0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
SGP30N60XKSA1

SGP30N60XKSA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOT78

  • 描述:

    IGBT NPT 600V 41A 250W Through Hole TO-220AB

  • 数据手册
  • 价格&库存
SGP30N60XKSA1 数据手册
SGP30N60, SGB30N60 SGW30N60 Fast IGBT in NPT-technology • 75% lower Eoff compared to previous generation combined with low conduction losses • Short circuit withstand time – 10 µs • Designed for: - Motor controls - Inverter • NPT-Technology for 600V applications offers: - very tight parameter distribution - high ruggedness, temperature stable behaviour - parallel switching capability C G P-TO-220-3-1 (TO-220AB) E P-TO-263-3-2 (D²-PAK) P-TO-247-3-1 (TO-263AB) (TO-247AC) • Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ Type VCE IC VCE(sat) Tj 600V 30A 2.5V 150°C Package Ordering Code TO-220AB Q67040-A4463 SGB30N60 TO-263AB Q67041-A4713 SGW30N60 TO-247AC Q67040-S4237 SGP30N60 Maximum Ratings Parameter Symbol Collector-emitter voltage VCE DC collector current IC Value 600 Unit V A TC = 25°C 41 TC = 100°C 30 Pulsed collector current, tp limited by Tjmax ICpul s 112 Turn off safe operating area - 112 Gate-emitter voltage VGE ±20 V Avalanche energy, single pulse EAS 165 mJ tSC 10 µs Ptot 250 W -55...+150 °C VCE ≤ 600V, Tj ≤ 150°C IC = 30 A, VCC = 50 V, RGE = 25 Ω, start at Tj = 25°C 1) Short circuit withstand time VGE = 15V, VCC ≤ 600V, Tj ≤ 150°C Power dissipation TC = 25°C Tj , Tstg Operating junction and storage temperature 1) Allowed number of short circuits: 1s. 1 Jul-02 SGP30N60, SGB30N60 SGW30N60 Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic RthJC IGBT thermal resistance, 0.5 junction – case RthJA Thermal resistance, junction – ambient 1) SMD version, device on PCB RthJA TO-220AB 62 TO-247AC 40 TO-263AB 40 Electrical Characteristic, at Tj = 25 °C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. 600 - - 1.7 2.1 2.4 T j =1 5 0° C - 2.5 3.0 3 4 5 Unit Static Characteristic Collector-emitter breakdown voltage V ( B R ) C E S V G E = 0V , I C = 5 00 µA Collector-emitter saturation voltage VCE(sat) V V G E = 15 V , I C = 30 A T j =2 5 °C Gate-emitter threshold voltage VGE(th) I C = 70 0 µA , V C E = V G E Zero gate voltage collector current ICES V C E = 60 0 V, V G E = 0 V µA T j =2 5 °C - - 40 T j =1 5 0° C - - 3000 Gate-emitter leakage current IGES V C E = 0V , V G E =2 0 V - - 100 nA Transconductance gfs V C E = 20 V , I C = 30 A - 20 - S Input capacitance Ciss V C E = 25 V , - 1600 1920 pF Output capacitance Coss V G E = 0V , - 150 180 Reverse transfer capacitance Crss f= 1 MH z - 92 110 Gate charge QGate V C C = 48 0 V, I C =3 0 A - 140 182 nC T O - 22 0A B - 7 - nH T O - 24 7A C - 13 V G E = 15 V ,t S C ≤ 10 µs V C C ≤ 6 0 0 V, T j ≤ 15 0° C - 300 - A Dynamic Characteristic V G E = 15 V LE Internal emitter inductance measured 5mm (0.197 in.) from case 2) Short circuit collector current IC(SC) 1) 2 Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm (one layer, 70µm thick) copper area for collector connection. PCB is vertical without blown air. 2) Allowed number of short circuits: 1s. 2 Jul-02 SGP30N60, SGB30N60 SGW30N60 Switching Characteristic, Inductive Load, at Tj=25 °C Parameter Symbol Conditions Value min. typ. max. - 44 53 - 34 40 - 291 349 - 58 70 - 0.64 0.77 - 0.65 0.85 - 1.29 1.62 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets T j =2 5 °C , V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G =11Ω , 1) L σ = 18 0 nH , 1) C σ = 90 0 pF Energy losses include “tail” and diode reverse recovery. ns mJ Switching Characteristic, Inductive Load, at Tj=150 °C Parameter Symbol Conditions Value min. typ. max. - 44 53 - 34 40 - 324 389 - 67 80 - 0.98 1.18 - 0.92 1.19 - 1.90 2.38 Unit IGBT Characteristic Turn-on delay time td(on) Rise time tr Turn-off delay time td(off) Fall time tf Turn-on energy Eon Turn-off energy Eoff Total switching energy Ets 1) T j =1 5 0° C V C C = 40 0 V, I C = 3 0 A, V G E = 0/ 15 V , R G = 1 1Ω , 1) L σ = 18 0 nH , 1) C σ = 90 0 pF Energy losses include “tail” and diode reverse recovery. ns mJ Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E. 3 Jul-02 SGP30N60, SGB30N60 SGW30N60 160A Ic tp=4µs 100A 140A 15µs IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT 120A 100A 80A TC=80°C 60A TC=110°C 40A 20A 0A 10Hz 50µs 10A 200µs 1ms 1A Ic DC 0.1A 100Hz 1kHz 10kHz 1V 100kHz f, SWITCHING FREQUENCY Figure 1. Collector current as a function of switching frequency (Tj ≤ 150°C, D = 0.5, VCE = 400V, VGE = 0/+15V, RG = 11Ω) 10V 100V 1000V VCE, COLLECTOR-EMITTER VOLTAGE Figure 2. Safe operating area (D = 0, TC = 25°C, Tj ≤ 150°C) 300W 60A 250W 50A IC, COLLECTOR CURRENT Ptot, POWER DISSIPATION Limited by bond wire 200W 150W 100W 50W 0W 25°C 40A 30A 20A 10A 50°C 75°C 100°C 0A 25°C 125°C TC, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (Tj ≤ 150°C) 50°C 75°C 100°C 125°C TC, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (VGE ≤ 15V, Tj ≤ 150°C) 4 Jul-02 90A 90A 80A 80A 70A 70A 60A 50A 40A 30A IC, COLLECTOR CURRENT IC, COLLECTOR CURRENT SGP30N60, VGE=20V 15V 13V 11V 9V 7V 5V 20A 10A 0A 0V 1V 2V 3V 4V 15V 13V 11V 9V 7V 5V 50A 40A 30A 20A 0A 0V 5V Tj=+25°C -55°C +150°C 80A 70A 60A 50A 40A 30A 20A 10A 2V 4V 6V 8V 10V VCE(sat), COLLECTOR-EMITTER SATURATION VOLTAGE 90A 1V 2V 3V 4V 5V VCE, COLLECTOR-EMITTER VOLTAGE Figure 6. Typical output characteristics (Tj = 150°C) 100A IC, COLLECTOR CURRENT VGE=20V 10A VCE, COLLECTOR-EMITTER VOLTAGE Figure 5. Typical output characteristics (Tj = 25°C) 0A 0V 60A SGB30N60 SGW30N60 VGE, GATE-EMITTER VOLTAGE Figure 7. Typical transfer characteristics (VCE = 10V) 4.0V 3.5V IC = 60A 3.0V IC = 30A 2.5V 2.0V 1.5V 1.0V -50°C 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 8. Typical collector-emitter saturation voltage as a function of junction temperature (VGE = 15V) 5 Jul-02 SGP30N60, SGB30N60 SGW30N60 1000ns 1000ns td(off) 100ns t, SWITCHING TIMES t, SWITCHING TIMES td(off) tf td(on) 100ns tf td(on) tr tr 10ns 10A 20A 30A 40A 50A 10ns 0Ω 60A IC, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) 20Ω 30Ω 40Ω RG, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 1000ns VGE(th), GATE-EMITTER THRESHOLD VOLTAGE 5.5V td(off) t, SWITCHING TIMES 10Ω 100ns tf tr td(on) 10ns 0°C 5.0V 4.5V 4.0V max. 3.5V typ. 3.0V 2.5V min. 2.0V 50°C 100°C 150°C -50°C Tj, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) 0°C 50°C 100°C 150°C Tj, JUNCTION TEMPERATURE Figure 12. Gate-emitter threshold voltage as a function of junction temperature (IC = 0.7mA) 6 Jul-02 SGP30N60, 5.0mJ 4.0mJ Ets* *) Eon and Ets include losses due to diode recovery. 4.0mJ 3.5mJ 3.0mJ 2.5mJ Eon* 2.0mJ Eoff 1.5mJ 1.0mJ Ets* 2.5mJ 2.0mJ 1.5mJ Eoff Eon* 1.0mJ 20A 30A 40A 50A 60A 0.0mJ 0Ω 70A 10Ω 20Ω 30Ω 40Ω IC, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, RG = 11Ω, Dynamic test circuit in Figure E) RG, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, Tj = 150°C, VCE = 400V, VGE = 0/+15V, IC = 30A, Dynamic test circuit in Figure E) 3.0mJ 10 K/W 0 *) Eon and Ets include losses due to diode recovery. 2.0mJ Ets* 1.5mJ Eon* 1.0mJ Eoff 0.5mJ 0.0mJ 0°C ZthJC, TRANSIENT THERMAL IMPEDANCE 2.5mJ E, SWITCHING ENERGY LOSSES 3.0mJ 0.5mJ 0.5mJ 0.0mJ 10A *) Eon and Ets include losses due to diode recovery. 3.5mJ E, SWITCHING ENERGY LOSSES E, SWITCHING ENERGY LOSSES 4.5mJ SGB30N60 SGW30N60 D=0.5 -1 10 K/W 0.2 0.1 0.05 0.02 -2 10 K/W R,(1/W) 0.3681 0.0938 0.0380 0.01 -3 10 K/W R1 τ, (s)= 0.0555 1.26*10-3 1.49*10-4 R2 single pulse C 1= τ1/R 1 C 2= τ2/R 2 -4 50°C 100°C 10 K/W 1µs 150°C 10µs 100µs 1ms 10ms 100ms 1s tp, PULSE WIDTH Tj, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, VCE = 400V, VGE = 0/+15V, IC = 30A, RG = 11Ω, Dynamic test circuit in Figure E) Figure 16. IGBT transient thermal impedance as a function of pulse width (D = tp / T) 7 Jul-02 SGP30N60, SGB30N60 SGW30N60 25V 120V 480V 15V 10V Coss 100pF Crss 5V 0V 0nC 50nC 100nC 150nC 10pF 0V 200nC QGE, GATE CHARGE Figure 17. Typical gate charge (IC = 30A) 20V 30V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 500A 20 µ s 15 µ s 10 µ s 5µ s 0µ s 10V 10V VCE, COLLECTOR-EMITTER VOLTAGE Figure 18. Typical capacitance as a function of collector-emitter voltage (VGE = 0V, f = 1MHz) 25 µ s tsc, SHORT CIRCUIT WITHSTAND TIME Ciss 1nF C, CAPACITANCE VGE, GATE-EMITTER VOLTAGE 20V 11V 12V 13V 14V 450A 400A 350A 300A 250A 200A 150A 100A 50A 0A 10V 15V VGE, GATE-EMITTER VOLTAGE Figure 19. Short circuit withstand time as a function of gate-emitter voltage (VCE = 600V, start at Tj = 25°C) 12V 14V 16V 18V 20V VGE, GATE-EMITTER VOLTAGE Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (VCE ≤ 600V, Tj = 150°C) 8 Jul-02 SGP30N60, SGB30N60 SGW30N60 dimensions TO-220AB symbol [mm] [inch] min max min max A 9.70 10.30 0.3819 0.4055 B 14.88 15.95 0.5858 0.6280 C 0.65 0.86 0.0256 0.0339 D 3.55 3.89 0.1398 0.1531 E 2.60 3.00 0.1024 0.1181 F 6.00 6.80 0.2362 0.2677 G 13.00 14.00 0.5118 0.5512 H 4.35 4.75 0.1713 0.1870 K 0.38 0.65 0.0150 0.0256 L 0.95 1.32 0.0374 0.0520 M 2.54 typ. 0.1 typ. N 4.30 4.50 0.1693 0.1772 P 1.17 1.40 0.0461 0.0551 T 2.30 2.72 0.0906 0.1071 dimensions TO-263AB (D2Pak) symbol A [inch] max min max 9.80 10.20 0.3858 0.4016 B 0.70 1.30 0.0276 0.0512 C 1.00 1.60 0.0394 0.0630 D 1.03 1.07 0.0406 0.0421 E F G H 2.54 typ. 0.65 0.85 5.08 typ. 4.30 4.50 0.1 typ. 0.0256 0.0335 0.2 typ. 0.1693 0.1772 K 1.17 1.37 0.0461 0.0539 L 9.05 9.45 0.3563 0.3720 M 2.30 2.50 0.0906 0.0984 N 15 typ. 0.5906 typ. P 0.00 0.20 0.0000 0.0079 Q 4.20 5.20 0.1654 0.2047 R 9 [mm] min 8° max 8° max S 2.40 3.00 0.0945 0.1181 T 0.40 0.60 0.0157 0.0236 U 10.80 0.4252 V 1.15 0.0453 W 6.23 0.2453 X 4.60 0.1811 Y 9.40 0.3701 Z 16.15 0.6358 Jul-02 SGP30N60, SGB30N60 SGW30N60 dimensions TO-247AC symbol [mm] min max min max A 4.78 5.28 0.1882 0.2079 B 2.29 2.51 0.0902 0.0988 C 1.78 2.29 0.0701 0.0902 D 1.09 1.32 0.0429 0.0520 E 1.73 2.06 0.0681 0.0811 F 2.67 3.18 0.1051 0.1252 G 0.76 max 0.0299 max H 20.80 21.16 0.8189 0.8331 K 15.65 16.15 0.6161 0.6358 L 5.21 5.72 0.2051 0.2252 M 19.81 20.68 0.7799 0.8142 N 3.560 4.930 0.1402 0.1941 ∅P Q 10 [inch] 3.61 6.12 0.1421 6.22 0.2409 0.2449 Jul-02 SGP30N60, SGB30N60 SGW30N60 τ1 τ2 r1 r2 τn rn Tj (t) p(t) r1 r2 rn TC Figure D. Thermal equivalent circuit Figure A. Definition of switching times Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance Lσ =180nH an d Stray capacity C σ =900pF. 11 Jul-02 SGP30N60, SGB30N60 SGW30N60 Published by Infineon Technologies AG, Bereich Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 2000 All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 12 Jul-02
SGP30N60XKSA1 价格&库存

很抱歉,暂时无法提供与“SGP30N60XKSA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货