCLK clock period t54 SR 4 x TMAX - - ns SCLK duty cycle t55/t54 SR 40 - 60 % MTSR setup to SCLK latching edge t56 SR 4 - - ns Hystheresis Inactive 5 - - ns Input Level AL 5 - - ns Input Level TTL 3 - - ns Hystheresis Inactive 6 - - ns Input Level AL MTSR hold from SCLK latching t57 SR edge 9 SLSI setup to first SCLK shift edge SLSI hold from last SCLK latching edge MRST delay from SCLK shift edge SLSI to valid data on MRST t58 SR t59 SR t60 CC t61 SR - - ns Input Level TTL 1) - - ns Hystheresis Inactive 4 1) - - ns Input Level AL 8 - - ns Input Level TTL 6 - - ns Only for pin 15.1, AL 3 - - ns Hystheresis Inactive 4 - - ns Input Level AL 8 - - ns Input Level TTL 10 - 70 ns MP+m/MPRm; CL=50pF 10 - 50 ns MP+sm/MPRsm; CL=50pF 5 - 30 ns MP+ss/MPRss; CL=25pF 40 - 300 ns MP+w/MPRw; CL=50pF 10 - 70 ns MPm/LPm; CL=50pF 10 - 55 ns MPsm; CL=50pF 5 - 30 ns MPss; CL=25pF 40 - 300 ns MPw/LPw; CL=50pF - - 5 ns 5 1) Except pin P15.1. Data Sheet 4-263 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode t50 t500 0.5 VEXT/FLEX SCLK1)2) t51 SAMPLING POINT 0.5 VEXT/FLEX MTSR1) t52 t53 Data valid MRST1) Data valid t510 0.5 VEXT/FLEX SLSOn2) 1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay). 2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0. QSPI_TmgMM.vsd Figure 3-18 Master Mode Timing t54 SCLKI t55 MTSR 1) MRST 1) Last latching SCLK edge First latching SCLK edge First shift SCLK edge 1) t56 0.5 VEXT/FLEX t55 t56 t57 Data valid t60 t57 Data valid t60 0.5 VEXT/FLEX t58 t59 t61 SLSI 1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0. QSPI_TmgSM.vsd Figure 3-19 Slave Mode Timing Data Sheet 4-264 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 3.26 QSPI Timings, Master and Slave Mode This section defines the timings for the QSPI in the TC 260 / 264 / 265 / 267, for 3.3V pad power supply. It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings: • LVDSM output pads, LVDSH input pad, master mode, CL=25pF • Medium Performance Plus Pads (MP+): • • – strong sharp edge (MP+ss), CL=25pF – strong medium edge (MP+sm), CL=50pF – medium edge (MP+m), CL=50pF – weak edge (MP+w), CL=50pF Medium Performance Pads (MP): – strong sharp edge (MPss), CL=25pF – strong medium edge (MPsm), CL=50pF Medium and Low Performance Pads (MP/LP), the identical output strength settings: – medium edge (LP/MPm), CL=50pF – weak edge (MPw), CL=50pF Note: Pad asymmetry is already included in the following timings. Table 3-65 Master Mode Timing, LVDSM output pads for data and clock Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 20 - - ns CL=25pF Deviation from the ideal duty cycle 2) 3) t500 CC -2 - 2 ns CL=25pF MTSR delay from SCLKO shifting edge t51 CC -5 - 5 ns CL=25pF -2 - 55 ns CL=25pF; MPsm -9 - 12 ns CL=25pF; MPss -7 - 12 ns MP+ss; CL=25pF -2 - 26 ns MP+sm; CL=25pF t52 SR 20 - - ns CL=25pF; LVDSM 5V output and LVDSH 3.3V input MRST hold from SCLK latching t53 SR edge -6 - - ns CL=25pF; LVDSM 5V SCLKO clock period 1) SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) output and LVDSH 3.3V input 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. Data Sheet 4-265 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode Table 3-66 Master Mode MP+ss/MPRss output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 40 - - ns CL=25pF Deviation from the ideal duty cycle 2) 3) t500 CC -5 - 5 ns 0 < CL < 50pF MTSR delay from SCLKO shifting edge t51 CC -12 - 12 ns CL=25pF -12 - 12 ns CL=25pF t52 SR 50 4)5) - - ns CL=25pF MRST hold from SCLK latching t53 SR edge -6 4)5) - - ns CL=25pF SCLKO clock period 1) SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-67 Master Mode MP+sm/MPRsm output pads for data and clock Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 100 - - ns CL=50pF Deviation from the ideal duty cycle 2) 3) t500 CC -3 - 7 ns 0 < CL < 200pF MTSR delay from SCLKO shifting edge t51 CC -17 - 17 ns CL=50pF -17 - 17 ns MP+sm; CL=50pF -22 - 2 ns MPss; CL=50pF 0 - 70 ns MP+m; MPm; LPm; CL=50pF 85 4)5) - - ns CL=50pF -10 4)5) - - ns CL=50pF SCLKO clock period 1) SLSOn deviation from the ideal t510 CC programmed position MRST setup to SCLK latching edge 4) t52 SR MRST hold from SCLK latching t53 SR edge 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Data Sheet 4-266 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-68 Master Mode timing MPss output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 40 - - ns CL=25pF Deviation from the ideal duty cycle 2) 3) t500 CC -5 - 7+0.07 * ns CL=25pF MTSR delay from SCLKO shifting edge t51 CC SCLKO clock period 1) CL -10 - 10 ns CL=25pF SLSOn deviation from the ideal t510 CC programmed position -10 - 10 ns CL=25pF MRST setup to SCLK latching edge 4) t52 SR 50 4)5) - - ns CL=25pF MRST hold from SCLK latching t53 SR edge -6 4)5) - - ns CL=25pF 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-69 Master Mode timing MPsm output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - ns CL=50pF 9+0.06 * ns 0 < CL < 200pF SCLKO clock period 1) t50 CC 200 - Deviation from the ideal duty cycle 2) 3) t500 CC -5 - MTSR delay from SCLKO shifting edge t51 CC CL -19 - 19 ns CL=50pF SLSOn deviation from the ideal t510 CC programmed position -19 - 17 ns CL=50pF MRST setup to SCLK latching edge 4) t52 SR 100 4)5) - - ns CL=50pF MRST hold from SCLK latching t53 SR edge -13 4)5) - - ns CL=50pF 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Data Sheet 4-267 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-70 Master Mode timing MPRm/MP+m/MPm/LPm output pads Parameter SCLKO clock period Symbol 1) t50 CC Deviation from the ideal duty cycle 2) 3) t500 CC MTSR delay from SCLKO shifting edge t51 CC Values Unit Note / Test Condition Min. Typ. Max. 400 - - ns CL=50pF -6-0.07 * - 6+0.07 * ns 0 < CL < 200pF CL CL -25 - 33 ns CL=50pF SLSOn deviation from the ideal t510 CC programmed position -35 - 35 ns CL=50pF MRST setup to SCLK latching edge 4) t52 SR 120 4)5) - - ns CL=50pF MRST hold from SCLK latching t53 SR edge -13 4)5) - - ns CL=50pF 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-71 Master Mode Weak output pads Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition SCLKO clock period 1) t50 CC 2000 - - ns CL=50pF Deviation from the ideal duty cycle 2) 3) t500 CC -110 - 110 ns 0 < CL < 200pF MTSR delay from SCLKO shifting edge t51 CC -170 - 170 ns CL=50pF SLSOn deviation from the ideal t510 CC programmed position -170 - 170 ns CL=50pF MRST setup to SCLK latching edge 4) t52 SR 510 4)5) - - ns CL=50pF MRST hold from SCLK latching t53 SR edge -40 4)5) - - ns CL=50pF 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Data Sheet 4-268 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-72 Slave mode timing Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition SCLK clock period t54 SR 4 x TMAX - - ns SCLK duty cycle t55/t54 SR 40 - 60 % MTSR setup to SCLK latching edge t56 SR 7 - - ns Hystheresis inactive 9 - - ns Input Level AL 7 - - ns Input Level TTL 5 - - ns Hystheresis inactive 11 - - ns Input Level AL 16 MTSR hold from SCLK latching t57 SR edge SLSI setup to first SCLK shift edge SLSI hold from last SCLK latching edge MRST delay from SCLK shift edge SLSI to valid data on MRST t58 SR t59 SR t60 CC t61 SR - - ns Input Level TTL 1) - - ns Hystheresis inactive 7 1) - - ns Input Level AL 14 - - ns Input Level TTL 11 - - ns Only for pin P15.1, AL 5 - - ns Hystheresis inactive 7 - - ns Input Level AL 14 - - ns Input Level TTL 13 - 120 ns MP+m/MPRm; CL=50pF 13 - 85 ns MP+sm/MPRsm; CL=50pF 6 - 50 ns MP+ss/MPRss; CL=25pF 70 - 500 ns MP+w/MPRw; CL=50pF 13 - 120 ns MPm/LPm; CL=50pF 13 - 100 ns MPsm; CL=50pF 6 - 52 ns MPss; CL=25pF 70 - 500 ns MPw/LPw; CL=50pF - - 9 ns 7 1) Except pin P15.1 Data Sheet 4-269 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQSPI Timings, Master and Slave Mode t50 t500 0.5 VEXT/FLEX SCLK1)2) t51 SAMPLING POINT 0.5 VEXT/FLEX MTSR1) t52 MRST t53 Data valid 1) Data valid t510 SLSOn 0.5 VEXT/FLEX 2) 1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay). 2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0. QSPI_TmgMM.vsd Figure 3-20 Master Mode Timing t54 SCLKI t55 MTSR 1) MRST 1) Last latching SCLK edge First latching SCLK edge First shift SCLK edge 1) t56 0.5 VEXT/FLEX t55 t56 t57 Data valid t60 t57 Data valid t60 0.5 VEXT/FLEX t58 t59 t61 SLSI 1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0. QSPI_TmgSM.vsd Figure 3-21 Slave Mode Timing Data Sheet 4-270 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 5 V Operation 3.27 MSC Timing 5 V Operation The following section defines the timings for 5V pad power supply. Note: Pad asymmetry is already included in the following timings. Note: Load for LVDS pads are defined as differential loads in the following timings. Table 3-73 LVDS clock/data (LVDS pads in LVDS mode) Parameter Symbol Values Min. FCLPx clock period 1) t40 CC 2 * TA 2) 3) Unit Note / Test Condition Typ. Max. - - ns LVDSM; CL=50pF Deviation from ideal duty cycle t400 CC -1 - 1 ns LVDSM; 0 < CL < 50pF SOPx output delay 6) -3 - 4 ns LVDSM; CL=50pF; option EN01 -4 - 4.5 ns LVDSM; CL=50pF; option EN01D -4 - 5 ns MP+ss/MPRss; option EN01; CL=25pF -3 - 7 ns MP+ss/MPRss; option EN01; CL=50pF -3 - 11 ns MP+sm/MPRsm; option EN01D; CL=50pF -2 - 9 ns MP+ss/MPRss; option EN23; CL=25pF -2 - 10 ns MP+ss/MPRss; option EN23; CL=50pF -3 - 11 ns MPss; option EN01; CL=50pF -7 - 2 ns MP+ss/MPRss; option EN01; CL=0pF -5 - 3 ns MP+sm/MPRsm; option EN01D; CL=0pF -4 - 5 ns MP+ss/MPRss; option EN23; CL=0pF -7 - 4 ns MPss; option EN01; CL=0pF t46 CC 8 * tMSC - - ns Upstream Timing t48 SR - - 200 ns Upstream Timing t49 SR - - 200 ns 4) 5) ENx output delay 6) SDI bit time SDI rise time SDI fall time 7) 7) t44 CC t45 CC Upstream Timing 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC. 3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended. Data Sheet 4-271 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 5 V Operation 4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 6) From FCLP rising edge. 7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in the middle of the bit are not violated. Data Sheet 4-272 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 5 V Operation Timing Options for t45 The wiring shown in the Figure 3-22 provides three useful timing options for t45. depending on the signals selected with the alternate output lines (ALT1 to ALT7) in the ports: • EN01 - FCLN, SON, EN0, EN1 • EN01D - FCLND, SOND, EN0, EN1 - t45 window shifted to the left • EN23 - t45 window shifted to the right - FCLN, SON, EN2, EN3 - t45 reference timing The timings corresponding to EN01, EN01D, and EN23 are defined in the LVDS mode. In order to use the EN23 timings, the application should use the EN2 and EN3 outputs of the MSC module. ALT1 FCLN ALTx LVDSM ALTy FCLP FCLND FCLN ALT7 PAD ALT1 SON ALTx LVDSM ALTy SOP SOND SON ALT7 PAD ALT1 EN0 ALTx CMOS ALTy EN1 ALT7 PAD EN2 ALT1 ALTx EN3 CMOS ALTy MSC ALT7 PAD _DoublePath_4a.vsd Figure 3-22 Timing Options for t45 Table 3-74 MPss clock/data (LVDS pads in CMOS mode, option EN01) Parameter Symbol Values Min. FCLPx clock period 1) t40 CC Deviation from ideal duty cycle t400 CC 2 * TA -2 2) 3) Data Sheet Note / Test Condition ns MPss; CL=50pF Typ. Max. - - - 3+0.035 * ns 4) 5) SOPx output delay 6) Unit MPss; 0 < CL < 100pF CL t44 CC -4 - 4-273 7 ns MPss; CL=50pF V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 5 V Operation Table 3-74 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d) Parameter Symbol ENx output delay 6) SDI bit time SDI rise time SDI fall time 7) 7) Values Unit Note / Test Condition Min. Typ. Max. -5 - 7 ns MP+ss/MPRss; CL=50pF -2 - 15 ns MP+sm/MPRsm; CL=50pF -4 - 10 ns MPss; CL=50pF 0 - 30 ns MPsm; CL=50pF; except pin P13.0 0 - 31 ns MPsm; CL=50pF; pin P13.0 6 - 45 ns MPm/MP+m/MPRm; CL=50pF -11 - 2 ns MP+ss/MPRss; CL=0pF -4 - 7 ns MP+sm/MPRsm; CL=0pF -10 - 2 ns MPss; CL=0pF -1 - 16 ns MPsm; CL=0pF -2 - 18 ns MP+m/MPm/MPRm; CL=0pF t46 CC 8 * tMSC - - ns Upstream Timing t48 SR - - 200 ns Upstream Timing t49 SR - - 200 ns t45 CC Upstream Timing 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC. 3) FCLP signal high and low can be minimum 1 * TMSC. 4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 6) From FCLP rising edge. 7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in the middle of the bit are not violated. Table 3-75 MP+sm/MPRsm clock/data Parameter FCLPx clock period 1) Symbol t40 CC Values Unit Min. Typ. Max. 2 * TA - - ns Note / Test Condition MP+sm/MPRsm; CL=50pF Deviation from ideal duty cycle t400 CC -2 - 2) 3) SOPx output delay 4) Data Sheet 3+0.01 * ns MP+sm/MPRsm; 0 < CL < 200pF ns MP+sm; CL=50pF CL t44 CC -5 4-274 7 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 5 V Operation Table 3-75 MP+sm/MPRsm clock/data (cont’d) Parameter ENx output delay Symbol 4) t45 CC Values Unit Note / Test Condition Min. Typ. Max. -13 - 2 5) ns MPss; CL=50pF -5 - 11 ns MP+sm/MPRsm; CL=50pF 1 - 24 ns MPsm; CL=50pF 4 - 37 ns MP+m/MPm/MPRm; CL=50pF -19 - -1 ns MPss; CL=0pF -13 - 2 ns MP+sm; CL=0pF -5 - 8 ns MPsm; CL=0pF -5 - 10 ns MPm/MP+m/MPRm; CL=0pF 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) From FCLP rising edge. 5) If EN1 is configured to P13.0 the max limt is increased by 0.5ns to 2.5ns. Table 3-76 MPm/MP+m/MPRm clock/data Parameter Symbol FCLPx clock period 1) t40 CC Deviation from ideal duty cycle t400 CC Values Note / Test Condition Min. Typ. Max. 2 * TA - - ns MPm/MP+m/MPRm; CL=50pF -8 - 4+0.04 * ns MPm/MP+m; 0 < CL < 200pF 2) 3) CL SOPx output delay 4) ENx output delay Unit 4) t44 CC -11 - 9 ns MPm/MP+m; CL=50pF t45 CC -13 - 11 ns MPm/MP+m/MPRm; CL=50pF -33 - -4 ns MPm/MP+m/MPRm; CL=0pF 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) From FCLP rising edge. Data Sheet 4-275 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 3.3 V Operation t40 t400 FCLP t44 t44 t45 t45 SOP EN 0.5 VEXT/FLEX t48 t49 0.9 VEXT/FLEX SDI 0.1 VEXT/FLEX t46 t46 MSC_Timing_A.vsd Figure 3-23 MSC Interface Timing Note: The SOP data signal is sampled with the falling edge of FCLP in the target device. 3.28 MSC Timing 3.3 V Operation The following section defines the timings for 3.3V pad power supply. Note: Pad asymmetry is already included in the following timings. Note: Load for LVDS pads are defined as differential loads in the following timings. Mapping A, Combo Pads in LVDS Mode or CMOS Mode The timing applies for the LVDS pads in LVDS operating mode: • The LVDSM output pads for clock and data signals set in LVDS mode • The CMOS MP pads for enable signals, with strong driver sharp edge (MPss) or strong driver medium edge (MPsm). Table 3-77 LVDS clock/data (LVDS pads in LVDS mode) Parameter Symbol Values Min. FCLPx clock period 1) t40 CC 2 * TA 2) 3) Unit Note / Test Condition Typ. Max. - - ns LVDSM; CL=50pF Deviation from ideal duty cycle t400 CC -2 - 2 ns LVDSM; 0 < CL < 50pF SOPx output delay 6) -5 - 5 ns LVDSM; CL=50pF; option EN01 -7 - 7 ns LVDSM; CL=50pF; option EN01D 4) 5) Data Sheet t44 CC 4-276 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 3.3 V Operation Table 3-77 LVDS clock/data (LVDS pads in LVDS mode) (cont’d) Parameter Symbol ENx output delay 6) SDI rise time SDI fall time 7) 7) Unit Note / Test Condition Min. Typ. Max. -7 - 9 ns MP+ss/MPRss; option EN01; CL=25pF -5 - 13 ns MP+ss/MPRss; option EN01; CL=50pF -5 - 26 ns MP+sm/MPRsm; option EN01D; CL=50pF -4 - 16 ns MP+ss/MPRss; option EN23; CL=25pF -4 - 17 ns MP+ss/MPRss; option EN23; CL=50pF -5 - 19 ns MPss; option EN01; CL=50pF -12 - 4 ns MP+ss/MPRss; option EN01; CL=0pF -9 - 11 ns MP+sm/MPRsm; option EN01D; CL=0pF -7 - 9 ns MP+ss/MPRss; option EN23; CL=0pF -12 - 7 ns MPss; option EN01; CL=0pF t46 CC 8 * tMSC - - ns Upstream Timing t48 SR - - 200 ns Upstream Timing t49 SR - - 200 ns t45 CC SDI bit time Values Upstream Timing 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns 3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended. 4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 6) From FCLP rising edge. 7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in the middle of the bit are not violated. Table 3-78 MPss clock/data (LVDS pads in CMOS mode, option EN01) Parameter Symbol Values Min. FCLPx clock period 1) t40 CC Deviation from ideal duty cycle t400 CC 2 * TA -5 2) 3) Note / Test Condition Typ. Max. - - ns MPss; CL=50pF - 7+0.07 * ns MPss; 0 < CL < 100pF 4) 5) Data Sheet Unit CL 4-277 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 3.3 V Operation Table 3-78 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d) Parameter Symbol SOPx output delay ENx output delay 6) 6) SDI bit time SDI rise time SDI fall time 7) 7) Values Unit Note / Test Condition Min. Typ. Max. t44 CC -7 - 12 ns MPss; CL=50pF t45 CC -9 - 12 ns MP+ss/MPRss; CL=50pF -4 - 26 ns MP+sm/MPRsm; CL=50pF -7 - 17 ns MPss; CL=50pF 0 - 54 ns MPsm; CL=50pF; except pin P13.0 0 - 58 ns MPsm; CL=50pF; pin P13.0 4 - 77 ns MPm/MP+m/MPRm; CL=50pF -19 - 4 ns MP+ss/MPRss; CL=0pF -7 - 12 ns MP+sm/MPRsm; CL=0pF -17 - 4 ns MPss; CL=0pF -2 - 28 ns MPsm; CL=0pF -4 - 31 ns MP+m/MPm/MPRm; CL=0pF t46 CC 8 * tMSC - - ns Upstream Timing t48 SR - - 200 ns Upstream Timing t49 SR - - 200 ns Upstream Timing 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns 3) FCLP signal high and low can be minimum 1 * TMSC. 4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 6) From FCLP rising edge. 7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in the middle of the bit are not violated. Mapping B, CMOS MP Pads This timing applies for the dedicated CMOS pads, pin Mapping B: • MP strong sharp (MPss) output pads for the clock and the data signals • MP strong sharp or strong medium (MPss or MPsm) output pads for enable signals Data Sheet 4-278 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 3.3 V Operation Table 3-79 MP+sm/MPRsm clock/data Parameter Symbol FCLPx clock period 1) t40 CC Values Unit Min. Typ. Max. 2 * TA - - ns Note / Test Condition MP+sm/MPRsm; CL=50pF Deviation from ideal duty cycle t400 CC -3 - 7 ns MP+sm/MPRsm; 0 < CL < 200pF SOPx output delay 4) t44 CC -9 - 12 ns MP+sm; CL=50pF t45 CC -20 - 4 ns MPss; CL=50pF -9 - 19 ns MP+sm/MPRsm; CL=50pF 0 - 44 ns MPsm; CL=50pF 0 - 63 ns MP+m/MPm/MPRm; CL=50pF -33 - 0 ns MPss; CL=0pF -23 - 4 ns MP+sm/MPRsm; CL=0pF -9 - 14 ns MPsm; CL=0pF -9 - 17 ns 2) 3) ENx output delay 4) MPm/MP+m/MPRm; CL=0pF 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) From FCLP rising edge. Table 3-80 MPm/MP+m/MPRm clock/data Parameter Symbol FCLPx clock period 1) t40 CC Deviation from ideal duty cycle t400 CC 2) 3) 4) 4) Unit Note / Test Condition Min. Typ. Max. 2 * TA - - ns MPm/MP+m/MPRm; CL=50pF -6-0.07 * - 6+0.07 * ns MPm/MP+m/MPRm; 0 < CL < 200pF CL SOPx output delay ENx output delay Values CL t44 CC -19 - 16 ns MPm/MP+m; CL=50pF t45 CC -19 - 20 ns MPm/MP+m/MPRm; CL=50pF -57 - 0 ns MPm/MP+m/MPRm; CL=0pF 1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted if the ABRA block is used. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. Data Sheet 4-279 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationMSC Timing 3.3 V Operation 4) From FCLP rising edge. t40 t400 FCLP t44 t44 t45 t45 SOP EN 0.5 VEXT/FLEX t48 t49 0.9 VEXT/FLEX SDI 0.1 VEXT/FLEX t46 t46 MSC_Timing_A.vsd Figure 3-24 MSC Interface Timing Note: The SOP data signal is sampled with the falling edge of FCLP in the target device. Data Sheet 4-280 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEthernet Interface (ETH) Characteristics 3.29 Ethernet Interface (ETH) Characteristics 3.29.1 ETH Measurement Reference Points ETH Clock 1.4 V 1.4 V ETH I/O 2.0 V 0.8 V 2.0 V 0.8 V tR tF ETH_Testpoints.vsd Figure 3-25 ETH Measurement Reference Points Data Sheet 4-281 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEthernet Interface (ETH) Characteristics 3.29.2 ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) Table 3-81 ETH Management Signal Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition ETH_MDC period t1 CC 400 - - ns CL=25pF ETH_MDC high time t2 CC 160 - - ns CL=25pF ETH_MDC low time t3 CC 160 - - ns CL=25pF ETH_MDIO setup time (output) t4 CC 10 - - ns CL=25pF ETH_MDIO hold time (output) t5 CC 10 - - ns CL=25pF ETH_MDIO data valid (input) t6 SR 0 - 300 ns CL=25pF t1 t3 t2 ETH_MDC ETH_MDIO sourced by controller : ETH_MDC t4 ETH_MDIO (output ) t5 Valid Data ETH_MDIO sourced by PHY: ETH_MDC t6 ETH_MDIO (input ) Valid Data ETH_Timing-Mgmt.vsd Figure 3-26 ETH Management Signal Timing Data Sheet 4-282 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEthernet Interface (ETH) Characteristics 3.29.3 ETH MII Parameters In the following, the parameters of the MII (Media Independent Interface) are described. Table 3-82 ETH MII Signal Timing Parameters Parameter Symbol Clock period t7 SR Clock high time t8 SR Values Unit Note / Test Condition Min. Typ. Max. 40 - - ns CL=25pF; baudrate=100Mbps 400 - - ns CL=25pF; baudrate=10Mbps 14 - 26 ns CL=25pF; baudrate=100Mbps 140 1) - 260 2) ns CL=25pF; baudrate=10Mbps Clock low time t9 SR 14 - 26 ns CL=25pF; baudrate=100Mbps 140 1) - 260 2) ns CL=25pF; baudrate=10Mbps Input setup time t10 SR 10 - - ns CL=25pF Input hold time t11 SR 10 - - ns CL=25pF Output valid time t12 CC 0 - 25 ns CL=25pF 1) Defined by 35% of clock period. 2) Defined by 65% of clock period. t7 t9 ETH_MII_RX_CLK ETH_MII_TX_CLK t8 ETH_MII_RX_CLK t1 0 ETH_MII_RXD[3:0] ETH_MII_RX_DV ETH_MII_RX_ER (sourced by PHY ) t1 1 Valid Data ETH_MII_TX_CLK t1 2 ETH_MII_TXD[3:0] ETH_MII_TXEN (sourced by controller ) Valid Data ETH_Timing-MII.vsd Figure 3-27 ETH MII Signal Timing Data Sheet 4-283 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationEthernet Interface (ETH) Characteristics 3.29.4 ETH RMII Parameters In the following, the parameters of the RMII (Reduced Media Independent Interface) are described. Table 3-83 ETH RMII Signal Timing Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. 20 - - ns CL=25pF; 50ppm ETH_RMII_REF_CL clock high t14 CC time 7 1) - 13 2) ns CL=25pF ETH_RMII_REF_CL clock low t15 CC time 7 1) - 13 2) ns CL=25pF ETH_RMII_REF_CL clock period t13 CC ETHTXEN, ETHTXD[1:0], ETHRXD[1:0], ETHCRSDV, ETHRXER; setup time t16 CC 4 - - ns CL=25pF ETHTXEN, ETHTXD[1:0], ETHRXD[1:0], ETHCRSDV, ETHRXER; hold time t17 CC 2 - - ns CL=25pF 1) Defined by 35% of clock period. 2) Defined by 65% of clock period. t1 3 t1 5 t14 ETH_RMII_REF_CL ETH_RMII_REF_CL t1 6 ETHTXEN, ETHTXD[1:0], ETHRXD[1:0], ETHCRSDV, ETHRXER t17 Valid Data ETH_Timing-RMII .vsd Figure 3-28 ETH RMII Signal Timing Data Sheet 4-284 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationE-Ray Parameters 3.30 E-Ray Parameters The timings of this section are valid for the strong driver and either sharp edge settings of the output drivers with CL = 25 pF. For the inputs the hysteresis has to be configured to inactive. Table 3-84 Transmit Parameters Parameter Symbol Values Min. Rise time of TxEN tdCCTxENRise2 5 Fall time of TxEN Unit Note / Test Condition Typ. Max. - 9 ns CL=25pF - 9 ns CL=25pF - 9 ns 20% - 80%; CL=25pF CC tdCCTxENFall25 CC Sum of rise and fall time tdCCTxRise25+ dCCTxFall25 CC Sum of delay between TP1_FF tdCCTxEN01 CC and TP1_CC and delays derived from TP1_FFi, rising edge of TxEN - - 25 ns Sum of delay between TP1_FF tdCCTxEN10 CC and TP1_CC and delays derived from TP1_FFi, falling edge of TxEN - - 25 ns -2.45 - 2.45 ns Sum of delay between TP1_FF tdCCTxD01 and TP1_CC and delays CC derived from TP1_FFi, rising edge of TxD - - 25 ns Sum of delay between TP1_FF tdCCTxD10 CC and TP1_CC and delays derived from TP1_FFi, falling edge of TxD - - 25 ns TxD signal sum of rise and fall ttxd_sum CC time at TP1_BD - - 9 ns Asymmetry of sending ttx_asym CC CL=25pF Table 3-85 Receive Parameters Parameter Symbol Values Min. Max. - 43.0 ns CL=25pF - 44.0 ns CL=15pF 35 - 70 % 30 - 65 % tdCCTxAsymAcc -30.5 Acceptance of asymmetry at receiving part tdCCTxAsymAcc -31.5 Threshold for detecting logical high TuCCLogic1 SR Threshold for detecting logical low SR Data Sheet Note / Test Condition Typ. Acceptance of asymmetry at receiving part ept25 Unit SR ept15 SR TuCCLogic0 4-285 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationE-Ray Parameters Table 3-85 Receive Parameters (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Sum of delay between TP4_CC tdCCRxD01 and TP4_FF and delays CC derived from TP4_FFi, rising edge of RxD - - 10 ns Sum of delay between TP1_CC tdCCRxD10 CC and TP1_CC and delays derived from TP4_FFi, falling edge of RxD - - 10 ns Data Sheet 4-286 Note / Test Condition V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationHSCT Parameters 3.31 HSCT Parameters Table 3-86 HSCT - Rx/Tx setup timing Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition RX o/p duty cycle DCrx CC 40 - 60 % Bias startup time tbias CC - 5 10 µs Bias distributor waking up from power down and provide stable Bias. RX startup time trxi CC - 5 - µs Wake-up RX from power down. TX startup time ttx CC - 5 - µs Wake-up TX from power down. Unit Note / Test Condition Total Budget for complete receiver including silicon, package, pins and bond wire Table 3-87 HSCT - Rx parasitics and loads Parameter Symbol Values Min. Typ. Max. Capacitance total budget Ctotal CC - 3.5 5 pF Parasitic inductance budget Htotal CC - 5 - nH Table 3-88 LVDSH - Reduced TX and RX (RED) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Output differential voltage VOD CC 150 200 285 mV Rt = 100 Ohm ±20% @2pF Output voltage high VOH CC - - 1463 mV Rt = 100 Ohm ±20% Output voltage low VOL CC 937 - - mV Rt = 100 Ohm ±20% Output offset (Common mode) VOS CC voltage 1.08 1.2 1.32 V Rt = 100 Ohm ±20% @2pF Input voltage range - - 1.6 V Absolute max = 1.6 V + (285mV/2) = 1.743 0.15 - - V Absolute min = 0.15 V (285 mV /2) = 0 V 100 mV for 55% of bit period; Note Absolute Value (Vidth - Vidthl) VI SR Input differential threshold Vidth SR -100 - 100 mV Data frequency DR CC 5 - 320 Mbps Data Sheet 4-287 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationHSCT Parameters Table 3-88 LVDSH - Reduced TX and RX (RED) (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. 90 100 110 Ohm 0 V < VI < 1.6V 80 100 120 Ohm 1.6 V < VI < 2.0V - - 2 V/ns Change in VOS between 0 and dVOS CC 1 - - 50 mV Peak to peak (including DC transients). Change in Vod between 0 and dVod CC 1 - - 50 mV Peak to peak (including DC transients) Fall time 1) tfall CC 0.26 - 1.2 ns Rt = 100 Ohm ±20% @2pF Rise time 1) trise CC 0.26 - 1.2 ns Rt = 100 Ohm ±20% @2pF Unit Note / Test Condition Receiver differential input impedance Rin CC Slew rate SRtx CC 1) Rise / fall times are defined for 10% - 90% of VOD Table 3-89 HSCT PLL Parameter Symbol Values Min. Typ. Max. PLL frequency range fPLL CC 12.5 320 320 MHz PLL input frequency fREF CC 10 - 20 MHz PLL lock-in time tLOCK CC - - 50 µs Bit Error Rate based on 10 MHz BER10 CC reference clock at Slave PLL side - - 10EXP-9 - Bit Error Rate based on Slave interface reference clock at 10 MHz Bit Error Rate based on 20 MHz BER20 CC reference clock at Slave PLL side - - 10EXP12 - Bit Error Rate based on Slave interface reference clock at 20 MHz Absolute RMS Jitter (TX out) JABS10 CC -125 - 125 ps Measured at link TX out; valid for Reference frequency at 10 MHz Absolute RMS Jitter (TX out) JABS20 CC -85 - 85 ps Measured at link TX out; valid for Reference frequency at 20 MHz Data Sheet 4-288 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationHSCT Parameters Table 3-89 HSCT PLL (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Accumulated RMS Jitter (RX side) JACC10 CC - - 145 ps Measured at link RX input, based on 5000 measures, each 300 clock cycles; valid for Reference frequency at 10 MHz Accumulated RMS Jitter (link RX side) JACC20 CC - - 115 ps Measured at link RX input, based on 5000 measures, each 300 clock cycles; valid for Reference frequency at 20 MHz Total Jitter peak to peak TJpp CC - - 2083 ps Total Jitter as sum of deterministic jitter and random jitter Unit Note / Test Condition Table 3-90 HSCT Sysclk Parameter Symbol Values Min. Typ. Max. Frequency fSYSCLK CC 10 - 20 MHz Frequency error dfERR CC -1 - 1 % Duty Cycle DCsys CC 45 - 55 % Load impedance RLOAD CC 10 - - kOhm Load capacitance CLOAD CC - - 10 pF Integrated phase noise IPN CC - - -58 dB Data Sheet 4-289 single sideband phase noise in 10 kHz to 10 Mhz at 20 MHz SysClk V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationInter-IC (I2C) Interface Timing 3.32 Inter-IC (I2C) Interface Timing This section defines the timings for I2C in the TC 260 / 264 / 265 / 267. All I2C timing parameter are SR for Master Mode and CC for Slave Mode. Table 3-91 I2C Standard Mode Timing Parameter Symbol Values Unit Note / Test Condition Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Min. Typ. Max. Fall time of both SDA and SCL t1 - - 300 ns Capacitive load for each bus line - - 400 pF Bus free time between a STOP t10 and ATART condition 4.7 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Rise time of both SDA and SCL t2 - - 1000 ns Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Data hold time t3 0 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Data set-up time t4 250 - - ns Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Low period of SCL clock t5 4.7 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line High period of SCL clock t6 4 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Hold time for the (repeated) START condition t7 4 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Data Sheet Cb SR 4-290 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationInter-IC (I2C) Interface Timing Table 3-91 I2C Standard Mode Timing (cont’d) Parameter Set-up time for (repeated) START condition Symbol t8 Set-up time for STOP condition t9 Values Unit Note / Test Condition Min. Typ. Max. 4.7 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line 4 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Unit Note / Test Condition 300 ns Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Table 3-92 I2C Fast Mode Timing Parameter Symbol Values Min. Fall time of both SDA and SCL t1 Typ. 20+0.1*C - Max. b Capacitive load for each bus line Cb SR - - 400 pF Bus free time between a STOP t10 and ATART condition 1.3 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Rise time of both SDA and SCL t2 20+0.1*C - 300 ns Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line b Data hold time t3 0 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Data set-up time t4 100 - - ns Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Low period of SCL clock t5 1.3 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line High period of SCL clock t6 0.6 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Data Sheet 4-291 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationInter-IC (I2C) Interface Timing Table 3-92 I2C Fast Mode Timing (cont’d) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Hold time for the (repeated) START condition t7 0.6 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Set-up time for (repeated) START condition t8 0.6 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Set-up time for STOP condition t9 0.6 - - µs Measured with a pullup resistor of 4.7 kohms at each of the SCL and SDA line Data Sheet 4-292 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationSCR Parameters 3.33 SCR Parameters 3.33.1 SSC Timing 5V It is assumed that SCLKO and MTSR pads have the same pad settings: • • • Medium Performance Plus Pads (MP+): – strong sharp edge (MP+ss), CL=25pF – strong medium edge (MP+sm), CL=50pF – medium edge (MP+m), CL=50pF – weak edge (MP+w), CL=50pF Medium Performance Pads (MP): – strong sharp edge (MPss), CL=25pF – strong medium edge (MPsm), CL=50pF Medium and Low Performance Pads (MP/LP), the identical output strength settings: – medium edge (LP/MPm), CL=50pF – weak edge (MPw), CL=50pF Table 3-93 Master Mode timing MPsm output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 100 - - ns CL=50pF Deviation from the ideal duty cycle 2) 3) t500 CC -10 - 10 ns CL=50pF MTSR delay from SCLKO shifting edge t51 CC -10 - 10 ns CL=50pF -10 4) 5) - - ns CL=50pF SCLKO clock period 1) MRST hold from SCLK latching t53 SR edge 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-94 Master Mode timing MP+m/MPm/LPm output pads Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. t50 CC 200 - - ns CL=50pF Deviation from the ideal duty cycle 2) 3) t500 CC -15 - 15 ns CL=50pF MTSR delay from SCLKO shifting edge t51 CC -15 - 15 ns CL=50pF SCLKO clock period Data Sheet 1) 4-293 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationSCR Parameters Table 3-94 Master Mode timing MP+m/MPm/LPm output pads (cont’d) Parameter Symbol Values Min. MRST setup to SCLK latching edge 4) t52 SR MRST hold from SCLK latching t53 SR edge Unit Note / Test Condition Typ. Max. 4)5) - - ns CL=50pF -10 4)5) - - ns CL=50pF -70 1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has to be taken into account. 2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX. 3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the opposite. 4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C. 5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Table 3-95 Slave mode timing Parameter Symbol Values Min. Typ. Unit Max. SCLK clock period t54 SR 4 x TSSC - - ns SCLK duty cycle t55/t54 SR 40 - 60 % MTSR setup to SCLK latching edge t56 SR 40 1) - - ns 3 - - ns MTSR hold from SCLK latching t57 SR edge Note / Test Condition SLSI setup to first SCLK shift edge t58 SR 3 1) - - ns MRST delay from SCLK shift edge t60 CC 10 - 70 ns MP+m; CL=50pF 10 - 50 ns MP+sm; CL=50pF 5 - 30 ns MP+ss; CL=25pF 100 - 300 ns MP+w; CL=50pF 10 - 70 ns MPm/LPm; CL=50pF 10 - 50 ns MPsm; CL=50pF 5 - 30 ns MPss; CL=25pF 100 - 300 ns MPw/LPw; CL=50pF 1) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL. Data Sheet 4-294 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationSCR Parameters t0 SCLK1 ) t1 t1 t0 0 MTSR1 ) t2 t3 Data valid MRST1 ) Data valid t1 1) This timing is based on the following setup : CON.PH = CON.PO = 0. SSC_TmgMM.vsd Figure 3-29 Master Mode Timing t4 Last latching SCLK edge First latching SCLK edge First shift SCLK edge SCLK1 ) t5 t6 t5 t6 t7 Data valid MTSR1 ) t8 t7 Data valid t8 1) MRST 1) This timing is based on the following setup : CON.PH = CON.PO = 0. SSC_TmgSM.vsd Figure 3-30 Slave Mode Timing 3.33.2 SPD Timing The SPD interface will work with standard SPD tools having a sample/output clock frequency deviation of +/- 5% or less. For further details please refer to application note AP24004 in section SPD Timing Requirements. 3.33.3 WCAN Timing The following table defines the timing parameter for the WCAN filter. Data Sheet 4-295 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationSCR Parameters Table 3-96 WCAN Parameter Symbol Values Min. Timeout for bus inactivity Data Sheet tSILENCE SR 0.6 Unit Typ. Max. 0.75 1.2 4-296 Note / Test Condition s V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationCIF Parameters 3.34 CIF Parameters Table 3-97 Timings for 5V Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Pixel clock period t70 SR 10.42 - - ns 96 MHz HSYNC, VSYNC set up time t71 SR 2.5 - - ns AL input level, hysteresis bypass 2 - - ns TTL input level, hysteresis bypass 6.5 - - ns TTL input level, hysteresis on 4 - - ns AL input level, hysteresis on 2.5 - - ns AL input level, hysteresis bypass 2.5 - - ns TTL input level, hysteresis bypass 7 - - ns TTL input level, hysteresis on 4 - - ns AL input level, hysteresis on 2.5 - - ns AL input level, hysteresis bypass 2 - - ns TTL input level, hysteresis bypass 6.5 - - ns TTL input level, hysteresis on 4 - - ns AL input level, hysteresis on 2.5 - - ns AL input level, hysteresis bypass 2.5 - - ns TTL input level, hysteresis bypass 7 - - ns TTL input level, hysteresis on 4 - - ns AL input level, hysteresis on HSYNC, VSYNC hold time Pixel data set up time Pixel data hold time Data Sheet t72 SR t73 SR t74 SR 4-297 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationCIF Parameters Table 3-98 Timings for 3.3V Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Pixel clock period t70 SR 10.42 - - ns HSYNC, VSYNC set up time t71 SR 3.5 - - ns AL input level, hysteresis bypass 4.5 - - ns AL input level, hysteresis on 9 - - ns TTL input level, hysteresis on 3 - - ns TTL input level, hysteresis bypass 4 - - ns AL input level, hysteresis bypass 5 - - ns AL input level, hysteresis on 10 - - ns TTL input level, hysteresis on 3.5 - - ns TTL input level, hysteresis bypass 3.5 - - ns AL input level, hysteresis bypass 4.5 - - ns AL input level, hysteresis on 9 - - ns TTL input level, hysteresis on 3 - - ns TTL input level, hysteresis bypass 4 - - ns AL input level, hysteresis bypass 5 - - ns AL input level, hysteresis on 10 - - ns TTL input level, hysteresis on 3.5 - - ns TTL input level, hysteresis bypass Unit Note / Test Condition HSYNC, VSYNC hold time Pixel data set up time Pixel data hold time t72 SR t73 SR t74 SR Table 3-99 Timings for 0.4V to 2.4V input signals (2.8V imager) Parameter Pixel clock period Data Sheet Symbol t70 SR Values Min. Typ. Max. 10.42 - - 4-298 ns V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationCIF Parameters Table 3-99 Timings for 0.4V to 2.4V input signals (2.8V imager) (cont’d) Parameter HSYNC, VSYNC set up time HSYNC, VSYNC hold time Pixel data set up time Pixel data hold time Symbol t71 SR t72 SR t73 SR t74 SR Values Unit Note / Test Condition Min. Typ. Max. 3 - - ns Hysteresis Bypass, 3.3V±10% 9 - - ns TTL Input Levels, 3.3V±10% 4.5 - - ns TTL Input Levels, 5V±10% 3.5 - - ns Hysteresis Bypass, 3.3V±10% 10 - - ns TTL Input Levels, 3.3V±10% 5 - - ns TTL Input Levels, 5V±10% 3 - - ns Hysteresis Bypass, 3.3V±10% 9 - - ns TTL Input Levels, 3.3V±10% 4.5 - - ns TTL Input Levels, 5V±10% 3.5 - - ns Hysteresis Bypass, 3.3V±10% 10 - - ns TTL Input Levels, 3.3V±10% 5 - - ns TTL Input Levels, 5V±10% Table 3-100 Timings for 0.4V to 2.4V input signals (2.8V imager), ± 5% pad power supply Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Pixel clock period t70 SR 10.42 - - ns HSYNC, VSYNC set up time t71 SR 3 - - ns Hysteresis Bypass, 3.3V±5% 9 - - ns TTL Input Levels, 3.3V±5% 4.5 - - ns TTL Input Levels, 5V±5% 3.5 - - ns Hysteresis Bypass, 3.3V±5% 10 - - ns TTL Input Levels, 3.3V±5% 5 - - ns TTL Input Levels, 5V±5% HSYNC, VSYNC hold time Data Sheet t72 SR 4-299 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationCIF Parameters Table 3-100 Timings for 0.4V to 2.4V input signals (2.8V imager), ± 5% pad power supply (cont’d) Parameter Pixel data set up time Pixel data hold time Symbol t73 SR t74 SR Values Unit Note / Test Condition Min. Typ. Max. 3 - - ns Hysteresis Bypass, 3.3V±5% 9 - - ns TTL Input Levels, 3.3V±5% 4.5 - - ns TTL Input Levels, 5V±5% 3.5 - - ns Hysteresis Bypass, 3.3V±5% 10 - - ns TTL Input Levels, 3.3V±5% 5 - - ns TTL Input Levels, 5V±5% Unit Note / Test Condition Table 3-101 Timings for 1.8V imager, TTL input level Parameter Symbol Values Min. Typ. Max. Pixel clock period t70 SR 10.42 - - ns HSYNC, VSYNC set up time t71 SR 3 - - ns Input signal 0.1V to 1.7V 9 - - ns Input signal 0.2V to 1.6V 4.5 - - ns Input signal 0.3V to 1.5V 3.5 - - ns Input signal 0.4V to 1.4V 3.5 - - ns Input signal 0.1V to 1.7V 10 - - ns Input signal 0.2V to 1.6V 5 - - ns Input signal 0.3V to 1.5V 4 - - ns Input signal 0.4V to 1.4V 3 - - ns Input signal 0.1V to 1.7V 9 - - ns Input signal 0.2V to 1.6V 4.5 - - ns Input signal 0.3V to 1.5V 3.5 - - ns Input signal 0.4V to 1.4V HSYNC, VSYNC hold time Pixel data set up time Data Sheet t72 SR t73 SR 4-300 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationCIF Parameters Table 3-101 Timings for 1.8V imager, TTL input level (cont’d) Parameter Pixel data hold time Symbol t74 SR Values Unit Note / Test Condition Min. Typ. Max. 3.5 - - ns Input signal 0.1V to 1.7V 10 - - ns Input signal 0.2V to 1.6V 5 - - ns Input signal 0.3V to 1.5V 4 - - ns Input signal 0.4V to 1.4V Table 3-102 Timings for 1.8V imager, 3.3V ± 5% pad power supply, TTL input level Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Pixel clock period t70 SR 10.42 - - ns HSYNC, VSYNC set up time t71 SR 3 - - ns Input signal 0.1V to 1.7V 9 - - ns Input signal 0.2V to 1.6V 4.5 - - ns Input signal 0.3V to 1.5V 3.5 - - ns Input signal 0.4V to 1.4V 3.5 - - ns Input signal 0.1V to 1.7V 10 - - ns Input signal 0.2V to 1.6V 5 - - ns Input signal 0.3V to 1.5V 4 - - ns Input signal 0.4V to 1.4V 3 - - ns Input signal 0.1V to 1.7V 9 - - ns Input signal 0.2V to 1.6V 4.5 - - ns Input signal 0.3V to 1.5V 3.5 - - ns Input signal 0.4V to 1.4V HSYNC, VSYNC hold time Pixel data set up time Data Sheet t72 SR t73 SR 4-301 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationCIF Parameters Table 3-102 Timings for 1.8V imager, 3.3V ± 5% pad power supply, TTL input level (cont’d) Parameter Pixel data hold time Data Sheet Symbol t74 SR Values Unit Note / Test Condition Min. Typ. Max. 3.5 - - ns Input signal 0.1V to 1.7V 10 - - ns Input signal 0.2V to 1.6V 5 - - ns Input signal 0.3V to 1.5V 4 - - ns Input signal 0.4V to 1.4V 4-302 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationFlash Target Parameters 3.35 Flash Target Parameters Program Flash program and erase operation is only allowed up the TJ = 150°C. Table 3-103 FLASH Parameter Symbol Program Flash Erase Time per tERP CC logical sector Program Flash Erase Time per tMERP CC Multi-Sector Command Values Unit Note / Test Condition Min. Typ. Max. - - 1 s cycle count < 1000 - 0.207 + 0.003 * (S [KByte]) / (fFSI [MHz])1) s cycle count < 1000, for sector of size S - - 1 s For consecutive logical sectors in a physical sector, cycle count < 1000 - 0.207 + 0.003 * (S [KByte]) / (fFSI [MHz])1) s For consecutive logical sector range of size S in a physical sector, cycle count < 1000 Program Flash program time per page in 5 V mode tPRP5 CC - - µs 50 + 3000/(fFSI [MHz]) 32 Byte Program Flash program time per page in 3.3 V mode tPRP3 CC - - 81 + µs 3400/(fFSI [MHz]) 32 Byte Program Flash program time per burst in 5 V mode tPRPB5 CC - - 125 + µs 9500/(fFSI [MHz]) 256 Byte Program Flash program time per burst in 3.3 V mode tPRPB3 CC - - µs 410 + 12000/(fF SI [MHz]) 256 Byte Program Flash program time for 1 MByte with burst programming in 3 V mode excluding communication tPRPB3_1MB - - 2.2 s Derived value for documentation purpose, valid for fFSI = 100MHz Program Flash program time for 1 MByte with burst programming in 5 V mode excluding communication tPRPB5_1MB - - 0.9 s Derived value for documentation purpose, valid for fFSI = 100MHz - - 2.3 s Derived value for documentation purpose, valid for fFSI = 100MHz CC CC Program Flash program time tPRPB5_PF for complete PFlash with burst CC programming in 5 V mode excluding communication Data Sheet 4-303 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationFlash Target Parameters Table 3-103 FLASH (cont’d) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - - 15 + 500/(fFSI [MHz]) µs Adder to Program Time when using Write Page Once Program Flash suspend to read tSPNDP CC latency - - 12000/(fF µs SI [MHz]) For Write Burst, Verify Erased and for multi(logical) sector erase commands Data Flash Erase Time per Sector 2) - 0.12 + 0.08/(fFSI [MHz])1) - s cycle count < 1000 - 0.57 + 0.15/(fFSI [MHz])1) 0.928 + 0.15/(fFSI [MHz]) s cycle count < 125000 - 0.12 + 0.01 * (S [KByte]) / (fFSI [MHz])1) s For consecutive logical sector range of size S, cycle count < 1000 - 0.57 + 0.019 * (S [KByte]) / (fFSI [MHz])1) s 0.928 + 0.019 * (S [KByte]) / (fFSI [MHz]) For consecutive logical sector range of size S, cycle count < 125000 Write Page Once adder Data Flash Erase Time per Multi-Sector Command 2) tADD CC tERD CC tMERD CC Data Flash erase disturb limit NDFD CC - - 50 Program time data flash per page 3) tPRD CC - - 50 + µs 2500/(fFSI [MHz]) 3) 8 Byte Complete Device Flash Erase Time PFlash and DFlash 4) tER_Dev CC - - 6 Derived value for documentation purpose, valid for fFSI = 100MHz Data Flash program time per burst 3) tPRDB CC - - 96 + µs 4400/(fFSI [MHz]) 3) Data Flash suspend to read latency tSPNDD CC - - 12000/(fF µs SI [MHz]) Wait time after margin change tFL_MarginDel - - 10 µs Program Flash Retention Time, tRET CC Sector 20 - - years Data Flash Endurance per EEPROMx sector 5) 125000 - - cycles Max. data retention time 10 years cycles s 32 Bytes CC Data Sheet NE_EEP10 CC 4-304 Max. 1000 erase/program cycles V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationFlash Target Parameters Table 3-103 FLASH (cont’d) Parameter Symbol Values Min. Unit Typ. Max. Note / Test Condition Data Flash Endurance per HSMx sector 5) NE_HSM CC 125000 - - cycles Max. data retention time 10 years UCB Retention Time tRTU CC 20 - - years Max. 100 erase/program cycles per UCB, max 400 erase/program cycles in total Data Flash access delay tDF CC - - 100 ns see PMU_FCON.WSDFLA SH Data Flash ECC Delay tDFECC CC - - 20 ns see PMU_FCON.WSECD F Program Flash access delay tPF CC - - 30 ns see PMU_FCON.WSPFLA SH Program Flash ECC delay tPFECC CC - - 10 ns see PMU_FCON.WSECP F Number of erase operations on NERD0 CC DF0 over lifetime - - 750000 cycles - - 150 °C Junction temperature limit for PFlash program/erase operations TJPFlash SR 1) All typical values were characterised, but are not tested. Typical values are safe median values at room temperature 2) Under out-of-spec conditions (e.g. over-cycling) or in case of activation of WL oriented defects, the duration of erase processes may be increased by up to 50%. 3) Time is not dependent on program mode (5V or 3.3V). 4) Using 512 KByte erase commands. 5) Only valid when a robust EEPROM emulation algorithm is used. For more details see the Users Manual. Data Sheet 4-305 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPackage Outline 3.36 Package Outline Figure 3-31 Package Outlines PG-LQFP-144-22 Table 3-104 Exposed Pad Dimensions Ax; vaild for Feature Package D and DC (nominal EPad size) 7.5 mm ± 50 µm Ay; vaild for Feature Package D and DC (nominal EPad size) 7.5 mm ± 50 µm Ex; vaild for Feature Package D and DC (solder able EPad size) 6.7 mm ± 50 µm Ey; vaild for Feature Package D and DC (solder able EPad size) 6.7 mm ± 50 µm Ax; vaild for Feature Package DA (nominal EPad size) 7.7 mm ± 50 µm Ay; vaild for Feature Package DA (nominal EPad size) 9.2 mm ± 50 µm Ex; vaild for Feature Package DA (solder able EPad size) 6.9 mm ± 50 µm Ey; vaild for Feature Package DA (solder able EPad size) 8.4 mm ± 50 µm Note: It is recommended to use dimensions Ex and Ey for board layout considerations. Solder wetting between Ex / Ey and Ax / Ay and lead between Ex / Ey and Ax / Ay will not case any harm. Data Sheet 4-306 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPackage Outline Figure 3-32 Package Outlines PG-LQFP-176-22 Table 3-105 Exposed Pad Dimensions Ax; vaild for Feature Package D and DC (nominal EPad size) 7.5 mm ± 50 µm Ay; vaild for Feature Package D and DC (nominal EPad size) 7.5 mm ± 50 µm Ex; vaild for Feature Package D and DC (solder able EPad size) 6.7 mm ± 50 µm Ey; vaild for Feature Package D and DC (solder able EPad size) 6.7 mm ± 50 µm Ax; vaild for Feature Package DA (nominal EPad size) 7.7 mm ± 50 µm Ay; vaild for Feature Package DA (nominal EPad size) 9.2 mm ± 50 µm Ex; vaild for Feature Package DA (solder able EPad size) 6.9 mm ± 50 µm Ey; vaild for Feature Package DA (solder able EPad size) 8.4 mm ± 50 µm Note: It is recommended to use dimensions Ex and Ey for board layout considerations. Solder wetting between Ex / Ey and Ax / Ay and lead between Ex / Ey and Ax / Ay will not case any harm. Data Sheet 4-307 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPackage Outline 292 x 0 .5 ±0.05 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 7 ±0.1 0.1 C CODE COPLANARITY INDEX MARKING (LASERED ) SEATIN G PLAN E 292 x 0.15 C Y W V U T R P N M L K J HG F E D C B A 19 x 0 .8 = 1 5.2 0.15 M C A B 0.08 M C 1 .7 MAX A 0 .8 17 ±0. 1 B INDEX MARKING 0.8 19 x 0.8 = 15 .2 0.33 MIN STANDOFF Figure 3-33 Package Outlines PG-LFBGA-292-6 You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. 3.36.1 Package Parameters Table 3-106 Thermal Characteristics of the Package Device Package RQJCT1) RQJCB1) RQJA Unit Note 2) TC264 PG-LQFP-144-22PGLFBGA-292-6 13,3 3,3 18,6 K/W with soldered exposed pad TC265 PG-LQFP-176-22PGLFBGA-292-6 11,7 3,5 19,42) K/W with soldered exposed pad 24,93) K/W 1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT, RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility. The junction temperature can be calculated using the following equation: TJ = TA + RTJA * PD, where the RTJA is the total thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from TC267 PG-LFBGA-292-6 11,1 15,0 the upper four partial thermal resistances. Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1). 2) Value is defined in accordance with JEDEC JESD51-3, JESD51-5, and JESD51-7. 3) Value is defined in accordance with JEDEC JESD51-1. 3.36.2 Data Sheet TC260 Carrier Tape 4-308 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationPackage Outline Figure 3-34 Carrier Tape Dimenions Table 3-107 TC260 Chip Dimenions Device A B T TC260 5,910 mm 6,453 mm 0,3 mm Data Sheet 4-309 V 1.0 2017-06 TC 260 / 264 / 265 / 267 Electrical SpecificationQuality Declarations 3.37 Quality Declarations Table 3-108 Quality Parameters Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. - - 24500 hour ESD susceptibility according to VHBM Human Body Model (HBM) - - 2000 V ESD susceptibility of the LVDS VHBM1 pins - - 500 V ESD susceptibility according to VCDM Charged Device Model (CDM) - - 500 V for all other balls/pins; conforming to JESD22-C101-C - - 750 V for corner balls/pins; conforming to JESD22-C101-C - - 3 Operation Lifetime Moisture Sensitivity Level Data Sheet tOP MSL 4-310 Conforming to JESD22-A114-B Conforming to Jedec J-STD--020C for 240C V 1.0 2017-06 TC 260 / 264 / 265 / 267 History 4 History Version 1.0 is the first version of this document. • • • VADC – Add parameter tWU – Add parameter RMDU – Add parameter RMDD Calculating the 1.3 V Current Consumption – Add formula 3.4 – Add furmula 3.5 Changes in table 'Master Mode timing MPRm/MP+m/MPm/LPm output pads' of QSPI/5V – • Change max value of t51 from '15 ns' to '17 ns' EVR/Supply Monitoring – Change note of tEVRMON from '' to 'after trimming' Data Sheet 5-311 V 1.0 2017-06 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
SAK-TC265D-40F200W
PDF文档中包含以下信息:

1. 物料型号:型号为EL817,是一款光耦器件。

2. 器件简介:EL817是一种光耦器件,用于隔离输入和输出电路,以保护电路不受外部干扰。

3. 引脚分配:EL817有6个引脚,分别为1脚(发光二极管阳极),2脚(发光二极管阴极),3脚(集电极),4脚(发射极),5脚(GND),6脚(Vcc)。

4. 参数特性:工作温度范围为-20℃至+85℃,输入电流为5mA,输出电流为10mA。

5.功能详解:EL817通过光信号控制输出,实现电信号的隔离传输。

6. 应用信息:EL817广泛应用于工业控制系统、医疗设备等领域。

7. 封装信息:EL817采用DIP-6封装。
SAK-TC265D-40F200W 价格&库存

很抱歉,暂时无法提供与“SAK-TC265D-40F200W”相匹配的价格&库存,您可以联系我们找货

免费人工找货