32-Bit
Microcontroller
TC290 / TC297 / TC298 / TC299
32-Bit Single-Chip Microcontroller
BC-Step
32-Bit Single-Chip Microcontroller
Data Sheet
V 1.1, 2019-03
Microcontrollers
Edition 2019-03
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2019 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com)
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.
TC290 / TC297 / TC298 / TC299 BC-Step
Revision History
Page or Item
Subjects (major changes since previous revision)
V 1.1, 2019-03
The history is documented in the last chapter
Data Sheet
3
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Table of Contents
1
Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.3
2.3.1
2.3.2
2.3.3
2.4
2.4.1
2.4.2
2.4.3
Package and Pinning Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
TC299x Pin Definition and Functions: BGA516 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
TC299x BGA516 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
TC298x Pin Definition and Functions: BGA416 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
TC298x BGA416 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
TC297x Pin Definition and Functions: BGA292 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
TC297x BGA292 Package Variant Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
TC29x Bare Die Pad Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Pad Openings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Emergency Stop Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Pull-Up/Pull-Down Reset Behavior of the Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.13.1
3.14
3.14.1
3.14.2
3.14.3
3.14.4
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
Electrical Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5 V / 3.3 V switchable Pads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High performance LVDS Pads (LVDSH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Medium performance LVDS Pads (LVDSM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
VADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DSADC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MHz Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Back-up Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Calculating the 1.3 V Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-up and Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Single Supply Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reset Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ERAY Phase Locked Loop (ERAY_PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
JTAG Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DAP Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ASCLIN SPI Master Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
TOC-1
316
316
317
318
322
325
345
349
350
356
361
362
363
364
369
371
371
373
375
377
379
381
386
387
388
389
391
393
397
401
V 1.1, 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
3.25
3.26
3.27
3.28
3.28.1
3.28.2
3.28.3
3.28.4
3.29
3.30
3.31
3.32
3.32.1
3.32.2
3.32.3
3.32.4
3.33
3.34
3.35
3.35.1
3.35.2
3.36
QSPI Timings, Master and Slave Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MSC Timing 5 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MSC Timing 3.3 V Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ethernet Interface (ETH) Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ETH Measurement Reference Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO) . . . . . . . . . . . . . . . . . . . . . . . . .
ETH MII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ETH RMII Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
E-Ray Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HSCT Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Inter-IC (I2C) Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EBU Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
BFCLKO Output Clock Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EBU Asynchronous Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EBU Burst Mode Access Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EBU Arbitration Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CIF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Flash Target Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TC290 Carrier Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4
4.1
4.2
History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Changes from TC29xBB_v1.1 to TC29xBC_v1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Changes from v1.0 to v1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Data Sheet
2
406
413
418
423
423
424
425
426
427
429
432
435
435
435
439
441
442
448
451
452
452
454
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,
CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™, EconoDUAL™,
EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™,
POWERCODE™; PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™,
ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of
OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF
Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™
of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co.
TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™
of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes
Zetex Limited.
Last Trademarks Update 2011-11-11
Data Sheet
3
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Summary of Features
1
Summary of Features
The TC29x product family has the following features:
•
High Performance Microcontroller with three CPU cores
•
Two 32-bit super-scalar TriCore CPUs (TC1.6P), each having the following features:
–
Superior real-time performance
–
Strong bit handling
–
Fully integrated DSP capabilities
–
Multiply-accumulate unit able to sustain 2 MAC operations per cycle
–
up to 300 MHz operation at full temperature range
–
up to 120 / 240 Kbyte Data Scratch-Pad RAM (DSPR)
–
up to 32 Kbyte Instruction Scratch-Pad RAM (PSPR)
–
16 / 32 Kbyte Instruction Cache (ICACHE)
–
8 Kbyte Data Cache (DCACHE)
•
Lockstepped shadow cores for TC1.6P core 1
•
Multiple on-chip memories
–
All embedded NVM and SRAM are ECC protected
–
up to 8 Mbyte Program Flash Memory (PFLASH)
–
up to 768 Kbyte Data Flash Memory (DFLASH) usable for EEPROM emulation
–
32 Kbyte Memory (LMU)
–
BootROM (BROM)
•
128-Channel DMA Controller with safe data transfer
•
Sophisticated interrupt system (ECC protected)
•
High performance on-chip bus structure
–
64-bit Cross Bar Interconnect (SRI) giving fast parallel access between bus masters, CPUs and memories
–
32-bit System Peripheral Bus (SPB) for on-chip peripheral and functional units
–
One bus bridge (SFI Bridge)
•
Safety Management Unit (SMU) handling safety monitor alarms
•
Memory Test Unit with ECC, Memory Initialization and MBIST functions (MTU)
•
Hardware I/O Monitor (IOM) for checking of digital I/O
•
Versatile On-chip Peripheral Units
–
Four Asynchronous/Synchronous Serial Channels (ASCLIN) with hardware LIN support (V1.3, V2.0, V2.1
and J2602) up to 50 MBaud
–
Six Queued SPI Interface Channels (QSPI) with master and slave capability up to 50 Mbit/s
–
High Speed Serial Link (HSSL) for serial inter-processor communication up to 320 Mbit/s
–
Two serial Micro Second Bus interfaces (MSC) for serial port expansion to external power devices
–
Two MultiCAN+ Module with 6 CAN nodes and 384 free assignable message objects for high efficiency
data handling via FIFO buffering and gateway data transfer
–
15 Single Edge Nibble Transmission (SENT) channels for connection to sensors
–
Up to two FlexRayTM modules with 2 channels (E-Ray) supporting V2.1
–
One Generic Timer Module (GTM) providing a powerful set of digital signal filtering and timer functionality
to realize autonomous and complex Input/Output management
–
One Capture / Compare 6 module (Two kernels CCU60 and CCU61)
Data Sheet
4
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Summary of Features
•
•
–
One General Purpose 12 Timer Unit (GPT120)
–
Five channel Peripheral Sensor Interface conforming to V1.3 (PSI5)
–
Peripheral Sensor Interface with Serial PHY (PSI5-S)
–
Inter-Integrated Circuit Bus Interface (I2C) conforming to V2.1
–
Optional IEEE802.3 Ethernet MAC with RMII and MII interfaces (ETH)
Versatile Successive Approximation ADC (VADC)
–
Cluster of 11 independent ADC kernels
–
Input voltage range from 0v to 5.5V (ADC supply)
Delta-Sigma ADC (DSADC)
–
Ten channels
•
Digital programmable I/O ports
•
On-chip debug support for OCDS Level 1 (CPUs, DMA, On Chip Buses)
•
Dedicated Emulation Device chip available
–
multi-core debugging, real time tracing, and calibration
–
Aurora Gigabit Trace Port (AGBT) on some variants
–
four/five wire JTAG (IEEE 1149.1) or DAP (Device Access Port) interface
•
Power Management System and on-chip regulators
•
Clock Generation Unit with System PLL and Flexray PLL
•
Embedded Voltage Regulator
Data Sheet
5
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Summary of Features
Ordering Information
The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering
code identifies:
•
The derivative itself, i.e. its function set, the temperature range, and the supply voltage
•
The package and the type of delivery.
For the available ordering codes for the TC290 / TC297 / TC298 / TC299 please refer to the
“AURIX™ TC2xx Data Sheet Addendum”, which summarizes all available variants.
Table 1-1
Overview of TC27x Functions
Feature
CPU Core
TC1.6P
Type
P Cores / Checker Cores
3/1
300 MHz
Max. Freq.
FPU
yes
Program Flash
Size
8 Mbyte
Data Flash
Size
768 Kbyte
Cache
Instruction (P / E)
16 / 32 / 32 Kbyte
8 Kbyte
Data (P / E)
SRAM
120 Kbyte / 32 Kbyte 1)
Size TC1.6P
(DSPR/PSPR)
240Kbyte / 32 Kbyte
240 Kbyte / 32 Kbyte
Size LMU
32 Kbyte
DMA
Channels
128
ADC
Channels
72 + 12
Converter
11
DSADC
Channels
10
GTM
TIM
6
TOM
5
Timer
ATOM / MCS
9/6
CMU / ICM
1/1
PSM
2
TBU
1
SPE
4
CMP / MON
1/1
BRC / DPLL
1/1
1
GPT12
2
CCU6
STM
Modules
3
FlexRay
Modules
2
Channels
4
CAN
6
Nodes
384
Message Objects
Data Sheet
2)
6
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Summary of Features
Table 1-1
Overview of TC27x Functions (cont’d)
Feature
QSPI
Channels
6
ASCLIN
Interfaces
4
I2C
Interfaces
2
SENT
Channels
15
PSI5
Modules
5
PSI5-S
Modules
1
HSSL
Channels
1
MSC
Channels
3
Ethernet
Channels
1
ASIL
Level
FCE
Modules
1
Safety support
SMU
1
up to ASIL-D
1
IOM
Security
1
HSM
Yes
ADAS
Embedded Voltage Regulator
DCDC from 5 V / 3.3 V to 1.3 V
Yes
Embedded Voltage Regulator
LDO from 5 V / 3.3 V to 1.3 V
Yes
Embedded Voltage Regulator
LDO from 5 V to 3.3 V
Yes
Low Power Feature
Standby RAM
Yes
Packages
Type
LF-BGA-292-6 / LF-BGA-292-10 /
PG-BGA-416-26 / PG-BGA-41629 / PG-LFBGA-516-5 / PG-LFBGA516-10
I/O
Type
5 V CMOS / 3.3 V CMOS / LVDS
Tambient
Range
−40 … +125°C
1) Address range starts at lowest address defined in the User’s Manual. For reference see the Memory Maps chapter of the
User’s Manual.
2) To ensure the processor cores are provided with a constant stream of instructions the Instruction Fetch Units will
speculatively fetch instructions from the up to 64 bytes ahead of the current PC.
If the current PC is within 64 bytes of the top of an instruction memory the Instruction Fetch Unit may attempt to
speculatively fetch instruction from beyond the physical range. This may then lead to error conditions and alarms being
triggered by the bus and memory systems.
It is therefore recommended that the upper 64 bytes of any memory be unused for instruction storage.
Data Sheet
7
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning Definitions
2
Package and Pinning Definitions
This chapter gives a pinning of the different packages of the TC290 / TC297 / TC298 / TC299.
Data Sheet
TOC-8
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
2.1
TC299x Pin Definition and Functions: BGA516
Figure 2-1 is showing the TC299x Logic Symbol for the package variant: BGA516.
30
29
AK
VSS
AJ
VEXT
VSS
AH
VEBU
VEXT
AG
P25.0
P26.0
28
27
26
VFLEXE P30.15 P30.13 P30.11
P30.14 P30.12 P30.10
25
24
23
22
21
20
19
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
P30.9
P30.7
P30.5
P30.3
P30.1
VFLEXE
P31.15
P31.13 P31.11
P31.9
P31.7
P31.5
P31.3
P31.1
VFLEXE
VSS
VDDM
VSSM
AN48
AN51
AN53
AN55
NC
NC
NC
P30.8
P30.6
P30.4
P30.2
P30.0
VGATE3P
P31.14
P31.12 P31.10
P31.8
P31.6
P31.4
P31.2
P31.0
VFLEXE
VSS
VDDM
VSSM
AN49
AN50
AN52
AN54
NC
NC
NC
AJ
NC
NC
AH
18
17
Top-View
AF
P25.1
P25.2
25
24
23
22
21
20
19
18
17
16
15
14
13
AE
P25.3
P25.4
AE
VSS
P32.3
P32.2
P32.0
P33.13
P33.11
P33.9
P33.7
P33.5
P33.3
P33.1
AN5
AN10
AD
P25.5
P25.7
AD
VEXT
VSS
P32.4
VGATE1P P33.12
P33.10
P33.8
P33.6
P33.4
P33.2
P33.0
AN2
AN8
12
11
10
VAGND1 VAREF1 VDDM
AN11
AN13
AN16
7
6
AN21
NC
AE
AN58
AN59
AE
AN18
AN19
AN24
AN25
AD
AN61
AN60
AD
AN26
AN27
AC
AN62
AN63
AC
AN28
AN29
AB
AN64
AN65
AB
AA
AN66
AN67
AA
Y
AN69
AN68
Y
AN70
W
NC
P25.8
AC
P23.0
VEXT
22
21
20
19
18
17
16
15
14
13
12
11
10
9
P25.10
AB
P23.2
P23.1
AB
VSS
P32.7
P32.6
P33.15
P34.5
P34.3
P34.1
AN1
AN3
AN7
AN9
AN14
AN17
NC
AB
AA
P25.13
P25.12
AA
P23.4
P23.3
AA
P23.5
VSS
P32.5
P33.14
P34.4
P34.2
VEVRSB
AN0
AN4
AN6
AN12
AN15
AN22
AN30
AA
Y
P25.15
P25.14
Y
P22.2
P22.3
Y
P23.6
P23.7
AN23
AN31
W
NC
P25.6
W
P22.0
P22.1
W
P22.5
P22.4
W
V
NC
NC
V
VDDP3
VDD
V
P22.7
P22.6
V
VDD
U
P24.1
P24.0
U
XTAL1
XTAL2
U
P22.9
P22.8
U
VSS
VSS
T
P24.3
P24.2
T
VSS
TRST
T
P22.11
P22.10
T
VSS
(AGBT
ERR)
VSS
R
NC
(VDDPSB
)
VSS
P
VSS
VSS
R
P24.5
P24.4
P
P24.7
P24.6
N
P24.9
P24.8
R
P21.4
P21.2
P
P21.5
P21.3
N
P20.0
P20.2
R
P21.0
TMS
P
P21.1
TCK
N
P21.6
P21.7
M
P24.11
P24.10
M
P20.3
P20.1
M
PORST
ESR1
L
P24.13
P24.12
L
P20.8
P20.7
L
P20.6
ESR0
K
P24.15
P24.14
K
P20.11 P20.10
K
P20.9
VSS
J
VEBU
VEBU
J
P20.13 P20.12
J
VSS
VDDFL3
N
VDD
VDD
16
15
VSS
VSS
(AGBT
TX0N)
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
14
VSS
VSS
13
12
AF
8
P25.9
VSS
(AGBT
TX0P)
AG
AN20
P25.11
17
NC
AN56
9
AB
18
NC
AN57
VSSM
AC
19
Y
VAGND2 VAREF2
AN35
AN33
W
AN34
AN32
W
AN37
AN39
W
AN71
VDD
V
AN38
AN36
V
AN45
AN44
V
NC
VSS
VSS
U
AN40
AN41
U
AN47
AN46
U
P00.14 P00.15
U
VSS
VSS
(AGBT
CLKN)
T
AN42
AN43
T
P00.12
P00.11
T
P00.13
NC
T
VSS
VSS
(AGBT
CLKP)
R
P00.10
P00.8
R
P00.9
P00.7
R
NC
NC
R
VSS
VSS
P
P01.7
P00.6
P
P00.5
P00.4
P
P01.14 P01.15
P
VDD
(VDDSB)
N
P01.5
P01.6
N
P00.3
P00.2
N
P01.12 P01.13
N
M
P00.1
P00.0
M
P01.10 P01.11
M
L
P02.7
P02.8
L
P01.9
P01.8
L
P01.1
K
J
VDD
VSS
VDD
VSS
VSS
VSS
VSS
VDD
(VDDSB)
19
18
17
16
15
14
13
12
VDDFL3
P15.5
P14.2
P12.0
P12.1
P11.0
P11.1
P11.7
P11.8
P11.13
VSS
P02.9
K
P02.5
P02.6
K
P01.2
P15.7
P15.8
P14.7
P14.9
P14.10
P11.4
P11.6
P11.5
P11.14
P11.15
VFLEX
VSS
J
P02.3
P02.4
J
P01.0
NC
H
NC
NC
M
M
P01.3
P01.4
P02.10 P02.11
H
VSS
VSS
H
P20.14
P15.2
22
21
20
19
18
17
16
15
14
13
12
11
10
9
P02.1
P02.2
G
NC
NC
G
P15.0
VSS
VDDP3
P15.3
P14.0
P14.4
P14.3
P14.6
P13.0
P13.2
P11.3
P11.10
P11.12
P10.1
P10.4
P10.5
P10.8
VEXT
VSS
P02.0
G
P02.14 P02.15
F
VSS
VDDP3
P15.1
P15.4
P15.6
P14.1
P14.5
P14.8
P13.1
P13.3
P11.2
P11.9
P11.11
P10.0
P10.3
P10.2
P10.6
P10.7
VEXT
NC
F
P02.12 P02.13
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
F
NC
NC
E
NC
NC
AK
V
H
G
F
NC
NC
E
D
NC
NC
NC
NC
D
C
NC
NC
NC
NC
C
B
VSS
VSS
A
VDDP3
NC
NC
NC
VSS
VDDP3
NC
NC
NC
NC
30
29
28
27
26
25
P15.10 P15.12
P15.11 P15.13
24
23
P15.14
NC
NC
P14.12
P14.14
NC
P13.4
P13.6
NC
P13.10
P13.12
P13.14
NC
NC
P10.9
P10.10
NC
P10.14
NC
VEXT
VSS
NC
B
P10.15
NC
NC
VEXT
NC
A
5
4
3
2
1
P15.15
NC
P14.11
P14.13
P14.15
NC
P13.5
P13.7
P13.9
P13.11
P13.13
P13.15
NC
NC
NC
P10.11
P10.13
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
Figure 2-1 TC299x Logic Symbol for the package variant BGA516.
Data Sheet
TOC-9
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
2.1.1
TC299x BGA516 Package Variant Pin Configuration
Table 2-1
Port 00 Functions
Pin
Symbol
Ctrl
Type
Function
M6
P00.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN9
CTRAPA
GTM input
CCU61 input
T12HRE
CCU60 input
INJ00
MSC0 input
CIFD9
CIF input
P00.0
O0
General-purpose output
TOUT9
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
COUT63
O7
CCU60 output
ETHMDIOA
HWOU
T
ETH input/output
Data Sheet
TOC-10
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
M7
P00.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN10
ARX3E
N6
GTM input
ASCLIN3 input
RXDCAN1D
CAN node 1 input
PSIRX0A
PSI5 input
SENT0B
SENT input
CC60INB
CCU60 input
CC60INA
CCU61 input
DSCIN5A
DSADC channel 5 input
DS5NA
DSADC positive analog input of channel channel 5,
pin A
DSCIN7B
DSADC channel 7 input
VADCG7.5
VADC analog input channel 5 of group 7
CIFD10
CIF input
P00.1
O0
General-purpose output
TOUT10
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT5
O4
DSADC channel 5 output
DSCOUT7
O5
DSADC channel 7 output
SPC0
O6
SENT output
CC60
O7
CCU61 output
P00.2
I
TIN11
SENT1B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN5A
DSADC channel 5 input
DSDIN7B
DSADC channel 7 input
DS5PA
DSADC negative analog input of channel 5, pin A
VADCG7.4
VADC analog input channel 4 of group 7
CIFD11
CIF input
P00.2
O0
General-purpose output
TOUT11
O1
GTM output
ASCLK3
O2
ASCLIN3 output
TXDCANr1
O3
CAN node 1 output (MultiCANr+)
PSITX0
O4
PSI5 output
TXDCAN3
O5
CAN node 3 output
SLSO34
O6
QSPI3 output
COUT60
O7
CCU61 output
Data Sheet
TOC-11
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
N7
P00.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN12
RXDCAN3A
P6
GTM input
CAN node 3 input
RXDCANr1A
CAN node 1 input (MultiCANr+)
PSIRX1A
PSI5 input
PSISRXA
PSI5-S input
SENT2B
SENT input
CC61INB
CCU60 input
CC61INA
CCU61 input
DSCIN3A
DSADC channel 3 input
VADCG7.3
VADC analog input channel 3 of group 7
DSITR5F
DSADC channel 5 input
CIFD12
CIF input
P00.3
O0
General-purpose output
TOUT12
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT3
O4
DSADC channel 3 output
–
O5
Reserved
SPC2
O6
SENT output
CC61
O7
CCU61 output
P00.4
I
TIN13
REQ7
LP /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
SENT3B
SENT input
DSDIN3A
DSADC channel 3 input
DSSGNA
DSADC channel input
VADCG7.2
VADC analog input channel 2 of group 7
CIFD13
CIF input
P00.4
O0
General-purpose output
TOUT13
O1
GTM output
PSISTX
O2
PSI5-S output
–
O3
Reserved
PSITX1
O4
PSI5 output
VADCG4BFL0
O5
VADC output
SPC3
O6
SENT output
COUT61
O7
CCU61 output
Data Sheet
TOC-12
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
P7
P00.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN14
PSIRX2A
P9
GTM input
PSI5 input
SENT4B
SENT input
CC62INB
CCU60 input
CC62INA
CCU61 input
DSCIN2A
DSADC channel 2 input
VADCG7.1
VADC analog input channel 1 of group 7
CIFD14
CIF input
P00.5
O0
General-purpose output
TOUT14
O1
GTM output
DSCGPWMN
O2
DSADC output
SLSO33
O3
QSPI3 output
DSCOUT2
O4
DSADC channel 2 output
VADCG4BFL1
O5
VADC output
SPC4
O6
SENT output
CC62
O7
CCU61 output
P00.6
I
TIN15
SENT5B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN2A
DSADC channel 2 input A
VADCG7.0
VADC analog input channel 0 of group 7 (with pull
down diagnostics)
DSITR4F
DSADC channel 4 input F
CIFD15
CIF input
P00.6
O0
General-purpose output
TOUT15
O1
GTM output
DSCGPWMP
O2
DSADC output
VADCG4BFL2
O3
VADC output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
SPC5
O6
SENT output
COUT62
O7
CCU61 output
Data Sheet
TOC-13
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
R6
P00.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN16
SENT6B
R9
GTM input
SENT input
CC60INC
CCU61 input
CCPOS0A
CCU61 input
T12HRB
CCU60 input
T2INA
GPT120 input
DSCIN4A
DSADC channel 4 input A
DS4NA
DSADC negative analog input channel 4, pin A
VADCG6.5
VADC analog input channel 5 of group 6
CIFCLK
CIF input
P00.7
O0
General-purpose output
TOUT16
O1
GTM output
–
O2
Reserved
VADCG4BFL3
O3
VADC output
DSCOUT4
O4
DSADC channel 4 output
VADCEMUX11
O5
VADC output
SPC6
O6
SENT output
CC60
O7
CCU61 output
P00.8
I
TIN17
SENT7B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CC61INC
CCU61 input
CCPOS1A
CCU61 input
T13HRB
CCU60 input
T2EUDA
GPT120 input
DSDIN4A
DSADC channel 4 input A
DS4PA
DSADC positive analog input of channel 4, pin A
VADCG6.4
VADC analog input channel 4 of group 6
CIFVSNC
CIF input
P00.8
O0
General-purpose output
TOUT17
O1
GTM output
SLSO36
O2
QSPI3 output
–
O3
Reserved
–
O4
Reserved
VADCEMUX12
O5
VADC output
SPC7
O6
SENT output
CC61
O7
CCU61 output
Data Sheet
TOC-14
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
R7
P00.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN18
SENT8B
R10
GTM input
SENT input
CC62INC
CCU61 input
CCPOS2A
CCU61 input
T13HRC
CCU60 input
T12HRC
CCU60 input
T4EUDA
GPT120 input
DSCIN1A
DSADC channel 1 input A
VADCG6.3
VADC analog input channel 3 of group 6
DSITR3F
DSADC channel 3 input F
CIFHSNC
CIF input
P00.9
O0
General-purpose output
TOUT18
O1
GTM output
SLSO37
O2
QSPI3 output
ARTS3
O3
ASCLIN3 output
DSCOUT1
O4
DSADC channel 1 output
–
O5
Reserved
SPC8
O6
SENT output
CC62
O7
CCU61 output
P00.10
I
TIN19
SENT9B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN1A
DSADC channel 1 input A
VADCG6.2
VADC analog input channel 2 of group 6
P00.10
O0
General-purpose output
TOUT19
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SPC9
O6
SENT output
COUT63
O7
CCU61 output
Data Sheet
TOC-15
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
T6
P00.11
I
LP /
PU1 /
VEXT
General-purpose input
TIN20
CTRAPA
T7
CCU60 input
T12HRE
CCU61 input
DSCIN0A
DSADC channel 0 input A
VADCG6.1
VADC analog input channel 1 of group 6
P00.11
O0
General-purpose output
TOUT20
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P00.12
I
TIN21
ACTS3A
T2
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
DSDIN0A
DSADC channel 0 input A
VADCG6.0
VADC analog input channel 0 of group 6
P00.12
O0
General-purpose output
TOUT21
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
P00.13
I
TIN167
DSDIN6A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 6 input A
P00.13
O0
General-purpose output
TOUT167
O1
GTM output
–
O2
Reserved
–
O3
Reserved
EXTCLK1
O4
SCU output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-16
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 00 Functions (cont’d)
Table 2-1
Pin
Symbol
Ctrl
Type
Function
U2
P00.14
I
LP /
PU1 /
VEXT
General-purpose input
TIN166
DSCIN6A
U1
GTM input
DSADC channel 6 input A
P00.14
O0
General-purpose output
TOUT166
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT6
O4
DSADC channel 6 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P00.15
I
MP+ /
PU1 /
VEXT
TIN168
DSITR6F
General-purpose input
GTM input
DSADC channel 6 input F
P00.15
O0
General-purpose output
TOUT168
O1
GTM output
–
O2
Reserved
–
O3
Reserved
EXTCLK0
O4
SCU output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-2
Port 01 Functions
Pin
Symbol
Ctrl
Type
Function
J2
P01.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN155
DSITR6E
GTM input
DSADC channel 6 input E
RXDCAN3F
CAN node 3 input
RXDCANr1E
CAN node 1 input (MultiCANr+)
P01.0
O0
General-purpose output
TOUT155
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-17
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 01 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
K1
P01.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN159
DSITR8E
K2
DSADC channel 8 input E
RXD1A1
ERAY1 input
SENT10B
SENT input
P01.1
O0
General-purpose output
TOUT159
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.2
I
TIN156
DSCIN7A
M10
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 7 input A
P01.2
O0
General-purpose output
TOUT156
O1
GTM output
–
O2
Reserved
TXDCAN3
O3
CAN node 3 output
–
O4
Reserved
TXDCANr1
O5
CAN node 1 output (MultiCANr+)
DSCOUT7
O6
DSADC channel 7 output
–
O7
Reserved
P01.3
I
TIN111
SLSI3B
DSITR7F
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
DSADC channel 7 input F
P01.3
O0
General-purpose output
TOUT111
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO39
O4
QSPI3 output
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-18
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 01 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
M9
P01.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN112
RXDCAN1C
DSITR7E
N10
CAN node 1 input
DSADC channel 7 input E
P01.4
O0
General-purpose output
TOUT112
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO310
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.5
I
TIN113
MRST3C
LP /
PU1 /
VEXT
DSCIN8A
N9
GTM input
General-purpose input
GTM input
QSPI3 input
DSADC channel 8 input A
P01.5
O0
General-purpose output
TOUT113
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST3
O4
QSPI3 output
–
O5
Reserved
DSCOUT8
O6
DSADC channel 8 output
–
O7
Reserved
P01.6
I
TIN114
MTSR3C
DSDIN8A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
DSADC channel 8 input A
P01.6
O0
General-purpose output
TOUT114
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR3
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-19
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 01 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
P10
P01.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN115
SCLK3C
DSITR8F
L1
GTM input
QSPI3 input
DSADC channel 8 input F
P01.7
O0
General-purpose output
TOUT115
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SCLK3
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.8
I
TIN162
DSDIN9A
LP /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 9 input A
SENT12B
SENT input
ARX0C
ASCLIN0 input
RXDCAN0F
CAN node 0 input
RXDCANr0E
CAN node 0 input (MultiCANr+)
RXD1B1
ERAY1 input
P01.8
O0
General-purpose output
TOUT162
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-20
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 01 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
L2
P01.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN160
DSCIN9A
SENT11B
M2
DSADC channel 9 input A
SENT input
P01.9
O0
General-purpose output
TOUT160
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
DSCOUT9
O6
DSADC channel 9 output
–
O7
Reserved
P01.10
I
TIN163
DSITR9F
LP /
PU1 /
VEXT
SENT13B
M1
GTM input
General-purpose input
GTM input
DSADC channel 9 input F
SENT input
P01.10
O0
General-purpose output
TOUT163
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.11
I
TIN165
DSITR9E
SENT14B
LP /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 9 input E
SENT input
P01.11
O0
General-purpose output
TOUT165
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-21
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 01 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
N2
P01.12
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN158
N1
P01.12
O0
TOUT158
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXD1A
O6
ERAY1 output
–
O7
Reserved
P01.13
I
TIN161
P2
GTM input
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P01.13
O0
TOUT161
O1
GTM output
ATX0
O2
ASCLIN0 output
–
O3
Reserved
TXDCAN0
O4
CAN node 0 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
TXD1B
O6
ERAY1 output
–
O7
Reserved
P01.14
I
TIN164
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P01.14
O0
TOUT164
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXEN1A
O6
ERAY1 output
–
O7
Reserved
Data Sheet
General-purpose output
TOC-22
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 01 Functions (cont’d)
Table 2-2
Pin
Symbol
Ctrl
Type
Function
P1
P01.15
I
LP /
PU1 /
VEXT
General-purpose input
TIN157
DSDIN7A
GTM input
DSADC channel 7 input A
P01.15
O0
General-purpose output
TOUT157
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-3
Port 02 Functions
Pin
Symbol
Ctrl
Type
Function
G6
P02.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN0
REQ6
GTM input
SCU input
ARX2G
ASCLIN2 input
CC60INA
CCU60 input
CC60INB
CCU61 input
CIFD0
CIF input
P02.0
O0
General-purpose output
TOUT0
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
DSCGPWMN
O4
DSADC output
TXDCAN0
O5
CAN node 0 output
TXD0A
O6
ERAY0 output
CC60
O7
CCU60 output
Data Sheet
TOC-23
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-3
Pin
Symbol
Ctrl
Type
H7
P02.1
I
LP / PU1 General-purpose input
/ VEXT
GTM input
TIN1
H6
Function
REQ14
SCU input
ARX2B
ASCLIN2 input
RXDCAN0A
CAN node 0 input
RXD0A2
ERAY0 input
CIFD1
CIF input
P02.1
O0
General-purpose output
TOUT1
O1
GTM output
SLSO47
O2
QSPI4 output
SLSO32
O3
QSPI3 output
DSCGPWMP
O4
DSADC output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P02.2
I
TIN2
CC61INA
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
CCU60 input
CC61INB
CCU61 input
CIFD2
CIF input
P02.2
O0
General-purpose output
TOUT2
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO33
O3
QSPI3 output
PSITX0
O4
PSI5 output
TXDCAN2
O5
CAN node 2 output
TXD0B
O6
ERAY0 output
CC61
O7
CCU60 output
Data Sheet
TOC-24
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-3
Pin
Symbol
Ctrl
Type
Function
J7
P02.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN3
ARX1G
J6
GTM input
ASCLIN1 input
RXDCAN2B
CAN node 2 input
RXD0B2
ERAY0 input
PSIRX0B
PSI5 input
DSCIN5B
DSADC channel 5 input B
SDI11
MSC1 input
CIFD3
CIF input
P02.3
O0
General-purpose output
TOUT3
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO34
O3
QSPI3 output
DSCOUT5
O4
DSADC channel 5 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
P02.4
I
TIN4
SLSI3A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
ECTT1
TTCAN input
RXDCAN0D
CAN node 0 input
CC62INA
CCU60 input
CC62INB
CCU61 input
DSDIN5B
DSADC channel 5 input B
SDA0A
I2C0 input
CIFD4
CIF input
P02.4
O0
General-purpose output
TOUT4
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO30
O3
QSPI3 output
PSISCLK
O4
PSI5-S output
SDA0
O5
I2C0 output
TXEN0A
O6
ERAY0 output
CC62
O7
CCU60 output
Data Sheet
TOC-25
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-3
Pin
Symbol
Ctrl
Type
Function
K7
P02.5
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN5
MRST3A
K6
GTM input
QSPI3 input
ECTT2
TTCAN input
PSIRX1B
PSI5 input
PSISRXB
PSI5-S input
SENT3C
SENT input
DSCIN4B
DSADC channel 4 input B
SCL0A
I2C0 input
CIFD5
CIF input
P02.5
O0
General-purpose output
TOUT5
O1
GTM output
TXDCAN0
O2
CAN node 0 output
MRST3
O3
QSPI3 output
DSCOUT4
O4
DSADC channel 4 output
SCL0
O5
I2C0 output
TXEN0B
O6
ERAY0 output
COUT62
O7
CCU60 output
P02.6
I
TIN6
MTSR3A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
SENT2C
SENT input
CC60INC
CCU60 input
CCPOS0A
CCU60 input
T12HRB
CCU61 input
T3INA
GPT120 input
CIFD6
CIF input
DSDIN4B
DSADC channel 4 input B
DSITR5E
DSADC channel 5 input E
P02.6
O0
General-purpose output
TOUT6
O1
GTM output
PSISTX
O2
PSI5-S output
MTSR3
O3
QSPI3 output
PSITX1
O4
PSI5 output
VADCEMUX00
O5
VADC output
–
O6
Reserved
CC60
O7
CCU60 output
Data Sheet
TOC-26
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-3
Pin
Symbol
Ctrl
Type
Function
L7
P02.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN7
SCLK3A
GTM input
QSPI3 input
PSIRX2B
PSI5 input
SENT1C
SENT input
CC61INC
CCU60 input
CCPOS1A
CCU60 input
T13HRB
CCU61 input
T3EUDA
GPT120 input
CIFD7
CIF input
DSCIN3B
DSADC channel 3 input B
DSITR4E
DSADC channel 4 input E
P02.7
O0
General-purpose output
TOUT7
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
DSCOUT3
O4
DSADC channel 3 output
VADCEMUX01
O5
VADC output
SPC1
O6
SENT output
CC61
O7
CCU60 output
Data Sheet
TOC-27
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-3
Pin
Symbol
Ctrl
Type
L6
P02.8
I
SENT0C
LP / PU1 General-purpose input
/
GTM input
VEXT
SENT input
CC62INC
CCU60 input
CCPOS2A
CCU60 input
T12HRC
CCU61 input
T13HRC
CCU61 input
T4INA
GPT120 input
CIFD8
CIF input
DSDIN3B
DSADC channel 3 input B
DSITR3E
DSADC channel 3 input E
TIN8
K9
Function
P02.8
O0
General-purpose output
TOUT8
O1
GTM output
SLSO35
O2
QSPI3 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX02
O5
VADC output
ETHMDC
O6
ETH output
CC62
O7
CCU60 output
P02.9
I
TIN116
LP /
PU1 /
VEXT
General-purpose input
GTM input
P02.9
O0
TOUT116
O1
GTM output
ATX2
O2
ASCLIN2 output
–
O3
Reserved
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-28
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-3
Pin
Symbol
Ctrl
Type
Function
L10
P02.10
I
LP /
PU1 /
VEXT
General-purpose input
TIN117
ARX2C
RXDCAN1E
L9
ASCLIN2 input
CAN node 1 input
P02.10
O0
General-purpose output
TOUT117
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P02.11
I
TIN118
F2
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
P02.11
O0
TOUT118
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P02.12
I
TIN151
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P02.12
O0
TOUT151
O1
GTM output
SLSO35
O2
QSPI3 output
SLSO44
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-29
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 02 Functions (cont’d)
Table 2-3
Pin
Symbol
Ctrl
Type
Function
F1
P02.13
I
LP /
PU1 /
VEXT
General-purpose input
TIN153
G2
P02.13
O0
TOUT153
O1
GTM output
SLSO37
O2
QSPI3 output
SLSO46
O3
QSPI4 output
TXDCAN0
O4
CAN node 0 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
–
O7
Reserved
P02.14
I
TIN154
RXDCAN0H
LP /
PU1 /
VEXT
RXDCANr0D
G1
GTM input
General-purpose output
General-purpose input
GTM input
CAN node 0 input
CAN node 0 input (MultiCANr+)
P02.14
O0
General-purpose output
TOUT154
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P02.15
I
TIN152
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P02.15
O0
TOUT152
O1
GTM output
SLSO36
O2
QSPI3 output
SLSO45
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
TXEN1B
O6
ERAY1 output
–
O7
Reserved
Data Sheet
General-purpose output
TOC-30
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-4
Port 10 Functions
Pin
Symbol
Ctrl
Type
Function
F12
P10.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN102
T6EUDB
G12
GPT120 input
P10.0
O0
General-purpose output
TOUT102
O1
GTM output
–
O2
Reserved
SLSO110
O3
QSPI1 output
–
O4
Reserved
VADCG6BFL0
O5
VADC output
–
O6
Reserved
–
O7
Reserved
P10.1
I
TIN103
MRST1A
MP+ /
PU1 /
VEXT
T5EUDB
F10
GTM input
General-purpose input
GTM input
QSPI1 input
GPT120 input
P10.1
O0
General-purpose output
TOUT103
O1
GTM output
MTSR1
O2
QSPI1 output
MRST1
O3
QSPI1 output
EN01
O4
MSC0 output
VADCG6BFL1
O5
VADC output
END03
O6
MSC0 output
–
O7
Reserved
P10.2
I
TIN104
SCLK1A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
T6INB
GPT120 input
REQ2
SCU input
RXDCAN2E
CAN node 2 input
SDI01
MSC0 input
P10.2
O0
General-purpose output
TOUT104
O1
GTM output
–
O2
Reserved
SCLK1
O3
QSPI1 output
EN00
O4
MSC0 output
VADCG6BFL2
O5
VADC output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
TOC-31
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 10 Functions (cont’d)
Table 2-4
Pin
Symbol
Ctrl
Type
Function
F11
P10.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN105
MTSR1A
G11
GTM input
QSPI1 input
REQ3
SCU input
T5INB
GPT120 input
P10.3
O0
General-purpose output
TOUT105
O1
GTM output
VADCG6BFL3
O2
VADC output
MTSR1
O3
QSPI1 output
EN00
O4
MSC0 output
END02
O5
MSC0 output
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P10.4
I
TIN106
MTSR1C
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
CCPOS0C
CCU60 input
T3INB
GPT120 input
P10.4
O0
General-purpose output
TOUT106
O1
GTM output
–
O2
Reserved
SLSO18
O3
QSPI1 output
MTSR1
O4
QSPI1 output
EN00
O5
MSC0 output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
TOC-32
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 10 Functions (cont’d)
Table 2-4
Pin
Symbol
Ctrl
Type
Function
G10
P10.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN107
HWCFG4
F9
GTM input
SCU input
RXDCANr0A
CAN node 0 input (MultiCANr+)
INJ01
MSC0 input
P10.5
O0
General-purpose output
TOUT107
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO38
O3
QSPI3 output
SLSO19
O4
QSPI1 output
T6OUT
O5
GPT120 output
ASLSO2
O6
ASCLIN2 output
PSITX3
O7
PSI5 output
P10.6
I
TIN108
ARX2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
MTSR3B
QSPI3 input
PSIRX3C
PSI5 input
HWCFG5
SCU input
P10.6
O0
General-purpose output
TOUT108
O1
GTM output
ASCLK2
O2
ASCLIN2 output
MTSR3
O3
QSPI3 output
T3OUT
O4
GPT120 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
MRST1
O6
QSPI1 output
VADCG7BFL0
O7
VADC output
Data Sheet
TOC-33
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 10 Functions (cont’d)
Table 2-4
Pin
Symbol
Ctrl
Type
Function
F8
P10.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN109
ACTS2A
G9
GTM input
ASCLIN2 input
MRST3B
QSPI3 input
REQ4
SCU input
CCPOS1C
CCU60 input
T3EUDB
GPT120 input
P10.7
O0
General-purpose output
TOUT109
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
VADCG7BFL1
O4
VADC output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
–
O7
Reserved
P10.8
I
TIN110
SCLK3B
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
REQ5
SCU input
CCPOS2C
CCU60 input
T4INB
GPT120 input
RXDCANr0B
CAN node 0 input (MultiCANr+)
P10.8
O0
General-purpose output
TOUT110
O1
GTM output
ARTS2
O2
ASCLIN2 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-34
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 10 Functions (cont’d)
Table 2-4
Pin
Symbol
Ctrl
Type
Function
B8
P10.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN265
SENT10C
B7
SENT input
P10.9
O0
General-purpose output
TOUT265
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.10
I
TIN266
SENT11C
A7
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
P10.10
O0
General-purpose output
TOUT266
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.11
I
TIN269
SENT14C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
P10.11
O0
General-purpose output
TOUT269
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-35
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 10 Functions (cont’d)
Table 2-4
Pin
Symbol
Ctrl
Type
Function
A6
P10.13
I
LP /
PU1 /
VEXT
General-purpose input
TIN268
SENT13C
B5
SENT input
P10.13
O0
General-purpose output
TOUT268
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.14
I
TIN267
SENT12C
A5
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
P10.14
O0
General-purpose output
TOUT267
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.15
I
TIN270
LP /
PU1 /
VEXT
General-purpose input
GTM input
P10.15
O0
TOUT270
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-36
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-5
Port 11 Functions
Pin
Symbol
Ctrl
Type
Function
K15
P11.0
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN119
ARX3B
K14
ASCLIN3 input
P11.0
O0
General-purpose output
TOUT119
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHTXD3
O6
ETH output
–
O7
Reserved
P11.1
I
TIN120
F15
GTM input
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
P11.1
O0
TOUT120
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
ETHTXD2
O6
ETH output
–
O7
Reserved
P11.2
I
TIN95
MPR/
PU1 /
VFLEX
General-purpose output
General-purpose input
GTM input
P11.2
O0
TOUT95
O1
GTM output
END03
O2
MSC0 output
SLSO05
O3
QSPI0 output
SLSO15
O4
QSPI1 output
EN01
O5
MSC0 output
ETHTXD1
O6
ETH output
COUT63
O7
CCU60 output
Data Sheet
General-purpose output
TOC-37
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-5
Pin
Symbol
Ctrl
Type
Function
G15
P11.3
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN96
MRST1B
SDI03
J15
QSPI1 input
MSC0 input
P11.3
O0
General-purpose output
TOUT96
O1
GTM output
–
O2
Reserved
MRST1
O3
QSPI1 output
TXD0A
O4
ERAY0 output
–
O5
Reserved
ETHTXD0
O6
ETH output
COUT62
O7
CCU60 output
P11.4
I
TIN121
ETHRXCLKB
J13
GTM input
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.4
O0
General-purpose output
TOUT121
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHTXER
O6
ETH output
–
O7
Reserved
P11.5
I
TIN122
ETHTXCLKA
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.5
O0
General-purpose output
TOUT122
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-38
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-5
Pin
Symbol
Ctrl
Type
Function
J14
P11.6
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN97
SCLK1B
K13
QSPI1 input
P11.6
O0
General-purpose output
TOUT97
O1
GTM output
TXEN0B
O2
ERAY0 output
SCLK1
O3
QSPI1 output
TXEN0A
O4
ERAY0 output
FCLP0
O5
MSC0 output
ETHTXEN
O6
ETH output
COUT61
O7
CCU60 output
P11.7
I
TIN123
ETHRXD3
K12
GTM input
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.7
O0
General-purpose output
TOUT123
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P11.8
I
TIN124
ETHRXD2
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.8
O0
General-purpose output
TOUT124
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-39
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-5
Pin
Symbol
Ctrl
Type
Function
F14
P11.9
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN98
MTSR1B
G14
GTM input
QSPI1 input
RXD0A1
ERAY0 input
ETHRXD1
ETH input
P11.9
O0
General-purpose output
TOUT98
O1
GTM output
–
O2
Reserved
MTSR1
O3
QSPI1 output
–
O4
Reserved
SOP0
O5
MSC0 output
–
O6
Reserved
COUT60
O7
CCU60 output
P11.10
I
TIN99
REQ12
LP /
PU1 /
VFLEX
General-purpose input
GTM input
SCU input
ARX1E
ASCLIN1 input
SLSI1A
QSPI1 input
RXDCAN3D
CAN node 3 input
RXD0B1
ERAY0 input
ETHRXD0
ETH input
SDI00
MSC0 input
P11.10
O0
General-purpose output
TOUT99
O1
GTM output
–
O2
Reserved
SLSO03
O3
QSPI0 output
SLSO13
O4
QSPI1 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
Data Sheet
TOC-40
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-5
Pin
Symbol
Ctrl
Type
Function
F13
P11.11
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN100
ETHCRSDVA
G13
GTM input
ETH input
ETHRXDVA
ETH input
ETHCRSB
ETH input
P11.11
O0
General-purpose output
TOUT100
O1
GTM output
END02
O2
MSC0 output
SLSO04
O3
QSPI0 output
SLSO14
O4
QSPI1 output
EN00
O5
MSC0 output
TXEN0B
O6
ERAY0 output
CC61
O7
CCU60 output
P11.12
I
TIN101
ETHREFCLK
MPR /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHTXCLKB
ETH input
(Not for productive purposes)
ETHRXCLKA
ETH input
(Not for productive purposes)
P11.12
O0
General-purpose output
TOUT101
O1
GTM output
ATX1
O2
ASCLIN1 output
GTMCLK2
O3
GTM output
TXD0B
O4
ERAY0 output
TXDCAN3
O5
CAN node 3 output
EXTCLK1
O6
SCU output
CC60
O7
CCU60 output
Data Sheet
TOC-41
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 11 Functions (cont’d)
Table 2-5
Pin
Symbol
Ctrl
Type
Function
K11
P11.13
I
LP /
PU1 /
VFLEX
General-purpose input
TIN125
ETHRXERA
SDA1A
J12
ETH input
I2C1 input
P11.13
O0
General-purpose output
TOUT125
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDA1
O6
I2C1 output
–
O7
Reserved
P11.14
I
TIN126
ETHCRSDVB
J11
GTM input
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHRXDVB
ETH input
ETHCRSA
ETH input
SCL1A
I2C1 input
P11.14
O0
General-purpose output
TOUT126
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SCL1
O6
I2C1 output
–
O7
Reserved
P11.15
I
TIN127
ETHCOL
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.15
O0
General-purpose output
TOUT127
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-42
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-6
Port 12 Functions
Pin
Symbol
Ctrl
Type
Function
K17
P12.0
I
LP /
PU1 /
VFLEX
General-purpose input
TIN128
ETHRXCLKC
RXDCAN0C
GTM input
ETH input
CAN node 0 input
P12.0
O0
General-purpose output
TOUT128
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
–
O7
Reserved
P12.1
K16
I
TIN129
LP /
PU1 /
VFLEX
General-purpose input
GTM input
P12.1
O0
General-purpose output
TOUT129
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
–
O7
Reserved
ETHMDIOC
HWOU
T
ETH input/output
Table 2-7
Port 13 Functions
Pin
Symbol
Ctrl
Type
Function
G17
P13.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91
GTM input
P13.0
O0
TOUT91
O1
GTM output
END03
O2
MSC0 output
SCLK2N
O3
QSPI2 output (LVDS)
EN01
O4
MSC0 output
FCLN0
O5
MSC0 output (LVDS)
FCLND0
O6
MSC0 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-43
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-7
Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
F17
P13.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN92
SCL0B
GTM input
I2C0 input
P13.1
O0
General-purpose output
TOUT92
O1
GTM output
–
O2
Reserved
SCLK2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
FCLP0
O5
MSC0 output (LVDS)
SCL0
O6
I2C0 output
–
O7
Reserved
P13.2
G16
I
TIN93
CAPINA
LVDSM_N /
PU1 /
VEXT
SDA0B
General-purpose input
GTM input
GPT120 input
I2C0 input
P13.2
O0
General-purpose output
TOUT93
O1
GTM output
–
O2
Reserved
MTSR2N
O3
QSPI2 output (LVDS)
FCLP0
O4
MSC0 output
SON0
O5
MSC0 output (LVDS)
SDA0
O6
I2C0 output
SOND0
O7
MSC0 output (LVDS)
P13.3
F16
I
TIN94
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.3
O0
TOUT94
O1
GTM output
–
O2
Reserved
MTSR2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
SOP0
O5
MSC0 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-44
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-7
Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B16
P13.4
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN253
PSIRX4A
GTM input
PSI5 input
P13.4
O0
General-purpose output
TOUT253
O1
GTM output
END22
O2
MSC2 output
–
O3
Reserved
EN20
O4
MSC2 output
FCLN2
O5
MSC2 output (LVDS)
FCLND2
O6
MSC2 output (LVDS)
–
O7
Reserved
P13.5
A16
I
TIN254
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.5
O0
TOUT254
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
FCLP2
O5
MSC2 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P13.6
B15
I
TIN255
LVDSM_N /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P13.6
O0
TOUT255
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
SON2
O5
MSC2 output (LVDS)
SOND2
O6
MSC2 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-45
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-7
Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A15
P13.7
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN256
GTM input
P13.7
O0
TOUT256
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
SOP2
O5
MSC2 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P13.9
A14
I
TIN248
SCL1B
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
I2C1 input
P13.9
O0
General-purpose output
TOUT248
O1
GTM output
ATX3
O2
ASCLIN3 output
SLSO55
O3
QSPI5 output
–
O4
Reserved
TXDCANr1
O5
CAN node 1 output (MultiCANr+)
SCL1
O6
I2C1 output
–
O7
Reserved
P13.10
B13
I
TIN251
PSIRX3A
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
P13.10
O0
General-purpose output
TOUT251
O1
GTM output
ATX0
O2
ASCLIN0 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-46
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-7
Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A13
P13.11
I
LP /
PU1 /
VEXT
General-purpose input
TIN250
ARX0E
GTM input
ASCLIN0 input
P13.11
O0
General-purpose output
TOUT250
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
PSITX3
O5
PSI5 output
–
O6
Reserved
–
O7
Reserved
P13.12
B12
I
TIN249
ARX3H
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
RXDCANr1B
CAN node 1 input (MultiCANr+)
SDA1B
I2C1 input
P13.12
O0
General-purpose output
TOUT249
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDA1
O6
I2C1 output
–
O7
Reserved
P13.13
A12
I
TIN262
PSIRX3B
LP /
PU1 /
VEXT
INJ20
General-purpose input
GTM input
PSI5 input
MSC2 input
P13.13
O0
General-purpose output
TOUT262
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-47
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-7
Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B11
P13.14
I
LP /
PU1 /
VEXT
General-purpose input
TIN252
GTM input
P13.14
O0
TOUT252
O1
GTM output
–
O2
Reserved
SLSO54
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P13.15
A11
I
TIN264
General-purpose output
General-purpose input
LP /
PU1 /
VEXT
GTM input
P13.15
O0
TOUT264
O1
GTM output
–
O2
Reserved
–
O3
Reserved
PSITX3
O4
PSI5 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-8
General-purpose output
Port 14 Functions
Pin
Symbol
Ctrl
Type
Function
G21
P14.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN80
SENT12D
GTM input
SENT input
P14.0
O0
General-purpose output
TOUT80
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin
TXD0A
O3
ERAY0 output
TXD0B
O4
ERAY0 output
TXDCAN1
O5
CAN node 1 output
Used for single pin DAP (SPD) function
ASCLK0
O6
ASCLIN0 output
COUT62
O7
CCU60 output
Data Sheet
TOC-48
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 14 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
F20
P14.1
I
MP /
PU1 /
VEXT
General-purpose input
TIN81
REQ15
GTM input
SCU input
SENT13D
SENT input
ARX0A
ASCLIN0 input
Recommended as Boot loader pin
RXDCAN1B
CAN node 1 input
Used for single pin DAP (SPD) function
RXD0A3
ERAY0 input
RXD0B3
ERAY0 input
EVRWUPA
SCU input
P14.1
O0
General-purpose output
TOUT81
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU60 output
P14.2
K18
I
TIN82
HWCFG2
EVR13
LP /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2
O0
General-purpose output
TOUT82
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO21
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK2
O6
ASCLIN2 output
–
O7
Reserved
Data Sheet
TOC-49
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 14 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
G19
P14.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN83
ARX2A
GTM input
ASCLIN2 input
REQ10
SCU input
HWCFG3_BMI
SCU input
SDI02
MSC0 input
P14.3
O0
General-purpose output
TOUT83
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO23
O3
QSPI2 output
ASLSO1
O4
ASCLIN1 output
ASLSO3
O5
ASCLIN3 output
–
O6
Reserved
–
O7
Reserved
P14.4
G20
I
TIN84
HWCFG6
LP /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4
O0
General-purpose output
TOUT84
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-50
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 14 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
F19
P14.5
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN85
HWCFG1
EVR33
GTM input
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5
O0
General-purpose output
TOUT85
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXD0B
O6
ERAY0 output
TXD1B
O7
ERAY1 output
P14.6
G18
I
TIN86
HWCFG0
DCLDO
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6
O0
General-purpose output
TOUT86
O1
GTM output
–
O2
Reserved
SLSO22
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
TXEN0B
O6
ERAY0 output
TXEN1B
O7
ERAY1 output
P14.7
J18
I
TIN87
RXD0B0
RXD1B0
LP /
PU1 /
VEXT
General-purpose input
GTM input
ERAY0 input
ERAY1 input
P14.7
O0
General-purpose output
TOUT87
O1
GTM output
ARTS0
O2
ASCLIN0 output
SLSO24
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-51
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 14 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
F18
P14.8
I
LP /
PU1 /
VEXT
General-purpose input
TIN88
ARX1D
GTM input
ASCLIN1 input
RXDCAN2D
CAN node 2 input
RXD0A0
ERAY0 input
RXD1A0
ERAY1 input
P14.8
O0
General-purpose output
TOUT88
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.9
J17
I
TIN89
ACTS0A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
P14.9
O0
General-purpose output
TOUT89
O1
GTM output
END03
O2
MSC0 output
EN01
O3
MSC0 output
–
O4
Reserved
TXEN0B
O5
ERAY0 output
TXEN0A
O6
ERAY0 output
TXEN1A
O7
ERAY1 output
P14.10
J16
I
TIN90
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P14.10
O0
TOUT90
O1
GTM output
END02
O2
MSC0 output
EN00
O3
MSC0 output
ATX1
O4
ASCLIN1 output
TXDCAN2
O5
CAN node 2 output
TXD0A
O6
ERAY0 output
TXD1A
O7
ERAY1 output
Data Sheet
General-purpose output
TOC-52
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 14 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
A20
P14.11
I
LP /
PU1 /
VEXT
General-purpose input
TIN258
GTM input
P14.11
O0
TOUT258
O1
GTM output
END20
O2
MSC2 output
PSITX4
O3
PSI5 output
EN22
O4
MSC2 output
SOP2
O5
MSC2 output
–
O6
Reserved
–
O7
Reserved
P14.12
B19
I
TIN261
SDI20
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC2 input
P14.12
O0
General-purpose output
TOUT261
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.13
A19
I
TIN260
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P14.13
O0
TOUT260
O1
GTM output
END23
O2
MSC2 output
–
O3
Reserved
EN21
O4
MSC2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-53
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 14 Functions (cont’d)
Table 2-8
Pin
Symbol
Ctrl
Type
Function
B18
P14.14
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN259
GTM input
P14.14
O0
TOUT259
O1
GTM output
END22
O2
MSC2 output
–
O3
Reserved
EN20
O4
MSC2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.15
A18
I
TIN263
INJ21
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC2 output
P14.15
O0
General-purpose output
TOUT263
O1
GTM output
ATX1
O2
ASCLIN1 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-9
Port 15 Functions
Pin
Symbol
Ctrl
Type
Function
G25
P15.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN71
GTM input
P15.0
O0
TOUT71
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO013
O3
QSPI0 output
–
O4
Reserved
TXDCAN2
O5
CAN node 2 output
ASCLK1
O6
ASCLIN1 output
–
O7
Reserved
Data Sheet
General-purpose output
TOC-54
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-9
Pin
Symbol
Ctrl
Type
Function
F23
P15.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN72
REQ16
H24
GTM input
SCU input
ARX1A
ASCLIN1 input
RXDCAN2A
CAN node 2 input
SLSI2B
QSPI2 input
EVRWUPB
SCU input
P15.1
O0
General-purpose output
TOUT72
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO25
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P15.2
I
TIN73
SLSI2A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
MRST2E
QSPI2 input
SENT10D
SENT input
HSIC2INA
QSPI2 input
P15.2
O0
General-purpose output
TOUT73
O1
GTM output
ATX0
O2
ASCLIN0 output
SLSO20
O3
QSPI2 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
ASCLK0
O6
ASCLIN0 output
–
O7
Reserved
Data Sheet
TOC-55
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-9
Pin
Symbol
Ctrl
Type
Function
G22
P15.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN74
ARX0B
F22
GTM input
ASCLIN0 input
SCLK2A
QSPI2 input
RXDCAN1A
CAN node 1 input
HSIC2INB
QSPI2 input
P15.3
O0
General-purpose output
TOUT74
O1
GTM output
ATX0
O2
ASCLIN0 output
SCLK2
O3
QSPI2 output
END03
O4
MSC0 output
EN01
O5
MSC0 output
–
O6
Reserved
–
O7
Reserved
P15.4
I
TIN75
MRST2A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
REQ0
SCU input
SCL0C
I2C0 input
SENT11D
SENT input
P15.4
O0
General-purpose output
TOUT75
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
SCL0
O6
I2C0 output
CC62
O7
CCU60 output
Data Sheet
TOC-56
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-9
Pin
Symbol
Ctrl
Type
Function
K19
P15.5
I
MP /
PU1 /
VEXT
General-purpose input
TIN76
ARX1B
F21
ASCLIN1 input
MTSR2A
QSPI2 input
REQ13
SCU input
SDA0C
I2C0 input
P15.5
O0
General-purpose output
TOUT76
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR2
O3
QSPI2 output
END02
O4
MSC0 output
EN00
O5
MSC0 output
SDA0
O6
I2C0 output
CC61
O7
CCU60 output
P15.6
I
TIN77
MTSR2B
J20
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P15.6
O0
General-purpose output
TOUT77
O1
GTM output
ATX3
O2
ASCLIN3 output
MTSR2
O3
QSPI2 output
SLSO53
O4
QSPI5 output
SCLK2
O5
QSPI2 output
ASCLK3
O6
ASCLIN3 output
CC60
O7
CCU60 output
P15.7
I
TIN78
ARX3A
MRST2B
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
QSPI2 input
P15.7
O0
General-purpose output
TOUT78
O1
GTM output
ATX3
O2
ASCLIN3 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
Data Sheet
TOC-57
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-9
Pin
Symbol
Ctrl
Type
Function
J19
P15.8
I
MP /
PU1 /
VEXT
General-purpose input
TIN79
SCLK2B
REQ1
B24
QSPI2 input
SCU input
P15.8
O0
General-purpose output
TOUT79
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK3
O6
ASCLIN3 output
COUT61
O7
CCU60 output
P15.10
I
TIN242
MRST5A
A24
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI5 input
P15.10
O0
General-purpose output
TOUT242
O1
GTM output
–
O2
Reserved
MRST5
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P15.11
I
TIN243
SLSI5A
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI5 input
P15.11
O0
General-purpose output
TOUT243
O1
GTM output
–
O2
Reserved
SLSO52
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-58
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-9
Pin
Symbol
Ctrl
Type
Function
B23
P15.12
I
LP /
PU1 /
VEXT
General-purpose input
TIN244
A23
P15.12
O0
TOUT244
O1
GTM output
–
O2
Reserved
SLSO51
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P15.13
I
TIN245
B22
GTM input
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P15.13
O0
TOUT245
O1
GTM output
–
O2
Reserved
SLSO50
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P15.14
I
TIN246
MTSR5A
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI5 input
P15.14
O0
General-purpose output
TOUT246
O1
GTM output
–
O2
Reserved
MTSR5
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-59
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Port 15 Functions (cont’d)
Table 2-9
Pin
Symbol
Ctrl
Type
Function
A22
P15.15
I
MP /
PU1 /
VEXT
General-purpose input
TIN247
SCLK5A
GTM input
QSPI5 input
P15.15
O0
General-purpose output
TOUT247
O1
GTM output
–
O2
Reserved
SCLK5
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-10 Port 20 Functions
Pin
Symbol
Ctrl
Type
Function
N25
P20.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN59
RXDCAN3C
GTM input
CAN node 3 input
RXDCANr1C
CAN node 1 input (MultiCANr+)
T6EUDA
GPT120 input
REQ9
SCU input
SYSCLK
HSCT input
TGI0
OCDS input
P20.0
O0
General-purpose output
TOUT59
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
–
O7
Reserved
TGO0
HWOU
T
OCDS; ENx
Data Sheet
TOC-60
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-10 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
M24
P20.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN60
TGI1
N24
OCDS input
P20.1
O0
General-purpose output
TOUT60
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO1
HWOU
T
OCDS; ENx
P20.2
I
LP /
PU1 /
VEXT
TESTMODE
M25
GTM input
General-purpose input
This pin is latched at power on reset release to enter
test mode.
OCDS input
P20.2
O0
Output function not available
–
O1
Output function not available
–
O2
Output function not available
–
O3
Output function not available
–
O4
Output function not available
–
O5
Output function not available
–
O6
Output function not available
–
O7
Output function not available
P20.3
I
TIN61
T6INA
ARX3C
LP /
PU1 /
VEXT
General-purpose input
GTM input
GPT120 input
ASCLIN3 input
P20.3
O0
General-purpose output
TOUT61
O1
GTM output
ATX3
O2
ASCLIN3 output
SLSO09
O3
QSPI0 output
SLSO29
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
TXDCANr1
O6
CAN node 1 output (MultiCANr+)
–
O7
Reserved
Data Sheet
TOC-61
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-10 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
L22
P20.6
I
LP /
PU1 /
VEXT
General-purpose input
TIN62
L24
P20.6
O0
TOUT62
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO08
O3
QSPI0 output
SLSO28
O4
QSPI2 output
–
O5
Reserved
WDT2LCK
O6
SCU output
–
O7
Reserved
P20.7
I
TIN63
ACTS1A
LP /
PU1 /
VEXT
RXDCAN0B
L25
GTM input
General-purpose output
General-purpose input
GTM input
ASCLIN1 input
CAN node 0 input
P20.7
O0
General-purpose output
TOUT63
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
WDT1LCK
O6
SCU output
COUT63
O7
CCU61 output
P20.8
I
TIN64
MP /
PU1 /
VEXT
General-purpose input
GTM input
P20.8
O0
TOUT64
O1
GTM output
ASLSO1
O2
ASCLIN1 output
SLSO00
O3
QSPI0 output
SLSO10
O4
QSPI1 output
TXDCAN0
O5
CAN node 0 output
WDT0LCK
O6
SCU output
CC60
O7
CCU61 output
Data Sheet
General-purpose output
TOC-62
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-10 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
K22
P20.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN65
ARX1C
K24
ASCLIN1 input
RXDCAN3E
CAN node 3 input
REQ11
SCU input
SLSI0B
QSPI0 input
P20.9
O0
General-purpose output
TOUT65
O1
GTM output
–
O2
Reserved
SLSO01
O3
QSPI0 output
SLSO11
O4
QSPI1 output
–
O5
Reserved
WDTSLCK
O6
SCU output
CC61
O7
CCU61 output
P20.10
I
TIN66
K25
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
P20.10
O0
TOUT66
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO06
O3
QSPI0 output
SLSO27
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
ASCLK1
O6
ASCLIN1 output
CC62
O7
CCU61 output
P20.11
I
TIN67
SCLK0A
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI0 input
P20.11
O0
General-purpose output
TOUT67
O1
GTM output
–
O2
Reserved
SCLK0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU61 output
Data Sheet
TOC-63
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-10 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J24
P20.12
I
MP /
PU1 /
VEXT
General-purpose input
TIN68
MRST0A
J25
QSPI0 input
P20.12
O0
General-purpose output
TOUT68
O1
GTM output
–
O2
Reserved
MRST0
O3
QSPI0 output
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU61 output
P20.13
I
TIN69
SLSI0A
H25
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.13
O0
General-purpose output
TOUT69
O1
GTM output
–
O2
Reserved
SLSO02
O3
QSPI0 output
SLSO12
O4
QSPI1 output
SCLK0
O5
QSPI0 output
–
O6
Reserved
COUT62
O7
CCU61 output
P20.14
I
TIN70
MTSR0A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.14
O0
General-purpose output
TOUT70
O1
GTM output
–
O2
Reserved
MTSR0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-64
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-11 Port 21 Functions
Pin
Symbol
Ctrl
Type
Function
R22
P21.0
I
LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN51
MRST4DN
HOLD
P22
GTM input
QSPI4 input (LVDS)
EBU input
P21.0
O0
General-purpose output
TOUT51
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
BAABA0
O7
EBU output
(combined for BAA and BA0)
HSM1
O
HSM output
P21.1
I
TIN52
ETHMDIOB
LVDSH_P/
PU1 /
VDDP3
General-purpose input
GTM input
ETH input
(Not for production purposes)
MRST4DP
QSPI4 input (LVDS)
WAIT
EBU input
P21.1
O0
General-purpose output
TOUT52
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDIO
O6
ETH output
(Not for production purposes)
BREQBA1
O7
EBU output
(combined for BREQ and BA1)
HSM2
O
HSM output
Data Sheet
TOC-65
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-11 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
R24
P21.2
I
LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN53
MRST2CN
P24
GTM input
QSPI2 input (LVDS)
MRST4CN
QSPI4 input (LVDS)
ARX3GN
ASCLIN3 input (LVDS)
EMGSTOPB
SCU input
RXDN
HSCT input (LVDS)
P21.2
O0
General-purpose output
TOUT53
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
ETHMDC
O5
ETH output
SDRAMA8
O6
EBU output
–
O7
Reserved
P21.3
I
TIN54
MRST2CP
LVDSH_P/
PU1 /
VDDP3
General-purpose input
GTM input
QSPI2 input (LVDS)
MRST4CP
QSPI4 input (LVDS)
ARX3GP
ASCLIN3 input (LVDS)
RXDP
HSCT input (LVDS)
P21.3
O0
General-purpose output
TOUT54
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA9
O6
EBU output
–
O7
Reserved
ETHMDIOD
HWOUT
ETH input/output
Data Sheet
TOC-66
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-11 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
R25
P21.4
I
LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN55
P25
P21.4
O0
TOUT55
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA10
O6
EBU output
–
O7
Reserved
TXDN
HSCT
HSCT output (LVDS)
P21.5
I
TIN56
N22
GTM input
LVDSH_P/
PU1 /
VDDP3
General-purpose output
General-purpose input
GTM input
P21.5
O0
TOUT56
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA11
O6
EBU output
–
O7
Reserved
TXDP
HSCT
HSCT output (LVDS)
P21.6
I
TIN57
ARX3F
A2 /
PU /
VDDP3
General-purpose output
General-purpose input
GTM input
ASCLIN3 input
TGI2
OCDS input
TDI
OCDS (JTAG) input
T5EUDA
GPT120 input
P21.6
O0
General-purpose output
TOUT57
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
SYSCLK
O5
HSCT output
SDRAMA12
O6
EBU output
T3OUT
O7
GPT120 output
TGO2
HWOUT
OCDS; ENx
Data Sheet
TOC-67
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-11 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
N21
P21.7
I
A2 /
PU /
VDDP3
General-purpose input
TIN58
DAP2
GTM input
OCDS (3-Pin DAP) input
In the 3-Pin DAP mode this pin is used as DAP2.
In the 2-PIN DAP mode this pin is used as P21.7
and controlled by the related port control logic
TGI3
OCDS input
ETHRXERB
ETH input
T5INA
GPT120 input
P21.7
O0
General-purpose output
TOUT58
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
SDRAMA13
O6
EBU output
T6OUT
O7
GPT120 output
TGO3
HWOUT
OCDS; ENx
TDO
OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ.
DAP2
OCDS (3-Pin DAP); ENx
In the 3-Pin DAP mode this pin is used as DAP2.
Table 2-12 Port 22 Functions
Pin
Symbol
Ctrl
Type
Function
W25
P22.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47
MTSR4B
GTM input
QSPI4 input
P22.0
O0
General-purpose output
TOUT47
O1
GTM output
ATX3N
O2
ASCLIN3 output (LVDS)
MTSR4
O3
QSPI4 output
SCLK4N
O4
QSPI4 output (LVDS)
FCLN1
O5
MSC1 output (LVDS)
FCLND1
O6
MSC1 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-68
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-12 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
W24
P22.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN48
MRST4B
Y25
QSPI4 input
P22.1
O0
General-purpose output
TOUT48
O1
GTM output
ATX3P
O2
ASCLIN3 output (LVDS)
MRST4
O3
QSPI4 output
SCLK4P
O4
QSPI4 output (LVDS)
FCLP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P22.2
I
TIN49
SLSI4B
Y24
GTM input
LVDSM_N /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P22.2
O0
General-purpose output
TOUT49
O1
GTM output
–
O2
Reserved
SLSO43
O3
QSPI4 output
MTSR4N
O4
QSPI4 output (LVDS)
SON1
O5
MSC1 output (LVDS)
SOND1
O6
MSC1 output (LVDS)
–
O7
Reserved
P22.3
I
TIN50
SCLK4B
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P22.3
O0
General-purpose output
TOUT50
O1
GTM output
–
O2
Reserved
SCLK4
O3
QSPI4 output
MTSR4P
O4
QSPI4 output (LVDS)
SOP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-69
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-12 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
W21
P22.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN130
W22
GTM input
P22.4
O0
TOUT130
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO012
O4
QSPI0 output
PSITX4
O5
PSI5 output
–
O6
Reserved
–
O7
Reserved
P22.5
I
TIN131
MTSR0C
General-purpose output
General-purpose input
LP /
PU1 /
VEXT
GTM input
QSPI0 input
PSIRX4B
V21
PSI5 input
P22.5
O0
General-purpose output
TOUT131
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.6
I
TIN132
MRST0C
General-purpose input
LP /
PU1 /
VEXT
GTM input
QSPI0 input
P22.6
O0
General-purpose output
TOUT132
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-70
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-12 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
V22
P22.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN133
SCLK0C
U21
QSPI0 input
P22.7
O0
General-purpose output
TOUT133
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SCLK0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.8
I
TIN134
SCLK0B
U22
GTM input
General-purpose input
LP /
PU1 /
VEXT
GTM input
QSPI0 input
P22.8
O0
General-purpose output
TOUT134
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SCLK0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.9
I
TIN135
MRST0B
General-purpose input
LP /
PU1 /
VEXT
GTM input
QSPI0 input
P22.9
O0
General-purpose output
TOUT135
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-71
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-12 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
T21
P22.10
I
LP /
PU1 /
VEXT
General-purpose input
TIN136
MTSR0B
T22
GTM input
QSPI0 input
P22.10
O0
General-purpose output
TOUT136
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.11
I
TIN137
General-purpose input
LP /
PU1 /
VEXT
GTM input
P22.11
O0
General-purpose output
TOUT137
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO010
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-13 Port 23 Functions
Pin
Symbol
Ctrl
Type
Function
AC25
P23.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN41
GTM input
P23.0
O0
TOUT41
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-72
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-13 Port 23 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AB24
P23.1
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN42
SDI10
AB25
MSC1 input
P23.1
O0
General-purpose output
TOUT42
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO46
O3
QSPI4 output
GTMCLK0
O4
GTM output
–
O5
Reserved
EXTCLK0
O6
SCU output
–
O7
Reserved
P23.2
I
TIN43
AA24
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
P23.2
O0
TOUT43
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.3
I
TIN44
INJ10
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC1 input
P23.3
O0
General-purpose output
TOUT44
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-73
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-13 Port 23 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AA25
P23.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN45
AA22
P23.4
O0
TOUT45
O1
GTM output
–
O2
Reserved
SLSO45
O3
QSPI4 output
END12
O4
MSC1 output
EN10
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
P23.5
I
TIN46
Y22
GTM input
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P23.5
O0
TOUT46
O1
GTM output
–
O2
Reserved
SLSO44
O3
QSPI4 output
END13
O4
MSC1 output
EN11
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
P23.6
I
TIN138
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P23.6
O0
TOUT138
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO011
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-74
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-13 Port 23 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y21
P23.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN139
GTM input
P23.7
O0
General-purpose output
TOUT139
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-14 Port 24 Functions
Pin
Symbol
Ctrl
Type
Function
U29
P24.0
I
A2 /
PU1 /
VEBU
General-purpose input
TIN222
P24.0
O0
TOUT222
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ11
HWOU
T
EBU Data Bus Line (SDRAM)
A11
U30
GTM input
P24.1
I
TIN223
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.1
O0
TOUT223
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ15
HWOU
T
EBU Data Bus Line (SDRAM)
A15
Data Sheet
General-purpose output
EBU output
TOC-75
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-14 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
T29
P24.2
I
A2 /
PU1 /
VEBU
General-purpose input
TIN224
P24.2
O0
TOUT224
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ14
HWOU
T
EBU Data Bus Line (SDRAM)
A14
T30
P24.3
I
TIN225
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.3
O0
TOUT225
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ13
HWOU
T
EBU Data Bus Line (SDRAM)
A13
R29
GTM input
P24.4
I
TIN226
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.4
O0
TOUT226
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ9
HWOU
T
EBU Data Bus Line (SDRAM)
A9
Data Sheet
General-purpose output
EBU output
TOC-76
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-14 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
R30
P24.5
I
A2 /
PU1 /
VEBU
General-purpose input
TIN227
P24.5
O0
TOUT227
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ12
HWOU
T
EBU Data Bus Line (SDRAM)
A12
P29
P24.6
I
TIN228
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.6
O0
TOUT228
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ5
HWOU
T
EBU Data Bus Line (SDRAM)
A5
P30
GTM input
P24.7
I
TIN229
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.7
O0
TOUT229
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ8
HWOU
T
EBU Data Bus Line (SDRAM)
A8
Data Sheet
General-purpose output
EBU output
TOC-77
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-14 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
N29
P24.8
I
A2 /
PU1 /
VEBU
General-purpose input
TIN230
P24.8
O0
TOUT230
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ10
HWOU
T
EBU Data Bus Line (SDRAM)
A10
N30
P24.9
I
TIN231
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.9
O0
TOUT231
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ6
HWOU
T
EBU Data Bus Line (SDRAM)
A6
M29
GTM input
P24.10
I
TIN232
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.10
O0
TOUT232
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ4
HWOU
T
EBU Data Bus Line (SDRAM)
A4
Data Sheet
General-purpose output
EBU output
TOC-78
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-14 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
M30
P24.11
I
A2 /
PU1 /
VEBU
General-purpose input
TIN233
P24.11
O0
TOUT233
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ3
HWOU
T
EBU Data Bus Line (SDRAM)
A3
L29
P24.12
I
TIN234
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.12
O0
TOUT234
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ1
HWOU
T
EBU Data Bus Line (SDRAM)
A1
L30
GTM input
P24.13
I
TIN235
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.13
O0
TOUT235
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ2
HWOU
T
EBU Data Bus Line (SDRAM)
A2
Data Sheet
General-purpose output
EBU output
TOC-79
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-14 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
K29
P24.14
I
A2 /
PU1 /
VEBU
General-purpose input
TIN236
P24.14
O0
TOUT236
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ0
HWOU
T
EBU Data Bus Line (SDRAM)
A0
K30
GTM input
P24.15
I
TIN237
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.15
O0
TOUT237
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ7
HWOU
T
EBU Data Bus Line (SDRAM)
A7
Data Sheet
General-purpose output
EBU output
TOC-80
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-15 Port 25 Functions
Pin
Symbol
Ctrl
Type
Function
AG30
P25.0
I
A2 /
PU1 /
VEBU
General-purpose input
TIN206
SDCLKI
O0
General-purpose output
TOUT206
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
BFCLKO
HWOU
T
EBU output
P25.1
I
TIN207
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.1
O0
TOUT207
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
RD
HWOU
T
EBU output
RAS
AF29
EBU input
P25.0
SDCLKO
AF30
GTM input
P25.2
I
TIN208
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.2
O0
TOUT208
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
RD/WR
HWOU
T
EBU output
WR
Data Sheet
General-purpose output
EBU output
TOC-81
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-15 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE30
P25.3
I
A2 /
PU1 /
VEBU
General-purpose input
TIN209
HOLDA
O0
General-purpose output
TOUT209
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
BAABA0
O7
EBU output
(combined for BAA and BA0)
CS2
HWOU
T
EBU output
EBU output
HOLDA
P25.4
EBU output
I
TIN210
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.4
O0
TOUT210
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
CS1
HWOU
T
EBU output
DQM0
AD30
EBU input
P25.3
DQM1
AE29
GTM input
P25.5
I
TIN211
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.5
O0
TOUT211
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
CS0
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-82
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-15 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
W29
P25.6
I
A2 /
PU1 /
VEBU
General-purpose input
AD29
P25.6
O0
TOUT212
O1
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
CKE
HWOU
T
EBU output
P25.7
I
TIN213
GTM output
General-purpose input
GTM input
P25.7
O0
TOUT213
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
ADV
HWOU
T
EBU output
CAS
AC29
A2 /
PU1 /
VEBU
General-purpose output
P25.8
I
TIN214
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.8
O0
TOUT214
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A23
O5
EBU output
SDRAMA0
O6
EBU output
–
O7
Reserved
BC0
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-83
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-15 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AC30
P25.9
I
A2 /
PU1 /
VEBU
General-purpose input
TIN215
AB29
P25.9
O0
TOUT215
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A22
O5
EBU output
SDRAMA1
O6
EBU output
–
O7
Reserved
BC1
HWOU
T
EBU output
P25.10
I
TIN216
AB30
GTM input
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.10
O0
TOUT216
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A21
O5
EBU output
SDRAMA2
O6
EBU output
–
O7
Reserved
BC2
HWOU
T
EBU output
P25.11
I
TIN217
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.11
O0
TOUT217
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A20
O5
EBU output
SDRAMA3
O6
EBU output
–
O7
Reserved
BC3
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-84
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-15 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AA29
P25.12
I
A2 /
PU1 /
VEBU
General-purpose input
TIN218
AA30
P25.12
O0
TOUT218
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA4
O6
EBU output
–
O7
Reserved
A19
HWOU
T
EBU output
P25.13
I
TIN219
Y29
GTM input
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.13
O0
TOUT219
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA5
O6
EBU output
–
O7
Reserved
A17
HWOU
T
EBU output
P25.14
I
TIN220
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.14
O0
TOUT220
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA6
O6
EBU output
–
O7
Reserved
A18
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-85
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-15 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y30
P25.15
I
A2 /
PU1 /
VEBU
General-purpose input
TIN221
GTM input
P25.15
O0
General-purpose output
TOUT221
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA7
O6
EBU output
–
O7
Reserved
A16
HWOU
T
EBU output
Table 2-16 Port 26 Functions
Pin
Symbol
Ctrl
Type
Function
AG29
P26.0
I
LP /
PU1 /
VFLEXE
General-purpose input
TIN212
BFCLKI
GTM input
EBU input
P26.0
O0
General-purpose output
TOUT212
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-86
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-17 Port 30 Functions
Pin
Symbol
Ctrl
Type
Function
AJ21
P30.0
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN190
AK21
P30.0
O0
TOUT190
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD14
HWOU
T
EBU Address / Data Bus Line
P30.1
I
TIN191
AJ22
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.1
O0
TOUT191
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD11
HWOU
T
EBU Address / Data Bus Line
P30.2
I
TIN192
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.2
O0
TOUT192
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD12
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-87
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-17 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AK22
P30.3
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN193
AJ23
P30.3
O0
TOUT193
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD15
HWOU
T
EBU Address / Data Bus Line
P30.4
I
TIN194
AK23
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.4
O0
TOUT194
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD8
HWOU
T
EBU Address / Data Bus Line
P30.5
I
TIN195
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.5
O0
TOUT195
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD13
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-88
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-17 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AJ24
P30.6
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN196
AK24
P30.6
O0
TOUT196
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD4
HWOU
T
EBU Address / Data Bus Line
P30.7
I
TIN197
AJ25
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.7
O0
TOUT197
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD7
HWOU
T
EBU Address / Data Bus Line
P30.8
I
TIN198
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.8
O0
TOUT198
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD3
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-89
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-17 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AK25
P30.9
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN199
AJ26
P30.9
O0
TOUT199
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD0
HWOU
T
EBU Address / Data Bus Line
P30.10
I
TIN200
AK26
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.10
O0
TOUT200
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD5
HWOU
T
EBU Address / Data Bus Line
P30.11
I
TIN201
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.11
O0
TOUT201
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD10
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-90
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-17 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AJ27
P30.12
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN202
AK27
P30.12
O0
TOUT202
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD9
HWOU
T
EBU Address / Data Bus Line
P30.13
I
TIN203
AJ28
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.13
O0
TOUT203
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD2
HWOU
T
EBU Address / Data Bus Line
P30.14
I
TIN204
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.14
O0
TOUT204
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD1
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-91
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-17 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AK28
P30.15
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN205
GTM input
P30.15
O0
General-purpose output
TOUT205
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD6
HWOU
T
EBU Address / Data Bus Line
Table 2-18 Port 31 Functions
Pin
Symbol
Ctrl
Type
Function
AJ12
P31.0
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN174
AK12
GTM input
P31.0
O0
TOUT174
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD30
HWOU
T
EBU Address / Data Bus Line
P31.1
I
TIN175
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.1
O0
TOUT175
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD29
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-92
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-18 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AJ13
P31.2
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN176
AK13
P31.2
O0
TOUT176
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD28
HWOU
T
EBU Address / Data Bus Line
P31.3
I
TIN177
AJ14
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.3
O0
TOUT177
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD26
HWOU
T
EBU Address / Data Bus Line
P31.4
I
TIN178
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.4
O0
TOUT178
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD24
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-93
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-18 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AK14
P31.5
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN179
AJ15
P31.5
O0
TOUT179
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD23
HWOU
T
EBU Address / Data Bus Line
P31.6
I
TIN180
AK15
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.6
O0
TOUT180
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD20
HWOU
T
EBU Address / Data Bus Line
P31.7
I
TIN181
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.7
O0
TOUT181
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD16
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-94
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-18 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AJ16
P31.8
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN182
AK16
P31.8
O0
TOUT182
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD31
HWOU
T
EBU Address / Data Bus Line
P31.9
I
TIN183
AJ17
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.9
O0
TOUT183
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD27
HWOU
T
EBU Address / Data Bus Line
P31.10
I
TIN184
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.10
O0
TOUT184
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD21
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-95
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-18 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AK17
P31.11
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN185
AJ18
P31.11
O0
TOUT185
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD25
HWOU
T
EBU Address / Data Bus Line
P31.12
I
TIN186
AK18
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.12
O0
TOUT186
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD19
HWOU
T
EBU Address / Data Bus Line
P31.13
I
TIN187
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.13
O0
TOUT187
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD22
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-96
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-18 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AJ19
P31.14
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN188
AK19
GTM input
P31.14
O0
TOUT188
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD18
HWOU
T
EBU Address / Data Bus Line
P31.15
I
TIN189
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.15
O0
TOUT189
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD17
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-97
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-19 Port 32 Functions
Pin
Symbol
Ctrl
Type
Function
AE22
P32.0
I
LP /
PX/
VEXT
General-purpose input
TIN36
FDEST
VGATE1N
GTM input
PMU input
SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0
O0
General-purpose output
TOUT36
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P32.2
AE23
I
TIN38
ARX3D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
RXDCAN3B
CAN node 3 input
RXDCANr1D
CAN node 1 input (MultiCANr+)
P32.2
O0
General-purpose output
TOUT38
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
DCDCSYNC
O6
SCU output
–
O7
Reserved
P32.3
AE24
I
TIN39
LP /
PU1 /
VEXT
General-purpose input
GTM input
P32.3
O0
TOUT39
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
ASCLK3
O4
ASCLIN3 output
TXDCAN3
O5
CAN node 3 output
TXDCANr1
O6
CAN node 1 output (MultiCANr+)
–
O7
Reserved
Data Sheet
General-purpose output
TOC-98
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-19 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AD23
P32.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN40
ACTS1B
SDI12
GTM input
ASCLIN1 input
MSC1 input
P32.4
O0
General-purpose output
TOUT40
O1
GTM output
–
O2
Reserved
END12
O3
MSC1 output
GTMCLK1
O4
GTM output
EN10
O5
MSC1 output
EXTCLK1
O6
SCU output
COUT63
O7
CCU60 output
P32.5
AA20
I
TIN140
LP /
PU1 /
VEXT
General-purpose input
GTM input
P32.5
O0
TOUT140
O1
GTM output
ATX2
O2
ASCLIN2 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P32.6
AB20
I
TGI4
TIN141
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
OCDS input
GTM input
RXDCAN2C
CAN node 2 input
ARX2F
ASCLIN2 input
P32.6
O0
General-purpose output
TOUT141
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO212
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO4
HWOU
T
OCDS; ENx
Data Sheet
TOC-99
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-19 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AB21
P32.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN142
TGI5
GTM input
OCDS input
P32.7
O0
General-purpose output
TOUT142
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO5
HWOU
T
OCDS; ENx
Table 2-20 Port 33 Functions
Pin
Symbol
Ctrl
Type
Function
AD15
P33.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN22
DSITR0E
GTM input
DSADC channel 0 input E
P33.0
O0
General-purpose output
TOUT22
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
VADCG2BFL0
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-100
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-20 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE15
P33.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN23
PSIRX0C
GTM input
PSI5 input
SENT9C
SENT input
DSCIN2B
DSADC channel 2 input B
DSITR1E
DSADC channel 1 input E
P33.1
O0
General-purpose output
TOUT23
O1
GTM output
ASLSO3
O2
ASCLIN3 output
SCLK2
O3
QSPI2 output
DSCOUT2
O4
DSADC channel 2 output
VADCEMUX02
O5
VADC output
VADCG2BFL1
O6
VADC output
–
O7
Reserved
P33.2
AD16
I
TIN24
SENT8C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN2B
DSADC channel 2 input B
DSITR2E
DSADC channel 2 input E
P33.2
O0
General-purpose output
TOUT24
O1
GTM output
ASCLK3
O2
ASCLIN3 output
SLSO210
O3
QSPI2 output
PSITX0
O4
PSI5 output
VADCEMUX01
O5
VADC output
VADCG2BFL2
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-101
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-20 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE16
P33.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN25
PSIRX1C
GTM input
PSI5 input
SENT7C
SENT input
DSCIN1B
DSADC channel 1 input B
P33.3
O0
General-purpose output
TOUT25
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT1
O4
DSADC channel 1 output
VADCEMUX00
O5
VADC output
VADCG2BFL3
O6
VADC output
–
O7
Reserved
P33.4
AD17
I
TIN26
SENT6C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CTRAPC
CCU61 input
DSDIN1B
DSADC channel 1 input
DSITR0F
DSADC channel 0 input F
P33.4
O0
General-purpose output
TOUT26
O1
GTM output
ARTS2
O2
ASCLIN2 output
SLSO212
O3
QSPI2 output
PSITX1
O4
PSI5 output
VADCEMUX12
O5
VADC output
VADCG0BFL0
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-102
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-20 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE17
P33.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN27
ACTS2B
GTM input
ASCLIN2 input
PSIRX2C
PSI5 input
PSISRXC
PSI5-S input
SENT5C
SENT input
CCPOS2C
CCU61 input
T4EUDB
GPT120 input
DSCIN0B
DSADC channel 0 input B
DSITR1F
DSADC channel 1 input F
P33.5
O0
General-purpose output
TOUT27
O1
GTM output
SLSO07
O2
QSPI0 output
SLSO17
O3
QSPI1 output
DSCOUT0
O4
DSADC channel 0 output
VADCEMUX11
O5
VADC output
VADCG0BFL1
O6
VADC output
–
O7
Reserved
P33.6
AD18
I
TIN28
SENT4C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CCPOS1C
CCU61 input
T2EUDB
GPT120 input
DSDIN0B
DSADC channel 0 input B
DSITR2F
DSADC channel 2 input F
P33.6
O0
General-purpose output
TOUT28
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO211
O3
QSPI2 output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
VADCG1BFL0
O6
VADC output
PSISTX
O7
PSI5-S output
Data Sheet
TOC-103
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-20 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE18
P33.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN29
RXDCAN0E
GTM input
CAN node 0 input
REQ8
SCU input
CCPOS0C
CCU61 input
T2INB
GPT120 input
P33.7
O0
General-purpose output
TOUT29
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO47
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
VADCG1BFL1
O6
VADC output
–
O7
Reserved
P33.8
AD19
I
TIN30
ARX2E
MP /
HighZ /
VEXT
EMGSTOPA
General-purpose input
GTM input
ASCLIN2 input
SCU input
P33.8
O0
General-purpose output
TOUT30
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO42
O3
QSPI4 output
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
COUT62
O7
CCU61 output
SMUFSP
HWOU
T
SMU
P33.9
AE19
I
TIN31
HSIC3INA
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.9
O0
General-purpose output
TOUT31
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO41
O3
QSPI4 output
ASCLK2
O4
ASCLIN2 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
Data Sheet
TOC-104
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-20 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AD20
P33.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN32
SLSI4A
HSIC3INB
GTM input
QSPI4 input
QSPI3 input
P33.10
O0
General-purpose output
TOUT32
O1
GTM output
SLSO16
O2
QSPI1 output
SLSO40
O3
QSPI4 output
ASLSO1
O4
ASCLIN1 output
PSISCLK
O5
PSI5-S output
–
O6
Reserved
COUT61
O7
CCU61 output
P33.11
AE20
I
TIN33
SCLK4A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P33.11
O0
General-purpose output
TOUT33
O1
GTM output
ASCLK1
O2
ASCLIN1 output
SCLK4
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
DSCGPWMN
O6
DSADC channel output
CC61
O7
CCU61 output
P33.12
AD21
I
TIN34
MTSR4A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P33.12
O0
General-purpose output
TOUT34
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR4
O3
QSPI4 output
ASCLK1
O4
ASCLIN1 output
–
O5
Reserved
DSCGPWMP
O6
DSADC output
COUT60
O7
CCU61 output
Data Sheet
TOC-105
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-20 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE21
P33.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN35
ARX1F
GTM input
ASCLIN1 input
MRST4A
QSPI4 input
DSSGNB
DSADC channel input B
INJ11
MSC1 input
P33.13
O0
General-purpose output
TOUT35
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST4
O3
QSPI4 output
SLSO26
O4
QSPI2 output
–
O5
Reserved
DCDCSYNC
O6
SCU output
CC60
O7
CCU61 output
P33.14
AA19
I
TIN143
TGI6
SCLK2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
OCDS input
QSPI2 input
P33.14
O0
General-purpose output
TOUT143
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
TGO6
HWOU
T
OCDS; ENx
Data Sheet
TOC-106
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-20 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AB19
P33.15
I
LP /
PU1 /
VEXT
General-purpose input
TIN144
TGI7
GTM input
OCDS input
P33.15
O0
General-purpose output
TOUT144
O1
GTM output
–
O2
Reserved
SLSO211
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT62
O7
CCU60 output
TGO7
HWOU
T
OCDS; ENx
Table 2-21 Port 34 Functions
Pin
Symbol
Ctrl
Type
Function
AB16
P34.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN146
AA17
GTM input
P34.1
O0
TOUT146
O1
GTM output
ATX0
O2
ASCLIN0 output
–
O3
Reserved
TXDCAN0
O4
CAN node 0 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
COUT63
O7
CCU60 output
P34.2
I
TIN147
ARX0D
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN0 input
RXDCAN0G
CAN node 0 input
RXDCANr0C
CAN node 0 input (MultiCANr+)
P34.2
O0
General-purpose output
TOUT147
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC60
O7
CCU60 output
Data Sheet
TOC-107
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-21 Port 34 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AB17
P34.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN148
AA18
P34.3
O0
TOUT148
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO210
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P34.4
I
TIN149
MRST2D
AB18
GTM input
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI2 input
P34.4
O0
General-purpose output
TOUT149
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST2
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
CC61
O7
CCU60 output
P34.5
I
TIN150
MTSR2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P34.5
O0
General-purpose output
TOUT150
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR2
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
Data Sheet
TOC-108
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-22 Port 40 Functions
Pin
Symbol
Ctrl
Type
Function
AD7
P40.0
I
S/
HighZ /
VDDM
General-purpose input
VADCG3.0
DS2PB
VADC analog input channel 0 of group 3
DSADC: positive analog input of channel 2, pin B
CCPOS0D
CCU60 input
SENT0A
SENT input
P40.1
AD6
I
VADCG3.1
S/
HighZ /
VDDM
General-purpose inpu.t
VADC analog input channel 1 of group 3 (with pull
down diagnostics)
DS2NB
DSADC: negative analog input channel 2, pin B
CCPOS1B
CCU60 input
SENT1A
SENT input
P40.2
AC7
I
VADCG3.2
S/
HighZ /
VDDM
General-purpose inpu.t
VADC analog input channel 2 of group 3 (with pull
down diagnostics)
CCPOS1D
CCU60 input
SENT2A
SENT input
P40.3
AC6
I
VADCG3.3
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 3 of group 3 (with pull
down diagnostics)
CCPOS2B
CCU60 input
SENT3A
SENT input
P40.4
W9
I
VADCG4.0
CCPOS2D
S/
HighZ /
VDDM
SENT4A
P40.5
Y6
I
CCPOS0D
S/
HighZ /
VDDM
SENT5A
P40.6
VADCG4.4
DS3PA
VADC analog input channel 0 of group 4
CCU60 input
SENT input
VADCG4.1
V9
General-purpose input
General-purpose input
VADC analog input channel 1 of group 4
CCU61 input
SENT input
I
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 4 of group 4
DSADC: positive analog input of channel 3, pin A
CCPOS1B
CCU61 input
SENT6A
SENT input
Data Sheet
TOC-109
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-22 Port 40 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
W7
P40.7
I
S/
HighZ /
VDDM
General-purpose input
VADCG4.5
DS3NA
VADC analog input channel 5 of group 4
DSADC: negative analog input channel 3, pin A
CCPOS1D
CCU61 input
SENT7A
SENT input
P40.8
V10
I
VADCG4.6
DS3PB
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 6 of group 4
DSADC: positive analog input of channel 3, pin B
CCPOS2B
CCU61 input
SENT8A
SENT input
P40.9
W6
I
VADCG4.7
DS3NB
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 7 of group 4
DSADC: negative analog input channel 3, pin B
CCPOS2D
CCU61 input
SENT9A
SENT input
P40.10
AA1
I
VADCG10.3
DS8NB
S/
HighZ /
VDDM
SENT10A
P40.11
Y1
I
DS8PA
S/
HighZ /
VDDM
SENT11A
P40.12
I
DS8NA
S/
HighZ /
VDDM
SENT12A
P40.13
I
DS9PA
S/
HighZ /
VDDM
SENT13A
P40.14
VADCG10.7
DS9NA
SENT14A
Data Sheet
General-purpose input
VADC analog input channel 4 of group 10
DSADC: positive analog input of channel 8, pin A
General-purpose input
VADC analog input channel 5 of group 10
DSADC: positive analog input of channel 8, pin A
SENT input
VADCG10.6
W2
DSADC: negative analog input channel 8, pin B
SENT input
VADCG10.5
W1
VADC analog input channel 3 of group 10
SENT input
VADCG10.4
Y2
General-purpose input
General-purpose input
VADC analog input channel 6 of group 10
DSADC: positive analog input of channel 9, pin A
SENT input
I
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 7 of group 10
DSADC: positive analog input of channel 9, pin A
SENT input
TOC-110
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-23 Analog Inputs
Pin
Symbol
Ctrl
Type
AA15
AN0
I
D / HighZ / Analog input 0
VDDM
VADC analog input channel 0 of group 0
VADCG0.0
DS1PA
AN1
AB15
DSADC: positive analog input of channel 1, pin A
I
VADCG0.1
DS1NA
AN2
AD14
I
DS0PA
AN3
I
DS0NA
AN4
AN5
I
D / HighZ / Analog input 4
VDDM
VADC analog input channel 4 of group 0
I
D / HighZ / Analog input 5
VDDM
VADC analog input channel 5 of group 0
I
D / HighZ / Analog input 6
VDDM
VADC analog input channel 6 of group 0
I
D / HighZ / Analog input 7
VDDM
VADC analog input channel 7 of group 0 (with pull
down diagnostics)
I
D / HighZ / Analog input 8
VDDM
VADC analog input channel 0 of group 1
I
D / HighZ / Analog input 9
VDDM
VADC analog input channel 1 of group 1
I
D / HighZ / Analog input 10
VDDM
VADC analog input channel 2 of group 1
I
D / HighZ / Analog input 11
VDDM
VADC analog input channel 3 of group 1 (with pull
down diagnostics)
I
D / HighZ / Analog input 12
VDDM
VADC analog input channel 4 of group 1
I
D / HighZ / Analog input 13
VDDM
VADC analog input channel 5 of group 1
I
D / HighZ / Analog input 14
VDDM
VADC analog input channel 6 of group 1
I
D / HighZ / Analog input 15
VDDM
VADC analog input channel 7 of group 1
VADCG0.5
AN6
AA13
VADCG0.6
AN7
AB13
VADCG0.7
AN8
AD13
VADCG1.0
AN9
AB12
VADCG1.1
AN10
AE13
VADCG1.2
AN11
AD12
VADCG1.3
AN12
AA12
VADCG1.4
AN13
AD11
VADCG1.5
AN14
AB11
VADCG1.6
AN15
AA11
VADCG1.7
Data Sheet
D / HighZ / Analog input 3
VDDM
VADC analog input channel 3 of group 0
DSADC: negative analog input channel 0, pin A
VADCG0.4
AE14
D / HighZ / Analog input 2
VDDM
VADC analog input channel 2 of group 0
DSADC: positive analog input of channel 0, pin A
VADCG0.3
AA14
D / HighZ / Analog input 1
VDDM
VADC analog input channel 1 of group 0
DSADC: negative analog input channel 1, pin A
VADCG0.2
AB14
Function
TOC-111
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-23 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
AD10
AN16
I
D / HighZ / Analog input 16
VDDM
VADC analog input channel 0 of group 2
I
D / HighZ / Analog input 17
VDDM
VADC analog input channel 1 of group 2
I
D / HighZ / Analog input 18
VDDM
VADC analog input channel 2 of group 2
I
D / HighZ / Analog input 19
VDDM
VADC analog input channel 3 of group 2 (with pull
down diagnostics)
I
D / HighZ / Analog input 20
VDDM
VADC analog input channel 4 of group 2
VADCG2.0
AN17
AB10
VADCG2.1
AN18
AD9
VADCG2.2
AN19
AD8
VADCG2.3
AN20
AE8
VADCG2.4
Function
DS2PA
AN21
AE7
DSADC: positive analog input of channel 2, pin A
I
VADCG2.5
D / HighZ / Analog input 21
VDDM
VADC analog input channel 5 of group 2
DS2NA
AN22
AA10
DSADC: negative analog input channel 2, pin A
I
D / HighZ / Analog input 22
VDDM
VADC analog input channel 6 of group 2
I
D / HighZ / Analog input 23
VDDM
VADC analog input channel 7 of group 2
I
S/
HighZ /
VDDM
VADCG2.6
AN23
Y10
VADCG2.7
AN24
AD7
VADCG3.0
DS2PB
SENT0A
AN25
AD6
Analog input 24
VADC analog input channel 0 of group 3
DSADC: positive analog input of channel 2, pin B
SENT input channel 0, pin A
I
VADCG3.1
S/
HighZ /
VDDM
Analog input 24
VADC analog input channel 1 of group 3 (with pull
down diagnostics)
DS2NB
DSADC: negative analog input channel 2, pin B
SENT1A
SENT input channel 1, pin A
AN26
AC7
I
VADCG3.2
S/
HighZ /
VDDM
SENT2A
AN27
AC6
I
SENT3A
AN28
VADCG3.4
Data Sheet
VADC analog input channel 2 of group 3 (with pull
down diagnostics)
SENT input channel 2, pin A
VADCG3.3
AB7
Analog input 26
S/
HighZ /
VDDM
Analog input 27
VADC analog input channel 3 of group 3 (with pull
down diagnostics)
SENT input channel 3, pin A
I
D / HighZ / Analog input 28
VDDM
VADC analog input channel 4 of group 3 (with pull
down diagnostics)
TOC-112
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-23 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
AB6
AN29
I
D / HighZ / Analog input 29
VDDM
VADC analog input channel 5 of group 3 (with pull
down diagnostics)
I
D / HighZ / Analog input 30
VDDM
VADC analog input channel 6 of group 3
I
D / HighZ / Analog input 31
VDDM
VADC analog input channel 7 of group 3
I
S/
HighZ /
VDDM
VADCG3.5
AN30
AA9
VADCG3.6
AN31
Y9
VADCG3.7
AN32
W9
VADCG4.0
SENT4A
AN33
Y6
I
VADCG4.1
SENT5A
AN34
W10
AN35
AN36
I
S/
HighZ /
VDDM
SENT7A
I
DS3PB
S/
HighZ /
VDDM
SENT8A
I
DS3NB
SENT9A
AN40
AN41
VADCG5.1
Data Sheet
Analog input 37
VADC analog input channel 5 of group 4
DSADC: negative analog input channel 3, pin A
Analog input 38
VADC analog input channel 6 of group 4
DSADC: positive analog input of channel 3, pin B
S/
HighZ /
VDDM
Analog input 39
VADC analog input channel 7 of group 4
DSADC: negative analog input channel 3, pin B
SENT input channel 9, pin A
I
D / HighZ / Analog input 40
VDDM
VADC analog input channel 0 of group 5
I
D / HighZ / Analog input 41
VDDM
VADC analog input channel 1 of group 5
VADCG5.0
U9
DSADC: positive analog input of channel 3, pin A
SENT input channel 8, pin A
VADCG4.7
U10
VADC analog input channel 4 of group 4
SENT input channel 7, pin A
VADCG4.6
AN39
Analog input 34
SENT input channel 6, pin A
DS3NA
W6
SENT input channel 5, pin A
S/
HighZ /
VDDM
VADCG4.5
AN38
VADC analog input channel 1 of group 4
I
SENT6A
V10
Analog input 33
D / HighZ / Analog input 35
VDDM
VADC analog input channel 3 of group 4 (with pull
down diagnostics)
DS3PA
AN37
SENT input channel 4, pin A
I
VADCG4.4
W7
VADC analog input channel 0 of group 4
D / HighZ / Analog input 34
VDDM
VADC analog input channel 2 of group 4
VADCG4.3
V9
S/
HighZ /
VDDM
Analog input 32
I
VADCG4.2
Y7
Function
TOC-113
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-23 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
T10
AN42
I
D / HighZ / Analog input 42
VDDM
VADC analog input channel 2 of group 5
I
D / HighZ / Analog input 43
VDDM
VADC analog input channel 3 of group 5 (with pull
down diagnostics)
I
D / HighZ / Analog input 44
VDDM
VADC analog input channel 4 of group 5
VADCG5.2
AN43
T9
VADCG5.3
AN44
V6
VADCG5.4
DS3PC
AN45
V7
DSADC: positive analog input of channel 3, pin C
I
VADCG5.5
DS3NC
AN46
U6
I
DS3PD
AN47
I
DS3ND
AN48
AN49
I
D / HighZ / Analog input 48
VDDM
VADC analog input channel 0 of group 8
I
D / HighZ / Analog input 49
VDDM
VADC analog input channel 1 of group 8 (muxtest)
I
D / HighZ / Analog input 50
VDDM
VADC analog input channel 2 of group 8 (muxtest)
I
D / HighZ / Analog input 51
VDDM
VADC analog input channel 3 of group 8
I
D / HighZ / Analog input 52
VDDM
VADC analog input channel 4 of group 8
VADCG8.1
AN50
AJ6
VADCG8.2
AN51
AK6
VADCG8.3
AN52
AJ5
VADCG8.4
DS6PA
AN53
AK5
DSADC: positive analog input of channel 6, pin A
I
VADCG8.5
DS6NA
AN54
AJ4
I
DS6PB
AN55
I
DS6NB
AN56
VADCG9.0
Data Sheet
D / HighZ / Analog input 5
VDDM
VADC analog input channel 6 of group 8
DSADC: positive analog input of channel 6, pin B
VADCG8.7
AF1
D / HighZ / Analog input 53
VDDM
VADC analog input channel 5 of group 8
DSADC: negative analog input channel 6, pin A
VADCG8.6
AK4
D / HighZ / Analog input 47
VDDM
VADC analog input channel 7 of group 5
DSADC: negative analog input channel 3, pin D
VADCG8.0
AJ7
D / HighZ / Analog input 46
VDDM
VADC analog input channel 6 of group 5
DSADC: positive analog input of channel 3, pin D
VADCG5.7
AK7
D / HighZ / Analog input 45
VDDM
VADC analog input channel 5 of group 5
DSADC: negative analog input channel 3, pin C
VADCG5.6
U7
Function
D / HighZ / Analog input 50
VDDM
VADC analog input channel 7 of group 8
DSADC: negative analog input channel 6, pin B
I
D / HighZ / Analog input 56
VDDM
VADC analog input channel 0 of group 9
TOC-114
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-23 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
AF2
AN57
I
D / HighZ / Analog input 57
VDDM
VADC analog input channel 1 of group 9 (muxtest)
I
D / HighZ / Analog input 58
VDDM
VADC analog input channel 2 of group 9 (muxtest)
I
D / HighZ / Analog input 59
VDDM
VADC analog input channel 3 of group 9
I
D / HighZ / Analog input 60
VDDM
VADC analog input channel 4 of group 9
VADCG9.1
AN58
AE2
VADCG9.2
AN59
AE1
VADCG9.3
AN60
AD1
VADCG9.4
Function
DS7PA
AN61
AD2
DSADC: positive analog input of channel 7, pin A
I
VADCG9.5
D / HighZ / Analog input 61
VDDM
VADC analog input channel 5 of group 9
DS7NA
AN62
AC2
DSADC: negative analog input channel 7, pin A
I
VADCG9.6
D / HighZ / Analog input 62
VDDM
VADC analog input channel 6 of group 9
DS7PB
AN63
AC1
DSADC: positive analog input of channel 7, pin B
I
VADCG9.7
D / HighZ / Analog input 63
VDDM
VADC analog input channel 7 of group 9
DS7NB
AN64
AB2
DSADC: negative analog input channel 7, pin B
I
D / HighZ / Analog input 64
VDDM
VADC analog input channel 0 of group 10
I
D / HighZ / Analog input 65
VDDM
VADC analog input channel 1 of group 10 (muxtest)
I
D / HighZ / Analog input 66
VDDM
VADC analog input channel 2 of group 10 (muxtest)
VADCG10.0
AN65
AB1
VADCG10.1
AN66
AA2
VADCG10.2
DS8PB
AN67
AA1
DSADC: positive analog input of channel 8, pin B
I
VADCG10.3
DS8NB
S/
HighZ /
VDDM
SENT10A
AN68
Y1
I
DS8PA
S/
HighZ /
VDDM
SENT11A
AN69
VADCG10.5
DS8NA
SENT12A
Data Sheet
VADC analog input channel 3 of group 10
DSADC: negative analog input channel 8, pin B
SENT input channel 10, pin A
VADCG10.4
Y2
Analog input 67
Analog input 68
VADC analog input channel 4 of group 10
DSADC: positive analog input of channel 8, pin A
SENT input channel 11, pin A
I
S/
HighZ /
VDDM
Analog input 69
VADC analog input channel 5 of group 10
DSADC: negative analog input channel 8, pin A
SENT input channel 12, pin A
TOC-115
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-23 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
Function
W1
AN70
I
S/
HighZ /
VDDM
Analog input 70
VADCG10.6
DS9PA
SENT13A
AN71
W2
VADC analog input channel 6 of group 10
DSADC: positive analog input of channel 9, pin A
SENT input channel 13, pin A
I
VADCG10.7
DS9NA
S/
HighZ /
VDDM
SENT14A
Analog input 71
VADC analog input channel 7 of group 10
DSADC: negative analog input channel 9, pin A
SENT input channel 14, pin A
Table 2-24 System I/O
Pin
Symbol
Ctrl
Type
Function
M22
PORST
I
PORST /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
L21
ESR0
I/O
MP /
OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is opendrain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished.
See also SCU chapter for details.
Default after power-on can be different. See also
SCU chapter ´Reset Control Unit´ and SCU_IOCR
register description.
EVRWUP
ESR1
M21
EVRWUP
I
I/O
EVR Wakeup Pin
External System Request Reset 1
Default NMI function.
See also SCU chapter ´Reset Control Unit´ and
SCU_IOCR register description.
MP /
PU1 /
VEXT
I
EVR Wakeup Pin
AD22
VGATE1P
O
VGATE1P /
-/
VEXT
External Pass Device gate control for EVR13
AJ20
VGATE3P
O
VGATE3P /
-/
VEXT
External Pass Device gate control for EVR33
R21
TMS
I
A2 /
PD /
VDDP3
JTAG Module State Machine Control Input
DAP1
T24
Data Sheet
TRST
I/O
I
A2 /
PD /
VDDP3
Device Access Port Line 1
JTAG Module Reset/Enable Input
TOC-116
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-24 System I/O (cont’d)
Pin
Symbol
Ctrl
Type
Function
P21
TCK
I
JTAG Module Clock Input
DAP0
I
A2 /
PD /
VDDP3
Device Access Port Line 0
U25
XTAL1
I
XTAL1 /
-/
VDDP3
Main Oscillator/PLL/Clock Generator Input
U24
XTAL2
O
XTAL2 /
-/
VDDP3
Main Oscillator/PLL/Clock Generator Output
Table 2-25 Supply
Pin
Symbol
Ctrl
Type
Function
AE11
VAREF1
I
Vx
Positive Analog Reference Voltage 1
AE12
VAGND1
I
Vx
Negative Analog Reference Voltage 1
AA6
VAREF2
I
Vx
Positive Analog Reference Voltage 2
AA7
VAGND2
I
Vx
Negative Analog Reference Voltage 2
AE10, AJ9, AK9
VDDM
I
Vx
ADC Analog Power Supply (3.3V / 5V)
N12, M13
VDD / VDDSB
I
Vx
Emulation Device: Emulation SRAM
Standby Power Supply (1.3V) (Emulation
Device only).
Production Device: VDD (1.3V).
M18, N19, V12, V19, W13,
W18
VDD
I
Vx
Digital Core Power Supply (1.3V)
V24
VDD
I
Vx
Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main
XTAL Oscillator/PLL (1.3V) . A higher
decoupling capacitor is therefore
recommended to the VSS pin for better
noise immunity.
A2, B3, F7, G8, AC24, AD25,
AH29, AJ30
VEXT
I
Vx
External Power Supply (5V / 3.3V)
A29, B28, F24, G23
VDDP3
I
Vx
Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power
Supply for VFLEX.
V25
VDDP3
I
Vx
Digital Power Supply for Oscillator,
LVDSH and A2 pads (3.3V).
The supply pin inturn supplies the main
XTAL Oscillator/PLL (3.3V) . A higher
decoupling capacitor is therefore
recommended to the VSS pin for better
noise immunity.
K20, J21
VDDFL3
I
Vx
Flash Power Supply (3.3V)
J10
VFLEX
I
Vx
Digital Power Supply for Flex Port Pads
(5V / 3.3V)
Data Sheet
TOC-117
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-25 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
AJ11, AK11, AK20, AK29
VFLEXE
I
Vx
Digital Power Supply for EBU Flex Port
Pads
(5V / 3.3V)
J29,J30, AH30
VEBU
I
Vx
Digital Power Supply for EBU
(3.3V)
AK8, AJ8, AE9
VSSM
I
Vx
Analog Ground for VDDM
AA16
VEVRSB
I
Vx
Standby Power Supply (3.3V/5V) for the
Standby SRAM (CPU0.DSPR).
If Standby mode is not used: To be
handled like VEXT (3.3V/5V).
A30, B2, B29, B30, F25, G7, VSS
G24, H29, H30, J9, J22, K10,
K21, T25, AA21, AB22, AD24,
AE25, AJ10, AJ29, AK10,
AK30
I
Vx
Digital Ground (outer balls)
VSS
I
Vx
Digital Ground (center balls)
U12, U13, U15, U16, U18, U19 VSS
I
Vx
Digital Ground (center balls)
VSS
I
Vx
Digital Ground (center balls)
R13, R14, R15, R16, R17, R18 VSS
I
Vx
Digital Ground (center balls)
P12, P13, P15, P16, P18, P19 VSS
I
Vx
Digital Ground (center balls)
M14, M15, M16, M17, N14,
N15, N16, N17
VSS
I
Vx
Digital Ground (center balls)
W15
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT TX0N
W16
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT TX0P
T12
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT CLKN
R12
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT CLKP
T19
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT ERR
W14, W17, V14, V15, V16,
V17
T13, T14, T15, T16, T17, T18
Data Sheet
TOC-118
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
Table 2-25 Supply (cont’d)
Pin
Symbol
NC
AK2, AK3, AJ1, AJ2, AJ3,
AH1, AH2, AG1, AG2,
W30, V1, V2, V29, V30, T1,
R1, R2, J1, H1, H2, G29, G30,
F29, F30, E1, E2, E29, E30,
D1, D2, D29, D30, C1, C2,
C29, C30
B1, B4, B6, B9, B10, B14,
B17, B20, B21, B25, B26,
B27,
A3, A4, A8, A9, A10, A17,
A21, A25, A26, A27, A28
R19
NC / VDDPSB
Ctrl
Type
Function
I
NC
Not Connected. These pins are reserved
for future extensions and shall not be
connected externally.
I
NCVDD Emulation Device: Power Supply (3.3V)
PSB
for DAP/JTAG pad group. Can be
connected to VDDP or can be left
unsupplied (see document ´AurixED´ /
Aurix Emulation Devices specification.
Production Device:
This pin is not connected on package
level. It can be connected on PCB level
to VDDP or Ground or can be left
unsupplied.
A1, F6, AK1, AE6, AB9
NC
I
NC1
Not Connected.
These pins are not connected on
package level and will not be used for
future extensions.
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
LP = Pad class LP (5V/3.3V, Class LP parameters for digital input / output and class D parameters for analog input
function)
MP = Pad class MP (5V/3.3V)
MP+ = Pad class MP+ (5V/3.3V)
MPR = Pad class MPR (5V/3.3V)
A2 = Pad class A2 (3.3V)
Data Sheet
TOC-119
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
LVDSM = Pad class LVDSM (5V/3.3V)
LVDSH = Pad class LVDSH (3.3V)
S = Pad class S (Class S parameters for digital input and class D parameters for analog input function)
D = Pad class D (VADC / DSADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST = PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
2.1.2
Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
•
Input state and
•
PU or High-Z depending on HWCFG[6] level latched during Porst active
Control of the Emergency Stop function:
•
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
•
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
•
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
•
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
•
Not available for P40.x (analoge input ANx overlayed with GPI)
•
Not available for P32.0 EVR13 SMPS mode.
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.
Data Sheet
TOC-120
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC299x Pin Definition and Functions:
•
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
•
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O
Ports and Peripheral I/O Lines”, P00 / P01)
•
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
•
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
•
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
•
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
•
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
•
P33.8: Emergency Stop can be overruled if this pin is used as safety output pin (SMUFSP)
2.1.3
Pull-Up/Pull-Down Reset Behavior of the Pins
Table 2-26 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Data Sheet
TOC-121
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
2.2
TC298x Pin Definition and Functions: BGA416
Figure 2-2 is showing the TC298x Logic Symbol for the package variant: BGA416.
1
4
5
6
7
8
9
10
17
18
19
20
21
22
23
24
25
26
P10.15 P10.11
2
3
P10.8
P11.3
P10.5
P10.2
P10.4
P10.0
P11.7
P12.0 P13.14 P13.10 P14.8 P14.12 P13.6
11
12
13
14
15
16
P13.5
VDDFL3
P14.11
P15.7
P15.4
ESR1
ESR0
P20.0
VEXT
VSS
A
P10.7
A
NC
B
P02.1
P02.0
P11.9
P10.9
P10.3
P10.1
P11.13
P11.5
P12.1 P13.12 P13.11 P14.15 P14.14 P13.7
P13.4
VDDFL3
P14.13
P15.6
P15.2
PORST
P20.2
VEXT
VSS
VDD
B
C
P02.4
P02.11 P10.14 P10.10 P11.12
P11.6
P11.15 P11.14
P11.8
P11.4
P11.1
P13.9
P14.6
P14.3 P14.10 P13.3
P13.0
P13.1
P14.9
P14.5
P14.0
P15.1
VEXT
VSS
VDD
P21.5
C
D
P02.13 P02.15 P02.12
P02.5
VDD
P11.2
P11.0
P14.7
P14.4
VEXT
P13.2
P15.3
P15.5
P14.2
P14.1
VEXT
VSS
VDD
P21.7
P21.4
D
E
P02.14
E
VDD
TCK
P21.6
VDDP3
E
F
TRST
TMS
VSS
VDD
F
G
P21.3
P21.1
XTAL2
XTAL1
G
H
P21.2
VDDP3
VDDP3
VDDP3
H
J
P21.0
P22.1
P22.2
P22.3
J
F
G
P01.0
P01.2
P10.13
P11.10 P11.11 VFLEX
P02.2
P01.7
P02.9
E
P02.3
P01.6
P02.10
F
P10.6
P01.4
P01.5
G
H
P02.7
P02.6
P01.3
VDD
H
J
P01.9
P01.1
P02.8
VSS
J
K
P01.11 P01.10
P01.8
VEXT
K
L
P01.15 P01.14 P01.13 P01.12
M
P00.3
P00.2
P00.1
N
P00.10
P00.9
P00.5
6
7
VSS
8
9
10
14
15
16
17
18
19
20
21
11
12
13
14
15
16
17
K
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
K
K
P22.0
P23.4
P23.5
P23.6
K
L
L
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
L
L
VSS
P23.1
P23.2
P23.3
L
P00.0
M
M
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
M
M
VEBU
P24.14
P24.15
P23.0
M
P00.4
N
N
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
N
N
P24.10
P24.11
P24.12
P24.13
N
VSS
VSS
VSS
VSS
VSS
VSS
NC
(VDDPSB)
P
P
VDD
P24.7
P24.8
P24.9
P
VSS
VSS
VSS
VSS
VSS
VSS
(AGBT
ERR)
R
R
VSS
P24.4
P24.5
P24.6
R
P00.12 P00.11 P00.13 P00.15
P
P
R
NC/
P00.14
VDDSB
P00.8
13
10
P
AN42
12
P15.8
Top-View
VSS
(AGBT
CLKP)
T
11
VSS
P00.6
NC/
VDDSB
R
R
VSS
(AGBT
CLKN)
VSS
P00.7
VSS
T
T
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
T
T
VEBU
P24.1
P24.2
P24.3
T
VSS
VSS
VSS
(AGBT
TX0N)
VSS
(AGBT
TX0P)
VSS
VSS
VSS
VSS
U
U
P24.0
P25.13
P25.14
P25.15
U
10
11
12
13
14
15
16
17
V
VDD
P25.10
P25.11
P25.12
V
U
AN43
AN70
AN41
AN40
U
U
V
AN71
AN68
AN37
AN36
V
W
AN69
AN64
AN32
VAREF2
W
W
VSS
P25.7
P25.8
P25.9
W
Y
AN65
AN60
AN33 VAGND2
Y
Y
VEBU
P25.3
P25.4
P25.5
Y
AA
AN61
AN26
AN5
AN56
AA
AA
P25.2
P25.1
P26.0
P25.0
AA
AB
AN28
AN27
AN57
AN7
AB
AB
VDD
P30.2
P30.7
P30.12
AB
AC
AN29
AN4
AN16
AN8
AN0
VSS
P30.3
P30.8
P30.13
AC
AD
AN6
AN48
AN17
AN9
AN1
AE
AN49
AN18
AN10
AN2
VDDM
AN52
AN54
AN22
VDDM
AF
NC
AN19
AN11
AN3
VSSM
AN53
AN55
AN23
1
2
3
4
5
6
7
8
6
7
8
9
10
11
12
13
19
20
VAGND1 AN24
AN20
P34.1
P34.2
P33.0
P33.4 P33.14 P32.4
P33.7
VEXT VGATE1P VFLEXE
VSS
VDD
VAREF1 AN25
AN21
VEVRSB P34.4
P33.1
P33.5 P33.15 P32.5
P33.8
VEXT
P32.0
P31.0
P31.3
P31.6
P31.9
P31.12
P31.14
P30.4
P30.9
P30.14
AD
P34.5
P33.2
P33.6
P32.2 P33.10 P33.13
VEXT
P32.6
P31.1
P31.4
P31.7
P31.10
P31.13
P31.15
P30.5
P30.10
P30.15
AE
VSSM
P34.3
9
10
P33.3
P33.9
P32.3 P33.11 P33.12
VEXT
P32.7
P31.2
P31.5
P31.8
P31.11
P30.0
P30.1
P30.6
P30.11
NC
AF
11
12
16
17
18
19
20
21
22
23
24
25
26
13
14
14
15
15
16
17
18
21
VGATE3P VFLEXE
Figure 2-2 TC298x Logic Symbol for the package variant BGA416.
Data Sheet
TOC-122
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
2.2.1
TC298x BGA416 Package Variant Pin Configuration
Table 2-27 Port 00 Functions
Pin
Symbol
Ctrl
Type
Function
M4
P00.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN9
CTRAPA
GTM input
CCU61 input
T12HRE
CCU60 input
INJ00
MSC0 input
CIFD9
CIF input
P00.0
O0
General-purpose output
TOUT9
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
COUT63
O7
CCU60 output
ETHMDIOA
HWOU
T
ETH input/output
Data Sheet
TOC-123
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-27 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
M3
P00.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN10
ARX3E
M2
GTM input
ASCLIN3 input
RXDCAN1D
CAN node 1 input
PSIRX0A
PSI5 input
SENT0B
SENT input
CC60INB
CCU60 input
CC60INA
CCU61 input
DSCIN5A
DSADC channel 5 input
DS5NA
DSADC positive analog input of channel channel 5,
pin A
DSCIN7B
DSADC channel 7 input
VADCG7.5
VADC analog input channel 5 of group 7
CIFD10
CIF input
P00.1
O0
General-purpose output
TOUT10
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT5
O4
DSADC channel 5 output
DSCOUT7
O5
DSADC channel 7 output
SPC0
O6
SENT output
CC60
O7
CCU61 output
P00.2
I
TIN11
SENT1B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN5A
DSADC channel 5 input
DSDIN7B
DSADC channel 7 input
DS5PA
DSADC negative analog input of channel 5, pin A
VADCG7.4
VADC analog input channel 4 of group 7
CIFD11
CIF input
P00.2
O0
General-purpose output
TOUT11
O1
GTM output
ASCLK3
O2
ASCLIN3 output
TXDCANr1
O3
CAN node 1 output (MultiCANr+)
PSITX0
O4
PSI5 output
TXDCAN3
O5
CAN node 3 output
SLSO34
O6
QSPI3 output
COUT60
O7
CCU61 output
Data Sheet
TOC-124
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-27 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
M1
P00.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN12
RXDCAN3A
N4
GTM input
CAN node 3 input
RXDCANr1A
CAN node 1 input (MultiCANr+)
PSIRX1A
PSI5 input
PSISRXA
PSI5-S input
SENT2B
SENT input
CC61INB
CCU60 input
CC61INA
CCU61 input
DSCIN3A
DSADC channel 3 input
VADCG7.3
VADC analog input channel 3 of group 7
DSITR5F
DSADC channel 5 input
CIFD12
CIF input
P00.3
O0
General-purpose output
TOUT12
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT3
O4
DSADC channel 3 output
–
O5
Reserved
SPC2
O6
SENT output
CC61
O7
CCU61 output
P00.4
I
TIN13
REQ7
LP /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
SENT3B
SENT input
DSDIN3A
DSADC channel 3 input
DSSGNA
DSADC channel input
VADCG7.2
VADC analog input channel 2 of group 7
CIFD13
CIF input
P00.4
O0
General-purpose output
TOUT13
O1
GTM output
PSISTX
O2
PSI5-S output
–
O3
Reserved
PSITX1
O4
PSI5 output
VADCG4BFL0
O5
VADC output
SPC3
O6
SENT output
COUT61
O7
CCU61 output
Data Sheet
TOC-125
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-27 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
N3
P00.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN14
PSIRX2A
R3
GTM input
PSI5 input
SENT4B
SENT input
CC62INB
CCU60 input
CC62INA
CCU61 input
DSCIN2A
DSADC channel 2 input
VADCG7.1
VADC analog input channel 1 of group 7
CIFD14
CIF input
P00.5
O0
General-purpose output
TOUT14
O1
GTM output
DSCGPWMN
O2
DSADC output
SLSO33
O3
QSPI3 output
DSCOUT2
O4
DSADC channel 2 output
VADCG4BFL1
O5
VADC output
SPC4
O6
SENT output
CC62
O7
CCU61 output
P00.6
I
TIN15
SENT5B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN2A
DSADC channel 2 input A
VADCG7.0
VADC analog input channel 0 of group 7 (with pull
down diagnostics)
DSITR4F
DSADC channel 4 input F
CIFD15
CIF input
P00.6
O0
General-purpose output
TOUT15
O1
GTM output
DSCGPWMP
O2
DSADC output
VADCG4BFL2
O3
VADC output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
SPC5
O6
SENT output
COUT62
O7
CCU61 output
Data Sheet
TOC-126
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-27 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
T3
P00.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN16
SENT6B
T2
GTM input
SENT input
CC60INC
CCU61 input
CCPOS0A
CCU61 input
T12HRB
CCU60 input
T2INA
GPT120 input
DSCIN4A
DSADC channel 4 input A
DS4NA
DSADC negative analog input channel 4, pin A
VADCG6.5
VADC analog input channel 5 of group 6
CIFCLK
CIF input
P00.7
O0
General-purpose output
TOUT16
O1
GTM output
–
O2
Reserved
VADCG4BFL3
O3
VADC output
DSCOUT4
O4
DSADC channel 4 output
VADCEMUX11
O5
VADC output
SPC6
O6
SENT output
CC60
O7
CCU61 output
P00.8
I
TIN17
SENT7B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CC61INC
CCU61 input
CCPOS1A
CCU61 input
T13HRB
CCU60 input
T2EUDA
GPT120 input
DSDIN4A
DSADC channel 4 input A
DS4PA
DSADC positive analog input of channel 4, pin A
VADCG6.4
VADC analog input channel 4 of group 6
CIFVSNC
CIF input
P00.8
O0
General-purpose output
TOUT17
O1
GTM output
SLSO36
O2
QSPI3 output
–
O3
Reserved
–
O4
Reserved
VADCEMUX12
O5
VADC output
SPC7
O6
SENT output
CC61
O7
CCU61 output
Data Sheet
TOC-127
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-27 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
N2
P00.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN18
SENT8B
N1
GTM input
SENT input
CC62INC
CCU61 input
CCPOS2A
CCU61 input
T13HRC
CCU60 input
T12HRC
CCU60 input
T4EUDA
GPT120 input
DSCIN1A
DSADC channel 1 input A
VADCG6.3
VADC analog input channel 3 of group 6
DSITR3F
DSADC channel 3 input F
CIFHSNC
CIF input
P00.9
O0
General-purpose output
TOUT18
O1
GTM output
SLSO37
O2
QSPI3 output
ARTS3
O3
ASCLIN3 output
DSCOUT1
O4
DSADC channel 1 output
–
O5
Reserved
SPC8
O6
SENT output
CC62
O7
CCU61 output
P00.10
I
TIN19
SENT9B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN1A
DSADC channel 1 input A
VADCG6.2
VADC analog input channel 2 of group 6
P00.10
O0
General-purpose output
TOUT19
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SPC9
O6
SENT output
COUT63
O7
CCU61 output
Data Sheet
TOC-128
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-27 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
P2
P00.11
I
LP /
PU1 /
VEXT
General-purpose input
TIN20
CTRAPA
P1
CCU60 input
T12HRE
CCU61 input
DSCIN0A
DSADC channel 0 input A
VADCG6.1
VADC analog input channel 1 of group 6
P00.11
O0
General-purpose output
TOUT20
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P00.12
I
TIN21
ACTS3A
P3
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
DSDIN0A
DSADC channel 0 input A
VADCG6.0
VADC analog input channel 0 of group 6
P00.12
O0
General-purpose output
TOUT21
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
P00.13
I
TIN167
DSDIN6A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 6 input A
P00.13
O0
General-purpose output
TOUT167
O1
GTM output
–
O2
Reserved
–
O3
Reserved
EXTCLK1
O4
SCU output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-129
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-27 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
R2
P00.14
I
LP /
PU1 /
VEXT
General-purpose input
TIN166
DSCIN6A
P4
GTM input
DSADC channel 6 input A
P00.14
O0
General-purpose output
TOUT166
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT6
O4
DSADC channel 6 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P00.15
I
MP+ /
PU1 /
VEXT
TIN168
DSITR6F
General-purpose input
GTM input
DSADC channel 6 input F
P00.15
O0
General-purpose output
TOUT168
O1
GTM output
–
O2
Reserved
–
O3
Reserved
EXTCLK0
O4
SCU output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-28 Port 01 Functions
Pin
Symbol
Ctrl
Type
Function
F1
P01.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN155
DSITR6E
GTM input
DSADC channel 6 input E
RXDCAN3F
CAN node 3 input
RXDCANr1E
CAN node 1 input (MultiCANr+)
P01.0
O0
General-purpose output
TOUT155
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-130
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-28 Port 01 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J2
P01.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN159
DSITR8E
G1
DSADC channel 8 input E
RXD1A1
ERAY1 input
SENT10B
SENT input
P01.1
O0
General-purpose output
TOUT159
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.2
I
TIN156
DSCIN7A
H3
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 7 input A
P01.2
O0
General-purpose output
TOUT156
O1
GTM output
–
O2
Reserved
TXDCAN3
O3
CAN node 3 output
–
O4
Reserved
TXDCANr1
O5
CAN node 1 output (MultiCANr+)
DSCOUT7
O6
DSADC channel 7 output
–
O7
Reserved
P01.3
I
TIN111
SLSI3B
DSITR7F
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
DSADC channel 7 input F
P01.3
O0
General-purpose output
TOUT111
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO39
O4
QSPI3 output
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-131
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-28 Port 01 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
G3
P01.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN112
RXDCAN1C
DSITR7E
G4
CAN node 1 input
DSADC channel 7 input E
P01.4
O0
General-purpose output
TOUT112
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO310
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.5
I
TIN113
MRST3C
LP /
PU1 /
VEXT
DSCIN8A
F3
GTM input
General-purpose input
GTM input
QSPI3 input
DSADC channel 8 input A
P01.5
O0
General-purpose output
TOUT113
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST3
O4
QSPI3 output
–
O5
Reserved
DSCOUT8
O6
DSADC channel 8 output
–
O7
Reserved
P01.6
I
TIN114
MTSR3C
DSDIN8A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
DSADC channel 8 input A
P01.6
O0
General-purpose output
TOUT114
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR3
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-132
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-28 Port 01 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E3
P01.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN115
SCLK3C
DSITR8F
K3
GTM input
QSPI3 input
DSADC channel 8 input F
P01.7
O0
General-purpose output
TOUT115
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SCLK3
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.8
I
TIN162
DSDIN9A
LP /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 9 input A
SENT12B
SENT input
ARX0C
ASCLIN0 input
RXDCAN0F
CAN node 0 input
RXDCANr0E
CAN node 0 input (MultiCANr+)
RXD1B1
ERAY1 input
P01.8
O0
General-purpose output
TOUT162
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-133
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-28 Port 01 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J1
P01.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN160
DSCIN9A
SENT11B
K2
DSADC channel 9 input A
SENT input
P01.9
O0
General-purpose output
TOUT160
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
DSCOUT9
O6
DSADC channel 9 output
–
O7
Reserved
P01.10
I
TIN163
DSITR9F
LP /
PU1 /
VEXT
SENT13B
K1
GTM input
General-purpose input
GTM input
DSADC channel 9 input F
SENT input
P01.10
O0
General-purpose output
TOUT163
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.11
I
TIN165
DSITR9E
SENT14B
LP /
PU1 /
VEXT
General-purpose input
GTM input
DSADC channel 9 input E
SENT input
P01.11
O0
General-purpose output
TOUT165
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-134
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-28 Port 01 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
L4
P01.12
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN158
L3
P01.12
O0
TOUT158
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXD1A
O6
ERAY1 output
–
O7
Reserved
P01.13
I
TIN161
L2
GTM input
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P01.13
O0
TOUT161
O1
GTM output
ATX0
O2
ASCLIN0 output
–
O3
Reserved
TXDCAN0
O4
CAN node 0 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
TXD1B
O6
ERAY1 output
–
O7
Reserved
P01.14
I
TIN164
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P01.14
O0
TOUT164
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXEN1A
O6
ERAY1 output
–
O7
Reserved
Data Sheet
General-purpose output
TOC-135
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-28 Port 01 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
L1
P01.15
I
LP /
PU1 /
VEXT
General-purpose input
TIN157
DSDIN7A
GTM input
DSADC channel 7 input A
P01.15
O0
General-purpose output
TOUT157
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-29 Port 02 Functions
Pin
Symbol
Ctrl
Type
Function
B2
P02.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN0
REQ6
GTM input
SCU input
ARX2G
ASCLIN2 input
CC60INA
CCU60 input
CC60INB
CCU61 input
CIFD0
CIF input
P02.0
O0
General-purpose output
TOUT0
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
DSCGPWMN
O4
DSADC output
TXDCAN0
O5
CAN node 0 output
TXD0A
O6
ERAY0 output
CC60
O7
CCU60 output
Data Sheet
TOC-136
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-29 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
B1
P02.1
I
LP / PU1 General-purpose input
/ VEXT
GTM input
TIN1
E2
Function
REQ14
SCU input
ARX2B
ASCLIN2 input
RXDCAN0A
CAN node 0 input
RXD0A2
ERAY0 input
CIFD1
CIF input
P02.1
O0
General-purpose output
TOUT1
O1
GTM output
SLSO47
O2
QSPI4 output
SLSO32
O3
QSPI3 output
DSCGPWMP
O4
DSADC output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P02.2
I
TIN2
CC61INA
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
CCU60 input
CC61INB
CCU61 input
CIFD2
CIF input
P02.2
O0
General-purpose output
TOUT2
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO33
O3
QSPI3 output
PSITX0
O4
PSI5 output
TXDCAN2
O5
CAN node 2 output
TXD0B
O6
ERAY0 output
CC61
O7
CCU60 output
Data Sheet
TOC-137
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-29 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
F2
P02.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN3
ARX1G
C1
GTM input
ASCLIN1 input
RXDCAN2B
CAN node 2 input
RXD0B2
ERAY0 input
PSIRX0B
PSI5 input
DSCIN5B
DSADC channel 5 input B
SDI11
MSC1 input
CIFD3
CIF input
P02.3
O0
General-purpose output
TOUT3
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO34
O3
QSPI3 output
DSCOUT5
O4
DSADC channel 5 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
P02.4
I
TIN4
SLSI3A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
ECTT1
TTCAN input
RXDCAN0D
CAN node 0 input
CC62INA
CCU60 input
CC62INB
CCU61 input
DSDIN5B
DSADC channel 5 input B
SDA0A
I2C0 input
CIFD4
CIF input
P02.4
O0
General-purpose output
TOUT4
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO30
O3
QSPI3 output
PSISCLK
O4
PSI5-S output
SDA0
O5
I2C0 output
TXEN0A
O6
ERAY0 output
CC62
O7
CCU60 output
Data Sheet
TOC-138
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-29 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D4
P02.5
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN5
MRST3A
H2
GTM input
QSPI3 input
ECTT2
TTCAN input
PSIRX1B
PSI5 input
PSISRXB
PSI5-S input
SENT3C
SENT input
DSCIN4B
DSADC channel 4 input B
SCL0A
I2C0 input
CIFD5
CIF input
P02.5
O0
General-purpose output
TOUT5
O1
GTM output
TXDCAN0
O2
CAN node 0 output
MRST3
O3
QSPI3 output
DSCOUT4
O4
DSADC channel 4 output
SCL0
O5
I2C0 output
TXEN0B
O6
ERAY0 output
COUT62
O7
CCU60 output
P02.6
I
TIN6
MTSR3A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
SENT2C
SENT input
CC60INC
CCU60 input
CCPOS0A
CCU60 input
T12HRB
CCU61 input
T3INA
GPT120 input
CIFD6
CIF input
DSDIN4B
DSADC channel 4 input B
DSITR5E
DSADC channel 5 input E
P02.6
O0
General-purpose output
TOUT6
O1
GTM output
PSISTX
O2
PSI5-S output
MTSR3
O3
QSPI3 output
PSITX1
O4
PSI5 output
VADCEMUX00
O5
VADC output
–
O6
Reserved
CC60
O7
CCU60 output
Data Sheet
TOC-139
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-29 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
H1
P02.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN7
SCLK3A
GTM input
QSPI3 input
PSIRX2B
PSI5 input
SENT1C
SENT input
CC61INC
CCU60 input
CCPOS1A
CCU60 input
T13HRB
CCU61 input
T3EUDA
GPT120 input
CIFD7
CIF input
DSCIN3B
DSADC channel 3 input B
DSITR4E
DSADC channel 4 input E
P02.7
O0
General-purpose output
TOUT7
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
DSCOUT3
O4
DSADC channel 3 output
VADCEMUX01
O5
VADC output
SPC1
O6
SENT output
CC61
O7
CCU60 output
Data Sheet
TOC-140
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-29 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
J3
P02.8
I
SENT0C
LP / PU1 General-purpose input
/
GTM input
VEXT
SENT input
CC62INC
CCU60 input
CCPOS2A
CCU60 input
T12HRC
CCU61 input
T13HRC
CCU61 input
T4INA
GPT120 input
CIFD8
CIF input
DSDIN3B
DSADC channel 3 input B
DSITR3E
DSADC channel 3 input E
TIN8
E4
Function
P02.8
O0
General-purpose output
TOUT8
O1
GTM output
SLSO35
O2
QSPI3 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX02
O5
VADC output
ETHMDC
O6
ETH output
CC62
O7
CCU60 output
P02.9
I
TIN116
LP /
PU1 /
VEXT
General-purpose input
GTM input
P02.9
O0
TOUT116
O1
GTM output
ATX2
O2
ASCLIN2 output
–
O3
Reserved
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-141
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-29 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
F4
P02.10
I
LP /
PU1 /
VEXT
General-purpose input
TIN117
ARX2C
RXDCAN1E
C2
ASCLIN2 input
CAN node 1 input
P02.10
O0
General-purpose output
TOUT117
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P02.11
I
TIN118
D3
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
P02.11
O0
TOUT118
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P02.12
I
TIN151
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P02.12
O0
TOUT151
O1
GTM output
SLSO35
O2
QSPI3 output
SLSO44
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-142
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-29 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D1
P02.13
I
LP /
PU1 /
VEXT
General-purpose input
TIN153
E1
P02.13
O0
TOUT153
O1
GTM output
SLSO37
O2
QSPI3 output
SLSO46
O3
QSPI4 output
TXDCAN0
O4
CAN node 0 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
–
O7
Reserved
P02.14
I
TIN154
RXDCAN0H
LP /
PU1 /
VEXT
RXDCANr0D
D2
GTM input
General-purpose output
General-purpose input
GTM input
CAN node 0 input
CAN node 0 input (MultiCANr+)
P02.14
O0
General-purpose output
TOUT154
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P02.15
I
TIN152
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P02.15
O0
TOUT152
O1
GTM output
SLSO36
O2
QSPI3 output
SLSO45
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
TXEN1B
O6
ERAY1 output
–
O7
Reserved
Data Sheet
General-purpose output
TOC-143
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-30 Port 10 Functions
Pin
Symbol
Ctrl
Type
Function
A9
P10.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN102
T6EUDB
B8
GPT120 input
P10.0
O0
General-purpose output
TOUT102
O1
GTM output
–
O2
Reserved
SLSO110
O3
QSPI1 output
–
O4
Reserved
VADCG6BFL0
O5
VADC output
–
O6
Reserved
–
O7
Reserved
P10.1
I
TIN103
MRST1A
MP+ /
PU1 /
VEXT
T5EUDB
A7
GTM input
General-purpose input
GTM input
QSPI1 input
GPT120 input
P10.1
O0
General-purpose output
TOUT103
O1
GTM output
MTSR1
O2
QSPI1 output
MRST1
O3
QSPI1 output
EN01
O4
MSC0 output
VADCG6BFL1
O5
VADC output
END03
O6
MSC0 output
–
O7
Reserved
P10.2
I
TIN104
SCLK1A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
T6INB
GPT120 input
REQ2
SCU input
RXDCAN2E
CAN node 2 input
SDI01
MSC0 input
P10.2
O0
General-purpose output
TOUT104
O1
GTM output
–
O2
Reserved
SCLK1
O3
QSPI1 output
EN00
O4
MSC0 output
VADCG6BFL2
O5
VADC output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
TOC-144
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-30 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B7
P10.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN105
MTSR1A
A8
GTM input
QSPI1 input
REQ3
SCU input
T5INB
GPT120 input
P10.3
O0
General-purpose output
TOUT105
O1
GTM output
VADCG6BFL3
O2
VADC output
MTSR1
O3
QSPI1 output
EN00
O4
MSC0 output
END02
O5
MSC0 output
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P10.4
I
TIN106
MTSR1C
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
CCPOS0C
CCU60 input
T3INB
GPT120 input
P10.4
O0
General-purpose output
TOUT106
O1
GTM output
–
O2
Reserved
SLSO18
O3
QSPI1 output
MTSR1
O4
QSPI1 output
EN00
O5
MSC0 output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
TOC-145
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-30 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A6
P10.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN107
HWCFG4
G2
GTM input
SCU input
RXDCANr0A
CAN node 0 input (MultiCANr+)
INJ01
MSC0 input
P10.5
O0
General-purpose output
TOUT107
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO38
O3
QSPI3 output
SLSO19
O4
QSPI1 output
T6OUT
O5
GPT120 output
ASLSO2
O6
ASCLIN2 output
PSITX3
O7
PSI5 output
P10.6
I
TIN108
ARX2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
MTSR3B
QSPI3 input
PSIRX3C
PSI5 input
HWCFG5
SCU input
P10.6
O0
General-purpose output
TOUT108
O1
GTM output
ASCLK2
O2
ASCLIN2 output
MTSR3
O3
QSPI3 output
T3OUT
O4
GPT120 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
MRST1
O6
QSPI1 output
VADCG7BFL0
O7
VADC output
Data Sheet
TOC-146
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-30 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B4
P10.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN109
ACTS2A
A4
GTM input
ASCLIN2 input
MRST3B
QSPI3 input
REQ4
SCU input
CCPOS1C
CCU60 input
T3EUDB
GPT120 input
P10.7
O0
General-purpose output
TOUT109
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
VADCG7BFL1
O4
VADC output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
–
O7
Reserved
P10.8
I
TIN110
SCLK3B
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
REQ5
SCU input
CCPOS2C
CCU60 input
T4INB
GPT120 input
RXDCANr0B
CAN node 0 input (MultiCANr+)
P10.8
O0
General-purpose output
TOUT110
O1
GTM output
ARTS2
O2
ASCLIN2 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-147
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-30 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B6
P10.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN265
SENT10C
C4
SENT input
P10.9
O0
General-purpose output
TOUT265
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.10
I
TIN266
SENT11C
A3
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
P10.10
O0
General-purpose output
TOUT266
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.11
I
TIN269
SENT14C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
P10.11
O0
General-purpose output
TOUT269
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-148
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-30 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B3
P10.13
I
LP /
PU1 /
VEXT
General-purpose input
TIN268
SENT13C
C3
SENT input
P10.13
O0
General-purpose output
TOUT268
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.14
I
TIN267
SENT12C
A2
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
P10.14
O0
General-purpose output
TOUT267
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P10.15
I
TIN270
LP /
PU1 /
VEXT
General-purpose input
GTM input
P10.15
O0
TOUT270
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-149
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-31 Port 11 Functions
Pin
Symbol
Ctrl
Type
Function
D11
P11.0
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN119
ARX3B
C11
ASCLIN3 input
P11.0
O0
General-purpose output
TOUT119
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHTXD3
O6
ETH output
–
O7
Reserved
P11.1
I
TIN120
D10
GTM input
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
P11.1
O0
TOUT120
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
ETHTXD2
O6
ETH output
–
O7
Reserved
P11.2
I
TIN95
MPR/
PU1 /
VFLEX
General-purpose output
General-purpose input
GTM input
P11.2
O0
TOUT95
O1
GTM output
END03
O2
MSC0 output
SLSO05
O3
QSPI0 output
SLSO15
O4
QSPI1 output
EN01
O5
MSC0 output
ETHTXD1
O6
ETH output
COUT63
O7
CCU60 output
Data Sheet
General-purpose output
TOC-150
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-31 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A5
P11.3
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN96
MRST1B
SDI03
C10
QSPI1 input
MSC0 input
P11.3
O0
General-purpose output
TOUT96
O1
GTM output
–
O2
Reserved
MRST1
O3
QSPI1 output
TXD0A
O4
ERAY0 output
–
O5
Reserved
ETHTXD0
O6
ETH output
COUT62
O7
CCU60 output
P11.4
I
TIN121
ETHRXCLKB
B10
GTM input
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.4
O0
General-purpose output
TOUT121
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHTXER
O6
ETH output
–
O7
Reserved
P11.5
I
TIN122
ETHTXCLKA
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.5
O0
General-purpose output
TOUT122
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-151
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-31 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
C6
P11.6
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN97
SCLK1B
A10
QSPI1 input
P11.6
O0
General-purpose output
TOUT97
O1
GTM output
TXEN0B
O2
ERAY0 output
SCLK1
O3
QSPI1 output
TXEN0A
O4
ERAY0 output
FCLP0
O5
MSC0 output
ETHTXEN
O6
ETH output
COUT61
O7
CCU60 output
P11.7
I
TIN123
ETHRXD3
C9
GTM input
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.7
O0
General-purpose output
TOUT123
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P11.8
I
TIN124
ETHRXD2
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.8
O0
General-purpose output
TOUT124
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-152
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-31 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B5
P11.9
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN98
MTSR1B
D5
GTM input
QSPI1 input
RXD0A1
ERAY0 input
ETHRXD1
ETH input
P11.9
O0
General-purpose output
TOUT98
O1
GTM output
–
O2
Reserved
MTSR1
O3
QSPI1 output
–
O4
Reserved
SOP0
O5
MSC0 output
–
O6
Reserved
COUT60
O7
CCU60 output
P11.10
I
TIN99
REQ12
LP /
PU1 /
VFLEX
General-purpose input
GTM input
SCU input
ARX1E
ASCLIN1 input
SLSI1A
QSPI1 input
RXDCAN3D
CAN node 3 input
RXD0B1
ERAY0 input
ETHRXD0
ETH input
SDI00
MSC0 input
P11.10
O0
General-purpose output
TOUT99
O1
GTM output
–
O2
Reserved
SLSO03
O3
QSPI0 output
SLSO13
O4
QSPI1 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
Data Sheet
TOC-153
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-31 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D6
P11.11
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN100
ETHCRSDVA
C5
GTM input
ETH input
ETHRXDVA
ETH input
ETHCRSB
ETH input
P11.11
O0
General-purpose output
TOUT100
O1
GTM output
END02
O2
MSC0 output
SLSO04
O3
QSPI0 output
SLSO14
O4
QSPI1 output
EN00
O5
MSC0 output
TXEN0B
O6
ERAY0 output
CC61
O7
CCU60 output
P11.12
I
TIN101
ETHREFCLK
MPR /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHTXCLKB
ETH input
(Not for productive purposes)
ETHRXCLKA
ETH input
(Not for productive purposes)
P11.12
O0
General-purpose output
TOUT101
O1
GTM output
ATX1
O2
ASCLIN1 output
GTMCLK2
O3
GTM output
TXD0B
O4
ERAY0 output
TXDCAN3
O5
CAN node 3 output
EXTCLK1
O6
SCU output
CC60
O7
CCU60 output
Data Sheet
TOC-154
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-31 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B9
P11.13
I
LP /
PU1 /
VFLEX
General-purpose input
TIN125
ETHRXERA
SDA1A
C8
ETH input
I2C1 input
P11.13
O0
General-purpose output
TOUT125
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDA1
O6
I2C1 output
–
O7
Reserved
P11.14
I
TIN126
ETHCRSDVB
C7
GTM input
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHRXDVB
ETH input
ETHCRSA
ETH input
SCL1A
I2C1 input
P11.14
O0
General-purpose output
TOUT126
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SCL1
O6
I2C1 output
–
O7
Reserved
P11.15
I
TIN127
ETHCOL
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.15
O0
General-purpose output
TOUT127
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-155
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-32 Port 12 Functions
Pin
Symbol
Ctrl
Type
Function
A11
P12.0
I
LP /
PU1 /
VFLEX
General-purpose input
TIN128
ETHRXCLKC
RXDCAN0C
GTM input
ETH input
CAN node 0 input
P12.0
O0
General-purpose output
TOUT128
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
–
O7
Reserved
P12.1
B11
I
TIN129
LP /
PU1 /
VFLEX
General-purpose input
GTM input
P12.1
O0
General-purpose output
TOUT129
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
–
O7
Reserved
ETHMDIOC
HWOU
T
ETH input/output
Table 2-33 Port 13 Functions
Pin
Symbol
Ctrl
Type
Function
C17
P13.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91
GTM input
P13.0
O0
TOUT91
O1
GTM output
END03
O2
MSC0 output
SCLK2N
O3
QSPI2 output (LVDS)
EN01
O4
MSC0 output
FCLN0
O5
MSC0 output (LVDS)
FCLND0
O6
MSC0 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-156
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-33 Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
C18
P13.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN92
SCL0B
GTM input
I2C0 input
P13.1
O0
General-purpose output
TOUT92
O1
GTM output
–
O2
Reserved
SCLK2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
FCLP0
O5
MSC0 output (LVDS)
SCL0
O6
I2C0 output
–
O7
Reserved
P13.2
D17
I
TIN93
CAPINA
LVDSM_N /
PU1 /
VEXT
SDA0B
General-purpose input
GTM input
GPT120 input
I2C0 input
P13.2
O0
General-purpose output
TOUT93
O1
GTM output
–
O2
Reserved
MTSR2N
O3
QSPI2 output (LVDS)
FCLP0
O4
MSC0 output
SON0
O5
MSC0 output (LVDS)
SDA0
O6
I2C0 output
SOND0
O7
MSC0 output (LVDS)
P13.3
C16
I
TIN94
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.3
O0
TOUT94
O1
GTM output
–
O2
Reserved
MTSR2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
SOP0
O5
MSC0 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-157
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-33 Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B17
P13.4
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN253
PSIRX4A
GTM input
PSI5 input
P13.4
O0
General-purpose output
TOUT253
O1
GTM output
END22
O2
MSC2 output
–
O3
Reserved
EN20
O4
MSC2 output
FCLN2
O5
MSC2 output (LVDS)
FCLND2
O6
MSC2 output (LVDS)
–
O7
Reserved
P13.5
A17
I
TIN254
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.5
O0
TOUT254
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
FCLP2
O5
MSC2 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P13.6
A16
I
TIN255
LVDSM_N /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P13.6
O0
TOUT255
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
SON2
O5
MSC2 output (LVDS)
SOND2
O6
MSC2 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-158
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-33 Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B16
P13.7
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN256
GTM input
P13.7
O0
TOUT256
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
SOP2
O5
MSC2 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P13.9
C12
I
TIN248
SCL1B
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
I2C1 input
P13.9
O0
General-purpose output
TOUT248
O1
GTM output
ATX3
O2
ASCLIN3 output
SLSO55
O3
QSPI5 output
–
O4
Reserved
TXDCANr1
O5
CAN node 1 output (MultiCANr+)
SCL1
O6
I2C1 output
–
O7
Reserved
P13.10
A13
I
TIN251
PSIRX3A
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
P13.10
O0
General-purpose output
TOUT251
O1
GTM output
ATX0
O2
ASCLIN0 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-159
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-33 Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B13
P13.11
I
LP /
PU1 /
VEXT
General-purpose input
TIN250
ARX0E
GTM input
ASCLIN0 input
P13.11
O0
General-purpose output
TOUT250
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
PSITX3
O5
PSI5 output
–
O6
Reserved
–
O7
Reserved
P13.12
B12
I
TIN249
ARX3H
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
RXDCANr1B
CAN node 1 input (MultiCANr+)
SDA1B
I2C1 input
P13.12
O0
General-purpose output
TOUT249
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDA1
O6
I2C1 output
–
O7
Reserved
P13.14
A12
I
TIN252
LP /
PU1 /
VEXT
General-purpose input
GTM input
P13.14
O0
TOUT252
O1
GTM output
–
O2
Reserved
SLSO54
O3
QSPI5 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-160
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-34 Port 14 Functions
Pin
Symbol
Ctrl
Type
Function
C21
P14.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN80
SENT12D
GTM input
SENT input
P14.0
O0
General-purpose output
TOUT80
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin
TXD0A
O3
ERAY0 output
TXD0B
O4
ERAY0 output
TXDCAN1
O5
CAN node 1 output
Used for single pin DAP (SPD) function
ASCLK0
O6
ASCLIN0 output
COUT62
O7
CCU60 output
P14.1
D21
I
TIN81
REQ15
MP /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
SENT13D
SENT input
ARX0A
ASCLIN0 input
Recommended as Boot loader pin
RXDCAN1B
CAN node 1 input
Used for single pin DAP (SPD) function
RXD0A3
ERAY0 input
RXD0B3
ERAY0 input
EVRWUPA
SCU input
P14.1
O0
General-purpose output
TOUT81
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU60 output
Data Sheet
TOC-161
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-34 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D20
P14.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN82
HWCFG2
EVR13
GTM input
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2
O0
General-purpose output
TOUT82
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO21
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK2
O6
ASCLIN2 output
–
O7
Reserved
P14.3
C14
I
TIN83
ARX2A
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
REQ10
SCU input
HWCFG3_BMI
SCU input
SDI02
MSC0 input
P14.3
O0
General-purpose output
TOUT83
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO23
O3
QSPI2 output
ASLSO1
O4
ASCLIN1 output
ASLSO3
O5
ASCLIN3 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-162
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-34 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D13
P14.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN84
HWCFG6
GTM input
SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4
O0
General-purpose output
TOUT84
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.5
C20
I
TIN85
HWCFG1
EVR33
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5
O0
General-purpose output
TOUT85
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXD0B
O6
ERAY0 output
TXD1B
O7
ERAY1 output
P14.6
C13
I
TIN86
HWCFG0
DCLDO
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6
O0
General-purpose output
TOUT86
O1
GTM output
–
O2
Reserved
SLSO22
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
TXEN0B
O6
ERAY0 output
TXEN1B
O7
ERAY1 output
Data Sheet
TOC-163
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-34 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D12
P14.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN87
RXD0B0
RXD1B0
GTM input
ERAY0 input
ERAY1 input
P14.7
O0
General-purpose output
TOUT87
O1
GTM output
ARTS0
O2
ASCLIN0 output
SLSO24
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.8
A14
I
TIN88
ARX1D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
RXDCAN2D
CAN node 2 input
RXD0A0
ERAY0 input
RXD1A0
ERAY1 input
P14.8
O0
General-purpose output
TOUT88
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.9
C19
I
TIN89
ACTS0A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
P14.9
O0
General-purpose output
TOUT89
O1
GTM output
END03
O2
MSC0 output
EN01
O3
MSC0 output
–
O4
Reserved
TXEN0B
O5
ERAY0 output
TXEN0A
O6
ERAY0 output
TXEN1A
O7
ERAY1 output
Data Sheet
TOC-164
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-34 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
C15
P14.10
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN90
GTM input
P14.10
O0
TOUT90
O1
GTM output
END02
O2
MSC0 output
EN00
O3
MSC0 output
ATX1
O4
ASCLIN1 output
TXDCAN2
O5
CAN node 2 output
TXD0A
O6
ERAY0 output
TXD1A
O7
ERAY1 output
P14.11
A19
I
TIN258
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P14.11
O0
TOUT258
O1
GTM output
END20
O2
MSC2 output
PSITX4
O3
PSI5 output
EN22
O4
MSC2 output
SOP2
O5
MSC2 output
–
O6
Reserved
–
O7
Reserved
P14.12
A15
I
TIN261
SDI20
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC2 input
P14.12
O0
General-purpose output
TOUT261
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-165
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-34 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B19
P14.13
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN260
GTM input
P14.13
O0
TOUT260
O1
GTM output
END23
O2
MSC2 output
–
O3
Reserved
EN21
O4
MSC2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.14
B15
I
TIN259
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P14.14
O0
TOUT259
O1
GTM output
END22
O2
MSC2 output
–
O3
Reserved
EN20
O4
MSC2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.15
B14
I
TIN263
INJ21
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC2 output
P14.15
O0
General-purpose output
TOUT263
O1
GTM output
ATX1
O2
ASCLIN1 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-166
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-35 Port 15 Functions
Pin
Symbol
Ctrl
Type
Function
C22
P15.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN72
REQ16
B21
GTM input
SCU input
ARX1A
ASCLIN1 input
RXDCAN2A
CAN node 2 input
SLSI2B
QSPI2 input
EVRWUPB
SCU input
P15.1
O0
General-purpose output
TOUT72
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO25
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P15.2
I
TIN73
SLSI2A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
MRST2E
QSPI2 input
SENT10D
SENT input
HSIC2INA
QSPI2 input
P15.2
O0
General-purpose output
TOUT73
O1
GTM output
ATX0
O2
ASCLIN0 output
SLSO20
O3
QSPI2 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
ASCLK0
O6
ASCLIN0 output
–
O7
Reserved
Data Sheet
TOC-167
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-35 Port 15 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D18
P15.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN74
ARX0B
A21
GTM input
ASCLIN0 input
SCLK2A
QSPI2 input
RXDCAN1A
CAN node 1 input
HSIC2INB
QSPI2 input
P15.3
O0
General-purpose output
TOUT74
O1
GTM output
ATX0
O2
ASCLIN0 output
SCLK2
O3
QSPI2 output
END03
O4
MSC0 output
EN01
O5
MSC0 output
–
O6
Reserved
–
O7
Reserved
P15.4
I
TIN75
MRST2A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
REQ0
SCU input
SCL0C
I2C0 input
SENT11D
SENT input
P15.4
O0
General-purpose output
TOUT75
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
SCL0
O6
I2C0 output
CC62
O7
CCU60 output
Data Sheet
TOC-168
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-35 Port 15 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D19
P15.5
I
MP /
PU1 /
VEXT
General-purpose input
TIN76
ARX1B
B20
ASCLIN1 input
MTSR2A
QSPI2 input
REQ13
SCU input
SDA0C
I2C0 input
P15.5
O0
General-purpose output
TOUT76
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR2
O3
QSPI2 output
END02
O4
MSC0 output
EN00
O5
MSC0 output
SDA0
O6
I2C0 output
CC61
O7
CCU60 output
P15.6
I
TIN77
MTSR2B
A20
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P15.6
O0
General-purpose output
TOUT77
O1
GTM output
ATX3
O2
ASCLIN3 output
MTSR2
O3
QSPI2 output
SLSO53
O4
QSPI5 output
SCLK2
O5
QSPI2 output
ASCLK3
O6
ASCLIN3 output
CC60
O7
CCU60 output
P15.7
I
TIN78
ARX3A
MRST2B
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
QSPI2 input
P15.7
O0
General-purpose output
TOUT78
O1
GTM output
ATX3
O2
ASCLIN3 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
Data Sheet
TOC-169
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-35 Port 15 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D16
P15.8
I
MP /
PU1 /
VEXT
General-purpose input
TIN79
SCLK2B
REQ1
GTM input
QSPI2 input
SCU input
P15.8
O0
General-purpose output
TOUT79
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK3
O6
ASCLIN3 output
COUT61
O7
CCU60 output
Table 2-36 Port 20 Functions
Pin
Symbol
Ctrl
Type
Function
A24
P20.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN59
RXDCAN3C
GTM input
CAN node 3 input
RXDCANr1C
CAN node 1 input (MultiCANr+)
T6EUDA
GPT120 input
REQ9
SCU input
SYSCLK
HSCT input
TGI0
OCDS input
P20.0
O0
General-purpose output
TOUT59
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
–
O7
Reserved
TGO0
HWOU
T
OCDS; ENx
Data Sheet
TOC-170
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-36 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B23
P20.2
I
LP /
PU1 /
VEXT
General-purpose input
This pin is latched at power on reset release to enter
test mode.
TESTMODE
OCDS input
P20.2
O0
Output function not available
–
O1
Output function not available
–
O2
Output function not available
–
O3
Output function not available
–
O4
Output function not available
–
O5
Output function not available
–
O6
Output function not available
–
O7
Output function not available
Table 2-37 Port 21 Functions
Pin
Symbol
Ctrl
Type
Function
J23
P21.0
I
LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN51
MRST4DN
HOLD
GTM input
QSPI4 input (LVDS)
EBU input
P21.0
O0
General-purpose output
TOUT51
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
BAABA0
O7
EBU output
(combined for BAA and BA0)
HSM1
O
HSM output
Data Sheet
TOC-171
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-37 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
G24
P21.1
I
LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN52
ETHMDIOB
H23
GTM input
ETH input
(Not for production purposes)
MRST4DP
QSPI4 input (LVDS)
WAIT
EBU input
P21.1
O0
General-purpose output
TOUT52
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDIO
O6
ETH output
(Not for production purposes)
BREQBA1
O7
EBU output
(combined for BREQ and BA1)
HSM2
O
HSM output
P21.2
I
TIN53
MRST2CN
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
QSPI2 input (LVDS)
MRST4CN
QSPI4 input (LVDS)
ARX3GN
ASCLIN3 input (LVDS)
EMGSTOPB
SCU input
RXDN
HSCT input (LVDS)
P21.2
O0
General-purpose output
TOUT53
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
ETHMDC
O5
ETH output
SDRAMA8
O6
EBU output
–
O7
Reserved
Data Sheet
TOC-172
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-37 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
G23
P21.3
I
LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN54
MRST2CP
D26
QSPI2 input (LVDS)
MRST4CP
QSPI4 input (LVDS)
ARX3GP
ASCLIN3 input (LVDS)
RXDP
HSCT input (LVDS)
P21.3
O0
General-purpose output
TOUT54
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA9
O6
EBU output
–
O7
Reserved
ETHMDIOD
HWOUT
ETH input/output
P21.4
I
TIN55
C26
GTM input
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
P21.4
O0
TOUT55
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA10
O6
EBU output
–
O7
Reserved
TXDN
HSCT
HSCT output (LVDS)
P21.5
I
TIN56
LVDSH_P/
PU1 /
VDDP3
General-purpose output
General-purpose input
GTM input
P21.5
O0
TOUT56
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA11
O6
EBU output
–
O7
Reserved
TXDP
HSCT
HSCT output (LVDS)
Data Sheet
TOC-173
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-37 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E25
P21.6
I
A2 /
PU /
VDDP3
General-purpose input
TIN57
ARX3F
D25
GTM input
ASCLIN3 input
TGI2
OCDS input
TDI
OCDS (JTAG) input
T5EUDA
GPT120 input
P21.6
O0
General-purpose output
TOUT57
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
SYSCLK
O5
HSCT output
SDRAMA12
O6
EBU output
T3OUT
O7
GPT120 output
TGO2
HWOUT
OCDS; ENx
P21.7
I
TIN58
DAP2
A2 /
PU /
VDDP3
General-purpose input
GTM input
OCDS (3-Pin DAP) input
In the 3-Pin DAP mode this pin is used as DAP2.
In the 2-PIN DAP mode this pin is used as P21.7
and controlled by the related port control logic
TGI3
OCDS input
ETHRXERB
ETH input
T5INA
GPT120 input
P21.7
O0
General-purpose output
TOUT58
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
SDRAMA13
O6
EBU output
T6OUT
O7
GPT120 output
TGO3
HWOUT
OCDS; ENx
TDO
OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ.
DAP2
OCDS (3-Pin DAP); ENx
In the 3-Pin DAP mode this pin is used as DAP2.
Data Sheet
TOC-174
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-38 Port 22 Functions
Pin
Symbol
Ctrl
Type
Function
K23
P22.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47
MTSR4B
J24
QSPI4 input
P22.0
O0
General-purpose output
TOUT47
O1
GTM output
ATX3N
O2
ASCLIN3 output (LVDS)
MTSR4
O3
QSPI4 output
SCLK4N
O4
QSPI4 output (LVDS)
FCLN1
O5
MSC1 output (LVDS)
FCLND1
O6
MSC1 output (LVDS)
–
O7
Reserved
P22.1
I
TIN48
MRST4B
J25
GTM input
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P22.1
O0
General-purpose output
TOUT48
O1
GTM output
ATX3P
O2
ASCLIN3 output (LVDS)
MRST4
O3
QSPI4 output
SCLK4P
O4
QSPI4 output (LVDS)
FCLP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P22.2
I
TIN49
SLSI4B
LVDSM_N /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P22.2
O0
General-purpose output
TOUT49
O1
GTM output
–
O2
Reserved
SLSO43
O3
QSPI4 output
MTSR4N
O4
QSPI4 output (LVDS)
SON1
O5
MSC1 output (LVDS)
SOND1
O6
MSC1 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-175
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-38 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J26
P22.3
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN50
SCLK4B
GTM input
QSPI4 input
P22.3
O0
General-purpose output
TOUT50
O1
GTM output
–
O2
Reserved
SCLK4
O3
QSPI4 output
MTSR4P
O4
QSPI4 output (LVDS)
SOP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Table 2-39 Port 23 Functions
Pin
Symbol
Ctrl
Type
Function
M26
P23.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN41
L24
GTM input
P23.0
O0
TOUT41
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.1
I
TIN42
SDI10
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC1 input
P23.1
O0
General-purpose output
TOUT42
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO46
O3
QSPI4 output
GTMCLK0
O4
GTM output
–
O5
Reserved
EXTCLK0
O6
SCU output
–
O7
Reserved
Data Sheet
TOC-176
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-39 Port 23 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
L25
P23.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN43
L26
P23.2
O0
TOUT43
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.3
I
TIN44
INJ10
K24
GTM input
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC1 input
P23.3
O0
General-purpose output
TOUT44
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.4
I
TIN45
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P23.4
O0
TOUT45
O1
GTM output
–
O2
Reserved
SLSO45
O3
QSPI4 output
END12
O4
MSC1 output
EN10
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-177
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-39 Port 23 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
K25
P23.5
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN46
K26
GTM input
P23.5
O0
TOUT46
O1
GTM output
–
O2
Reserved
SLSO44
O3
QSPI4 output
END13
O4
MSC1 output
EN11
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
P23.6
I
TIN138
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P23.6
O0
General-purpose output
TOUT138
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO011
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-40 Port 24 Functions
Pin
Symbol
Ctrl
Type
Function
U23
P24.0
I
A2 /
PU1 /
VEBU
General-purpose input
TIN222
GTM input
P24.0
O0
TOUT222
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ11
HWOU
T
EBU Data Bus Line (SDRAM)
A11
Data Sheet
General-purpose output
EBU output
TOC-178
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-40 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
T24
P24.1
I
A2 /
PU1 /
VEBU
General-purpose input
TIN223
P24.1
O0
TOUT223
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ15
HWOU
T
EBU Data Bus Line (SDRAM)
A15
T25
P24.2
I
TIN224
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.2
O0
TOUT224
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ14
HWOU
T
EBU Data Bus Line (SDRAM)
A14
T26
GTM input
P24.3
I
TIN225
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.3
O0
TOUT225
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ13
HWOU
T
EBU Data Bus Line (SDRAM)
A13
Data Sheet
General-purpose output
EBU output
TOC-179
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-40 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
R24
P24.4
I
A2 /
PU1 /
VEBU
General-purpose input
TIN226
P24.4
O0
TOUT226
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ9
HWOU
T
EBU Data Bus Line (SDRAM)
A9
R25
P24.5
I
TIN227
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.5
O0
TOUT227
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ12
HWOU
T
EBU Data Bus Line (SDRAM)
A12
R26
GTM input
P24.6
I
TIN228
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.6
O0
TOUT228
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ5
HWOU
T
EBU Data Bus Line (SDRAM)
A5
Data Sheet
General-purpose output
EBU output
TOC-180
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-40 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
P24
P24.7
I
A2 /
PU1 /
VEBU
General-purpose input
TIN229
P24.7
O0
TOUT229
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ8
HWOU
T
EBU Data Bus Line (SDRAM)
A8
P25
P24.8
I
TIN230
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.8
O0
TOUT230
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ10
HWOU
T
EBU Data Bus Line (SDRAM)
A10
P26
GTM input
P24.9
I
TIN231
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.9
O0
TOUT231
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ6
HWOU
T
EBU Data Bus Line (SDRAM)
A6
Data Sheet
General-purpose output
EBU output
TOC-181
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-40 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
N23
P24.10
I
A2 /
PU1 /
VEBU
General-purpose input
TIN232
P24.10
O0
TOUT232
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ4
HWOU
T
EBU Data Bus Line (SDRAM)
A4
N24
P24.11
I
TIN233
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.11
O0
TOUT233
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ3
HWOU
T
EBU Data Bus Line (SDRAM)
A3
N25
GTM input
P24.12
I
TIN234
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.12
O0
TOUT234
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ1
HWOU
T
EBU Data Bus Line (SDRAM)
A1
Data Sheet
General-purpose output
EBU output
TOC-182
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-40 Port 24 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
N26
P24.13
I
A2 /
PU1 /
VEBU
General-purpose input
TIN235
P24.13
O0
TOUT235
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ2
HWOU
T
EBU Data Bus Line (SDRAM)
A2
M24
P24.14
I
TIN236
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.14
O0
TOUT236
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ0
HWOU
T
EBU Data Bus Line (SDRAM)
A0
M25
GTM input
P24.15
I
TIN237
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P24.15
O0
TOUT237
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
DQ7
HWOU
T
EBU Data Bus Line (SDRAM)
A7
Data Sheet
General-purpose output
EBU output
TOC-183
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-41 Port 25 Functions
Pin
Symbol
Ctrl
Type
Function
AA26
P25.0
I
A2 /
PU1 /
VEBU
General-purpose input
TIN206
SDCLKI
O0
General-purpose output
TOUT206
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
BFCLKO
HWOU
T
EBU output
P25.1
I
TIN207
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.1
O0
TOUT207
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
RD
HWOU
T
EBU output
RAS
AA23
EBU input
P25.0
SDCLKO
AA24
GTM input
P25.2
I
TIN208
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.2
O0
TOUT208
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
RD/WR
HWOU
T
EBU output
WR
Data Sheet
General-purpose output
EBU output
TOC-184
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-41 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y24
P25.3
I
A2 /
PU1 /
VEBU
General-purpose input
TIN209
HOLDA
O0
General-purpose output
TOUT209
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
BAABA0
O7
EBU output
(combined for BAA and BA0)
CS2
HWOU
T
EBU output
EBU output
HOLDA
P25.4
EBU output
I
TIN210
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.4
O0
TOUT210
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
CS1
HWOU
T
EBU output
DQM0
Y26
EBU input
P25.3
DQM1
Y25
GTM input
P25.5
I
TIN211
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.5
O0
TOUT211
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
CS0
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-185
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-41 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
W24
P25.7
I
A2 /
PU1 /
VEBU
General-purpose input
TIN213
P25.7
O0
TOUT213
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
ADV
HWOU
T
EBU output
CAS
W25
P25.8
I
TIN214
W26
GTM input
General-purpose output
EBU output
A2 /
PU1 /
VEBU
General-purpose input
GTM input
P25.8
O0
TOUT214
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A23
O5
EBU output
SDRAMA0
O6
EBU output
–
O7
Reserved
BC0
HWOU
T
EBU output
P25.9
I
TIN215
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.9
O0
TOUT215
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A22
O5
EBU output
SDRAMA1
O6
EBU output
–
O7
Reserved
BC1
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-186
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-41 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
V24
P25.10
I
A2 /
PU1 /
VEBU
General-purpose input
TIN216
V25
P25.10
O0
TOUT216
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A21
O5
EBU output
SDRAMA2
O6
EBU output
–
O7
Reserved
BC2
HWOU
T
EBU output
P25.11
I
TIN217
V26
GTM input
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.11
O0
TOUT217
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
A20
O5
EBU output
SDRAMA3
O6
EBU output
–
O7
Reserved
BC3
HWOU
T
EBU output
P25.12
I
TIN218
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.12
O0
TOUT218
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA4
O6
EBU output
–
O7
Reserved
A19
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-187
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-41 Port 25 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
U24
P25.13
I
A2 /
PU1 /
VEBU
General-purpose input
TIN219
U25
P25.13
O0
TOUT219
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA5
O6
EBU output
–
O7
Reserved
A17
HWOU
T
EBU output
P25.14
I
TIN220
U26
GTM input
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.14
O0
TOUT220
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA6
O6
EBU output
–
O7
Reserved
A18
HWOU
T
EBU output
P25.15
I
TIN221
A2 /
PU1 /
VEBU
General-purpose output
General-purpose input
GTM input
P25.15
O0
TOUT221
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA7
O6
EBU output
–
O7
Reserved
A16
HWOU
T
EBU output
Data Sheet
General-purpose output
TOC-188
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-42 Port 26 Functions
Pin
Symbol
Ctrl
Type
Function
AA25
P26.0
I
LP /
PU1 /
VFLEXE
General-purpose input
TIN212
BFCLKI
GTM input
EBU input
P26.0
O0
General-purpose output
TOUT212
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-43 Port 30 Functions
Pin
Symbol
Ctrl
Type
Function
AF22
P30.0
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN190
AF23
GTM input
P30.0
O0
TOUT190
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD14
HWOU
T
EBU Address / Data Bus Line
P30.1
I
TIN191
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.1
O0
TOUT191
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD11
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-189
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-43 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AB24
P30.2
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN192
AC24
P30.2
O0
TOUT192
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD12
HWOU
T
EBU Address / Data Bus Line
P30.3
I
TIN193
AD24
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.3
O0
TOUT193
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD15
HWOU
T
EBU Address / Data Bus Line
P30.4
I
TIN194
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.4
O0
TOUT194
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD8
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-190
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-43 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE24
P30.5
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN195
AF24
P30.5
O0
TOUT195
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD13
HWOU
T
EBU Address / Data Bus Line
P30.6
I
TIN196
AB25
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.6
O0
TOUT196
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD4
HWOU
T
EBU Address / Data Bus Line
P30.7
I
TIN197
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.7
O0
TOUT197
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD7
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-191
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-43 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AC25
P30.8
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN198
AD25
P30.8
O0
TOUT198
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD3
HWOU
T
EBU Address / Data Bus Line
P30.9
I
TIN199
AE25
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.9
O0
TOUT199
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD0
HWOU
T
EBU Address / Data Bus Line
P30.10
I
TIN200
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.10
O0
TOUT200
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD5
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-192
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-43 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AF25
P30.11
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN201
AB26
P30.11
O0
TOUT201
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD10
HWOU
T
EBU Address / Data Bus Line
P30.12
I
TIN202
AC26
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.12
O0
TOUT202
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD9
HWOU
T
EBU Address / Data Bus Line
P30.13
I
TIN203
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.13
O0
TOUT203
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD2
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-193
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-43 Port 30 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AD26
P30.14
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN204
AE26
GTM input
P30.14
O0
TOUT204
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD1
HWOU
T
EBU Address / Data Bus Line
P30.15
I
TIN205
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P30.15
O0
General-purpose output
TOUT205
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD6
HWOU
T
EBU Address / Data Bus Line
Table 2-44 Port 31 Functions
Pin
Symbol
Ctrl
Type
Function
AD18
P31.0
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN174
GTM input
P31.0
O0
TOUT174
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD30
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-194
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-44 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE18
P31.1
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN175
AF18
P31.1
O0
TOUT175
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD29
HWOU
T
EBU Address / Data Bus Line
P31.2
I
TIN176
AD19
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.2
O0
TOUT176
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD28
HWOU
T
EBU Address / Data Bus Line
P31.3
I
TIN177
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.3
O0
TOUT177
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD26
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-195
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-44 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE19
P31.4
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN178
AF19
P31.4
O0
TOUT178
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD24
HWOU
T
EBU Address / Data Bus Line
P31.5
I
TIN179
AD20
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.5
O0
TOUT179
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD23
HWOU
T
EBU Address / Data Bus Line
P31.6
I
TIN180
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.6
O0
TOUT180
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD20
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-196
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-44 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE20
P31.7
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN181
AF20
P31.7
O0
TOUT181
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD16
HWOU
T
EBU Address / Data Bus Line
P31.8
I
TIN182
AD21
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.8
O0
TOUT182
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD31
HWOU
T
EBU Address / Data Bus Line
P31.9
I
TIN183
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.9
O0
TOUT183
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD27
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-197
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-44 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE21
P31.10
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN184
AF21
P31.10
O0
TOUT184
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD21
HWOU
T
EBU Address / Data Bus Line
P31.11
I
TIN185
AD22
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.11
O0
TOUT185
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD25
HWOU
T
EBU Address / Data Bus Line
P31.12
I
TIN186
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.12
O0
TOUT186
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD19
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-198
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-44 Port 31 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE22
P31.13
I
MP /
PU1 /
VFLEXE
General-purpose input
TIN187
AD23
P31.13
O0
TOUT187
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD22
HWOU
T
EBU Address / Data Bus Line
P31.14
I
TIN188
AE23
GTM input
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.14
O0
TOUT188
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD18
HWOU
T
EBU Address / Data Bus Line
P31.15
I
TIN189
MP /
PU1 /
VFLEXE
General-purpose output
General-purpose input
GTM input
P31.15
O0
TOUT189
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
AD17
HWOU
T
EBU Address / Data Bus Line
Data Sheet
General-purpose output
TOC-199
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-45 Port 32 Functions
Pin
Symbol
Ctrl
Type
Function
AD17
P32.0
I
LP /
PX/
VEXT
General-purpose input
TIN36
FDEST
VGATE1N
GTM input
PMU input
SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0
O0
General-purpose output
TOUT36
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P32.2
AE13
I
TIN38
ARX3D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
RXDCAN3B
CAN node 3 input
RXDCANr1D
CAN node 1 input (MultiCANr+)
P32.2
O0
General-purpose output
TOUT38
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
DCDCSYNC
O6
SCU output
–
O7
Reserved
P32.3
AF13
I
TIN39
LP /
PU1 /
VEXT
General-purpose input
GTM input
P32.3
O0
TOUT39
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
ASCLK3
O4
ASCLIN3 output
TXDCAN3
O5
CAN node 3 output
TXDCANr1
O6
CAN node 1 output (MultiCANr+)
–
O7
Reserved
Data Sheet
General-purpose output
TOC-200
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-45 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AC14
P32.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN40
ACTS1B
SDI12
GTM input
ASCLIN1 input
MSC1 input
P32.4
O0
General-purpose output
TOUT40
O1
GTM output
–
O2
Reserved
END12
O3
MSC1 output
GTMCLK1
O4
GTM output
EN10
O5
MSC1 output
EXTCLK1
O6
SCU output
COUT63
O7
CCU60 output
P32.5
AD14
I
TIN140
LP /
PU1 /
VEXT
General-purpose input
GTM input
P32.5
O0
TOUT140
O1
GTM output
ATX2
O2
ASCLIN2 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P32.6
AE17
I
TGI4
TIN141
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
OCDS input
GTM input
RXDCAN2C
CAN node 2 input
ARX2F
ASCLIN2 input
P32.6
O0
General-purpose output
TOUT141
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO212
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO4
HWOU
T
OCDS; ENx
Data Sheet
TOC-201
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-45 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AF17
P32.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN142
TGI5
GTM input
OCDS input
P32.7
O0
General-purpose output
TOUT142
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO5
HWOU
T
OCDS; ENx
Table 2-46 Port 33 Functions
Pin
Symbol
Ctrl
Type
Function
AC11
P33.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN22
DSITR0E
GTM input
DSADC channel 0 input E
P33.0
O0
General-purpose output
TOUT22
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
VADCG2BFL0
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-202
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-46 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AD11
P33.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN23
PSIRX0C
GTM input
PSI5 input
SENT9C
SENT input
DSCIN2B
DSADC channel 2 input B
DSITR1E
DSADC channel 1 input E
P33.1
O0
General-purpose output
TOUT23
O1
GTM output
ASLSO3
O2
ASCLIN3 output
SCLK2
O3
QSPI2 output
DSCOUT2
O4
DSADC channel 2 output
VADCEMUX02
O5
VADC output
VADCG2BFL1
O6
VADC output
–
O7
Reserved
P33.2
AE11
I
TIN24
SENT8C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN2B
DSADC channel 2 input B
DSITR2E
DSADC channel 2 input E
P33.2
O0
General-purpose output
TOUT24
O1
GTM output
ASCLK3
O2
ASCLIN3 output
SLSO210
O3
QSPI2 output
PSITX0
O4
PSI5 output
VADCEMUX01
O5
VADC output
VADCG2BFL2
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-203
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-46 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AF11
P33.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN25
PSIRX1C
GTM input
PSI5 input
SENT7C
SENT input
DSCIN1B
DSADC channel 1 input B
P33.3
O0
General-purpose output
TOUT25
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT1
O4
DSADC channel 1 output
VADCEMUX00
O5
VADC output
VADCG2BFL3
O6
VADC output
–
O7
Reserved
P33.4
AC12
I
TIN26
SENT6C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CTRAPC
CCU61 input
DSDIN1B
DSADC channel 1 input
DSITR0F
DSADC channel 0 input F
P33.4
O0
General-purpose output
TOUT26
O1
GTM output
ARTS2
O2
ASCLIN2 output
SLSO212
O3
QSPI2 output
PSITX1
O4
PSI5 output
VADCEMUX12
O5
VADC output
VADCG0BFL0
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-204
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-46 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AD12
P33.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN27
ACTS2B
GTM input
ASCLIN2 input
PSIRX2C
PSI5 input
PSISRXC
PSI5-S input
SENT5C
SENT input
CCPOS2C
CCU61 input
T4EUDB
GPT120 input
DSCIN0B
DSADC channel 0 input B
DSITR1F
DSADC channel 1 input F
P33.5
O0
General-purpose output
TOUT27
O1
GTM output
SLSO07
O2
QSPI0 output
SLSO17
O3
QSPI1 output
DSCOUT0
O4
DSADC channel 0 output
VADCEMUX11
O5
VADC output
VADCG0BFL1
O6
VADC output
–
O7
Reserved
P33.6
AE12
I
TIN28
SENT4C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CCPOS1C
CCU61 input
T2EUDB
GPT120 input
DSDIN0B
DSADC channel 0 input B
DSITR2F
DSADC channel 2 input F
P33.6
O0
General-purpose output
TOUT28
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO211
O3
QSPI2 output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
VADCG1BFL0
O6
VADC output
PSISTX
O7
PSI5-S output
Data Sheet
TOC-205
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-46 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AC15
P33.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN29
RXDCAN0E
GTM input
CAN node 0 input
REQ8
SCU input
CCPOS0C
CCU61 input
T2INB
GPT120 input
P33.7
O0
General-purpose output
TOUT29
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO47
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
VADCG1BFL1
O6
VADC output
–
O7
Reserved
P33.8
AD15
I
TIN30
ARX2E
MP /
HighZ /
VEXT
EMGSTOPA
General-purpose input
GTM input
ASCLIN2 input
SCU input
P33.8
O0
General-purpose output
TOUT30
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO42
O3
QSPI4 output
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
COUT62
O7
CCU61 output
SMUFSP
HWOU
T
SMU
P33.9
AF12
I
TIN31
HSIC3INA
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.9
O0
General-purpose output
TOUT31
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO41
O3
QSPI4 output
ASCLK2
O4
ASCLIN2 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
Data Sheet
TOC-206
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-46 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE14
P33.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN32
SLSI4A
HSIC3INB
GTM input
QSPI4 input
QSPI3 input
P33.10
O0
General-purpose output
TOUT32
O1
GTM output
SLSO16
O2
QSPI1 output
SLSO40
O3
QSPI4 output
ASLSO1
O4
ASCLIN1 output
PSISCLK
O5
PSI5-S output
–
O6
Reserved
COUT61
O7
CCU61 output
P33.11
AF14
I
TIN33
SCLK4A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P33.11
O0
General-purpose output
TOUT33
O1
GTM output
ASCLK1
O2
ASCLIN1 output
SCLK4
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
DSCGPWMN
O6
DSADC channel output
CC61
O7
CCU61 output
P33.12
AF15
I
TIN34
MTSR4A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P33.12
O0
General-purpose output
TOUT34
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR4
O3
QSPI4 output
ASCLK1
O4
ASCLIN1 output
–
O5
Reserved
DSCGPWMP
O6
DSADC output
COUT60
O7
CCU61 output
Data Sheet
TOC-207
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-46 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AE15
P33.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN35
ARX1F
GTM input
ASCLIN1 input
MRST4A
QSPI4 input
DSSGNB
DSADC channel input B
INJ11
MSC1 input
P33.13
O0
General-purpose output
TOUT35
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST4
O3
QSPI4 output
SLSO26
O4
QSPI2 output
–
O5
Reserved
DCDCSYNC
O6
SCU output
CC60
O7
CCU61 output
P33.14
AC13
I
TIN143
TGI6
SCLK2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
OCDS input
QSPI2 input
P33.14
O0
General-purpose output
TOUT143
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
TGO6
HWOU
T
OCDS; ENx
Data Sheet
TOC-208
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-46 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AD13
P33.15
I
LP /
PU1 /
VEXT
General-purpose input
TIN144
TGI7
GTM input
OCDS input
P33.15
O0
General-purpose output
TOUT144
O1
GTM output
–
O2
Reserved
SLSO211
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT62
O7
CCU60 output
TGO7
HWOU
T
OCDS; ENx
Table 2-47 Port 34 Functions
Pin
Symbol
Ctrl
Type
Function
AC9
P34.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN146
AC10
GTM input
P34.1
O0
TOUT146
O1
GTM output
ATX0
O2
ASCLIN0 output
–
O3
Reserved
TXDCAN0
O4
CAN node 0 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
COUT63
O7
CCU60 output
P34.2
I
TIN147
ARX0D
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN0 input
RXDCAN0G
CAN node 0 input
RXDCANr0C
CAN node 0 input (MultiCANr+)
P34.2
O0
General-purpose output
TOUT147
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC60
O7
CCU60 output
Data Sheet
TOC-209
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-47 Port 34 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
AF10
P34.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN148
AD10
P34.3
O0
TOUT148
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO210
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P34.4
I
TIN149
MRST2D
AE10
GTM input
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI2 input
P34.4
O0
General-purpose output
TOUT149
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST2
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
CC61
O7
CCU60 output
P34.5
I
TIN150
MTSR2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P34.5
O0
General-purpose output
TOUT150
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR2
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
Data Sheet
TOC-210
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-48 Port 40 Functions
Pin
Symbol
Ctrl
Type
Function
AC7
P40.0
I
S/
HighZ /
VDDM
General-purpose input
VADCG3.0
DS2PB
VADC analog input channel 0 of group 3
DSADC: positive analog input of channel 2, pin B
CCPOS0D
CCU60 input
SENT0A
SENT input
P40.1
AD7
I
VADCG3.1
S/
HighZ /
VDDM
General-purpose inpu.t
VADC analog input channel 1 of group 3 (with pull
down diagnostics)
DS2NB
DSADC: negative analog input channel 2, pin B
CCPOS1B
CCU60 input
SENT1A
SENT input
P40.2
AA2
I
VADCG3.2
S/
HighZ /
VDDM
General-purpose inpu.t
VADC analog input channel 2 of group 3 (with pull
down diagnostics)
CCPOS1D
CCU60 input
SENT2A
SENT input
P40.3
AB2
I
VADCG3.3
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 3 of group 3 (with pull
down diagnostics)
CCPOS2B
CCU60 input
SENT3A
SENT input
P40.4
W3
I
VADCG4.0
CCPOS2D
S/
HighZ /
VDDM
SENT4A
P40.5
Y3
I
CCPOS0D
S/
HighZ /
VDDM
SENT5A
P40.6
VADCG4.4
DS3PA
VADC analog input channel 0 of group 4
CCU60 input
SENT input
VADCG4.1
V4
General-purpose input
General-purpose input
VADC analog input channel 1 of group 4
CCU61 input
SENT input
I
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 4 of group 4
DSADC: positive analog input of channel 3, pin A
CCPOS1B
CCU61 input
SENT6A
SENT input
Data Sheet
TOC-211
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-48 Port 40 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
V3
P40.7
I
S/
HighZ /
VDDM
General-purpose input
VADCG4.5
DS3NA
VADC analog input channel 5 of group 4
DSADC: negative analog input channel 3, pin A
CCPOS1D
CCU61 input
SENT7A
SENT input
P40.11
V2
I
VADCG10.4
DS8PA
S/
HighZ /
VDDM
SENT11A
P40.12
W1
I
DS8NA
S/
HighZ /
VDDM
SENT12A
P40.13
I
DS9PA
S/
HighZ /
VDDM
SENT13A
P40.14
DSADC: positive analog input of channel 8, pin A
General-purpose input
VADC analog input channel 5 of group 10
DSADC: positive analog input of channel 8, pin A
SENT input
VADCG10.6
V1
VADC analog input channel 4 of group 10
SENT input
VADCG10.5
U2
General-purpose input
General-purpose input
VADC analog input channel 6 of group 10
DSADC: positive analog input of channel 9, pin A
SENT input
I
VADCG10.7
DS9NA
S/
HighZ /
VDDM
SENT14A
General-purpose input
VADC analog input channel 7 of group 10
DSADC: positive analog input of channel 9, pin A
SENT input
Table 2-49 Analog Inputs
Pin
Symbol
Ctrl
Type
AC5
AN0
I
D / HighZ / Analog input 0
VDDM
VADC analog input channel 0 of group 0
VADCG0.0
DS1PA
AN1
AD5
DSADC: positive analog input of channel 1, pin A
I
VADCG0.1
DS1NA
AN2
AE4
I
DS0PA
AN3
I
DS0NA
AN4
VADCG0.4
Data Sheet
D / HighZ / Analog input 2
VDDM
VADC analog input channel 2 of group 0
DSADC: positive analog input of channel 0, pin A
VADCG0.3
AC2
D / HighZ / Analog input 1
VDDM
VADC analog input channel 1 of group 0
DSADC: negative analog input channel 1, pin A
VADCG0.2
AF4
Function
D / HighZ / Analog input 3
VDDM
VADC analog input channel 3 of group 0
DSADC: negative analog input channel 0, pin A
I
D / HighZ / Analog input 4
VDDM
VADC analog input channel 4 of group 0
TOC-212
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-49 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
AA3
AN5
I
D / HighZ / Analog input 5
VDDM
VADC analog input channel 5 of group 0
I
D / HighZ / Analog input 6
VDDM
VADC analog input channel 6 of group 0
I
D / HighZ / Analog input 7
VDDM
VADC analog input channel 7 of group 0
I
D / HighZ / Analog input 8
VDDM
VADC analog input channel 0 of group 1
I
D / HighZ / Analog input 9
VDDM
VADC analog input channel 1 of group 1
I
D / HighZ / Analog input 10
VDDM
VADC analog input channel 2 of group 1
I
D / HighZ / Analog input 11
VDDM
VADC analog input channel 3 of group 1 (with pull
down diagnostics)
I
D / HighZ / Analog input 16
VDDM
VADC analog input channel 0 of group 2
I
D / HighZ / Analog input 17
VDDM
VADC analog input channel 1 of group 2
I
D / HighZ / Analog input 18
VDDM
VADC analog input channel 2 of group 2
I
D / HighZ / Analog input 19
VDDM
VADC analog input channel 3 of group 2 (with pull
down diagnostics)
I
D / HighZ / Analog input 20
VDDM
VADC analog input channel 4 of group 2
VADCG0.5
AN6
AD1
VADCG0.6
AN7
AB4
VADCG0.7
AN8
AC4
VADCG1.0
AN9
AD4
VADCG1.1
AN10
AE3
VADCG1.2
AN11
AF3
VADCG1.3
AN16
AC3
VADCG2.0
AN17
AD3
VADCG2.1
AN18
AE2
VADCG2.2
AN19
AF2
VADCG2.3
AN20
AC8
VADCG2.4
Function
DS2PA
AN21
AD8
DSADC: positive analog input of channel 2, pin A
I
VADCG2.5
D / HighZ / Analog input 21
VDDM
VADC analog input channel 5 of group 2
DS2NA
AN22
AE8
DSADC: negative analog input channel 2, pin A
I
D / HighZ / Analog input 22
VDDM
VADC analog input channel 6 of group 2
I
D / HighZ / Analog input 23
VDDM
VADC analog input channel 7 of group 2
I
S/
HighZ /
VDDM
VADCG2.6
AN23
AF8
VADCG2.7
AN24
AC7
VADCG3.0
DS2PB
SENT0A
Data Sheet
Analog input 24
VADC analog input channel 0 of group 3
DSADC: positive analog input of channel 2, pin B
SENT input channel 0, pin A
TOC-213
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-49 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
Function
AD7
AN25
I
S/
HighZ /
VDDM
Analog input 24
VADCG3.1
VADC analog input channel 1 of group 3 (with pull
down diagnostics)
DS2NB
DSADC: negative analog input channel 2, pin B
SENT1A
SENT input channel 1, pin A
AN26
AA2
I
VADCG3.2
S/
HighZ /
VDDM
SENT2A
AN27
AB2
I
S/
HighZ /
VDDM
SENT3A
AN28
AN29
AN32
D / HighZ / Analog input 28
VDDM
VADC analog input channel 4 of group 3 (with pull
down diagnostics)
I
D / HighZ / Analog input 29
VDDM
VADC analog input channel 5 of group 3 (with pull
down diagnostics)
I
S/
HighZ /
VDDM
VADCG4.0
SENT4A
AN33
Y3
I
VADCG4.1
SENT5A
AN36
V4
I
VADCG4.4
DS3PA
S/
HighZ /
VDDM
S/
HighZ /
VDDM
SENT6A
AN37
V3
I
DS3NA
SENT7A
AN40
AN41
AN42
VADCG5.2
Data Sheet
SENT input channel 4, pin A
Analog input 33
VADC analog input channel 1 of group 4
SENT input channel 5, pin A
Analog input 34
VADC analog input channel 4 of group 4
DSADC: positive analog input of channel 3, pin A
S/
HighZ /
VDDM
Analog input 37
VADC analog input channel 5 of group 4
DSADC: negative analog input channel 3, pin A
I
D / HighZ / Analog input 40
VDDM
VADC analog input channel 0 of group 5
I
D / HighZ / Analog input 41
VDDM
VADC analog input channel 1 of group 5
I
D / HighZ / Analog input 42
VDDM
VADC analog input channel 2 of group 5
VADCG5.1
T1
VADC analog input channel 0 of group 4
SENT input channel 7, pin A
VADCG5.0
U3
Analog input 32
SENT input channel 6, pin A
VADCG4.5
U4
VADC analog input channel 3 of group 3 (with pull
down diagnostics)
I
VADCG3.5
W3
Analog input 27
SENT input channel 3, pin A
VADCG3.4
AC1
VADC analog input channel 2 of group 3 (with pull
down diagnostics)
SENT input channel 2, pin A
VADCG3.3
AB1
Analog input 26
TOC-214
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-49 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
U1
AN43
I
D / HighZ / Analog input 43
VDDM
VADC analog input channel 3 of group 5 (with pull
down diagnostics)
I
D / HighZ / Analog input 48
VDDM
VADC analog input channel 0 of group 8
I
D / HighZ / Analog input 49
VDDM
VADC analog input channel 1 of group 8 (muxtest)
I
D / HighZ / Analog input 52
VDDM
VADC analog input channel 4 of group 8
VADCG5.3
AN48
AD2
VADCG8.0
AN49
AE1
VADCG8.1
AN52
AE6
VADCG8.4
Function
DS6PA
AN53
AF6
DSADC: positive analog input of channel 6, pin A
I
VADCG8.5
D / HighZ / Analog input 53
VDDM
VADC analog input channel 5 of group 8
DS6NA
AN54
AE7
DSADC: negative analog input channel 6, pin A
I
VADCG8.6
D / HighZ / Analog input 5
VDDM
VADC analog input channel 6 of group 8
DS6PB
AN55
AF7
DSADC: positive analog input of channel 6, pin B
I
VADCG8.7
D / HighZ / Analog input 50
VDDM
VADC analog input channel 7 of group 8
DS6NB
AN56
AA4
DSADC: negative analog input channel 6, pin B
I
D / HighZ / Analog input 56
VDDM
VADC analog input channel 0 of group 9
I
D / HighZ / Analog input 57
VDDM
VADC analog input channel 1 of group 9 (muxtest)
I
D / HighZ / Analog input 60
VDDM
VADC analog input channel 4 of group 9
VADCG9.0
AN57
AB3
VADCG9.1
AN60
Y2
VADCG9.4
DS7PA
AN61
AA1
DSADC: positive analog input of channel 7, pin A
I
VADCG9.5
D / HighZ / Analog input 61
VDDM
VADC analog input channel 5 of group 9
DS7NA
AN64
W2
DSADC: negative analog input channel 7, pin A
I
D / HighZ / Analog input 64
VDDM
VADC analog input channel 0 of group 10
I
D / HighZ / Analog input 65
VDDM
VADC analog input channel 1 of group 10 (muxtest)
I
S/
HighZ /
VDDM
VADCG10.0
AN65
Y1
VADCG10.1
AN68
V2
VADCG10.4
DS8PA
SENT11A
Data Sheet
Analog input 68
VADC analog input channel 4 of group 10
DSADC: positive analog input of channel 8, pin A
SENT input channel 11, pin A
TOC-215
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-49 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
Function
W1
AN69
I
S/
HighZ /
VDDM
Analog input 69
VADCG10.5
DS8NA
SENT12A
AN70
U2
I
DS9PA
S/
HighZ /
VDDM
SENT13A
AN71
DSADC: negative analog input channel 8, pin A
SENT input channel 12, pin A
VADCG10.6
V1
VADC analog input channel 5 of group 10
Analog input 70
VADC analog input channel 6 of group 10
DSADC: positive analog input of channel 9, pin A
SENT input channel 13, pin A
I
VADCG10.7
DS9NA
S/
HighZ /
VDDM
SENT14A
Analog input 71
VADC analog input channel 7 of group 10
DSADC: negative analog input channel 9, pin A
SENT input channel 14, pin A
Table 2-50 System I/O
Pin
Symbol
Ctrl
Type
Function
B22
PORST
I
PORST /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
A23
ESR0
I/O
MP /
OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is opendrain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished.
See also SCU chapter for details.
Default after power-on can be different. See also
SCU chapter ´Reset Control Unit´ and SCU_IOCR
register description.
EVRWUP
ESR1
A22
EVRWUP
I
I/O
EVR Wakeup Pin
External System Request Reset 1
Default NMI function.
See also SCU chapter ´Reset Control Unit´ and
SCU_IOCR register description.
MP /
PU1 /
VEXT
I
EVR Wakeup Pin
AC17
VGATE1P
O
VGATE1P /
-/
VEXT
External Pass Device gate control for EVR13
AC21
VGATE3P
O
VGATE3P /
-/
VEXT
External Pass Device gate control for EVR33
F24
TMS
I
A2 /
PD /
VDDP3
JTAG Module State Machine Control Input
DAP1
Data Sheet
I/O
Device Access Port Line 1
TOC-216
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-50 System I/O (cont’d)
Pin
Symbol
Ctrl
Type
Function
F23
TRST
I
A2 /
PD /
VDDP3
JTAG Module Reset/Enable Input
E24
TCK
I
JTAG Module Clock Input
DAP0
I
A2 /
PD /
VDDP3
Device Access Port Line 0
G26
XTAL1
I
XTAL1 /
-/
VDDP3
Main Oscillator/PLL/Clock Generator Input
G25
XTAL2
O
XTAL2 /
-/
VDDP3
Main Oscillator/PLL/Clock Generator Output
Table 2-51 Supply
Pin
Symbol
Ctrl
Type
Function
AD6
VAREF1
I
Vx
Positive Analog Reference Voltage 1
AC6
VAGND1
I
Vx
Negative Analog Reference Voltage 1
W4
VAREF2
I
Vx
Positive Analog Reference Voltage 2
Y4
VAGND2
I
Vx
Negative Analog Reference Voltage 2
AE9, AE5
VDDM
I
Vx
ADC Analog Power Supply (3.3V / 5V)
R1, R4
NC / VDDSB
I
NCVDD Emulation Device: Emulation SRAM
SB
Standby Power Supply (1.3V) (Emulation
Device only).
Production Device: Not Connected.
P23, V23, AB23, AC20, B26,
C25, D9, D24, E23, H4
VDD
I
Vx
Digital Core Power Supply (1.3V)
F26
VDD
I
Vx
Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main
XTAL Oscillator/PLL (1.3V) . A higher
decoupling capacitor is therefore
recommended to the VSS pin for better
noise immunity.
I
Vx
External Power Supply (5V / 3.3V)
I
Vx
Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power
Supply for VFLEX.
A25, B24, C23, D14, D22, K4, VEXT
AC16, AD16, AE16, AF16
H24, H25, H26
Data Sheet
VDDP3
TOC-217
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-51 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
E26
VDDP3
I
Vx
Digital Power Supply for Oscillator,
LVDSH and A2 pads (3.3V).
The supply pin inturn supplies the main
XTAL Oscillator/PLL (3.3V) . A higher
decoupling capacitor is therefore
recommended to the VSS pin for better
noise immunity.
A18, B18
VDDFL3
I
Vx
Flash Power Supply (3.3V)
D7
VFLEX
I
Vx
Digital Power Supply for Flex Port Pads
(5V / 3.3V)
AC18, AC22
VFLEXE
I
Vx
Digital Power Supply for EBU Flex Port
Pads
(5V / 3.3V)
M23, T23, Y23
VEBU
I
Vx
Digital Power Supply for EBU
(3.3V)
AF5, AF9
VSSM
I
Vx
Analog Ground for VDDM
AD9
VEVRSB
I
Vx
Standby Power Supply (3.3V/5V) for the
Standby SRAM (CPU0.DSPR).
If Standby mode is not used: To be
handled like VEXT (3.3V/5V).
A26, B25, C24, D8, D15, D23, VSS
F25, J4, L23, R23, T4, W23,
AC19, AC23
I
Vx
Digital Ground (outer balls)
K10, K11, K12, K13, K14,
VSS
K15, K16, K17, L10, L11, L12,
L13, L14, L15, L16, L17
I
Vx
Digital Ground (center balls)
M10, M11, M12, M13, M14,
VSS
M15, M16, M17, N10, N11,
N12, N13, N14, N15, N16, N17
I
Vx
Digital Ground (center balls)
P11, P12, P13, P14, P15, P16, VSS
R11, R12, R13, R14, R15, R16
I
Vx
Digital Ground (center balls)
T10, T11, T12, T13, T14, T15, VSS
T16, T17, U10, U11, U14, U15,
U16, U17
I
Vx
Digital Ground (center balls)
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT TX0N
U12
Data Sheet
TOC-218
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
Table 2-51 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
U13
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT TX0P
R10
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT CLKN
P10
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT CLKP
R17
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT ERR
P17
NC / VDDPSB
I
NCVDD Emulation Device: Power Supply (3.3V)
PSB
for DAP/JTAG pad group. Can be
connected to VDDP or can be left
unsupplied (see document ´AurixED´ /
Aurix Emulation Devices specification.
Production Device:
This pin is not connected on package
level. It can be connected on PCB level
to VDDP or Ground or can be left
unsupplied.
A1, AF1, AF26
NC
I
NC1
Not Connected.
These pins are not connected on
package level and will not be used for
future extensions.
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
Data Sheet
TOC-219
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
LP = Pad class LP (5V/3.3V, Class LP parameters for digital input / output and class D parameters for analog input
function)
MP = Pad class MP (5V/3.3V)
MP+ = Pad class MP+ (5V/3.3V)
MPR = Pad class MPR (5V/3.3V)
A2 = Pad class A2 (3.3V)
LVDSM = Pad class LVDSM (5V/3.3V)
LVDSH = Pad class LVDSH (3.3V)
S = Pad class S (Class S parameters for digital input and class D parameters for analog input function)
D = Pad class D (VADC / DSADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST = PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
2.2.2
Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
•
Input state and
•
PU or High-Z depending on HWCFG[6] level latched during Porst active
Control of the Emergency Stop function:
•
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
•
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.
Data Sheet
TOC-220
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC298x Pin Definition and Functions:
•
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
•
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
•
Not available for P40.x (analoge input ANx overlayed with GPI)
•
Not available for P32.0 EVR13 SMPS mode.
•
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
•
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O
Ports and Peripheral I/O Lines”, P00 / P01)
•
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
•
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
•
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
•
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
•
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
•
P33.8: Emergency Stop can be overruled if this pin is used as safety output pin (SMUFSP)
2.2.3
Pull-Up/Pull-Down Reset Behavior of the Pins
Table 2-52 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Data Sheet
TOC-221
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
2.3
TC297x Pin Definition and Functions: BGA292
Figure 2-3 is showing the TC297x Logic Symbol for the package variant: BGA292.
20
19
18
17
16
15
14
13
12
11
10
9
8
7
Y
VSS
P32.3
P32.2
P32.0
P33.13
P33.11
P33.9
P33.7
P33.5
P33.3
P33.1
AN5
AN10
W
VEXT
VSS
P32.4
VGATE1
P33.12
P
P33.10
P33.8
P33.6
P33.4
P33.2
P33.0
AN2
AN8
AN11
V
P23.0
VEXT
6
5
4
3
2
1
VDDM
VSSM
AN20
AN21
NC
Y
AN13
AN16
AN18
AN19
AN24
AN25
W
AN26
AN27
V
AN28
AN29
U
VAGND1 VAREF1
17
16
15
14
13
12
11
10
9
8
7
6
5
4
U
P23.2
P23.1
U
VSS
P32.7
P32.6
P33.15
P34.5
P34.3
P34.1
AN1
AN3
AN7
AN9
AN14
AN17
NC
U
T
P23.4
P23.3
T P23.5
VSS
P32.5
P33.14
P34.4
P34.2
VEVRSB
AN0
AN4
AN6
AN12
AN15
AN22
AN30
T
R
P22.2
P22.3
R P23.6
P23.7
AN23
AN31
R
AN35
AN33
R
VSS
VSS
(AGBT
TX0P)
VSS
(AGBT
TX0N)
VSS
AN34
AN32
P
AN37
AN39
P
VSS
VSS
VSS
VSS
VDD
AN38
AN36
N
AN45
AN44
N
VSS
VSS
VSS
VSS
AN40
AN41
M
AN47
AN46
M
AN43
L
P00.12
P00.11 L
Top-View
VDD
P
P22.0
P22.1
P P22.5
P22.4
N
VDDP3
VDD
N P22.7
P22.6
VDD
M
XTAL1
XTAL2
M P22.9
P22.8
VSS
VSS
L
VSS
TRST
L P22.11
P22.10
VSS
(AGBT
ERR)
VSS
VSS
VSS
VSS
VSS
VSS
VSS
(AGBT
CLKN)
AN42
K
P21.4
P21.2
K P21.0
TMS
NC
(VDDPSB)
VSS
VSS
VSS
VSS
VSS
VSS
VSS
(AGBT
CLKP)
P00.10
P00.8 K
P00.9
P00.7
K
J
P21.5
P21.3
J P21.1
TCK
VSS
VSS
VSS
VSS
VSS
VSS
P01.7
P00.6 J
P00.5
P00.4
J
H
P20.0
P20.2
H P21.6
P21.7
VDD
VSS
VSS
VSS
VSS
VDD
(VDDSB)
P01.5
P01.6 H
P00.3
P00.2
H
G
P20.3
P20.1
G PORST
ESR1
VSS
VSS
VSS
VSS
P01.3
P01.4 G
P00.1
P00.0
G
F
P20.8
P20.7
F P20.6
ESR0
P02.10
P02.11 F
P02.7
P02.8
F
E
P20.11
P20.10
E P20.9
VSS
VDDFL3
P15.5
P14.2
P12.0
P12.1
P11.0
P11.1
P11.7
P11.8
P11.13
VSS
P02.9 E
P02.5
P02.6
E
D
P20.13
P20.12
D
VSS
VDDFL3
P15.7
P15.8
P14.7
P14.9
P14.10
P11.4
P11.6
P11.5
P11.14
P11.15
VFLEX
VSS
P02.3
P02.4
D
17
16
15
14
13
12
11
10
9
8
7
6
5
4
C
P20.14
P15.2
P02.1
P02.2
C
B
P15.0
VSS
VDDP3
P15.3
P14.0
P14.4
P14.3
P14.6
P13.0
P13.2
P11.3
P11.10
P11.12
P10.1
P10.4
P10.5
P10.8
VEXT
VSS
P02.0
B
A
VSS
VDDP3
P15.1
P15.4
P15.6
P14.1
P14.5
P14.8
P13.1
P13.3
P11.2
P11.9
P11.11
P10.0
P10.3
P10.2
P10.6
P10.7
VEXT
NC
A
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
VDD
VDD
VAGND2 VAREF2 T
VDD
(VDDSB)
D
Figure 2-3 TC297x Logic Symbol for the package variant BGA292.
Data Sheet
TOC-222
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
2.3.1
TC297x BGA292 Package Variant Pin Configuration
Table 2-53 Port 00 Functions
Pin
Symbol
Ctrl
Type
Function
G1
P00.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN9
CTRAPA
GTM input
CCU61 input
T12HRE
CCU60 input
INJ00
MSC0 input
CIFD9
CIF input
P00.0
O0
General-purpose output
TOUT9
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
COUT63
O7
CCU60 output
ETHMDIOA
HWOU
T
ETH input/output
Data Sheet
TOC-223
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-53 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
G2
P00.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN10
ARX3E
H1
GTM input
ASCLIN3 input
RXDCAN1D
CAN node 1 input
PSIRX0A
PSI5 input
SENT0B
SENT input
CC60INB
CCU60 input
CC60INA
CCU61 input
DSCIN5A
DSADC channel 5 input
DS5NA
DSADC positive analog input of channel channel 5,
pin A
DSCIN7B
DSADC channel 7 input
VADCG7.5
VADC analog input channel 5 of group 7
CIFD10
CIF input
P00.1
O0
General-purpose output
TOUT10
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT5
O4
DSADC channel 5 output
DSCOUT7
O5
DSADC channel 7 output
SPC0
O6
SENT output
CC60
O7
CCU61 output
P00.2
I
TIN11
SENT1B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN5A
DSADC channel 5 input
DSDIN7B
DSADC channel 7 input
DS5PA
DSADC negative analog input of channel 5, pin A
VADCG7.4
VADC analog input channel 4 of group 7
CIFD11
CIF input
P00.2
O0
General-purpose output
TOUT11
O1
GTM output
ASCLK3
O2
ASCLIN3 output
TXDCANr1
O3
CAN node 1 output (MultiCANr+)
PSITX0
O4
PSI5 output
TXDCAN3
O5
CAN node 3 output
SLSO34
O6
QSPI3 output
COUT60
O7
CCU61 output
Data Sheet
TOC-224
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-53 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
H2
P00.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN12
RXDCAN3A
J1
GTM input
CAN node 3 input
RXDCANr1A
CAN node 1 input (MultiCANr+)
PSIRX1A
PSI5 input
PSISRXA
PSI5-S input
SENT2B
SENT input
CC61INB
CCU60 input
CC61INA
CCU61 input
DSCIN3A
DSADC channel 3 input
VADCG7.3
VADC analog input channel 3 of group 7
DSITR5F
DSADC channel 5 input
CIFD12
CIF input
P00.3
O0
General-purpose output
TOUT12
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
DSCOUT3
O4
DSADC channel 3 output
–
O5
Reserved
SPC2
O6
SENT output
CC61
O7
CCU61 output
P00.4
I
TIN13
REQ7
LP /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
SENT3B
SENT input
DSDIN3A
DSADC channel 3 input
DSSGNA
DSADC channel input
VADCG7.2
VADC analog input channel 2 of group 7
CIFD13
CIF input
P00.4
O0
General-purpose output
TOUT13
O1
GTM output
PSISTX
O2
PSI5-S output
–
O3
Reserved
PSITX1
O4
PSI5 output
VADCG4BFL0
O5
VADC output
SPC3
O6
SENT output
COUT61
O7
CCU61 output
Data Sheet
TOC-225
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-53 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J2
P00.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN14
PSIRX2A
J4
GTM input
PSI5 input
SENT4B
SENT input
CC62INB
CCU60 input
CC62INA
CCU61 input
DSCIN2A
DSADC channel 2 input
VADCG7.1
VADC analog input channel 1 of group 7
CIFD14
CIF input
P00.5
O0
General-purpose output
TOUT14
O1
GTM output
DSCGPWMN
O2
DSADC output
SLSO33
O3
QSPI3 output
DSCOUT2
O4
DSADC channel 2 output
VADCG4BFL1
O5
VADC output
SPC4
O6
SENT output
CC62
O7
CCU61 output
P00.6
I
TIN15
SENT5B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN2A
DSADC channel 2 input A
VADCG7.0
VADC analog input channel 0 of group 7 (with pull
down diagnostics)
DSITR4F
DSADC channel 4 input F
CIFD15
CIF input
P00.6
O0
General-purpose output
TOUT15
O1
GTM output
DSCGPWMP
O2
DSADC output
VADCG4BFL2
O3
VADC output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
SPC5
O6
SENT output
COUT62
O7
CCU61 output
Data Sheet
TOC-226
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-53 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
K1
P00.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN16
SENT6B
K4
GTM input
SENT input
CC60INC
CCU61 input
CCPOS0A
CCU61 input
T12HRB
CCU60 input
T2INA
GPT120 input
DSCIN4A
DSADC channel 4 input A
DS4NA
DSADC negative analog input channel 4, pin A
VADCG6.5
VADC analog input channel 5 of group 6
CIFCLK
CIF input
P00.7
O0
General-purpose output
TOUT16
O1
GTM output
–
O2
Reserved
VADCG4BFL3
O3
VADC output
DSCOUT4
O4
DSADC channel 4 output
VADCEMUX11
O5
VADC output
SPC6
O6
SENT output
CC60
O7
CCU61 output
P00.8
I
TIN17
SENT7B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CC61INC
CCU61 input
CCPOS1A
CCU61 input
T13HRB
CCU60 input
T2EUDA
GPT120 input
DSDIN4A
DSADC channel 4 input A
DS4PA
DSADC positive analog input of channel 4, pin A
VADCG6.4
VADC analog input channel 4 of group 6
CIFVSNC
CIF input
P00.8
O0
General-purpose output
TOUT17
O1
GTM output
SLSO36
O2
QSPI3 output
–
O3
Reserved
–
O4
Reserved
VADCEMUX12
O5
VADC output
SPC7
O6
SENT output
CC61
O7
CCU61 output
Data Sheet
TOC-227
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-53 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
K2
P00.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN18
SENT8B
K5
GTM input
SENT input
CC62INC
CCU61 input
CCPOS2A
CCU61 input
T13HRC
CCU60 input
T12HRC
CCU60 input
T4EUDA
GPT120 input
DSCIN1A
DSADC channel 1 input A
VADCG6.3
VADC analog input channel 3 of group 6
DSITR3F
DSADC channel 3 input F
CIFHSNC
CIF input
P00.9
O0
General-purpose output
TOUT18
O1
GTM output
SLSO37
O2
QSPI3 output
ARTS3
O3
ASCLIN3 output
DSCOUT1
O4
DSADC channel 1 output
–
O5
Reserved
SPC8
O6
SENT output
CC62
O7
CCU61 output
P00.10
I
TIN19
SENT9B
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN1A
DSADC channel 1 input A
VADCG6.2
VADC analog input channel 2 of group 6
P00.10
O0
General-purpose output
TOUT19
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SPC9
O6
SENT output
COUT63
O7
CCU61 output
Data Sheet
TOC-228
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-53 Port 00 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
L1
P00.11
I
LP /
PU1 /
VEXT
General-purpose input
TIN20
CTRAPA
L2
GTM input
CCU60 input
T12HRE
CCU61 input
DSCIN0A
DSADC channel 0 input A
VADCG6.1
VADC analog input channel 1 of group 6
P00.11
O0
General-purpose output
TOUT20
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT0
O4
DSADC channel 0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P00.12
I
TIN21
ACTS3A
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN3 input
DSDIN0A
DSADC channel 0 input A
VADCG6.0
VADC analog input channel 0 of group 6
P00.12
O0
General-purpose output
TOUT21
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU61 output
Data Sheet
TOC-229
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-54 Port 01 Functions
Pin
Symbol
Ctrl
Type
Function
G5
P01.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN111
SLSI3B
DSITR7F
G4
QSPI3 input
DSADC channel 7 input F
P01.3
O0
General-purpose output
TOUT111
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO39
O4
QSPI3 output
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
–
O7
Reserved
P01.4
I
TIN112
RXDCAN1C
LP /
PU1 /
VEXT
DSITR7E
H5
GTM input
General-purpose input
GTM input
CAN node 1 input
DSADC channel 7 input E
P01.4
O0
General-purpose output
TOUT112
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO310
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.5
I
TIN113
MRST3C
DSCIN8A
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
DSADC channel 8 input A
P01.5
O0
General-purpose output
TOUT113
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST3
O4
QSPI3 output
–
O5
Reserved
DSCOUT8
O6
DSADC channel 8 output
–
O7
Reserved
Data Sheet
TOC-230
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-54 Port 01 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
H4
P01.6
I
MP /
PU1 /
VEXT
General-purpose input
TIN114
MTSR3C
DSDIN8A
J5
GTM input
QSPI3 input
DSADC channel 8 input A
P01.6
O0
General-purpose output
TOUT114
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR3
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P01.7
I
TIN115
SCLK3C
DSITR8F
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
DSADC channel 8 input F
P01.7
O0
General-purpose output
TOUT115
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SCLK3
O4
QSPI3 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-231
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-55 Port 02 Functions
Pin
Symbol
Ctrl
Type
Function
B1
P02.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN0
REQ6
C2
GTM input
SCU input
ARX2G
ASCLIN2 input
CC60INA
CCU60 input
CC60INB
CCU61 input
CIFD0
CIF input
P02.0
O0
General-purpose output
TOUT0
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO31
O3
QSPI3 output
DSCGPWMN
O4
DSADC output
TXDCAN0
O5
CAN node 0 output
TXD0A
O6
ERAY0 output
CC60
O7
CCU60 output
P02.1
I
TIN1
LP / PU1 General-purpose input
/ VEXT
GTM input
REQ14
SCU input
ARX2B
ASCLIN2 input
RXDCAN0A
CAN node 0 input
RXD0A2
ERAY0 input
CIFD1
CIF input
P02.1
O0
General-purpose output
TOUT1
O1
GTM output
SLSO47
O2
QSPI4 output
SLSO32
O3
QSPI3 output
DSCGPWMP
O4
DSADC output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
Data Sheet
TOC-232
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-55 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
C1
P02.2
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN2
CC61INA
D2
GTM input
CCU60 input
CC61INB
CCU61 input
CIFD2
CIF input
P02.2
O0
General-purpose output
TOUT2
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO33
O3
QSPI3 output
PSITX0
O4
PSI5 output
TXDCAN2
O5
CAN node 2 output
TXD0B
O6
ERAY0 output
CC61
O7
CCU60 output
P02.3
I
TIN3
ARX1G
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
RXDCAN2B
CAN node 2 input
RXD0B2
ERAY0 input
PSIRX0B
PSI5 input
DSCIN5B
DSADC channel 5 input B
SDI11
MSC1 input
CIFD3
CIF input
P02.3
O0
General-purpose output
TOUT3
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO34
O3
QSPI3 output
DSCOUT5
O4
DSADC channel 5 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
Data Sheet
TOC-233
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-55 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D1
P02.4
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN4
SLSI3A
E2
GTM input
QSPI3 input
ECTT1
TTCAN input
RXDCAN0D
CAN node 0 input
CC62INA
CCU60 input
CC62INB
CCU61 input
DSDIN5B
DSADC channel 5 input B
SDA0A
I2C0 input
CIFD4
CIF input
P02.4
O0
General-purpose output
TOUT4
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO30
O3
QSPI3 output
PSISCLK
O4
PSI5-S output
SDA0
O5
I2C0 output
TXEN0A
O6
ERAY0 output
CC62
O7
CCU60 output
P02.5
I
TIN5
MRST3A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
ECTT2
TTCAN input
PSIRX1B
PSI5 input
PSISRXB
PSI5-S input
SENT3C
SENT input
DSCIN4B
DSADC channel 4 input B
SCL0A
I2C0 input
CIFD5
CIF input
P02.5
O0
General-purpose output
TOUT5
O1
GTM output
TXDCAN0
O2
CAN node 0 output
MRST3
O3
QSPI3 output
DSCOUT4
O4
DSADC channel 4 output
SCL0
O5
I2C0 output
TXEN0B
O6
ERAY0 output
COUT62
O7
CCU60 output
Data Sheet
TOC-234
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-55 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E1
P02.6
I
MP /
PU1 /
VEXT
General-purpose input
TIN6
MTSR3A
GTM input
QSPI3 input
SENT2C
SENT input
CC60INC
CCU60 input
CCPOS0A
CCU60 input
T12HRB
CCU61 input
T3INA
GPT120 input
CIFD6
CIF input
DSDIN4B
DSADC channel 4 input B
DSITR5E
DSADC channel 5 input E
P02.6
O0
General-purpose output
TOUT6
O1
GTM output
PSISTX
O2
PSI5-S output
MTSR3
O3
QSPI3 output
PSITX1
O4
PSI5 output
VADCEMUX00
O5
VADC output
–
O6
Reserved
CC60
O7
CCU60 output
Data Sheet
TOC-235
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-55 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
F2
P02.7
I
MP /
PU1 /
VEXT
General-purpose input
TIN7
SCLK3A
GTM input
QSPI3 input
PSIRX2B
PSI5 input
SENT1C
SENT input
CC61INC
CCU60 input
CCPOS1A
CCU60 input
T13HRB
CCU61 input
T3EUDA
GPT120 input
CIFD7
CIF input
DSCIN3B
DSADC channel 3 input B
DSITR4E
DSADC channel 4 input E
P02.7
O0
General-purpose output
TOUT7
O1
GTM output
–
O2
Reserved
SCLK3
O3
QSPI3 output
DSCOUT3
O4
DSADC channel 3 output
VADCEMUX01
O5
VADC output
SPC1
O6
SENT output
CC61
O7
CCU60 output
Data Sheet
TOC-236
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-55 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
F1
P02.8
I
SENT0C
LP / PU1 General-purpose input
/
GTM input
VEXT
SENT input
CC62INC
CCU60 input
CCPOS2A
CCU60 input
T12HRC
CCU61 input
T13HRC
CCU61 input
T4INA
GPT120 input
CIFD8
CIF input
DSDIN3B
DSADC channel 3 input B
DSITR3E
DSADC channel 3 input E
TIN8
E4
Function
P02.8
O0
General-purpose output
TOUT8
O1
GTM output
SLSO35
O2
QSPI3 output
–
O3
Reserved
PSITX2
O4
PSI5 output
VADCEMUX02
O5
VADC output
ETHMDC
O6
ETH output
CC62
O7
CCU60 output
P02.9
I
TIN116
LP /
PU1 /
VEXT
General-purpose input
GTM input
P02.9
O0
TOUT116
O1
GTM output
ATX2
O2
ASCLIN2 output
–
O3
Reserved
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-237
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-55 Port 02 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
F5
P02.10
I
LP /
PU1 /
VEXT
General-purpose input
TIN117
ARX2C
RXDCAN1E
F4
GTM input
ASCLIN2 input
CAN node 1 input
P02.10
O0
General-purpose output
TOUT117
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P02.11
I
TIN118
LP /
PU1 /
VEXT
General-purpose input
GTM input
P02.11
O0
General-purpose output
TOUT118
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-56 Port 10 Functions
Pin
Symbol
Ctrl
Type
Function
A7
P10.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN102
T6EUDB
GTM input
GPT120 input
P10.0
O0
General-purpose output
TOUT102
O1
GTM output
–
O2
Reserved
SLSO110
O3
QSPI1 output
–
O4
Reserved
VADCG6BFL0
O5
VADC output
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-238
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-56 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B7
P10.1
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN103
MRST1A
T5EUDB
A5
GTM input
QSPI1 input
GPT120 input
P10.1
O0
General-purpose output
TOUT103
O1
GTM output
MTSR1
O2
QSPI1 output
MRST1
O3
QSPI1 output
EN01
O4
MSC0 output
VADCG6BFL1
O5
VADC output
END03
O6
MSC0 output
–
O7
Reserved
P10.2
I
TIN104
SCLK1A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
T6INB
GPT120 input
REQ2
SCU input
RXDCAN2E
CAN node 2 input
SDI01
MSC0 input
P10.2
O0
General-purpose output
TOUT104
O1
GTM output
–
O2
Reserved
SCLK1
O3
QSPI1 output
EN00
O4
MSC0 output
VADCG6BFL2
O5
VADC output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
TOC-239
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-56 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A6
P10.3
I
MP /
PU1 /
VEXT
General-purpose input
TIN105
MTSR1A
B6
GTM input
QSPI1 input
REQ3
SCU input
T5INB
GPT120 input
P10.3
O0
General-purpose output
TOUT105
O1
GTM output
VADCG6BFL3
O2
VADC output
MTSR1
O3
QSPI1 output
EN00
O4
MSC0 output
END02
O5
MSC0 output
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P10.4
I
TIN106
MTSR1C
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
QSPI1 input
CCPOS0C
CCU60 input
T3INB
GPT120 input
P10.4
O0
General-purpose output
TOUT106
O1
GTM output
–
O2
Reserved
SLSO18
O3
QSPI1 output
MTSR1
O4
QSPI1 output
EN00
O5
MSC0 output
END02
O6
MSC0 output
–
O7
Reserved
Data Sheet
TOC-240
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-56 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B5
P10.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN107
HWCFG4
A4
GTM input
SCU input
RXDCANr0A
CAN node 0 input (MultiCANr+)
INJ01
MSC0 input
P10.5
O0
General-purpose output
TOUT107
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO38
O3
QSPI3 output
SLSO19
O4
QSPI1 output
T6OUT
O5
GPT120 output
ASLSO2
O6
ASCLIN2 output
PSITX3
O7
PSI5 output
P10.6
I
TIN108
ARX2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
MTSR3B
QSPI3 input
PSIRX3C
PSI5 input
HWCFG5
SCU input
P10.6
O0
General-purpose output
TOUT108
O1
GTM output
ASCLK2
O2
ASCLIN2 output
MTSR3
O3
QSPI3 output
T3OUT
O4
GPT120 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
MRST1
O6
QSPI1 output
VADCG7BFL0
O7
VADC output
Data Sheet
TOC-241
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-56 Port 10 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A3
P10.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN109
ACTS2A
B4
GTM input
ASCLIN2 input
MRST3B
QSPI3 input
REQ4
SCU input
CCPOS1C
CCU60 input
T3EUDB
GPT120 input
P10.7
O0
General-purpose output
TOUT109
O1
GTM output
–
O2
Reserved
MRST3
O3
QSPI3 output
VADCG7BFL1
O4
VADC output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
–
O7
Reserved
P10.8
I
TIN110
SCLK3B
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
REQ5
SCU input
CCPOS2C
CCU60 input
T4INB
GPT120 input
RXDCANr0B
CAN node 0 input (MultiCANr+)
P10.8
O0
General-purpose output
TOUT110
O1
GTM output
ARTS2
O2
ASCLIN2 output
SCLK3
O3
QSPI3 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-242
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-57 Port 11 Functions
Pin
Symbol
Ctrl
Type
Function
E10
P11.0
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN119
ARX3B
E9
ASCLIN3 input
P11.0
O0
General-purpose output
TOUT119
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHTXD3
O6
ETH output
–
O7
Reserved
P11.1
I
TIN120
A10
GTM input
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
P11.1
O0
TOUT120
O1
GTM output
ASCLK3
O2
ASCLIN3 output
ATX3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
ETHTXD2
O6
ETH output
–
O7
Reserved
P11.2
I
TIN95
MPR/
PU1 /
VFLEX
General-purpose output
General-purpose input
GTM input
P11.2
O0
TOUT95
O1
GTM output
END03
O2
MSC0 output
SLSO05
O3
QSPI0 output
SLSO15
O4
QSPI1 output
EN01
O5
MSC0 output
ETHTXD1
O6
ETH output
COUT63
O7
CCU60 output
Data Sheet
General-purpose output
TOC-243
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-57 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B10
P11.3
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN96
MRST1B
SDI03
D10
QSPI1 input
MSC0 input
P11.3
O0
General-purpose output
TOUT96
O1
GTM output
–
O2
Reserved
MRST1
O3
QSPI1 output
TXD0A
O4
ERAY0 output
–
O5
Reserved
ETHTXD0
O6
ETH output
COUT62
O7
CCU60 output
P11.4
I
TIN121
ETHRXCLKB
D8
GTM input
MP+ /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.4
O0
General-purpose output
TOUT121
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHTXER
O6
ETH output
–
O7
Reserved
P11.5
I
TIN122
ETHTXCLKA
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.5
O0
General-purpose output
TOUT122
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-244
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-57 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D9
P11.6
I
MPR /
PU1 /
VFLEX
General-purpose input
TIN97
SCLK1B
E8
QSPI1 input
P11.6
O0
General-purpose output
TOUT97
O1
GTM output
TXEN0B
O2
ERAY0 output
SCLK1
O3
QSPI1 output
TXEN0A
O4
ERAY0 output
FCLP0
O5
MSC0 output
ETHTXEN
O6
ETH output
COUT61
O7
CCU60 output
P11.7
I
TIN123
ETHRXD3
E7
GTM input
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.7
O0
General-purpose output
TOUT123
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P11.8
I
TIN124
ETHRXD2
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.8
O0
General-purpose output
TOUT124
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-245
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-57 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A9
P11.9
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN98
MTSR1B
B9
GTM input
QSPI1 input
RXD0A1
ERAY0 input
ETHRXD1
ETH input
P11.9
O0
General-purpose output
TOUT98
O1
GTM output
–
O2
Reserved
MTSR1
O3
QSPI1 output
–
O4
Reserved
SOP0
O5
MSC0 output
–
O6
Reserved
COUT60
O7
CCU60 output
P11.10
I
TIN99
REQ12
LP /
PU1 /
VFLEX
General-purpose input
GTM input
SCU input
ARX1E
ASCLIN1 input
SLSI1A
QSPI1 input
RXDCAN3D
CAN node 3 input
RXD0B1
ERAY0 input
ETHRXD0
ETH input
SDI00
MSC0 input
P11.10
O0
General-purpose output
TOUT99
O1
GTM output
–
O2
Reserved
SLSO03
O3
QSPI0 output
SLSO13
O4
QSPI1 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
Data Sheet
TOC-246
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-57 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A8
P11.11
I
MP+ /
PU1 /
VFLEX
General-purpose input
TIN100
ETHCRSDVA
B8
GTM input
ETH input
ETHRXDVA
ETH input
ETHCRSB
ETH input
P11.11
O0
General-purpose output
TOUT100
O1
GTM output
END02
O2
MSC0 output
SLSO04
O3
QSPI0 output
SLSO14
O4
QSPI1 output
EN00
O5
MSC0 output
TXEN0B
O6
ERAY0 output
CC61
O7
CCU60 output
P11.12
I
TIN101
ETHREFCLK
MPR /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHTXCLKB
ETH input
(Not for productive purposes)
ETHRXCLKA
ETH input
(Not for productive purposes)
P11.12
O0
General-purpose output
TOUT101
O1
GTM output
ATX1
O2
ASCLIN1 output
GTMCLK2
O3
GTM output
TXD0B
O4
ERAY0 output
TXDCAN3
O5
CAN node 3 output
EXTCLK1
O6
SCU output
CC60
O7
CCU60 output
Data Sheet
TOC-247
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-57 Port 11 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E6
P11.13
I
LP /
PU1 /
VFLEX
General-purpose input
TIN125
ETHRXERA
SDA1A
D7
ETH input
I2C1 input
P11.13
O0
General-purpose output
TOUT125
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDA1
O6
I2C1 output
–
O7
Reserved
P11.14
I
TIN126
ETHCRSDVB
D6
GTM input
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
ETHRXDVB
ETH input
ETHCRSA
ETH input
SCL1A
I2C1 input
P11.14
O0
General-purpose output
TOUT126
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SCL1
O6
I2C1 output
–
O7
Reserved
P11.15
I
TIN127
ETHCOL
LP /
PU1 /
VFLEX
General-purpose input
GTM input
ETH input
P11.15
O0
General-purpose output
TOUT127
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-248
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-58 Port 12 Functions
Pin
Symbol
Ctrl
Type
Function
E12
P12.0
I
LP /
PU1 /
VFLEX
General-purpose input
TIN128
ETHRXCLKC
RXDCAN0C
GTM input
ETH input
CAN node 0 input
P12.0
O0
General-purpose output
TOUT128
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
–
O7
Reserved
P12.1
E11
I
TIN129
LP /
PU1 /
VFLEX
General-purpose input
GTM input
P12.1
O0
General-purpose output
TOUT129
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
–
O7
Reserved
ETHMDIOC
HWOU
T
ETH input/output
Table 2-59 Port 13 Functions
Pin
Symbol
Ctrl
Type
Function
B12
P13.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN91
GTM input
P13.0
O0
TOUT91
O1
GTM output
END03
O2
MSC0 output
SCLK2N
O3
QSPI2 output (LVDS)
EN01
O4
MSC0 output
FCLN0
O5
MSC0 output (LVDS)
FCLND0
O6
MSC0 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-249
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-59 Port 13 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A12
P13.1
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN92
SCL0B
GTM input
I2C0 input
P13.1
O0
General-purpose output
TOUT92
O1
GTM output
–
O2
Reserved
SCLK2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
FCLP0
O5
MSC0 output (LVDS)
SCL0
O6
I2C0 output
–
O7
Reserved
P13.2
B11
I
TIN93
CAPINA
LVDSM_N /
PU1 /
VEXT
SDA0B
General-purpose input
GTM input
GPT120 input
I2C0 input
P13.2
O0
General-purpose output
TOUT93
O1
GTM output
–
O2
Reserved
MTSR2N
O3
QSPI2 output (LVDS)
FCLP0
O4
MSC0 output
SON0
O5
MSC0 output (LVDS)
SDA0
O6
I2C0 output
SOND0
O7
MSC0 output (LVDS)
P13.3
A11
I
TIN94
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
P13.3
O0
TOUT94
O1
GTM output
–
O2
Reserved
MTSR2P
O3
QSPI2 output (LVDS)
–
O4
Reserved
SOP0
O5
MSC0 output (LVDS)
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-250
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-60 Port 14 Functions
Pin
Symbol
Ctrl
Type
Function
B16
P14.0
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN80
SENT12D
GTM input
SENT input
P14.0
O0
General-purpose output
TOUT80
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin
TXD0A
O3
ERAY0 output
TXD0B
O4
ERAY0 output
TXDCAN1
O5
CAN node 1 output
Used for single pin DAP (SPD) function
ASCLK0
O6
ASCLIN0 output
COUT62
O7
CCU60 output
P14.1
A15
I
TIN81
REQ15
MP /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
SENT13D
SENT input
ARX0A
ASCLIN0 input
Recommended as Boot loader pin
RXDCAN1B
CAN node 1 input
Used for single pin DAP (SPD) function
RXD0A3
ERAY0 input
RXD0B3
ERAY0 input
EVRWUPA
SCU input
P14.1
O0
General-purpose output
TOUT81
O1
GTM output
ATX0
O2
ASCLIN0 output
Recommended as Boot loader pin.
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT63
O7
CCU60 output
Data Sheet
TOC-251
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-60 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E13
P14.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN82
HWCFG2
EVR13
GTM input
SCU input
Latched at cold power on reset to decide EVR13
activation.
P14.2
O0
General-purpose output
TOUT82
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO21
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK2
O6
ASCLIN2 output
–
O7
Reserved
P14.3
B14
I
TIN83
ARX2A
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN2 input
REQ10
SCU input
HWCFG3_BMI
SCU input
SDI02
MSC0 input
P14.3
O0
General-purpose output
TOUT83
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO23
O3
QSPI2 output
ASLSO1
O4
ASCLIN1 output
ASLSO3
O5
ASCLIN3 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-252
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-60 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
B15
P14.4
I
LP /
PU1 /
VEXT
General-purpose input
TIN84
HWCFG6
GTM input
SCU input
Latched at cold power on reset to decide default pad
reset state (PU or HighZ).
P14.4
O0
General-purpose output
TOUT84
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.5
A14
I
TIN85
HWCFG1
EVR33
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
Latched at cold power on reset to decide EVR33
activation.
P14.5
O0
General-purpose output
TOUT85
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXD0B
O6
ERAY0 output
TXD1B
O7
ERAY1 output
P14.6
B13
I
TIN86
HWCFG0
DCLDO
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
SCU input
If EVR13 active, latched at cold power on reset to
decide between LDO and SMPS mode.
P14.6
O0
General-purpose output
TOUT86
O1
GTM output
–
O2
Reserved
SLSO22
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
TXEN0B
O6
ERAY0 output
TXEN1B
O7
ERAY1 output
Data Sheet
TOC-253
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-60 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D13
P14.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN87
RXD0B0
RXD1B0
GTM input
ERAY0 input
ERAY1 input
P14.7
O0
General-purpose output
TOUT87
O1
GTM output
ARTS0
O2
ASCLIN0 output
SLSO24
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.8
A13
I
TIN88
ARX1D
LP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
RXDCAN2D
CAN node 2 input
RXD0A0
ERAY0 input
RXD1A0
ERAY1 input
P14.8
O0
General-purpose output
TOUT88
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P14.9
D12
I
TIN89
ACTS0A
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
P14.9
O0
General-purpose output
TOUT89
O1
GTM output
END03
O2
MSC0 output
EN01
O3
MSC0 output
–
O4
Reserved
TXEN0B
O5
ERAY0 output
TXEN0A
O6
ERAY0 output
TXEN1A
O7
ERAY1 output
Data Sheet
TOC-254
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-60 Port 14 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D11
P14.10
I
MP+ /
PU1 /
VEXT
General-purpose input
TIN90
GTM input
P14.10
O0
General-purpose output
TOUT90
O1
GTM output
END02
O2
MSC0 output
EN00
O3
MSC0 output
ATX1
O4
ASCLIN1 output
TXDCAN2
O5
CAN node 2 output
TXD0A
O6
ERAY0 output
TXD1A
O7
ERAY1 output
Table 2-61 Port 15 Functions
Pin
Symbol
Ctrl
Type
Function
B20
P15.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN71
A18
GTM input
P15.0
O0
TOUT71
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO013
O3
QSPI0 output
–
O4
Reserved
TXDCAN2
O5
CAN node 2 output
ASCLK1
O6
ASCLIN1 output
–
O7
Reserved
P15.1
I
TIN72
REQ16
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
SCU input
ARX1A
ASCLIN1 input
RXDCAN2A
CAN node 2 input
SLSI2B
QSPI2 input
EVRWUPB
SCU input
P15.1
O0
General-purpose output
TOUT72
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO25
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-255
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-61 Port 15 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
C19
P15.2
I
MP /
PU1 /
VEXT
General-purpose input
TIN73
SLSI2A
B17
GTM input
QSPI2 input
MRST2E
QSPI2 input
SENT10D
SENT input
HSIC2INA
QSPI2 input
P15.2
O0
General-purpose output
TOUT73
O1
GTM output
ATX0
O2
ASCLIN0 output
SLSO20
O3
QSPI2 output
–
O4
Reserved
TXDCAN1
O5
CAN node 1 output
ASCLK0
O6
ASCLIN0 output
–
O7
Reserved
P15.3
I
TIN74
ARX0B
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN0 input
SCLK2A
QSPI2 input
RXDCAN1A
CAN node 1 input
HSIC2INB
QSPI2 input
P15.3
O0
General-purpose output
TOUT74
O1
GTM output
ATX0
O2
ASCLIN0 output
SCLK2
O3
QSPI2 output
END03
O4
MSC0 output
EN01
O5
MSC0 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-256
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-61 Port 15 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A17
P15.4
I
MP /
PU1 /
VEXT
General-purpose input
TIN75
MRST2A
E14
GTM input
QSPI2 input
REQ0
SCU input
SCL0C
I2C0 input
SENT11D
SENT input
P15.4
O0
General-purpose output
TOUT75
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
SCL0
O6
I2C0 output
CC62
O7
CCU60 output
P15.5
I
TIN76
ARX1B
MP /
PU1 /
VEXT
General-purpose input
GTM input
ASCLIN1 input
MTSR2A
QSPI2 input
REQ13
SCU input
SDA0C
I2C0 input
P15.5
O0
General-purpose output
TOUT76
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR2
O3
QSPI2 output
END02
O4
MSC0 output
EN00
O5
MSC0 output
SDA0
O6
I2C0 output
CC61
O7
CCU60 output
Data Sheet
TOC-257
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-61 Port 15 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
A16
P15.6
I
MP /
PU1 /
VEXT
General-purpose input
TIN77
MTSR2B
D15
QSPI2 input
P15.6
O0
General-purpose output
TOUT77
O1
GTM output
ATX3
O2
ASCLIN3 output
MTSR2
O3
QSPI2 output
SLSO53
O4
QSPI5 output
SCLK2
O5
QSPI2 output
ASCLK3
O6
ASCLIN3 output
CC60
O7
CCU60 output
P15.7
I
TIN78
ARX3A
MP /
PU1 /
VEXT
MRST2B
D14
GTM input
General-purpose input
GTM input
ASCLIN3 input
QSPI2 input
P15.7
O0
General-purpose output
TOUT78
O1
GTM output
ATX3
O2
ASCLIN3 output
MRST2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P15.8
I
TIN79
SCLK2B
REQ1
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
SCU input
P15.8
O0
General-purpose output
TOUT79
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
ASCLK3
O6
ASCLIN3 output
COUT61
O7
CCU60 output
Data Sheet
TOC-258
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-62 Port 20 Functions
Pin
Symbol
Ctrl
Type
Function
H20
P20.0
I
MP /
PU1 /
VEXT
General-purpose input
TIN59
RXDCAN3C
G19
GTM input
CAN node 3 input
RXDCANr1C
CAN node 1 input (MultiCANr+)
T6EUDA
GPT120 input
REQ9
SCU input
SYSCLK
HSCT input
TGI0
OCDS input
P20.0
O0
General-purpose output
TOUT59
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
SYSCLK
O5
HSCT output
–
O6
Reserved
–
O7
Reserved
TGO0
HWOU
T
OCDS; ENx
P20.1
I
TIN60
TGI1
LP /
PU1 /
VEXT
General-purpose input
GTM input
OCDS input
P20.1
O0
General-purpose output
TOUT60
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO1
HWOU
T
OCDS; ENx
Data Sheet
TOC-259
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-62 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
H19
P20.2
I
LP /
PU1 /
VEXT
General-purpose input
This pin is latched at power on reset release to enter
test mode.
TESTMODE
G20
OCDS input
P20.2
O0
Output function not available
–
O1
Output function not available
–
O2
Output function not available
–
O3
Output function not available
–
O4
Output function not available
–
O5
Output function not available
–
O6
Output function not available
–
O7
Output function not available
P20.3
I
TIN61
T6INA
LP /
PU1 /
VEXT
ARX3C
F17
General-purpose input
GTM input
GPT120 input
ASCLIN3 input
P20.3
O0
General-purpose output
TOUT61
O1
GTM output
ATX3
O2
ASCLIN3 output
SLSO09
O3
QSPI0 output
SLSO29
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
TXDCANr1
O6
CAN node 1 output (MultiCANr+)
–
O7
Reserved
P20.6
I
TIN62
LP /
PU1 /
VEXT
General-purpose input
GTM input
P20.6
O0
TOUT62
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO08
O3
QSPI0 output
SLSO28
O4
QSPI2 output
–
O5
Reserved
WDT2LCK
O6
SCU output
–
O7
Reserved
Data Sheet
General-purpose output
TOC-260
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-62 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
F19
P20.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN63
ACTS1A
RXDCAN0B
F20
ASCLIN1 input
CAN node 0 input
P20.7
O0
General-purpose output
TOUT63
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
WDT1LCK
O6
SCU output
COUT63
O7
CCU61 output
P20.8
I
TIN64
E17
GTM input
MP /
PU1 /
VEXT
General-purpose input
GTM input
P20.8
O0
TOUT64
O1
GTM output
ASLSO1
O2
ASCLIN1 output
SLSO00
O3
QSPI0 output
SLSO10
O4
QSPI1 output
TXDCAN0
O5
CAN node 0 output
WDT0LCK
O6
SCU output
CC60
O7
CCU61 output
P20.9
I
TIN65
ARX1C
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN1 input
RXDCAN3E
CAN node 3 input
REQ11
SCU input
SLSI0B
QSPI0 input
P20.9
O0
General-purpose output
TOUT65
O1
GTM output
–
O2
Reserved
SLSO01
O3
QSPI0 output
SLSO11
O4
QSPI1 output
–
O5
Reserved
WDTSLCK
O6
SCU output
CC61
O7
CCU61 output
Data Sheet
TOC-261
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-62 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
E19
P20.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN66
E20
P20.10
O0
TOUT66
O1
GTM output
ATX1
O2
ASCLIN1 output
SLSO06
O3
QSPI0 output
SLSO27
O4
QSPI2 output
TXDCAN3
O5
CAN node 3 output
ASCLK1
O6
ASCLIN1 output
CC62
O7
CCU61 output
P20.11
I
TIN67
SCLK0A
D19
GTM input
MP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI0 input
P20.11
O0
General-purpose output
TOUT67
O1
GTM output
–
O2
Reserved
SCLK0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU61 output
P20.12
I
TIN68
MRST0A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.12
O0
General-purpose output
TOUT68
O1
GTM output
–
O2
Reserved
MRST0
O3
QSPI0 output
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU61 output
Data Sheet
TOC-262
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-62 Port 20 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
D20
P20.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN69
SLSI0A
GTM input
QSPI0 input
P20.13
O0
General-purpose output
TOUT69
O1
GTM output
–
O2
Reserved
SLSO02
O3
QSPI0 output
SLSO12
O4
QSPI1 output
SCLK0
O5
QSPI0 output
–
O6
Reserved
COUT62
O7
CCU61 output
P20.14
C20
I
TIN70
MTSR0A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P20.14
O0
General-purpose output
TOUT70
O1
GTM output
–
O2
Reserved
MTSR0
O3
QSPI0 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-63 Port 21 Functions
Pin
Symbol
Ctrl
Type
Function
K17
P21.0
I
LVDSH_N/
PU1 /
VDDP3
General-purpose input
TIN51
MRST4DN
HOLD
GTM input
QSPI4 input (LVDS)
EBU input
P21.0
O0
General-purpose output
TOUT51
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDC
O6
ETH output
BAABA0
O7
EBU output
(combined for BAA and BA0)
HSM1
O
HSM output
Data Sheet
TOC-263
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-63 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J17
P21.1
I
LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN52
ETHMDIOB
K19
GTM input
ETH input
(Not for production purposes)
MRST4DP
QSPI4 input (LVDS)
WAIT
EBU input
P21.1
O0
General-purpose output
TOUT52
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
ETHMDIO
O6
ETH output
(Not for production purposes)
BREQBA1
O7
EBU output
(combined for BREQ and BA1)
HSM2
O
HSM output
P21.2
I
TIN53
MRST2CN
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
QSPI2 input (LVDS)
MRST4CN
QSPI4 input (LVDS)
ARX3GN
ASCLIN3 input (LVDS)
EMGSTOPB
SCU input
RXDN
HSCT input (LVDS)
P21.2
O0
General-purpose output
TOUT53
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
ETHMDC
O5
ETH output
SDRAMA8
O6
EBU output
–
O7
Reserved
Data Sheet
TOC-264
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-63 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
J19
P21.3
I
LVDSH_P/
PU1 /
VDDP3
General-purpose input
TIN54
MRST2CP
K20
QSPI2 input (LVDS)
MRST4CP
QSPI4 input (LVDS)
ARX3GP
ASCLIN3 input (LVDS)
RXDP
HSCT input (LVDS)
P21.3
O0
General-purpose output
TOUT54
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA9
O6
EBU output
–
O7
Reserved
ETHMDIOD
HWOUT
ETH input/output
P21.4
I
TIN55
J20
GTM input
LVDSH_N/
PU1 /
VDDP3
General-purpose input
GTM input
P21.4
O0
TOUT55
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA10
O6
EBU output
–
O7
Reserved
TXDN
HSCT
HSCT output (LVDS)
P21.5
I
TIN56
LVDSH_P/
PU1 /
VDDP3
General-purpose output
General-purpose input
GTM input
P21.5
O0
TOUT56
O1
GTM output
ASCLK3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
SDRAMA11
O6
EBU output
–
O7
Reserved
TXDP
HSCT
HSCT output (LVDS)
Data Sheet
TOC-265
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-63 Port 21 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
H17
P21.6
I
A2 /
PU /
VDDP3
General-purpose input
TIN57
ARX3F
H16
GTM input
ASCLIN3 input
TGI2
OCDS input
TDI
OCDS (JTAG) input
T5EUDA
GPT120 input
P21.6
O0
General-purpose output
TOUT57
O1
GTM output
ASLSO3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
SYSCLK
O5
HSCT output
SDRAMA12
O6
EBU output
T3OUT
O7
GPT120 output
TGO2
HWOUT
OCDS; ENx
P21.7
I
TIN58
DAP2
A2 /
PU /
VDDP3
General-purpose input
GTM input
OCDS (3-Pin DAP) input
In the 3-Pin DAP mode this pin is used as DAP2.
In the 2-PIN DAP mode this pin is used as P21.7
and controlled by the related port control logic
TGI3
OCDS input
ETHRXERB
ETH input
T5INA
GPT120 input
P21.7
O0
General-purpose output
TOUT58
O1
GTM output
ATX3
O2
ASCLIN3 output
ASCLK3
O3
ASCLIN3 output
–
O4
Reserved
–
O5
Reserved
SDRAMA13
O6
EBU output
T6OUT
O7
GPT120 output
TGO3
HWOUT
OCDS; ENx
TDO
OCDS (JTAG); ENx
The JTAG TDO function is overlayed with P21.7
via a double bond.
In JTAG mode this pin is used as TDO, after
power-on reset it is HighZ.
DAP2
OCDS (3-Pin DAP); ENx
In the 3-Pin DAP mode this pin is used as DAP2.
Data Sheet
TOC-266
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-64 Port 22 Functions
Pin
Symbol
Ctrl
Type
Function
P20
P22.0
I
LVDSM_N /
PU1 /
VEXT
General-purpose input
TIN47
MTSR4B
P19
QSPI4 input
P22.0
O0
General-purpose output
TOUT47
O1
GTM output
ATX3N
O2
ASCLIN3 output (LVDS)
MTSR4
O3
QSPI4 output
SCLK4N
O4
QSPI4 output (LVDS)
FCLN1
O5
MSC1 output (LVDS)
FCLND1
O6
MSC1 output (LVDS)
–
O7
Reserved
P22.1
I
TIN48
MRST4B
R20
GTM input
LVDSM_P /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P22.1
O0
General-purpose output
TOUT48
O1
GTM output
ATX3P
O2
ASCLIN3 output (LVDS)
MRST4
O3
QSPI4 output
SCLK4P
O4
QSPI4 output (LVDS)
FCLP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P22.2
I
TIN49
SLSI4B
LVDSM_N /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P22.2
O0
General-purpose output
TOUT49
O1
GTM output
–
O2
Reserved
SLSO43
O3
QSPI4 output
MTSR4N
O4
QSPI4 output (LVDS)
SON1
O5
MSC1 output (LVDS)
SOND1
O6
MSC1 output (LVDS)
–
O7
Reserved
Data Sheet
TOC-267
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-64 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
R19
P22.3
I
LVDSM_P /
PU1 /
VEXT
General-purpose input
TIN50
SCLK4B
P16
QSPI4 input
P22.3
O0
General-purpose output
TOUT50
O1
GTM output
–
O2
Reserved
SCLK4
O3
QSPI4 output
MTSR4P
O4
QSPI4 output (LVDS)
SOP1
O5
MSC1 output (LVDS)
–
O6
Reserved
–
O7
Reserved
P22.4
I
TIN130
P17
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
P22.4
O0
TOUT130
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO012
O4
QSPI0 output
PSITX4
O5
PSI5 output
–
O6
Reserved
–
O7
Reserved
P22.5
I
TIN131
MTSR0C
LP /
PU1 /
VEXT
PSIRX4B
General-purpose output
General-purpose input
GTM input
QSPI0 input
PSI5 input
P22.5
O0
General-purpose output
TOUT131
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-268
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-64 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
N16
P22.6
I
LP /
PU1 /
VEXT
General-purpose input
TIN132
MRST0C
N17
QSPI0 input
P22.6
O0
General-purpose output
TOUT132
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.7
I
TIN133
SCLK0C
M16
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P22.7
O0
General-purpose output
TOUT133
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SCLK0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.8
I
TIN134
SCLK0B
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P22.8
O0
General-purpose output
TOUT134
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SCLK0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-269
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-64 Port 22 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
M17
P22.9
I
LP /
PU1 /
VEXT
General-purpose input
TIN135
MRST0B
L16
QSPI0 input
P22.9
O0
General-purpose output
TOUT135
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.10
I
TIN136
MTSR0B
L17
GTM input
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI0 input
P22.10
O0
General-purpose output
TOUT136
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR0
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P22.11
I
TIN137
LP /
PU1 /
VEXT
General-purpose input
GTM input
P22.11
O0
TOUT137
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO010
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-270
General-purpose output
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-65 Port 23 Functions
Pin
Symbol
Ctrl
Type
Function
V20
P23.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN41
U19
P23.0
O0
TOUT41
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.1
I
TIN42
SDI10
U20
GTM input
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
MSC1 input
P23.1
O0
General-purpose output
TOUT42
O1
GTM output
ARTS1
O2
ASCLIN1 output
SLSO46
O3
QSPI4 output
GTMCLK0
O4
GTM output
–
O5
Reserved
EXTCLK0
O6
SCU output
–
O7
Reserved
P23.2
I
TIN43
LP /
PU1 /
VEXT
General-purpose input
GTM input
P23.2
O0
TOUT43
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-271
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-65 Port 23 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
T19
P23.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN44
INJ10
T20
MSC1 input
P23.3
O0
General-purpose output
TOUT44
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.4
I
TIN45
T17
GTM input
MP+ /
PU1 /
VEXT
General-purpose input
GTM input
P23.4
O0
TOUT45
O1
GTM output
–
O2
Reserved
SLSO45
O3
QSPI4 output
END12
O4
MSC1 output
EN10
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
P23.5
I
TIN46
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P23.5
O0
TOUT46
O1
GTM output
–
O2
Reserved
SLSO44
O3
QSPI4 output
END13
O4
MSC1 output
EN11
O5
MSC1 output
–
O6
Reserved
–
O7
Reserved
Data Sheet
General-purpose output
TOC-272
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-65 Port 23 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
R17
P23.6
I
LP /
PU1 /
VEXT
General-purpose input
TIN138
R16
GTM input
P23.6
O0
TOUT138
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO011
O4
QSPI0 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
P23.7
I
TIN139
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
P23.7
O0
General-purpose output
TOUT139
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Table 2-66 Port 32 Functions
Pin
Symbol
Ctrl
Type
Function
Y17
P32.0
I
LP /
PX/
VEXT
General-purpose input
TIN36
FDEST
VGATE1N
GTM input
PMU input
SMPS mode: analog output. External Pass Device
gate control for EVR13
P32.0
O0
General-purpose output
TOUT36
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
Data Sheet
TOC-273
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-66 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y18
P32.2
I
LP /
PU1 /
VEXT
General-purpose input
TIN38
ARX3D
GTM input
ASCLIN3 input
RXDCAN3B
CAN node 3 input
RXDCANr1D
CAN node 1 input (MultiCANr+)
P32.2
O0
General-purpose output
TOUT38
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
DCDCSYNC
O6
SCU output
–
O7
Reserved
P32.3
Y19
I
TIN39
LP /
PU1 /
VEXT
General-purpose input
GTM input
P32.3
O0
TOUT39
O1
GTM output
ATX3
O2
ASCLIN3 output
–
O3
Reserved
ASCLK3
O4
ASCLIN3 output
TXDCAN3
O5
CAN node 3 output
TXDCANr1
O6
CAN node 1 output (MultiCANr+)
–
O7
Reserved
P32.4
W18
I
TIN40
ACTS1B
SDI12
MP+ /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN1 input
MSC1 input
P32.4
O0
General-purpose output
TOUT40
O1
GTM output
–
O2
Reserved
END12
O3
MSC1 output
GTMCLK1
O4
GTM output
EN10
O5
MSC1 output
EXTCLK1
O6
SCU output
COUT63
O7
CCU60 output
Data Sheet
TOC-274
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-66 Port 32 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
T15
P32.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN140
GTM input
P32.5
O0
TOUT140
O1
GTM output
ATX2
O2
ASCLIN2 output
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
TXDCAN2
O6
CAN node 2 output
–
O7
Reserved
P32.6
U15
I
TGI4
TIN141
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
OCDS input
GTM input
RXDCAN2C
CAN node 2 input
ARX2F
ASCLIN2 input
P32.6
O0
General-purpose output
TOUT141
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO212
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO4
HWOU
T
OCDS; ENx
P32.7
U16
I
TIN142
TGI5
LP /
PU1 /
VEXT
General-purpose input
GTM input
OCDS input
P32.7
O0
General-purpose output
TOUT142
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
–
O7
Reserved
TGO5
HWOU
T
OCDS; ENx
Data Sheet
TOC-275
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-67 Port 33 Functions
Pin
Symbol
Ctrl
Type
Function
W10
P33.0
I
LP /
PU1 /
VEXT
General-purpose input
TIN22
DSITR0E
GTM input
DSADC channel 0 input E
P33.0
O0
General-purpose output
TOUT22
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
VADCG2BFL0
O6
VADC output
–
O7
Reserved
P33.1
Y10
I
TIN23
PSIRX0C
LP /
PU1 /
VEXT
General-purpose input
GTM input
PSI5 input
SENT9C
SENT input
DSCIN2B
DSADC channel 2 input B
DSITR1E
DSADC channel 1 input E
P33.1
O0
General-purpose output
TOUT23
O1
GTM output
ASLSO3
O2
ASCLIN3 output
SCLK2
O3
QSPI2 output
DSCOUT2
O4
DSADC channel 2 output
VADCEMUX02
O5
VADC output
VADCG2BFL1
O6
VADC output
–
O7
Reserved
P33.2
W11
I
TIN24
SENT8C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
DSDIN2B
DSADC channel 2 input B
DSITR2E
DSADC channel 2 input E
P33.2
O0
General-purpose output
TOUT24
O1
GTM output
ASCLK3
O2
ASCLIN3 output
SLSO210
O3
QSPI2 output
PSITX0
O4
PSI5 output
VADCEMUX01
O5
VADC output
VADCG2BFL2
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-276
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-67 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y11
P33.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN25
PSIRX1C
GTM input
PSI5 input
SENT7C
SENT input
DSCIN1B
DSADC channel 1 input B
P33.3
O0
General-purpose output
TOUT25
O1
GTM output
–
O2
Reserved
–
O3
Reserved
DSCOUT1
O4
DSADC channel 1 output
VADCEMUX00
O5
VADC output
VADCG2BFL3
O6
VADC output
–
O7
Reserved
P33.4
W12
I
TIN26
SENT6C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CTRAPC
CCU61 input
DSDIN1B
DSADC channel 1 input
DSITR0F
DSADC channel 0 input F
P33.4
O0
General-purpose output
TOUT26
O1
GTM output
ARTS2
O2
ASCLIN2 output
SLSO212
O3
QSPI2 output
PSITX1
O4
PSI5 output
VADCEMUX12
O5
VADC output
VADCG0BFL0
O6
VADC output
–
O7
Reserved
Data Sheet
TOC-277
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-67 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y12
P33.5
I
LP /
PU1 /
VEXT
General-purpose input
TIN27
ACTS2B
GTM input
ASCLIN2 input
PSIRX2C
PSI5 input
PSISRXC
PSI5-S input
SENT5C
SENT input
CCPOS2C
CCU61 input
T4EUDB
GPT120 input
DSCIN0B
DSADC channel 0 input B
DSITR1F
DSADC channel 1 input F
P33.5
O0
General-purpose output
TOUT27
O1
GTM output
SLSO07
O2
QSPI0 output
SLSO17
O3
QSPI1 output
DSCOUT0
O4
DSADC channel 0 output
VADCEMUX11
O5
VADC output
VADCG0BFL1
O6
VADC output
–
O7
Reserved
P33.6
W13
I
TIN28
SENT4C
LP /
PU1 /
VEXT
General-purpose input
GTM input
SENT input
CCPOS1C
CCU61 input
T2EUDB
GPT120 input
DSDIN0B
DSADC channel 0 input B
DSITR2F
DSADC channel 2 input F
P33.6
O0
General-purpose output
TOUT28
O1
GTM output
ASLSO2
O2
ASCLIN2 output
SLSO211
O3
QSPI2 output
PSITX2
O4
PSI5 output
VADCEMUX10
O5
VADC output
VADCG1BFL0
O6
VADC output
PSISTX
O7
PSI5-S output
Data Sheet
TOC-278
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-67 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y13
P33.7
I
LP /
PU1 /
VEXT
General-purpose input
TIN29
RXDCAN0E
GTM input
CAN node 0 input
REQ8
SCU input
CCPOS0C
CCU61 input
T2INB
GPT120 input
P33.7
O0
General-purpose output
TOUT29
O1
GTM output
ASCLK2
O2
ASCLIN2 output
SLSO47
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
VADCG1BFL1
O6
VADC output
–
O7
Reserved
P33.8
W14
I
TIN30
ARX2E
MP /
HighZ /
VEXT
EMGSTOPA
General-purpose input
GTM input
ASCLIN2 input
SCU input
P33.8
O0
General-purpose output
TOUT30
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO42
O3
QSPI4 output
–
O4
Reserved
TXDCAN0
O5
CAN node 0 output
–
O6
Reserved
COUT62
O7
CCU61 output
SMUFSP
HWOU
T
SMU
P33.9
Y14
I
TIN31
HSIC3INA
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI3 input
P33.9
O0
General-purpose output
TOUT31
O1
GTM output
ATX2
O2
ASCLIN2 output
SLSO41
O3
QSPI4 output
ASCLK2
O4
ASCLIN2 output
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU61 output
Data Sheet
TOC-279
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-67 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
W15
P33.10
I
MP /
PU1 /
VEXT
General-purpose input
TIN32
SLSI4A
HSIC3INB
GTM input
QSPI4 input
QSPI3 input
P33.10
O0
General-purpose output
TOUT32
O1
GTM output
SLSO16
O2
QSPI1 output
SLSO40
O3
QSPI4 output
ASLSO1
O4
ASCLIN1 output
PSISCLK
O5
PSI5-S output
–
O6
Reserved
COUT61
O7
CCU61 output
P33.11
Y15
I
TIN33
SCLK4A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P33.11
O0
General-purpose output
TOUT33
O1
GTM output
ASCLK1
O2
ASCLIN1 output
SCLK4
O3
QSPI4 output
–
O4
Reserved
–
O5
Reserved
DSCGPWMN
O6
DSADC channel output
CC61
O7
CCU61 output
P33.12
W16
I
TIN34
MTSR4A
MP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI4 input
P33.12
O0
General-purpose output
TOUT34
O1
GTM output
ATX1
O2
ASCLIN1 output
MTSR4
O3
QSPI4 output
ASCLK1
O4
ASCLIN1 output
–
O5
Reserved
DSCGPWMP
O6
DSADC output
COUT60
O7
CCU61 output
Data Sheet
TOC-280
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-67 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
Y16
P33.13
I
MP /
PU1 /
VEXT
General-purpose input
TIN35
ARX1F
GTM input
ASCLIN1 input
MRST4A
QSPI4 input
DSSGNB
DSADC channel input B
INJ11
MSC1 input
P33.13
O0
General-purpose output
TOUT35
O1
GTM output
ATX1
O2
ASCLIN1 output
MRST4
O3
QSPI4 output
SLSO26
O4
QSPI2 output
–
O5
Reserved
DCDCSYNC
O6
SCU output
CC60
O7
CCU61 output
P33.14
T14
I
TIN143
TGI6
SCLK2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
OCDS input
QSPI2 input
P33.14
O0
General-purpose output
TOUT143
O1
GTM output
–
O2
Reserved
SCLK2
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC62
O7
CCU60 output
TGO6
HWOU
T
OCDS; ENx
Data Sheet
TOC-281
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-67 Port 33 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
U14
P33.15
I
LP /
PU1 /
VEXT
General-purpose input
TIN144
TGI7
GTM input
OCDS input
P33.15
O0
General-purpose output
TOUT144
O1
GTM output
–
O2
Reserved
SLSO211
O3
QSPI2 output
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
COUT62
O7
CCU60 output
TGO7
HWOU
T
OCDS; ENx
Table 2-68 Port 34 Functions
Pin
Symbol
Ctrl
Type
Function
U11
P34.1
I
LP /
PU1 /
VEXT
General-purpose input
TIN146
T12
GTM input
P34.1
O0
TOUT146
O1
GTM output
ATX0
O2
ASCLIN0 output
–
O3
Reserved
TXDCAN0
O4
CAN node 0 output
TXDCANr0
O5
CAN node 0 output (MultiCANr+)
–
O6
Reserved
COUT63
O7
CCU60 output
P34.2
I
TIN147
ARX0D
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
ASCLIN0 input
RXDCAN0G
CAN node 0 input
RXDCANr0C
CAN node 0 input (MultiCANr+)
P34.2
O0
General-purpose output
TOUT147
O1
GTM output
–
O2
Reserved
–
O3
Reserved
–
O4
Reserved
–
O5
Reserved
–
O6
Reserved
CC60
O7
CCU60 output
Data Sheet
TOC-282
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-68 Port 34 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
U12
P34.3
I
LP /
PU1 /
VEXT
General-purpose input
TIN148
T13
P34.3
O0
TOUT148
O1
GTM output
–
O2
Reserved
–
O3
Reserved
SLSO210
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
COUT60
O7
CCU60 output
P34.4
I
TIN149
MRST2D
U13
GTM input
LP /
PU1 /
VEXT
General-purpose output
General-purpose input
GTM input
QSPI2 input
P34.4
O0
General-purpose output
TOUT149
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MRST2
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
CC61
O7
CCU60 output
P34.5
I
TIN150
MTSR2D
LP /
PU1 /
VEXT
General-purpose input
GTM input
QSPI2 input
P34.5
O0
General-purpose output
TOUT150
O1
GTM output
–
O2
Reserved
–
O3
Reserved
MTSR2
O4
QSPI2 output
–
O5
Reserved
–
O6
Reserved
COUT61
O7
CCU60 output
Data Sheet
TOC-283
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-69 Port 40 Functions
Pin
Symbol
Ctrl
Type
Function
W2
P40.0
I
S/
HighZ /
VDDM
General-purpose input
VADCG3.0
DS2PB
VADC analog input channel 0 of group 3
DSADC: positive analog input of channel 2, pin B
CCPOS0D
CCU60 input
SENT0A
SENT input
P40.1
W1
I
VADCG3.1
S/
HighZ /
VDDM
General-purpose inpu.t
VADC analog input channel 1 of group 3 (with pull
down diagnostics)
DS2NB
DSADC: negative analog input channel 2, pin B
CCPOS1B
CCU60 input
SENT1A
SENT input
P40.2
V2
I
VADCG3.2
S/
HighZ /
VDDM
General-purpose inpu.t
VADC analog input channel 2 of group 3 (with pull
down diagnostics)
CCPOS1D
CCU60 input
SENT2A
SENT input
P40.3
V1
I
VADCG3.3
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 3 of group 3 (with pull
down diagnostics)
CCPOS2B
CCU60 input
SENT3A
SENT input
P40.4
P4
I
VADCG4.0
CCPOS2D
S/
HighZ /
VDDM
SENT4A
P40.5
R1
I
CCPOS0D
S/
HighZ /
VDDM
SENT5A
P40.6
VADCG4.4
DS3PA
VADC analog input channel 0 of group 4
CCU60 input
SENT input
VADCG4.1
N4
General-purpose input
General-purpose input
VADC analog input channel 1 of group 4
CCU61 input
SENT input
I
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 4 of group 4
DSADC: positive analog input of channel 3, pin A
CCPOS1B
CCU61 input
SENT6A
SENT input
Data Sheet
TOC-284
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-69 Port 40 Functions (cont’d)
Pin
Symbol
Ctrl
Type
Function
P2
P40.7
I
S/
HighZ /
VDDM
General-purpose input
VADCG4.5
DS3NA
VADC analog input channel 5 of group 4
DSADC: negative analog input channel 3, pin A
CCPOS1D
CCU61 input
SENT7A
SENT input
P40.8
N5
I
VADCG4.6
DS3PB
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 6 of group 4
DSADC: positive analog input of channel 3, pin B
CCPOS2B
CCU61 input
SENT8A
SENT input
P40.9
P1
I
VADCG4.7
DS3NB
S/
HighZ /
VDDM
General-purpose input
VADC analog input channel 7 of group 4
DSADC: negative analog input channel 3, pin B
CCPOS2D
CCU61 input
SENT9A
SENT input
Table 2-70 Analog Inputs
Pin
Symbol
Ctrl
Type
T10
AN0
I
D / HighZ / Analog input 0
VDDM
VADC analog input channel 0 of group 0
VADCG0.0
DS1PA
AN1
U10
DSADC: positive analog input of channel 1, pin A
I
VADCG0.1
DS1NA
AN2
W9
I
DS0PA
AN3
I
DS0NA
AN4
AN5
I
D / HighZ / Analog input 4
VDDM
VADC analog input channel 4 of group 0
I
D / HighZ / Analog input 5
VDDM
VADC analog input channel 5 of group 0
I
D / HighZ / Analog input 6
VDDM
VADC analog input channel 6 of group 0
I
D / HighZ / Analog input 7
VDDM
VADC analog input channel 7 of group 0
VADCG0.5
AN6
T8
VADCG0.6
AN7
U8
VADCG0.7
Data Sheet
D / HighZ / Analog input 3
VDDM
VADC analog input channel 3 of group 0
DSADC: negative analog input channel 0, pin A
VADCG0.4
Y9
D / HighZ / Analog input 2
VDDM
VADC analog input channel 2 of group 0
DSADC: positive analog input of channel 0, pin A
VADCG0.3
T9
D / HighZ / Analog input 1
VDDM
VADC analog input channel 1 of group 0
DSADC: negative analog input channel 1, pin A
VADCG0.2
U9
Function
TOC-285
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-70 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
W8
AN8
I
D / HighZ / Analog input 8
VDDM
VADC analog input channel 0 of group 1
I
D / HighZ / Analog input 9
VDDM
VADC analog input channel 1 of group 1
I
D / HighZ / Analog input 10
VDDM
VADC analog input channel 2 of group 1
I
D / HighZ / Analog input 11
VDDM
VADC analog input channel 3 of group 1 (with pull
down diagnostics)
I
D / HighZ / Analog input 12
VDDM
VADC analog input channel 4 of group 1
I
D / HighZ / Analog input 13
VDDM
VADC analog input channel 5 of group 1
I
D / HighZ / Analog input 14
VDDM
VADC analog input channel 6 of group 1
I
D / HighZ / Analog input 15
VDDM
VADC analog input channel 7 of group 1
I
D / HighZ / Analog input 16
VDDM
VADC analog input channel 0 of group 2
I
D / HighZ / Analog input 17
VDDM
VADC analog input channel 1 of group 2
I
D / HighZ / Analog input 18
VDDM
VADC analog input channel 2 of group 2
I
D / HighZ / Analog input 19
VDDM
VADC analog input channel 3 of group 2 (with pull
down diagnostics)
I
D / HighZ / Analog input 20
VDDM
VADC analog input channel 4 of group 2
VADCG1.0
AN9
U7
VADCG1.1
AN10
Y8
VADCG1.2
AN11
W7
VADCG1.3
AN12
T7
VADCG1.4
AN13
W6
VADCG1.5
AN14
U6
VADCG1.6
AN15
T6
VADCG1.7
AN16
W5
VADCG2.0
AN17
U5
VADCG2.1
AN18
W4
VADCG2.2
AN19
W3
VADCG2.3
AN20
Y3
VADCG2.4
DS2PA
AN21
Y2
DSADC: positive analog input of channel 2, pin A
I
VADCG2.5
DS2NA
AN22
T5
AN23
VADCG2.7
Data Sheet
D / HighZ / Analog input 21
VDDM
VADC analog input channel 5 of group 2
DSADC: negative analog input channel 2, pin A
I
D / HighZ / Analog input 22
VDDM
VADC analog input channel 6 of group 2
I
D / HighZ / Analog input 23
VDDM
VADC analog input channel 7 of group 2
VADCG2.6
R5
Function
TOC-286
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-70 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
Function
W2
AN24
I
S/
HighZ /
VDDM
Analog input 24
VADCG3.0
DS2PB
SENT0A
AN25
W1
VADC analog input channel 0 of group 3
DSADC: positive analog input of channel 2, pin B
SENT input channel 0, pin A
I
VADCG3.1
S/
HighZ /
VDDM
Analog input 24
VADC analog input channel 1 of group 3 (with pull
down diagnostics)
DS2NB
DSADC: negative analog input channel 2, pin B
SENT1A
SENT input channel 1, pin A
AN26
V2
I
VADCG3.2
S/
HighZ /
VDDM
SENT2A
AN27
V1
I
S/
HighZ /
VDDM
SENT3A
AN28
AN29
AN30
D / HighZ / Analog input 28
VDDM
VADC analog input channel 4 of group 3 (with pull
down diagnostics)
I
D / HighZ / Analog input 29
VDDM
VADC analog input channel 5 of group 3 (with pull
down diagnostics)
I
D / HighZ / Analog input 30
VDDM
VADC analog input channel 6 of group 3
I
D / HighZ / Analog input 31
VDDM
VADC analog input channel 7 of group 3
I
S/
HighZ /
VDDM
VADCG3.6
AN31
R4
VADCG3.7
AN32
P4
VADCG4.0
SENT4A
AN33
R1
I
VADCG4.1
SENT5A
AN34
P5
AN35
VADCG4.3
Data Sheet
S/
HighZ /
VDDM
Analog input 32
VADC analog input channel 0 of group 4
SENT input channel 4, pin A
Analog input 33
VADC analog input channel 1 of group 4
SENT input channel 5, pin A
I
D / HighZ / Analog input 34
VDDM
VADC analog input channel 2 of group 4
I
D / HighZ / Analog input 35
VDDM
VADC analog input channel 3 of group 4 (with pull
down diagnostics)
VADCG4.2
R2
VADC analog input channel 3 of group 3 (with pull
down diagnostics)
I
VADCG3.5
T4
Analog input 27
SENT input channel 3, pin A
VADCG3.4
U1
VADC analog input channel 2 of group 3 (with pull
down diagnostics)
SENT input channel 2, pin A
VADCG3.3
U2
Analog input 26
TOC-287
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-70 Analog Inputs (cont’d)
Pin
Symbol
Ctrl
Type
Function
N4
AN36
I
S/
HighZ /
VDDM
Analog input 34
VADCG4.4
DS3PA
SENT6A
AN37
P2
I
DS3NA
S/
HighZ /
VDDM
SENT7A
AN38
I
DS3PB
S/
HighZ /
VDDM
SENT8A
AN39
I
DS3NB
SENT9A
AN40
AN41
AN42
AN43
AN44
D / HighZ / Analog input 43
VDDM
VADC analog input channel 3 of group 5 (with pull
down diagnostics)
I
D / HighZ / Analog input 44
VDDM
VADC analog input channel 4 of group 5
DSADC: positive analog input of channel 3, pin C
I
I
DS3PD
AN47
VADCG5.7
DS3ND
Data Sheet
D / HighZ / Analog input 45
VDDM
VADC analog input channel 5 of group 5
DSADC: negative analog input channel 3, pin C
VADCG5.6
M2
DSADC: negative analog input channel 3, pin B
I
DS3NC
AN46
VADC analog input channel 7 of group 4
D / HighZ / Analog input 42
VDDM
VADC analog input channel 2 of group 5
VADCG5.5
M1
Analog input 39
I
DS3PC
AN45
S/
HighZ /
VDDM
D / HighZ / Analog input 41
VDDM
VADC analog input channel 1 of group 5
VADCG5.4
N2
DSADC: positive analog input of channel 3, pin B
I
VADCG5.3
N1
VADC analog input channel 6 of group 4
D / HighZ / Analog input 40
VDDM
VADC analog input channel 0 of group 5
VADCG5.2
L4
Analog input 38
I
VADCG5.1
L5
DSADC: negative analog input channel 3, pin A
SENT input channel 9, pin A
VADCG5.0
M4
VADC analog input channel 5 of group 4
SENT input channel 8, pin A
VADCG4.7
M5
Analog input 37
SENT input channel 7, pin A
VADCG4.6
P1
DSADC: positive analog input of channel 3, pin A
SENT input channel 6, pin A
VADCG4.5
N5
VADC analog input channel 4 of group 4
D / HighZ / Analog input 46
VDDM
VADC analog input channel 6 of group 5
DSADC: positive analog input of channel 3, pin D
I
D / HighZ / Analog input 47
VDDM
VADC analog input channel 7 of group 5
DSADC: negative analog input channel 3, pin D
TOC-288
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-71 System I/O
Pin
Symbol
Ctrl
Type
Function
G17
PORST
I
PORST /
PD /
VEXT
Power On Reset Input
Additional strong PD in case of power fail.
F16
ESR0
I/O
MP /
OD /
VEXT
External System Request Reset 0
Default configuration during and after reset is opendrain driver. The driver drives low during power-on
reset. This is valid additionally after deactivation of
PORST until the internal reset phase has finished.
See also SCU chapter for details.
Default after power-on can be different. See also
SCU chapter ´Reset Control Unit´ and SCU_IOCR
register description.
EVRWUP
ESR1
G16
EVRWUP
I
I/O
EVR Wakeup Pin
External System Request Reset 1
Default NMI function.
See also SCU chapter ´Reset Control Unit´ and
SCU_IOCR register description.
MP /
PU1 /
VEXT
I
EVR Wakeup Pin
W17
VGATE1P
O
VGATE1P /
-/
VEXT
External Pass Device gate control for EVR13
K16
TMS
I
A2 /
PD /
VDDP3
JTAG Module State Machine Control Input
DAP1
I/O
Device Access Port Line 1
L19
TRST
I
A2 /
PD /
VDDP3
JTAG Module Reset/Enable Input
J16
TCK
I
JTAG Module Clock Input
DAP0
I
A2 /
PD /
VDDP3
Device Access Port Line 0
M20
XTAL1
I
XTAL1 /
-/
VDDP3
Main Oscillator/PLL/Clock Generator Input
M19
XTAL2
O
XTAL2 /
-/
VDDP3
Main Oscillator/PLL/Clock Generator Output
Table 2-72 Supply
Pin
Symbol
Ctrl
Type
Function
Y6
VAREF1
I
Vx
Positive Analog Reference Voltage 1
Y7
VAGND1
I
Vx
Negative Analog Reference Voltage 1
Data Sheet
TOC-289
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-72 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
T1
VAREF2
I
Vx
Positive Analog Reference Voltage 2
T2
VAGND2
I
Vx
Negative Analog Reference Voltage 2
Y5
VDDM
I
Vx
ADC Analog Power Supply (3.3V / 5V)
G8, H7
VDD / VDDSB
I
Vx
Emulation Device: Emulation SRAM
Standby Power Supply (1.3V) (Emulation
Device only).
Production Device: VDD (1.3V).
P8, P13, N7, N14, H14, G13
VDD
I
Vx
Digital Core Power Supply (1.3V)
N19
VDD
I
Vx
Digital Core Power Supply (1.3V).
The supply pin inturn supplies the main
XTAL Oscillator/PLL (1.3V) . A higher
decoupling capacitor is therefore
recommended to the VSS pin for better
noise immunity.
A2, B3, V19, W20
VEXT
I
Vx
External Power Supply (5V / 3.3V)
B18, A19
VDDP3
I
Vx
Digital Power Supply for Flash (3.3V).
Can be also used as external 3.3V Power
Supply for VFLEX.
N20
VDDP3
I
Vx
Digital Power Supply for Oscillator,
LVDSH and A2 pads (3.3V).
The supply pin inturn supplies the main
XTAL Oscillator/PLL (3.3V) . A higher
decoupling capacitor is therefore
recommended to the VSS pin for better
noise immunity.
E15, D16
VDDFL3
I
Vx
Flash Power Supply (3.3V)
D5
VFLEX
I
Vx
Digital Power Supply for Flex Port Pads
(5V / 3.3V)
Y4
VSSM
I
Vx
Analog Ground for VDDM
T11
VEVRSB
I
Vx
Standby Power Supply (3.3V/5V) for the
Standby SRAM (CPU0.DSPR).
If Standby mode is not used: To be
handled like VEXT (3.3V/5V).
B2, D4, E5, T16, U17, W19,
VSS
Y20, E16, D17, B19, A20, L20
I
Vx
Digital Ground (outer balls)
VSS
I
Vx
Digital Ground (center balls)
P9, P12, N9, N10, N11, N12
Data Sheet
TOC-290
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-72 Supply (cont’d)
Pin
Symbol
Ctrl
Type
Function
M7, M8, M10, M11, M13, M14 VSS
I
Vx
Digital Ground (center balls)
L8, L9, L10, L11, L12, L13
VSS
I
Vx
Digital Ground (center balls)
K8, K9, K10, K11, K12, K13
VSS
I
Vx
Digital Ground (center balls)
J7, J8, J10, J11, J13, J14
VSS
I
Vx
Digital Ground (center balls)
H9, H10, H11, H12, G9, G10,
G11, G12
VSS
I
Vx
Digital Ground (center balls)
P10
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT TX0N
P11
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT TX0P
L7
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT CLKN
K7
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT CLKP
L14
VSS
I
Vx
Digital Ground (center balls)
This ball is used in the Emulation Device
as
AGBT ERR
K14
NC / VDDPSB
I
NCVDD Emulation Device: Power Supply (3.3V)
PSB
for DAP/JTAG pad group. Can be
connected to VDDP or can be left
unsupplied (see document ´AurixED´ /
Aurix Emulation Devices specification.
Production Device:
This pin is not connected on package
level. It can be connected on PCB level
to VDDP or Ground or can be left
unsupplied.
A1, Y1, U4
Data Sheet
NC
I
TOC-291
NC1
Not Connected.
These pins are not connected on
package level and will not be used for
future extensions.
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Legend:
Column “Ctrl.”:
I = Input (for GPIO port Lines with IOCR bit field Selection PCx = 0XXXB)
O = Output
O0 = Output with IOCR bit field selection PCx = 1X000B
O1 = Output with IOCR bit field selection PCx = 1X001B (ALT1)
O2 = Output with IOCR bit field selection PCx = 1X010B (ALT2)
O3 = Output with IOCR bit field selection PCx = 1X011B (ALT3)
O4 = Output with IOCR bit field selection PCx = 1X100B (ALT4)
O5 = Output with IOCR bit field selection PCx = 1X101B (ALT5)
O6 = Output with IOCR bit field selection PCx = 1X110B (ALT6)
O7 = Output with IOCR bit field selection PCx = 1X111B (ALT7)
Column “Type”:
LP = Pad class LP (5V/3.3V, Class LP parameters for digital input / output and class D parameters for analog input
function)
MP = Pad class MP (5V/3.3V)
MP+ = Pad class MP+ (5V/3.3V)
MPR = Pad class MPR (5V/3.3V)
A2 = Pad class A2 (3.3V)
LVDSM = Pad class LVDSM (5V/3.3V)
LVDSH = Pad class LVDSH (3.3V)
S = Pad class S (Class S parameters for digital input and class D parameters for analog input function)
D = Pad class D (VADC / DSADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST = PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups (PU1) / pull-downs (PD1) are active
during and after reset.
3) If HWCFG[6] is connected to ground, the PD1 / PU1 pins are predominantly in HighZ during and after reset.
Data Sheet
TOC-292
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
2.3.2
Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
•
Input state and
•
PU or High-Z depending on HWCFG[6] level latched during Porst active
Control of the Emergency Stop function:
•
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
•
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
•
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
•
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
•
Not available for P40.x (analoge input ANx overlayed with GPI)
•
Not available for P32.0 EVR13 SMPS mode.
•
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
•
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O
Ports and Peripheral I/O Lines”, P00 / P01)
•
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
•
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
•
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
•
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
•
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
•
P33.8: Emergency Stop can be overruled if this pin is used as safety output pin (SMUFSP)
2.3.3
Pull-Up/Pull-Down Reset Behavior of the Pins
Table 2-73 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
Data Sheet
TOC-293
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC297x Pin Definition and Functions:
Table 2-73 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Data Sheet
TOC-294
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
2.4
TC29x Bare Die Pad Definition
The TC290 / TC297 / TC298 / TC299 BC-Step Bare Die Logic Symbol is shown in Figure 2-4.
Table 2-74 describes the pads of the TC290 / TC297 / TC298 / TC299 bare die. It describes also the mapping of
VADC / DS-ADC channels to the analog inputs (ANx) and the mapping of Port functions to the pads.
The detailed description of the port functions (Px.y) can be found in the User’s Manual chapter “General Purpose
I/O Ports and Peripheral I/O LInes (Ports)“.
Pad 366
Pad 234
Pad 233
Pad 367
Y
0.0
X
Pad 480
Pad 102
Pad 1
Pad 101
Figure 2-4 TC290 / TC297 / TC298 / TC299 Logic Symbol for the Bare Die.
Table 2-74 TC29x Bare Die Pad List
Number
Pad Name
Pad Type
X
Y
Comment
1
VEXT
Vx
-4328000
-4295000
Must be bonded to VEXT
2
P15.10
LP / PU1 / VEXT -4123000
-4186500
GPIO
3
P15.2
MP / PU1 / VEXT -4193000
-4295000
GPIO
4
P15.11
LP / PU1 / VEXT -3983000
-4186500
GPIO
5
P15.4
MP / PU1 / VEXT -4053000
-4295000
GPIO
6
P15.12
LP / PU1 / VEXT -3863000
-4186500
GPIO
7
P15.1
LP / PU1 / VEXT -3923000
-4295000
GPIO
8
P15.13
LP / PU1 / VEXT -3753000
-4186500
GPIO
9
VSS
Vx
-3808000
-4295000
Must be bonded to VSS
10
P15.14
MP / PU1 / VEXT -3603000
-4186500
GPIO
11
P15.3
MP / PU1 / VEXT -3683000
-4295000
GPIO
12
P15.15
MP / PU1 / VEXT -3443000
-4186500
GPIO
Data Sheet
TOC-295
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
13
P15.5
14
Y
Comment
MP / PU1 / VEXT -3523000
-4295000
GPIO
P15.6
MP / PU1 / VEXT -3283000
-4186500
GPIO
15
P15.7
MP / PU1 / VEXT -3363000
-4295000
GPIO
16
P15.8
MP / PU1 / VEXT -3153000
-4186500
GPIO
17
VEXT
Vx
-3218000
-4295000
Must be bonded to VEXT
18
P14.1
MP / PU1 / VEXT -3073000
-4295000
GPIO
19
P14.0
MP+ / PU1 /
VEXT
-2983000
-4186500
GPIO
20
P14.3
LP / PU1 / VEXT -2843000
-4186500
GPIO
21
P14.2
LP / PU1 / VEXT -2903000
-4295000
Must be bonded to VEXT if
EVR13 active. Must be
bonded to VSS if EVR13
inactive.
22
P14.4
LP / PU1 / VEXT -2733000
-4186500
GPIO
23
VSS
Vx
-2788000
-4295000
Must be bonded to VSS
24
VDD
Vx
-2674000
-4295000
Must be bonded to VDD
25
VSS
Vx
-2574000
-4295000
Must be bonded to VSS
26
VDDFL3
Vx
-2505000
-4186500
Must be bonded to VDDP3
27
P14.11
LP / PU1 / VEXT -2380000
-4186500
GPIO
28
VDDFL3
Vx
-2437500
-4295000
Must be bonded to VDDP3
29
P14.5
MP+ / PU1 /
VEXT
-2300000
-4295000
GPIO
30
P14.12
LP / PU1 / VEXT -2220000
-4186500
GPIO
31
P14.6
MP+ / PU1 /
VEXT
-2140000
-4295000
GPIO
32
P14.13
MP+ / PU1 /
VEXT
-2040000
-4186500
GPIO
33
P14.7
LP / PU1 / VEXT -1960000
-4295000
GPIO
34
P14.14
MP+ / PU1 /
VEXT
-1880000
-4186500
GPIO
35
VEXT
Vx
-1805000
-4295000
Must be bonded to VEXT
36
P14.8
LP / PU1 / VEXT -1750000
-4186500
GPIO
37
P14.9
MP+ / PU1 /
VEXT
-1670000
-4295000
GPIO
38
P14.15
LP / PU1 / VEXT -1590000
-4186500
GPIO
39
P14.10
MP+ / PU1 /
VEXT
-1510000
-4295000
GPIO
40
VDDFL3
Vx
-1410000
-4186500
Must be bonded to VDDP3
41
VSS
Vx
-1345000
-4295000
Must be bonded to VSS
42
P13.0
LVDSM_N / PU1 -1270000
/ VEXT
-4186500
GPIO
Data Sheet
X
TOC-296
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
43
P13.1
44
Y
Comment
LVDSM_P / PU1 -940000
/ VEXT
-4186500
GPIO
VEXT
Vx
-865000
-4295000
Must be bonded to VEXT
45
P13.2
LVDSM_N / PU1 -790000
/ VEXT
-4186500
GPIO
46
P13.3
LVDSM_P / PU1 -460000
/ VEXT
-4186500
GPIO
47
VSS
Vx
-385000
-4295000
Must be bonded to VSS
48
P13.4
LVDSM_N / PU1 -310000
/ VEXT
-4186500
GPIO
49
P13.5
LVDSM_P / PU1 20000
/ VEXT
-4186500
GPIO
50
VEXT
Vx
-4295000
Must be bonded to VEXT
51
P13.6
LVDSM_N / PU1 170000
/ VEXT
-4186500
GPIO
52
P13.7
LVDSM_P / PU1 500000
/ VEXT
-4186500
GPIO
53
P13.11
LP / PU1 / VEXT 580000
-4295000
GPIO
54
P13.12
LP / PU1 / VEXT 640000
-4186500
GPIO
55
VDDP3
Vx
697500
-4295000
Must be bonded to VDDP3
56
VDDP3
Vx
765000
-4186500
Must be bonded to VDDP3
57
VEXT
Vx
830000
-4295000
Must be bonded to VEXT
58
VEXT
Vx
880000
-4186500
Must be bonded to VEXT
59
VDD
Vx
955000
-4295000
Must be bonded to VDD
60
VSS
Vx
1055000
-4295000
Must be bonded to VSS
61
P13.13
LP / PU1 / VEXT 1135000
-4186500
GPIO
62
P13.9
MP / PU1 / VEXT 1205000
-4295000
GPIO
63
P13.14
LP / PU1 / VEXT 1275000
-4186500
GPIO
64
VEXT
Vx
1330000
-4295000
Must be bonded to VEXT
65
P13.10
LP / PU1 / VEXT 1385000
-4186500
GPIO
66
VDDFL3
Vx
1455000
-4295000
Must be bonded to VDDP3
67
VSS
Vx
1575000
-4295000
Must be bonded to VSS
(Double Pad / Center of
Elephant Pad Opening)
68
VDDFL3
Vx
1542500
-4186500
Must be bonded to VDDP3
69
P13.15
LP / PU1 / VEXT 1660000
-4186500
GPIO
70
P12.0
LP / PU1 /
VFLEX
1790000
-4186500
GPIO
71
P12.1
LP / PU1 /
VFLEX
1850000
-4295000
GPIO
Data Sheet
X
95000
TOC-297
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
X
Y
Comment
72
P11.0
MP+ / PU1 /
VFLEX
1930000
-4186500
GPIO
73
VSS
Vx
2005000
-4295000
Must be bonded to VSS
74
P11.1
MP+ / PU1 /
VFLEX
2080000
-4186500
GPIO
75
VFLEX
Vx
2155000
-4295000
Digital Power Supply for
VFLEX Ports / Pads (5V /
3.3V)
76
P11.2
MPR/ PU1 /
VFLEX
2230000
-4186500
GPIO
77
P11.4
MP+ / PU1 /
VFLEX
2330000
-4295000
GPIO
78
P11.3
MPR/ PU1 /
VFLEX
2430000
-4186500
GPIO
79
P11.5
LP / PU1 /
VFLEX
2510000
-4295000
GPIO
80
P11.6
MPR/ PU1 /
VFLEX
2590000
-4186500
GPIO
81
VSS
Vx
2665000
-4295000
Must be bonded to VSS
82
P11.9
MP+ / PU1 /
VFLEX
2740000
-4186500
GPIO
83
P11.7
LP / PU1 /
VFLEX
2820000
-4295000
GPIO
84
VFLEX
Vx
2935000
-4295000
Digital Power Supply for
VFLEX Ports / Pads (5V /
3.3V)
85
P11.8
LP / PU1 /
VFLEX
2880000
-4186500
GPIO
86
P11.13
LP / PU1 /
VFLEX
3050000
-4295000
GPIO
87
P11.10
LP / PU1 /
VFLEX
2990000
-4186500
GPIO
88
P11.11
MP+ / PU1 /
VFLEX
3130000
-4186500
GPIO
89
VSS
Vx
3215000
-4295000
Must be bonded to VSS
90
P11.12
MPR/ PU1 /
VFLEX
3300000
-4186500
GPIO
91
P11.14
LP / PU1 /
VFLEX
3390000
-4295000
GPIO
92
P11.15
LP / PU1 /
VFLEX
3460000
-4186500
GPIO
93
P10.0
LP / PU1 / VEXT 3610000
-4295000
GPIO
94
VEXT
Vx
-4295000
Must be bonded to VEXT
Data Sheet
3775000
TOC-298
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
95
P10.9
96
Y
Comment
LP / PU1 / VEXT 3680000
-4186500
GPIO
P10.1
MP+ / PU1 /
VEXT
3865000
-4186500
GPIO
97
P10.3
MP / PU1 / VEXT 3970000
-4295000
GPIO
98
P10.4
MP+ / PU1 /
VEXT
4150000
-4295000
GPIO
99
P10.10
LP / PU1 / VEXT 4055000
-4186500
GPIO
100
P10.2
MP / PU1 / VEXT 4310000
-4295000
GPIO
101
P10.11
LP / PU1 / VEXT 4240000
-4186500
GPIO
102
P10.13
LP / PU1 / VEXT 4419500
-4050000
GPIO
103
VSS
Vx
4528000
-4105000
Must be bonded to VSS
104
P10.14
LP / PU1 / VEXT 4419500
-3930000
GPIO
105
P10.5
LP / PU1 / VEXT 4528000
-3990000
GPIO
106
P10.15
LP / PU1 / VEXT 4419500
-3810000
GPIO
107
P10.6
LP / PU1 / VEXT 4528000
-3870000
GPIO
108
P02.13
LP / PU1 / VEXT 4419500
-3690000
GPIO
109
P10.8
LP / PU1 / VEXT 4528000
-3750000
GPIO
110
P10.7
LP / PU1 / VEXT 4419500
-3580000
GPIO
111
VEXT
Vx
4528000
-3635000
Must be bonded to VEXT
112
VDD
Vx
4528000
-3520000
Must be bonded to VDD
113
P02.12
LP / PU1 / VEXT 4419500
-3360000
GPIO
114
VSS
Vx
4528000
-3420000
Must be bonded to VSS
115
P02.0
MP+ / PU1 /
VEXT
4528000
-3280000
GPIO
116
P02.14
LP / PU1 / VEXT 4419500
-3200000
GPIO
117
P02.1
LP / PU1 / VEXT 4528000
-3140000
GPIO
118
P02.15
MP+ / PU1 /
VEXT
4419500
-3060000
GPIO
119
VSS
Vx
4528000
-2985000
Must be bonded to VSS
120
P02.2
MP+ / PU1 /
VEXT
4419500
-2910000
GPIO
121
P02.3
LP / PU1 / VEXT 4528000
-2830000
GPIO
122
P02.4
MP+ / PU1 /
VEXT
4419500
-2750000
GPIO
123
P02.9
LP / PU1 / VEXT 4528000
-2670000
GPIO
124
P02.5
MP+ / PU1 /
VEXT
4419500
-2590000
GPIO
125
P02.10
LP / PU1 / VEXT 4528000
-2510000
GPIO
126
P02.6
MP / PU1 / VEXT 4419500
-2440000
GPIO
127
VEXT
Vx
-2375000
Must be bonded to VEXT
Data Sheet
X
4528000
TOC-299
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
128
P02.7
129
Y
Comment
MP / PU1 / VEXT 4419500
-2310000
GPIO
P02.11
LP / PU1 / VEXT 4528000
-2240000
GPIO
130
P02.8
LP / PU1 / VEXT 4419500
-2180000
GPIO
131
VDD
Vx
4528000
-2095000
Must be bonded to VDD
132
VSS
Vx
4528000
-1995000
Must be bonded to VSS
133
P01.0
LP / PU1 / VEXT 4419500
-1937500
GPIO
134
VSS
Vx
4528000
-1910000
Must be bonded to VSS
(Double Pad / Center of
Elephant Pad Opening)
135
VDD
Vx
4528000
-1780000
Must be bonded to VDD
136
P01.2
LP / PU1 / VEXT 4419500
-1715000
GPIO
137
VSS
Vx
4528000
-1660000
Must be bonded to VSS
138
P01.1
LP / PU1 / VEXT 4419500
-1605000
GPIO
139
P01.3
LP / PU1 / VEXT 4528000
-1545000
GPIO
140
P01.8
LP / PU1 / VEXT 4419500
-1485000
GPIO
141
P01.4
LP / PU1 / VEXT 4528000
-1425000
GPIO
142
P01.9
LP / PU1 / VEXT 4419500
-1365000
GPIO
143
P01.5
LP / PU1 / VEXT 4528000
-1305000
GPIO
144
P01.10
LP / PU1 / VEXT 4419500
-1245000
GPIO
145
VEXT
Vx
4528000
-1190000
Must be bonded to VEXT
146
P01.11
LP / PU1 / VEXT 4419500
-1135000
GPIO
147
P01.6
MP / PU1 / VEXT 4528000
-1065000
GPIO
148
P01.12
MP+ / PU1 /
VEXT
4419500
-975000
GPIO
149
P01.7
MP / PU1 / VEXT 4528000
-885000
GPIO
150
VDD
Vx
4528000
-785000
Must be bonded to VDD
151
VSS
Vx
4528000
-685000
Must be bonded to VSS
152
P01.13
MP+ / PU1 /
VEXT
4419500
-610000
GPIO
153
VSS
Vx
4528000
-535000
Must be bonded to VSS
154
P01.14
MP+ / PU1 /
VEXT
4419500
-460000
GPIO
155
Reserved
Vx
4528000
-385000
Must be bonded to VSS
156
P01.15
LP / PU1 / VEXT 4419500
-330000
GPIO
157
VEXT
Vx
4528000
-265000
Must be bonded to VEXT
158
P00.13
MP+ / PU1 /
VEXT
4419500
-190000
GPIO
159
P00.0
MP / PU1 / VEXT 4528000
-100000
GPIO
160
P00.14
LP / PU1 / VEXT 4419500
-30000
GPIO
161
VSS
Vx
25000
Must be bonded to VSS
Data Sheet
X
4528000
TOC-300
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
X
Y
Comment
162
P00.15
MP+ / PU1 /
VEXT
4419500
100000
GPIO
163
P00.1 (VADC7.5 D
/ DS5NA)
4419500
250000
Analog input
164
P00.2 (VADC7.4 D
/ DS5PA)
4528000
310000
Analog input
165
P00.3 (VADC7.3) D
4419500
370000
Analog input
166
VSS
4528000
425000
Must be bonded to VSS
167
P00.4 (VADC7.2) D
4419500
480000
Analog input
168
P00.5 (VADC7.1) D
4528000
540000
Analog input
169
P00.6 (VADC7.0) D
4419500
600000
Analog input
170
VEXT
4528000
655000
Must be bonded to VEXT
171
P00.7 (VADC6.5 D
/ DS4NA)
4419500
710000
Analog input
172
P00.8 (VADC6.4 D
/ DS4PA)
4528000
770000
Analog input
173
P00.9 (VADC6.3) D
4419500
830000
Analog input
174
P00.10
(VADC6.2)
D
4528000
890000
Analog input
175
P00.11
(VADC6.1)
D
4419500
950000
Analog input
176
VSS
Vx
4528000
1005000
Must be bonded to VSS
177
P00.12
(VADC6.0)
D
4419500
1060000
Analog input
178
VDD
Vx
4528000
1115000
Must be bonded to VDD
179
VSS
Vx
4528000
1215000
Must be bonded to VSS
180
VEXT
Vx
4419500
1265000
Must be bonded to VEXT
181
VSS
Vx
4528000
1315000
Must be bonded to VSS
182
VDD
Vx
4528000
1415000
Must be bonded to VDD
183
VAREF4
Vx
4528000
1535000
Positive Analog Reference
Voltage 4
184
VAGND4
Vx
4419500
1585000
Negative Analog Reference
Voltage 4
185
VDDM
Vx
4528000
1635000
Must be bonded to VEXT
186
AN47 (VADC5.7 / S
DS3ND)
4419500
1685000
Analog input
187
AN46 (VADC5.6 / S
DS3PD)
4528000
1735000
Analog input
188
AN45 (VADC5.5 / S
DS3NC)
4419500
1785000
Analog input
Data Sheet
Vx
Vx
TOC-301
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
189
X
Y
Comment
AN44 (VADC5.4 / S
DS3PC)
4528000
1835000
Analog input
190
AN43 (VADC5.3) D
4419500
1885000
Analog input (with pull
down diagnostics)
191
AN42 (VADC5.2) D
4528000
1935000
Analog input
192
AN41 (VADC5.1) D
4419500
1985000
Analog input
193
AN40 (VADC5.0) D
4528000
2035000
Analog input
194
AN38 (VADC4.6 / S
DS3PB), P40.8
(SENT8A)
4528000
2135000
Analog input, GPI (SENT)
195
AN39 (VADC4.7 / S
DS3NB), P40.9
(SENT9A)
4419500
2085000
Analog input, GPI (SENT)
196
AN36 (VADC4.4 / S
DS3PA), P40.6
(SENT6A)
4528000
2235000
Analog input, GPI (SENT)
197
AN37 (VADC4.5 / S
DS3NA), P40.7
(SENT7A)
4419500
2185000
Analog input, GPI (SENT)
198
AN34 (VADC4.2) D
4528000
2335000
Analog input
199
AN35 (VADC4.3) D
4419500
2285000
Analog input (with pull
down diagnostics)
200
AN32
S
(VADC4.0),
P40.4 (SENT4A)
4528000
2435000
Analog input, GPI (SENT)
201
AN33
S
(VADC4.1),
P40.5 (SENT5A)
4419500
2385000
Analog input, GPI (SENT)
202
S
AN70
(VADC10.6 /
DS9PA), P40.13
(SENT13A)
4528000
2535000
Analog input, GPI (SENT)
203
S
AN71
(VADC10.7 /
DS9NA), P40.14
(SENT14A)
4419500
2485000
Analog input, GPI (SENT)
204
S
AN68
(VADC10.4 /
DS8PA), P40.11
(SENT11A)
4528000
2635000
Analog input, GPI (SENT)
205
S
AN69
(VADC10.5 /
DS8NA), P40.12
(SENT12A)
4419500
2585000
Analog input, GPI (SENT)
Data Sheet
Pad Type
TOC-302
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
X
Y
Comment
206
VDDM
Vx
4528000
2735000
Must be bonded to VEXT
207
S
AN67
(VADC10.3 /
DS8NB), P40.10
(SENT10A)
4419500
2685000
Analog input, GPI (SENT)
208
VSSM
Vx
4528000
2835000
Must be bonded to VSS
209
VSS
Vx
4419500
2785000
Must be bonded to VSS
210
AN65
(VADC10.1)
D
4528000
2935000
Analog input
211
AN66
(VADC10.2 /
DS8PB
D
4419500
2885000
Analog input
212
AN63 (VADC9.7 / D
DS7NB)
4528000
3035000
Analog input
213
AN64
(VADC10.0)
D
4419500
2985000
Analog input
214
AN61 (VADC9.5 / D
DS7NA)
4528000
3135000
Analog input
215
AN62 (VADC9.6 / D
DS7PB)
4419500
3085000
Analog input
216
AN59 (VADC9.3) D
4528000
3235000
Analog input
217
AN60 (VADC9.4 / D
DS7PA)
4419500
3185000
Analog input
218
AN57 (VADC9.1) D
4528000
3335000
Analog input
219
AN58 (VADC9.2) D
4419500
3285000
Analog input
220
VAREF3
4528000
3435000
Positive Analog Reference
Voltage 3
221
AN56 (VADC9.0) D
4419500
3385000
Analog input
222
VAGND3
Vx
4528000
3535000
Negative Analog Reference
Voltage 3
223
VAREF2
Vx
4419500
3485000
Positive Analog Reference
Voltage 2
224
AN55 (VADC8.7 / D
DS6NB)
4528000
3635000
Analog input
225
VAGND2
4419500
3585000
Negative Analog Reference
Voltage 2
226
AN53 (VADC8.5 / D
DS6NA)
4528000
3735000
Analog input
227
AN54 (VADC8.6 / D
DS6PB)
4419500
3685000
Analog input
228
AN51 (VADC8.3) D
4528000
3835000
Analog input
Data Sheet
Vx
Vx
TOC-303
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
229
X
Y
Comment
AN52 (VADC8.4 / D
DS6PA)
4419500
3785000
Analog input
230
AN49 (VADC8.1) D
4528000
3960000
Analog input
231
AN50 (VADC8.2) D
4419500
3897400
Analog input
232
VDDM
4528000
4085000
Must be bonded to VEXT
233
AN48 (VADC8.0) D
4419500
4022600
Analog input
234
AN31 (VADC3.7) D
4278000
4186500
Analog input
235
VSSM
4328000
4295000
Must be bonded to VSS
236
AN29 (VADC3.5) D
4178000
4186500
Analog input
237
AN30 (VADC3.6) D
4228000
4295000
Analog input
238
AN27
S
(VADC3.3),
P40.3 (SENT3A)
4078000
4186500
Analog input (with pull
down diagnostics), GPI
(SENT)
239
AN28 (VADC3.4) D
4128000
4295000
Analog input
240
AN25 (VADC3.1 / S
DS2NB), P40.2
(SENT1A)
3978000
4186500
Analog input, GPI (SENT)
241
AN26
S
(VADC3.2),
P40.2 (SENT2A)
4028000
4295000
Analog input, GPI (SENT)
242
AN23 (VADC2.7) D
3878000
4186500
Analog input
243
AN24 (VADC3.0 / S
DS2PB), P40.0
(SENT0A)
3928000
4295000
Analog input, GPI (SENT)
244
AN21 (VADC2.5 / D
DS2NA)
3778000
4186500
Analog input
245
AN22 (VADC2.6) D
3828000
4295000
Analog input
246
AN19 (VADC2.3) D
3678000
4186500
Analog input (with pull
down diagnostics)
247
AN20 (VADC2.4 / D
DS2PA)
3728000
4295000
Analog input
248
AN17 (VADC2.1) D
3578000
4186500
Analog input
249
AN18 (VADC2.2) D
3628000
4295000
Analog input
250
AN15 (VADC1.7) D
3478000
4186500
Analog input
251
AN16 (VADC2.0) D
3528000
4295000
Analog input
252
VAGND0
Vx
3378000
4186500
Negative Analog Reference
Voltage 0
253
VAGND1
Vx
3428000
4295000
Negative Analog Reference
Voltage 1
254
VAREF0
Vx
3278000
4186500
Positive Analog Reference
Voltage 0
Data Sheet
Pad Type
Vx
Vx
TOC-304
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
X
Y
Comment
255
VAREF1
Vx
3328000
4295000
Positive Analog Reference
Voltage 1
256
VSS
Vx
3178000
4186500
Must be bonded to VSS
257
VSSM
Vx
3228000
4295000
Must be bonded to VSS
258
AN14 (VADC1.6) D
3078000
4186500
Analog input
259
VDDM
3128000
4295000
Must be bonded to VEXT
260
AN12 (VADC1.4) D
2978000
4186500
Analog input
261
AN13 (VADC1.5) D
3028000
4295000
Analog input
262
AN10 (VADC1.2) D
2878000
4186500
Analog input
263
AN11 (VADC1.3) D
2928000
4295000
Analog input (with pull
down diagnostics)
264
AN8 (VADC1.0)
D
2778000
4186500
Analog input
265
AN9 (VADC1.1)
D
2828000
4295000
Analog input
266
AN6 (VADC0.6)
D
2678000
4186500
Analog input
267
AN7 (VADC0.7)
D
2728000
4295000
Analog input (with pull
down diagnostics)
268
AN4 (VADC0.4)
D
2578000
4186500
Analog input
269
AN5 (VADC0.5)
D
2628000
4295000
Analog input
270
AN2 (VADC0.2 /
DS0PA)
D
2478000
4186500
Analog input
271
AN3 (VADC0.3 /
DS0NA)
D
2528000
4295000
Analog input
272
AN1 (VADC0.1 /
DS1NA)
D
2378000
4186500
Analog input
273
VSSM
Vx
2428000
4295000
Must be bonded to VSS
274
AN0 (VADC0.0 /
DS1PA)
D
2278000
4186500
Analog input
275
VDDM
Vx
2328000
4295000
Must be bonded to VEXT
276
EVR_OFF
Vx
2158000
4295000
Must be bonded to VSS
277
P33.0
LP / PU1 / VEXT 2103000
4186500
GPIO
278
VSS
Vx
2048000
4295000
Must be bonded to VSS
279
P33.1
LP / PU1 / VEXT 1993000
4186500
GPIO
280
P34.1
LP / PU1 / VEXT 1933000
4295000
GPIO
281
P33.2
LP / PU1 / VEXT 1873000
4186500
GPIO
282
VSS
Vx
1778000
4295000
Must be bonded to VSS
283
VDD
Vx
1678000
4295000
Must be bonded to VDD
284
P33.3
LP / PU1 / VEXT 1583000
4186500
GPIO
285
VEXT
Vx
1509000
4295000
Must be bonded to VEXT
286
VEXT
Vx
1440000
4186500
Must be bonded to VEXT
287
P34.2
LP / PU1 / VEXT 1385000
4295000
GPIO
Data Sheet
Vx
TOC-305
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
288
P33.4
289
Y
Comment
LP / PU1 / VEXT 1325000
4186500
GPIO
P34.3
LP / PU1 / VEXT 1265000
4295000
GPIO
290
P33.5
LP / PU1 / VEXT 1205000
4186500
GPIO
291
P34.4
LP / PU1 / VEXT 1145000
4295000
GPIO
292
P33.6
LP / PU1 / VEXT 1085000
4186500
GPIO
293
P34.5
LP / PU1 / VEXT 1015000
4295000
GPIO
294
P33.7
LP / PU1 / VEXT 955000
4186500
GPIO
295
P33.8
MP / HighZ /
VEXT
885000
4295000
GPIO
296
P33.9
LP / PU1 / VEXT 815000
4186500
GPIO
297
VSS
Vx
760000
4295000
Must be bonded to VSS
298
P33.10
MP / PU1 / VEXT 695000
4186500
GPIO
299
P33.14
LP / PU1 / VEXT 625000
4295000
GPIO
300
P33.11
MP / PU1 / VEXT 555000
4186500
GPIO
301
P33.15
LP / PU1 / VEXT 485000
4295000
GPIO
302
P33.12
MP / PU1 / VEXT 415000
4186500
GPIO
303
P32.5
LP / PU1 / VEXT 345000
4295000
GPIO
304
P33.13
MP / PU1 / VEXT 275000
4186500
GPIO
305
P32.6
LP / PU1 / VEXT 205000
4295000
GPIO
306
VGATE3P (LDO) VGATE3P
150000
4186500
Must be bonded to VSS
307
VEXT
Vx
96000
4295000
Must be bonded to VEXT
308
P32.0
LP / EVR13
SMPS -> PD,
GPIO -> PU1 /
VEXT
37000
4186500
GPIO
309
VGATE1N
(SMPS)
VGATE1N
-18000
4295000
Must be bonded to VSS if
EVR13 SMPS is not used.
Must be bonded to NMOS
gate if EVR13 SMPS is
used.
310
VGATE1P
(SMPS)
VGATE1P
-68000
4186500
Must be bonded to VEXT if
EVR13 SMPS is not used.
Must be bonded to PMOS
gate if EVR13 SMPS is
used.
311
VGATE1P (LDO) VGATE1P
-118000
4295000
VGATE1P (LDO)
312
P32.2
LP / PU1 / VEXT -173000
4186500
GPIO
313
VSS
Vx
-268000
4295000
Must be bonded to VSS
314
VDD
Vx
-368000
4295000
Must be bonded to VDD
315
P32.3
LP / PU1 / VEXT -463000
4186500
GPIO
316
P32.7
LP / PU1 / VEXT -523000
4295000
GPIO
Data Sheet
X
TOC-306
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
X
Y
Comment
317
P32.4
MP+ / PU1 /
VEXT
-603000
4186500
GPIO
318
VSS
Vx
-678000
4295000
Must be bonded to VSS
319
P31.0
MP / PU1 /
VFLEXE
-823000
4295000
GPIO
320
P31.1
MP / PU1 /
VFLEXE
-903000
4186500
GPIO
321
P31.2
MP / PU1 /
VFLEXE
-983000
4295000
GPIO
322
P31.3
MP / PU1 /
VFLEXE
-1063000
4186500
GPIO
323
VSS
Vx
-1128000
4295000
Must be bonded to VSS
324
P31.4
MP / PU1 /
VFLEXE
-1193000
4186500
GPIO
325
P31.5
MP / PU1 /
VFLEXE
-1273000
4295000
GPIO
326
P31.6
MP / PU1 /
VFLEXE
-1353000
4186500
GPIO
327
P31.7
MP / PU1 /
VFLEXE
-1433000
4295000
GPIO
328
P31.8
MP / PU1 /
VFLEXE
-1513000
4186500
GPIO
329
VFLEXE
Vx
-1578000
4295000
Must be bonded to VEXT or
VDDP3
330
P31.9
MP / PU1 /
VFLEXE
-1643000
4186500
GPIO
331
P31.10
MP / PU1 /
VFLEXE
-1723000
4295000
GPIO
332
P31.14
MP / PU1 /
VFLEXE
-1803000
4186500
GPIO
333
P31.15
MP / PU1 /
VFLEXE
-1883000
4295000
GPIO
334
P31.11
MP / PU1 /
VFLEXE
-1963000
4186500
GPIO
335
VSS
Vx
-2068000
4295000
Must be bonded to VSS
336
VDD
Vx
-2168000
4295000
Must be bonded to VDD
337
P31.12
MP / PU1 /
VFLEXE
-2273000
4186500
GPIO
338
VSS
Vx
-2338000
4295000
Must be bonded to VSS
339
P31.13
MP / PU1 /
VFLEXE
-2403000
4186500
GPIO
Data Sheet
TOC-307
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
X
Y
Comment
340
P30.0
MP / PU1 /
VFLEXE
-2483000
4295000
GPIO
341
P30.1
MP / PU1 /
VFLEXE
-2563000
4186500
GPIO
342
P30.2
MP / PU1 /
VFLEXE
-2643000
4295000
GPIO
343
VFLEXE
Vx
-2788000
4295000
Must be bonded to VEXT or
VDDP3
344
P30.3
MP / PU1 /
VFLEXE
-2723000
4186500
GPIO
345
VSS
Vx
-2918000
4295000
Must be bonded to VSS
346
P30.4
MP / PU1 /
VFLEXE
-2853000
4186500
GPIO
347
P30.5
MP / PU1 /
VFLEXE
-2983000
4186500
GPIO
348
P30.6
MP / PU1 /
VFLEXE
-3063000
4295000
GPIO
349
P30.8
MP / PU1 /
VFLEXE
-3223000
4295000
GPIO
350
P30.7
MP / PU1 /
VFLEXE
-3143000
4186500
GPIO
351
VFLEXE
Vx
-3368000
4295000
Must be bonded to VEXT or
VDDP3
352
P30.9
MP / PU1 /
VFLEXE
-3303000
4186500
GPIO
353
P30.11
MP / PU1 /
VFLEXE
-3513000
4295000
GPIO
354
P30.10
MP / PU1 /
VFLEXE
-3433000
4186500
GPIO
355
P30.15
MP / PU1 /
VFLEXE
-3673000
4295000
GPIO
356
P30.12
MP / PU1 /
VFLEXE
-3593000
4186500
GPIO
357
VSS
Vx
-3818000
4295000
Must be bonded to VSS
358
P30.13
MP / PU1 /
VFLEXE
-3753000
4186500
GPIO
359
P26.0
LP / PU1 /
VFLEXE
-3953000
4295000
GPIO
360
P30.14
MP / PU1 /
VFLEXE
-3883000
4186500
GPIO
361
VSS
Vx
-4098000
4295000
Must be bonded to VSS
(Double Pad / Center of
Elephant Pad Opening)
Data Sheet
TOC-308
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
362
P25.0
363
Y
Comment
A2 / PU1 / VEBU -4078000
4186500
GPIO
P25.2
A2 / PU1 / VEBU -4228000
4295000
GPIO
364
P25.1
A2 / PU1 / VEBU -4178000
4186500
GPIO
365
P25.4
A2 / PU1 / VEBU -4338000
4295000
GPIO
366
P25.3
A2 / PU1 / VEBU -4288000
4186500
GPIO
367
P25.5
A2 / PU1 / VEBU -4419500
4105000
GPIO
368
P25.7
A2 / PU1 / VEBU -4419500
4005000
GPIO
369
VEBU
Vx
-4528000
4055000
Must be bonded to VEXT or
VDDP3
370
P25.8
A2 / PU1 / VEBU -4419500
3905000
GPIO
371
VSS
Vx
-4528000
3955000
Must be bonded to VSS
372
P25.10
A2 / PU1 / VEBU -4419500
3805000
GPIO
373
P25.9
A2 / PU1 / VEBU -4528000
3855000
GPIO
374
VSS
Vx
-4528000
3755000
Must be bonded to VSS
375
P25.11
A2 / PU1 / VEBU -4419500
3605000
GPIO
376
VDD
Vx
-4528000
3655000
Must be bonded to VDD
377
P25.13
A2 / PU1 / VEBU -4419500
3505000
GPIO
378
P25.12
A2 / PU1 / VEBU -4528000
3555000
GPIO
379
P25.14
A2 / PU1 / VEBU -4419500
3405000
GPIO
380
VEBU
Vx
-4528000
3455000
Must be bonded to VEXT or
VDDP3
381
P25.6
A2 / PU1 / VEBU -4419500
3305000
GPIO
382
P25.15
A2 / PU1 / VEBU -4528000
3355000
GPIO
383
P24.1
A2 / PU1 / VEBU -4419500
3205000
GPIO
384
P24.0
A2 / PU1 / VEBU -4528000
3255000
GPIO
385
P24.2
A2 / PU1 / VEBU -4419500
3105000
GPIO
386
VSS
Vx
-4528000
3155000
Must be bonded to VSS
387
P24.4
A2 / PU1 / VEBU -4419500
3005000
GPIO
388
P24.3
A2 / PU1 / VEBU -4528000
3055000
GPIO
389
P24.6
A2 / PU1 / VEBU -4419500
2905000
GPIO
390
P24.5
A2 / PU1 / VEBU -4528000
2955000
GPIO
391
VSS
Vx
-4528000
2845000
Must be bonded to VSS
392
P24.7
A2 / PU1 / VEBU -4419500
2685000
GPIO
393
VDD
Vx
-4528000
2745000
Must be bonded to VDD
394
P24.8
A2 / PU1 / VEBU -4419500
2585000
GPIO
395
VEBU
Vx
-4528000
2635000
Must be bonded to VEXT or
VDDP3
396
P24.10
A2 / PU1 / VEBU -4419500
2485000
GPIO
397
P24.9
A2 / PU1 / VEBU -4528000
2535000
GPIO
Data Sheet
X
TOC-309
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
398
P24.12
399
Y
Comment
A2 / PU1 / VEBU -4419500
2385000
GPIO
P24.11
A2 / PU1 / VEBU -4528000
2435000
GPIO
400
P24.13
A2 / PU1 / VEBU -4419500
2285000
GPIO
401
VSS
Vx
-4528000
2335000
Must be bonded to VSS
402
P24.15
A2 / PU1 / VEBU -4419500
2185000
GPIO
403
P24.14
A2 / PU1 / VEBU -4528000
2235000
GPIO
404
P23.5
MP+ / PU1 /
VEXT
-4419500
2040000
GPIO
405
VSS
Vx
-4528000
1965000
Must be bonded to VSS
406
P23.0
LP / PU1 / VEXT -4419500
1910000
GPIO
407
VEXT
Vx
-4528000
1855000
Must be bonded to VEXT
408
P23.1
MP+ / PU1 /
VEXT
-4419500
1780000
GPIO
409
VDD
Vx
-4528000
1695000
Must be bonded to VDD
410
VSS
Vx
-4528000
1595000
Must be bonded to VSS
411
P23.2
LP / PU1 / VEXT -4419500
1510000
GPIO
412
P23.6
LP / PU1 / VEXT -4528000
1450000
GPIO
413
P23.3
LP / PU1 / VEXT -4419500
1390000
GPIO
414
P23.7
LP / PU1 / VEXT -4528000
1330000
GPIO
415
P23.4
MP+ / PU1 /
VEXT
-4419500
1250000
GPIO
416
VSS
Vx
-4528000
1175000
Must be bonded to VSS
417
P22.0
LVDSM_N / PU1 -4419500
/ VEXT
1100000
GPIO
418
P22.1
LVDSM_P / PU1 -4419500
/ VEXT
770000
GPIO
419
VSS
Vx
-4528000
688000
Must be bonded to VSS
420
VDD
Vx
-4528000
588000
Must be bonded to VDD
421
P22.2
LVDSM_N / PU1 -4419500
/ VEXT
513000
GPIO
422
P22.3
LVDSM_P / PU1 -4419500
/ VEXT
183000
GPIO
423
VEXT
Vx
108000
Must be bonded to VEXT
424
P22.4
LP / PU1 / VEXT -4419500
53000
GPIO
425
VSS
Vx
-4528000
-2000
Must be bonded to VSS
426
VDD
Vx
-4528000
-102000
Must be bonded to VDD
427
P22.5
LP / PU1 / VEXT -4419500
-157000
GPIO
428
P22.7
LP / PU1 / VEXT -4528000
-217000
GPIO
429
P22.6
LP / PU1 / VEXT -4419500
-277000
GPIO
430
VSS
Vx
-332000
Must be bonded to VSS
Data Sheet
X
-4528000
-4528000
TOC-310
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
431
P22.8
432
Y
Comment
LP / PU1 / VEXT -4419500
-387000
GPIO
P22.9
LP / PU1 / VEXT -4528000
-447000
GPIO
433
P22.10
LP / PU1 / VEXT -4419500
-507000
GPIO
434
P22.11
LP / PU1 / VEXT -4528000
-567000
GPIO
435
VDDOSC
Vx
-4528000
-702000
Must be bonded to VSS
436
VSSOSC
Vx
-4528000
-802000
Must be bonded to VSS
437
XTAL1
XTAL1
-4419500
-909500
Main Oscillator/PLL/Clock
Generator Input. Must be
bonded to external quartz
or resonator.
438
XTAL2
XTAL2
-4419500
-1009500
Main Oscillator/PLL/Clock
Generator Input. Must be
bonded to external quartz
or resonator.
439
VSSOSC
Vx
-4528000
-1117000
Must be bonded to VSS
440
VDDOSC3
Vx
-4419500
-1167000
Must be bonded to VDDP3
441
VDDP3
Vx
-4528000
-1257000
Must be bonded to VDDP3
442
P21.0
LVDSH_N / PU1 -4419500
/ VDDP3
-1362500
GPIO
443
P21.1
LVDSH_P / PU1 -4419500
/ VDDP3
-1462500
GPIO
444
VSSP
Vx
-4528000
-1525000
Must be bonded to VSS
445
P21.2
LVDSH_N / PU1 -4419500
/ VDDP3
-1587500
GPIO
446
P21.3
LVDSH_P / PU1 -4419500
/ VDDP3
-1687500
GPIO
447
VDDP3
Vx
-4528000
-1750000
Must be bonded to VDDP3
448
P21.4
LVDSH_N / PU1 -4419500
/ VDDP3
-1824500
GPIO
449
VSS
Vx
-4528000
-2020000
Must be bonded to VSS
(Double Pad / Center of
Elephant Pad Opening)
450
P21.5
LVDSH_P / PU1 -4419500
/ VDDP3
-1975500
GPIO
451
VDD
Vx
-4528000
-2150000
Must be bonded to VDD
452
VSSP
Vx
-4528000
-2260000
Must be bonded to VSS
453
P21.6
A2 / PU / VDDP3 -4419500
-2210000
GPIO, TDI
454
VDDP3
Vx
-4528000
-2360000
Must be bonded to VDDP3
455
TMS /DAP1
A2 / PD / VDDP3 -4419500
-2310000
JTAG Module State
Machine Control Input /
Device Access Port Line 1
Data Sheet
X
TOC-311
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-74 TC29x Bare Die Pad List (cont’d)
Number
Pad Name
Pad Type
456
TCK /DAP0
457
X
Y
Comment
A2 / PD / VDDP3 -4528000
-2460000
JTAG Module Clock Input /
Device Access Port Line 0
P21.7
A2 / PU / VDDP3 -4419500
-2410000
GPIO, TDO
458
TRST (N)
A2 / PD / VDDP3 -4419500
-2520000
JTAG Module
Reset/Enable Input
459
Reserved
Vx
-4528000
-2650000
Must be bonded to VSS
460
VEXT
Vx
-4528000
-2780000
Must be bonded to VEXT
461
P20.0
MP / PU1 / VEXT -4419500
-2715000
GPIO
462
VSS
Vx
-4528000
-2890000
Must be bonded to VSS
463
P20.1
LP / PU1 / VEXT -4419500
-2835000
GPIO
464
PORST (N)
PORST / PD /
VEXT
-4528000
-3007500
Power On Reset Input.
Additional strong PD in
case of power fail.
465
P20.2
LP / PU1 / VEXT -4419500
-2940000
Testmode pin must be
bonded
466
ESR1 (N)
/EVRWUP
MP / PU1 / VEXT -4528000
-3150000
External System Request
Reset 1. Default NMI
function. EVR Wakeup Pin.
467
P20.3
LP / PU1 / VEXT -4419500
-3080000
GPIO
468
ESR0 (N)
/EVRWUP
MP / OD
-4528000
-3290000
External System Request
Reset 0. Default
configuration during and
after reset is open-drain
driver. The driver drives low
during power-on reset. EVR
Wakeup Pin.
469
P20.7
LP / PU1 / VEXT -4419500
-3220000
GPIO
470
VEXT
Vx
-4528000
-3435000
Must be bonded to VEXT
471
P20.8
MP / PU1 / VEXT -4419500
-3370000
GPIO
472
P20.6
LP / PU1 / VEXT -4528000
-3590000
GPIO
473
P20.10
MP / PU1 / VEXT -4419500
-3520000
GPIO
474
P20.9
LP / PU1 / VEXT -4528000
-3750000
GPIO
475
P20.11
MP / PU1 / VEXT -4419500
-3680000
GPIO
476
VSS
Vx
-4528000
-3905000
Must be bonded to VSS
477
P20.12
MP / PU1 / VEXT -4419500
-3820000
GPIO
478
P20.14
MP / PU1 / VEXT -4528000
-4080000
GPIO
479
P20.13
MP / PU1 / VEXT -4419500
-3990000
GPIO
480
P15.0
LP / PU1 / VEXT -4263000
-4186500
GPIO
Legend:
Column “Number”:
Running number of pads in the pad frame
Data Sheet
TOC-312
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Column “Name”:
Symbolic name of the pad.
The functions mapped on GPIO pads “Px.y” are described in the User’s Manual chapter ”General Purpose I/O
Ports and Peripheral I/O LInes (Ports)”
Column “Type”:
LP = Pad class LP (5V/3.3V, Class LP parameters for digital input / output and class D parameters for analog input
function)
MP = Pad class MP (5V/3.3V)
MP+ = Pad class MP+ (5V/3.3V)
MPR = Pad class MPR (5V/3.3V)
A2 = Pad class A2 (3.3V)
LVDSM = Pad class LVDSM (5V/3.3V)
LVDSH = Pad class LVDSH (3.3V)
S = Pad class S (Class S parameters for digital input and class D parameters for analog input function)
D = Pad class D (VADC / DSADC)
PU = with pull-up device connected during reset (PORST = 0)
PU1 = with pull-up device connected during reset (PORST = 0)1) 2) 3)
PD = with pull-down device connected during reset (PORST = 0)
PD1 = with pull-down device connected during reset (PORST = 0)1) 2) 3)
PX = Behavior depends on usage: PD in EVR13 SMPS Mode and PU1 in GPIO Mode
OD = open drain during reset (PORST = 0)
HighZ = tri-state during reset (PORST = 0)
PORST = PORST input pad
XTAL1 = XTAL1 input pad
XTAL2 = XTAL2 input pad
VGATE1P = VGATE1P
VGATE3P = VGATE3P
Vx = Supply
NC = These pins are reserved for future extensions and shall not be connected externally
NC1 = These pins are not connected on package level and will not be used for future extensions
NCVDDPSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
NCVDDSB = This pin has a different functionality in an Production Device and an Emulation Device. For details
pls. see Pin/Ball description of this pin.
Column “X” / “Y”:
Pad opening center coordinates
2.4.1
Pad Openings
Two different pad openings are used:
1) The default state of GPIOs (Px.y) during and after PORST active is controllled via HWCFG[6] (P14.4). HWCFG[6] has a
weak internal pull-up active at start-up if the pin is left unconnected.See also User´s Manual, “Introduction Chapter”,
“General Purpose I/O Ports and Peripheral I/O Lines”, Figure: “Default state of port pins during and after reset”.
2) If HWCFG[6] is left unconnected or is externally pulled high, weak internal pull-ups are active at GPIOs (Px.y) pins during
and after reset. Exceptions are P33.8 (HighZ), P40.x (default configuration during and after reset: analog inputs, port input
funtion disabled), ESR0, P21.6 / P21.7 (port pins overlayed with JTAG functionality).
3) If HWCFG[6] is connected to ground, port pins are predominantly in HighZ during and after reset. Exceptions are P33.8
(HighZ), P40.x (default configuration during and after reset: analog inputs, port input funtion disabled), ESR0, P21.6 / P21.7
(port pins overlayed with JTAG functionality).
Data Sheet
TOC-313
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
•
Standard Pad Opening is 70um x 75um where 70um is the width of the opening (width as seen from the die
side) and 75um is the depth of the opening (from the die side into the silicon).
•
Double Pad or Elephant Pad Opening is 130um x 75um where 130um is the width of the opening (width as
seen from the die side) and 75um is the depth of the opening (from the die side into the silicon). Double Pads
are used only for supply and can be identified by the words ´Double Pad´ or ´Elephant Pad´ in the Comment
column.
2.4.2
Emergency Stop Function
The Emergency Stop function can be used to force GPIOs (General Purpose Inputs/Outputs) via an external input
signal (EMGSTOPA or EMGSTOPB) into a defined state:
•
Input state and
•
PU or HighZ depending on HWCFG[6] level latched during Porst active
Control of the Emergency Stop function:
•
The Emergency Stop function can be enabled/disabled in the SCU (see chapter “SCU”, “Emergency Stop
Control”)
•
The Emergency Stop input signal, EMGSTOPA (P33.8) / EMGSTOPB (P21.2) , can selected in the SCU (see
chapter “SCU”, “Emergency Stop Control”)
•
On port level, each GPIO can be enabled/disabled for the Emergency Stop function via the Px_ESR (Port x
Emergency Stop) registers in the port control logic (see chapter “General Purpose I/O Ports and Peripheral I/O
Lines”, “Emergency Stop Register”).
The Emergency Stop function is available for all GPIO Ports with the following exceptions:
•
Not available for P20.2 (General Purpose Input/GPI only, overlayed with Testmode)
•
Not available for P40.x (analoge input ANx overlayed with GPI)
•
Not available for P32.0 EVR13 SMPS mode.
•
Not available for dedicated I/O without General Purpose Output function (e.g ESRx, TMS, TCK)
The Emergency Stop function can be overruled on the following GPIO Ports:
•
P00.x and P02.x: Emergency Stop can be overruled by the 8-Bit Standby Controller (SBR), if implemented.
Overruling can be disabled via the control registers P00_SCR / P02_SCR (see chapter “General Purpose I/O
Ports and Peripheral I/O Lines”, P00 / P01)
•
P00.x: Emergency Stop can be overruled by the VADC. Overruling can be disabled via the control register
P00_SCR (see chapter “General Purpose I/O Ports and Peripheral I/O Lines”, P00)
•
P14.0 and P14.1: Emergency Stop can be overruled in the DXCPL mode (DAP over can physical layer mode).
No Overruling in the DXCM (Debug over can message) mode
•
P21.6: Emergency Stop can be overruled in JTAG mode if this pin is used as TDI
•
P21.7: Emergency Stop can be overruled in JTAG or Three Pin DAP mode
•
P20.0: Emergency Stop can be overruled in JTAG mode if this GPIO is used as TDI
•
P33.8: Emergency Stop can be overruled if this pin is used as safety output pin (SMUFSP)
2.4.3
Data Sheet
Pull-Up/Pull-Down Reset Behavior of the Pins
TOC-314
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Package and Pinning DefinitionsTC29x Bare Die Pad Definition
Table 2-75 List of Pull-Up/Pull-Down Reset Behavior of the Pins
Pins
PORST = 0
all GPIOs
Pull-up if HWCFG[6] = 1 or High-Z if HWCFG[6] = 0
TDI, TESTMODE
Pull-up
1)
PORST
Pull-down with IPORST relevant
TRST, TCK, TMS
Pull-down
ESR0
The open-drain driver is used to
drive low.2)
ESR1
Pull-up3)
TDO
Pull-up
1)
2)
3)
4)
PORST = 1
Pull-down with IPDLI relevant
Pull-up3)
High-Z/Pull-up4)
Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Valid additionally after deactivation of PORST until the internal reset phase has finished. See the SCU chapter for details.
See the SCU_IOCR register description.
Depends on JTAG/DAP selection with TRST.
In case of leakage test (PORST = 0 and TESTMODE = 0), the pull-down of the TRST pin is switched off. In case
of an user application (TESTMODE = 1), the pull-down of the TRST is always switched on.
Data Sheet
TOC-315
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationParameter Interpretation
3
Electrical Specification
3.1
Parameter Interpretation
The parameters listed in this section partly represent the characteristics of the TC290 / TC297 / TC298 / TC299
and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a
design, they are marked with an two-letter abbreviation in column “Symbol”:
•
CC
Such parameters indicate Controller Characteristics which are a distinctive feature of the TC290 / TC297 /
TC298 / TC299 and must be regarded for a system design.
•
SR
Such parameters indicate System Requirements which must provided by the microcontroller system in which
the TC290 / TC297 / TC298 / TC299 designed in.
Data Sheet
3-316
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationAbsolute Maximum Ratings
3.2
Absolute Maximum Ratings
Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device.
This is a stress rating only and functional operation of the device at these or any other conditions above those
indicated in the Operational Conditions of this specification is not implied. Exposure to absolute maximum rating
conditions may affect device reliability.
Table 3-1
Absolute Maximum Ratings
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
upto 65h @ TJ =
150°C; upto 15h @ TJ
= 170°C
Storage Temperature
TST SR
-65
-
170
°C
Voltage at VDD power supply
pins with respect to VSS 1)
VDD SR
-
-
1.9
V
VDDP3 SR
Voltage at VDDP3 and VDDFL3
power supply pins with respect
to VSS 1)
-
-
4.43
V
Voltage at VDDM, VEXT and
VFLEX power supply pins with
respect to VSS 1)
VDDM SR
-
-
7.0
V
Voltage on any class A2 and
LVDSH input pin with respect
to VSS 1)2)
VIN SR
-0.5
-
min(
V
Voltage on all other input pins
with respect to VSS 1)2)
VIN SR
0.6 , 4.23
)
Input current on any pin during IIN SR
overload condition 3)
Absolute maximum sum of all
input circuit currents during
overload condition 3)
Whatever is lower
VDDP3 +
ΣIIN SR
-0.5
-
7.0
V
-10
-
10
mA
-100
-
100
mA
1) Valid for cumulated for up to 2.8h and pulse forms following a power supply switch on phase, where the rise and fall times
are releated to the system capacities and coils.
2) Voltages below VINmin have no Impact to the device reliabiltiy as Long as the times and currents defined in section Pin
Reliability in Overload for the affected pad(s) are not violated.
3) This parameter is an Absolute Maximum Rating. Exposure to Absolute Maximum Ratings for extended periods of time may
damage the device.
Data Sheet
3-317
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPin Reliability in Overload
3.3
Pin Reliability in Overload
When receiving signals from higher voltage devices, low-voltage devices experience overload currents and
voltages that go beyond their own IO power supplies specification.
The following table defines overload conditions that will not cause any negative reliability impact if all the following
conditions are met:
•
full operation life-time (24500 h) is not exceeded
•
Operating Conditions are met for
–
pad supply levels
–
temperature
If a pin current is out of the Operating Conditions but within the overload parameters, then the parameters
functionality of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still
possible in most cases but with relaxed parameters.
Note: An overload condition on one or more pins does not require a reset.
Table 3-2
Overload Parameters
Parameter
Symbol
Input current on any digital pin IIN
during overload condition
Values
Min.
Typ.
Max.
-5
-
5
-15
1)
-
15
1)
Unit
Note / Test Condition
mA
except LVDS pins
mA
except LVDS pins;
limited to max. 20
pulses with 1ms pulse
length
Input current on LVDS pin
during overload condition
IINLVDS
-3
-
3
mA
Absolute maximum sum of all
input circuit currents during
overload condition
IING
-50
-
50
mA
Input current on analog input
pin during overload condition
IINANA
-3
-
3
mA
-5
-
5
mA
Absolute sum of all ADC inputs IINSCA
during overload condition
-20
-
20
mA
Absolute maximum sum of all
input circuit currents during
overload condition
-100
-
100
mA
Signal voltage over/undershoot VOUS
at GPIOs
VSS - 2
-
VEXT/FLEX
V
limited to 60h over
lifetime; Valid for LP,
MP, MP+, and MPR
pads
Inactive device pin current
during overload condtion 2)
IID
-1
-
1
mA
All power supply
voltages VDDx = 0
Sum of all inactive device pin
currents 2)
IIDS
-100
-
100
mA
Data Sheet
ΣIINS
+2
3-318
limited to 60h over
lifetime
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPin Reliability in Overload
Table 3-2
Overload Parameters (cont’d)
Parameter
Overload coupling factor for
digital inputs, negative 3)
Data Sheet
Symbol
KOVDN CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
4*10-3
Overload injected on
GPIO non LVDS pad
and affecting neighbor
A2 pads of P24.x and
P25.x; -2mA < IIN <
0mA
-
2*10-4
-
Overload injected on
GPIO non LVDS pad
and affecting neighbor
LP and A2 (exept
P24.x and P25.x)
pads; -2mA < IIN <
0mA
-
-
1*10-2
Overload injected on
GPIO non LVDS pad
and affecting neighbor
LP and A2 pads (exept
P25.2 and P25.4); 5mA < IIN < -2mA
-
-
6*10-4
Overload injected on
GPIO non LVDS pad
and affecting neighbor
LP and A2 pads; -2mA
< IIN < 0mA
-
-
1.7*10-3
Overload injected on
GPIO non LVDS pad
and affecting neighbor
MP, MP+, and MPR
pads; -2mA < IIN <
0mA
-
-
2*10-2
Overload injected on
GPIO non LVDS pad
and affecting neighbor
MP, MP+, and MPR
pads; -5mA < IIN < 2mA
-
-
1.5*10-2
Overload injected on
GPIO non LVDS pad
and affecting neighbor
pads P25.2 and P25.4;
-5mA < IIN < -2mA
-
-
0.3
Overload injected on
LVDS pad and
affecting neighbor
LVDS pads
-
-
0.93
coupling between pads
21.0, 21.1,21.2 and
V 1.1 2019-03
21.3
3-319
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPin Reliability in Overload
Table 3-2
Overload Parameters (cont’d)
Parameter
Symbol
Overload coupling factor for
digital inputs, positive 3)
Overload coupling factor for
analog inputs, negative
Overload coupling factor for
analog inputs, positive
1)
2)
3)
4)
KOVDP CC
KOVAN CC
KOVAP CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
1*10-5
Overload injected on
GPIO non LVDS pad
and affecting neighbor
GPIO non LVDS pads
-
-
1.6*10-4
Overload injected on
GPIO pad and
affecting neighbor
P32.0 pad
-
-
1*10-4
Overload injected on
GPIO pad and
affecting neighbor
P32.4 and P33.12 pad
-
-
5*10-4
Overload injected on
LVDS pad and
affecting neighbor
LVDS pads
-
-
6*10-4 4)
Analog Inputs overlaid
with class LP pads or
pull down diagnostics;
-1mA < IIN < 0mA
-
-
1*10-2
Analog Inputs overlaid
with class LP pads or
pull down diagnostics;
-5mA < IIN < -1mA
-
-
1*10-4
else; -5mA < IIN < 0mA
-
-5
-
1*10
5mA < IIN < 0mA
Reduced VADC / DSADC result accuracy and / or GPIO input levels (VIL and VIH) can differ from specified parameters.
Limitations for time and supply levels specified in this section are not valid for this parameter.
Overload is measured as increase of pad leakage caused by injection on neighbor pad.
For analogue inputs overlaid with DSADC function the VCM holdbuffer shall be enabled, in case DSADCs are enabled.
Note: DSADC input pins count as analog pins as they are overlaid with VADC pins.
Table 3-3
PN-Junction Characteristics for positive Overload
Pad Type
IIN = 3 mA
IIN = 5 mA
F / A2
UIN = VDDP3 + 0.5 V
UIN = VDDP3 + 0.6 V
LP / MP / MP+
UIN = VEXT / FLEX + 0.75 V
UIN = VEXT / FLEX + 0.8 V
LVDSM
UIN = VEXT + 0.75 V
-
LVDSH
UIN = VDDP3 + 0.5 V
-
D
UIN = VDDM + 0.75 V
-
Data Sheet
3-320
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPin Reliability in Overload
Table 3-4
PN-Junction Characteristics for negative Overload
Pad Type
IIN = -3 mA
IIN = -5 mA
F / A2
UIN = VSS - 0.5 V
UIN = VSS - 0.6 V
LP / MP / MP+
UIN = VSS - 0.75 V
UIN = VSS - 0.8 V
LVDSM
UIN = VSS - 0.75 V
-
LVDSH
UIN = VSS - 0.5 V
-
D
UIN = VSS - 0.75 V
-
Data Sheet
3-321
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationOperating Conditions
3.4
Operating Conditions
The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the
TC290 / TC297 / TC298 / TC299. All parameters specified in the following tables refer to these operating
conditions, unless otherwise noticed.
Digital supply voltages applied to the TC290 / TC297 / TC298 / TC299 must be static regulated voltages.
All parameters specified in the following tables refer to these operating conditions (see table below), unless
otherwise noticed in the Note / Test Condition column.
Table 3-5
Operating Conditions
Parameter
SRI frequency
Max System Frequency
CPU0 Frequency
CPU1 Frequency
CPU2 Frequency
Symbol
fSRI SR
fMAX SR
fCPU0 SR
fCPU1 SR
fCPU2 SR
Values
Min.
Typ.
Max.
-
-
270
-
-
300
-
-
270
1)
1)
Unit
Note / Test Condition
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
-
-
300
-
-
270
MHz
1.17V < VDD < 1.43V
-
-
300 1)
MHz
1.235V < VDD < 1.43V
-
-
270
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
-
-
300
-
-
270
-
-
300
1)
1)
PLL output frequency
fPLL SR
20
-
300
MHz
PLL_ERAY output frequency
fPLLERAY SR 20
-
400
MHz
SPB frequency
fSPB SR
-
-
90
MHz
1.17V < VDD < 1.43V
-
-
100 1)
MHz
1.235V < VDD < 1.43V
fASCLINF SR -
-
270
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
ASCLIN fast frequency
ASCLIN slow frequency
Baud2 frequency
Baud1 frequency
FSI2 frequency
FSI frequency
GTM frequency
EBU frequency
Data Sheet
-
-
300
fASCLINS SR -
-
90
fBAUD2 SR
fBAUD1 SR
fFSI2 SR
fFSI SR
fGTM SR
fEBU SR
-
-
100
-
-
270
1)
1)
1)
-
-
300
-
-
90
MHz
1.17V < VDD < 1.43V
-
-
100 1)
MHz
1.235V < VDD < 1.43V
-
-
270
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
-
-
300
-
-
90
-
-
100
-
-
90
1)
1)
1)
-
-
100
-
-
180
MHz
1.17V < VDD < 1.43V
-
-
200
MHz
1.235V < VDD < 1.43V
3-322
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationOperating Conditions
Table 3-5
Operating Conditions (cont’d)
Parameter
STM frequency
Symbol
fSTM SR
Values
Min.
Typ.
Max.
-
-
90
-
-
100
1)
Unit
Note / Test Condition
MHz
1.17V < VDD < 1.43V
MHz
1.235V < VDD < 1.43V
ERAY frequency
fERAY SR
-
-
80
MHz
BBB frequency
fBBB SR
-
-
150
MHz
MultiCAN frequency
fCAN SR
-
-
100
MHz
Absolute sum of short circuit
currents of the device
ΣISC_D SR
-
-
100
mA
Ambient Temperature
TA SR
-40
-
125
°C
valid for all SAK
products
-40
-
150
°C
valid for all SAL
products
-40
-
170
°C
valid for all SAL
products without
package
-40
-
150
°C
valid for all SAK
products
-40
-
170
°C
valid for all SAL
products
Only required if
externally supplied
Junction Temperature
TJ SR
Core Supply Voltage 2)
VDD SR
1.17
1.3
1.43 3)
V
ADC analog supply voltage
VDDM SR
2.97
5.0
5.5 4)
V
Digital external supply voltage
for LP, MP, MP+ and LVDSM
pads and EVR 5)
VEXT SR
2.97
-
4.5
V
3.3V pad parameters
are valid
4.5
5.0
5.5 4)
V
5V pad parameters are
valid
Digital supply voltage for Flex
port
VFLEX SR
2.97
-
4.5
V
3.3V pad parameters
are valid
4.5
5.0
5.5 4)
V
5V pad parameters are
valid
Digital supply voltage for
LVDSH and A2 pads 6)
VDDP3 SR
2.97
3.3
3.63 7)
V
3.3V pad parameters
are valid; only required
if externally supplied
Flash supply voltage 3.3V 2)
VDDFL3 SR
2.97
3.3
3.63
V
Only required if
externally supplied
Digital ground voltage
VSS SR
0
-
-
V
Analog ground voltage for VDDM VSSM CC
-0.1
0
0.1
V
Voltage to ensure defined pad
states 8)
0.72
-
-
V
A2 and LVDSH
1.4
-
-
V
LP, MP, MP+, MPR
and LVDSM
Data Sheet
VDDPPA CC
3-323
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationOperating Conditions
Table 3-5
Operating Conditions (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
3.3V pad parameters
are valid; only required
if externally supplied
Digital supply voltage for EBU
VEBU SR
2.97
3.3
3.63
V
Digital external supply voltage
for EVR and during Standby
mode
VEVRSB SR
2.97
-
5.5
V
Digital supply voltage for EBU
Flex port
VFLEXE SR
2.97
3.3
4.5
V
3.3V pad parameters
are valid
4.5
5.0
5.5
V
5V pad parameters are
valid
1) VDD = 1.33V +- 7.5% (with increased nominal VDD) voltage by +2.5%.
2) No external inductive load permissible if EVR is used. All VDD pins shall be connected together externally on the PCB.
3) Voltage overshoot to 1.69V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
4) Voltage overshoot to 6.5V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
5) All VEXT pins shall be connected together externally on the PCB.
6) All VDDP3 pins shall be connected together externally on the PCB.
7) Voltage overshoot to 4.29V is permissible, provided the duration is less than 2h cumulated. Reduced ADC accuracy and
leakage is increased.
8) This parameter is valid under the assumption the PORST signal is constantly at low level during the power-up/power-down
of VDDP3.
Data Sheet
3-324
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
3.5
5 V / 3.3 V switchable Pads
Pad classes LP, MP and MP+ support both Automotive Level (AL) or TTL level (TTL) operation. Parameters are
defined for AL operation and degrade in TTL operation.
Table 3-6
Standard_Pads
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pin capacitance (digital
inputs/outputs)
CIO CC
-
6
10
pF
Spike filter always blocked
pulse duration
tSF1 CC
-
-
80
ns
PORST only
Spike filter pass-through pulse tSF2 CC
duration
220
-
-
ns
PORST only
PORST pad output current 1)
11
-
-
mA
VEXT = 3.0V; VPORST =
0.9V; TJ = 165°C
13
-
-
mA
IPORST CC
VEXT = 4.5V; VPORST =
1.0V
1) Pull-down with IPORST relevant is always activated when a primary supply monitor detects a violation.
Table 3-7
Class LP 5V
Parameter
Symbol
Input frequency
Input Hysteresis for LP pad
fIN SR
1)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
-
-
V
AL
-
-
V
TTL
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
-4900
-
4900
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-9400
-
9400
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); for TJ >
150°C
-5800
-
5800
nA
else
-12000
-
12000
nA
else; for TJ > 150°C
|30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
HYSLP CC 0.09 *
VEXT/FLEX
0.075 *
VEXT/FLEX
Input Leakage current for LP
pad
IOZLP CC
Input leakage current for P32.0 IOZP320 CC
Pull-up current for LP pad
Data Sheet
IPUHLP CC
3-325
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-7
Class LP 5V (cont’d)
Parameter
Symbol
Pull-down current for LP pad
On-Resistance for LP pad,
weak driver 2)
On-Resistance for LP pad,
medium driver 2)
Rise / fall time for LP pad
3)
IPDLLP CC
RDSONLPW
Values
Input low voltage for LP pad
Note / Test Condition
Min.
Typ.
Max.
-
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
200
620
1040
Ohm
CC
RDSONLPM
50
155
260
Ohm
PMOS/NMOS ;
IOH=2mA; IOL=2mA
-
-
95+2.1 *
ns
CL
CL≤50pF; pin out
driver=weak
CC
tLP CC
VIHLP SR
VILLP SR
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
-
-
200+2.9 * ns
( CL - 50 )
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5 *
CL
CL≤50pF; pin out
driver=medium
50+0.75 * ns
( CL - 50 )
CL≥50pF; CL≤200pF;
pin out driver=medium
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
Hysteresis inactive;
not available for P14.2,
P14.4, P15.1, P15.10
and P15.11
Input high voltage for LP pad
Unit
-
ns
Input low / high voltage for LP
pad
VILHLP CC
1.85
-
3.0
V
Pad set-up time for LP pad
tSET_LP CC
-
-
100
ns
-150
-
1030
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ >
150°C
-150
-
340
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ =
150°C
-420
-
1100
nA
else; TJ > 150°C
-350
-
380
nA
else; TJ = 150°C
-
|105|
µA
VIHmin; AL and TTL
|41|
-
-
µA
VILmax; AL
|16|
-
-
µA
VILmax; TTL
Input leakage current for P02.1 IOZ021 CC
Pull down current for P32_0 pin IPDLP320 CC -
Data Sheet
3-326
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-7
Class LP 5V (cont’d)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
Typ.
Max.
IPUHP320 CC |25|
-
-
µA
VIHmin; AL
|38|
-
-
µA
VIHmin; TTL
-
-
|112|
µA
VILmax; AL and TTL
Short Circuit current for LP pad ISC SR
-10
-
10
mA
absolute max value
(PSI5)
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Pull Up Current for P32_0 pin
6)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-8
Class LP 3.3V
Parameter
Symbol
Input frequency
Input Hysteresis for LP pad
Input Leakage current for LP
pad
Pull-down current for LP pad
On-Resistance for LP pad,
weak driver 2)
Data Sheet
Note / Test Condition
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
HYSLP CC 0.05 *
VEXT/FLEX
-
-
V
AL and TTL
IOZLP CC
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
-4900
-
4900
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-9400
-
9400
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); for TJ >
150 °C
-5800
-
5900
nA
else
-12000
-
12000
nA
else; for TJ > 150°C
|17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
-
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
250
875
1500
Ohm
Input leakage current for P32.0 IOZP320 CC
Pull-up current for LP pad
Unit
Min.
fIN SR
1)
Values
IPUHLP CC
IPDLLP CC
RDSONLPW
CC
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
3-327
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-8
Class LP 3.3V (cont’d)
Parameter
Symbol
On-Resistance for LP pad,
medium driver 2)
CC
Rise / fall time for LP pad 3)
tLP CC
RDSONLPM
Values
Unit
Min.
Typ.
Max.
70
235
400
Ohm
-
Input low voltage for LP pad
VIHLP SR
VILLP SR
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
-
150+3.4 * ns
CL
Input high voltage for LP pad
Note / Test Condition
-
320+4.5 * ns
( CL - 50 )
CL≤50pF; pin out
driver=weak
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
L
CL≤50pF; pin out
driver=medium
-
-
70+1.1 * ( ns
CL - 50 )
CL≥50pF; CL≤200pF;
pin out driver=medium
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Hysteresis inactive;
not available for P14.2,
P14.4, P15.1, P15.10
and P15.11
Input low / high voltage for LP
pad
VILHLP CC
1.1
-
1.9
V
Pad set-up time for LP pad
tSET_LP CC
-
-
100
ns
-150
-
920
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ >
150°C
-150
-
330
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX); TJ =
150°C
-360
-
1000
nA
else; TJ > 150°C
-350
-
375
nA
else; TJ = 150°C
-
|80|
µA
VIHmin; AL and TTL
|17|
-
-
µA
VILmax; AL
|6|
-
-
µA
VILmax; TTL
IPUHP320 CC |12|
-
-
µA
VIHmin; AL
|14|
-
-
µA
VIHmin; TTL
-
-
|80|
µA
VILmax; AL and TTL
Short Circuit current for LP pad ISC SR
-10
-
10
mA
absolute max value
(PSI5)
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Input leakage current for P02.1 IOZ021 CC
Pull down current for P32_0 pin IPDLP320 CC -
Pull Up Current for P32_0 pin
6)
Data Sheet
3-328
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-9
Class MP 5V
Parameter
Symbol
Input frequency
Input Hysteresis for MP pad
fIN SR
1)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
-
-
V
AL
-
-
V
TTL
-500
-
500
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1000
-
1000
nA
else
|30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
-
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
200
620
1040
Ohm
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
50
155
260
Ohm
HYSMP CC 0.09 *
VEXT/FLEX
0.075 *
VEXT/FLEX
Input Leakage current for MP
pad
Pull-up current for MP pad
Pull-down current for MP pad
IOZMP CC
IPUHMP CC
IPDLMP CC
On-Resistance for MP pad,
weak driver 2)
RDSONMPW
On-Resistance for MP pad,
medium driver 2)
RDSONMPM
On-Resistance for MP pad,
strong driver 2)
Data Sheet
CC
CC
RDSONMPS
PMOS/NMOS ;
IOH=2mA; IOL=2mA
20
75
CC
130
Ohm
PMOS/NMOS ;
IOH=8mA; IOL=8mA
3-329
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-9
Class MP 5V (cont’d)
Parameter
Rise / fall time for MP pad
Symbol
3)
tMP CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
95+2.1*C ns
L
CL≤50pF; pin out
driver=weak
-
-
200+2.9*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5*C ns
CL≤50pF; pin out
L
driver=medium
-
-
50 + 0.75 ns
* ( CL - 50
)
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
17.5+0.25 ns
*CL
CL≤50pF;
edge=medium ; pin out
driver=strong
-
-
30+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
7+0.2*CL
ns
CL≤50pF; edge=sharp
; pin out driver=strong
-
-
17+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
1.85
-
3.0
V
Hysteresis inactive
-
-
100
ns
Short Circuit current for MP pad ISC SR
-10
-
10
mA
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Input high voltage for MP pad
Input low voltage for MP pad
VIHMP SR
VILMP SR
Input low / high voltage for MP VILHMP CC
pad
Pad set-up time for MP pad
tSET_MP CC
6)
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Data Sheet
3-330
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-10 Class MP 3.3V
Parameter
Symbol
Input frequency
Input Hysteresis for MP pad
Input Leakage current for MP
pad
Pull-up current for MP pad
Pull-down current for MP pad
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
HYSMP CC 0.05 *
VEXT/FLEX
-
-
V
AL and TTL
IOZMP CC
-500
-
500
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1000
-
1000
nA
else
|17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
-
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
250
875
1500
Ohm
fIN SR
1)
Values
IPUHMP CC
IPDLMP CC
On-Resistance for MP pad,
weak driver 2)
RDSONMPW
On-Resistance for MP pad,
medium driver 2)
RDSONMPM
CC
70
235
400
Ohm
20
110
200
Ohm
CC
On-Resistance for MP pad,
strong driver 2)
CC
Rise / fall time for MP pad 3)
tMP CC
RDSONMPS
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
PMOS/NMOS ;
IOH=4mA; IOL=4mA
-
-
150+3.4*
CL
CL≤50pF; pin out
driver=weak
ns
-
-
320+4.5*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
CL≤50pF; pin out
driver=medium
-
-
70+1.1*(
CL-50)
L
Data Sheet
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
ns
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
32.5+0.35 ns
*CL
CL≤50pF;
edge=medium ; pin out
driver=strong
-
-
50+0.45*( ns
CL-50)
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
14.5+0.35 ns
*CL
CL≤50pF; edge=sharp
; pin out driver=strong
-
-
32+0.5*(
CL-50)
CL≥50pF; CL≤200pF;
3-331
ns
edge=sharp ; pin out
driver=strong
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-10 Class MP 3.3V (cont’d)
Parameter
Symbol
Values
Min.
Input high voltage for MP pad
Note / Test Condition
Max.
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Input low / high voltage for MP VILHMP CC
pad
1.1
-
1.9
V
Hysteresis inactive
Pad set-up time for MP pad
-
-
100
ns
Short Circuit current for MP pad ISC SR
-10
-
10
mA
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Input low voltage for MP pad
VIHMP SR
Typ.
Unit
VILMP SR
tSET_MP CC
6)
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-11 Class MP+ 5V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
HYSMPP
0.09 *
-
-
V
AL
CC
VEXT/FLEX
-
-
V
TTL
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPP CC |30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
Pull-down current for MP+ pad IPDLMPP CC -
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
Input frequency
Input hysteresis for MP+ pad
fIN SR
1)
0.075 *
VEXT/FLEX
Input leakage current for MP+
pad
Pull-up current for MP+ pad
Data Sheet
IOZMPP CC
3-332
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-11 Class MP+ 5V (cont’d)
Parameter
Symbol
On-resistance for MP+ pad,
weak driver 2)
RDSONMPPW
RDSONMPPM
On-resistance for MP+ pad,
strong driver 2)
RDSONMPPS
Rise/fall time for MP+ pad
Unit
Min.
Typ.
Max.
200
620
1040
Ohm
CC
On-resistance for MP+ pad,
medium driver 2)
3)
Values
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
50
155
260
Ohm
CC
PMOS/NMOS ;
IOH=2mA; IOL=2mA
20
55
90
Ohm
-
-
95+2.1*C ns
L
CL≤50pF; pin out
driver=weak
-
-
200+2.9*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5*C ns
L
CL≤50pF; pin out
driver=medium
CC
tMPP CC
Note / Test Condition
PMOS/NMOS ;
IOH=8mA; IOL=8mA
-
-
50+0.75*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
9+0.16*C ns
CL≤50pF;
L
edge=medium ; pin out
driver=strong
-
-
17+0.2*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
4+0.16*C ns
CL≤50pF; edge=sharp
; pin out driver=strong
L
-
-
12+0.21*( ns
CL-50)
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
edge=sharp ; pin out
driver=strong
-
-
4.5
ns
CL=15pF; edge=sharp
; pin out driver=strong
Input high voltage for MP+ pad VIHMPP SR
Input low voltage for MP+ pad
VILMPP SR
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
-
3.0
V
Hysteresis inactive
-
100
ns
Input low / high voltage for MP+ VILHMPP CC 1.85
pad
Pad set-up time for MP+ pad
Data Sheet
tSET_MPP CC -
3-333
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-11 Class MP+ 5V (cont’d)
Parameter
Symbol
Short circuit current for MP+
pad 6)
ISCMPP SR
Deviation of symmetry for rising SYM CC
and falling edges
Values
Unit
Note / Test Condition
absolute max value
(PSI5)
Min.
Typ.
Max.
-10
-
10
mA
-
-
20
%
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-12 Class MP+ 3.3V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
HYSMPP
0.05 *
-
-
V
AL and TTL
CC
VEXT/FLEX
IOZMPP CC
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPP CC |17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
Pull-down current for MP+ pad IPDLMPP CC -
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
250
875
1500
Ohm
Input frequency
Input hysteresis for MP+ pad
fIN SR
1)
Input leakage current for MP+
pad
Pull-up current for MP+ pad
On-resistance for MP+ pad,
weak driver 2)
RDSONMPPW
CC
On-resistance for MP+ pad,
medium driver 2)
RDSONMPPM
On-resistance for MP+ pad,
strong driver 2)
RDSONMPPS
Data Sheet
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
70
235
400
Ohm
CC
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
20
75
CC
130
Ohm
PMOS/NMOS ;
IOH=4mA; IOL=4mA
3-334
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-12 Class MP+ 3.3V (cont’d)
Parameter
Rise/fall time for MP+ pad
Symbol
3)
tMPP CC
Values
Unit
Note / Test Condition
ns
CL
CL≤50pF; pin out
driver=weak
Min.
Typ.
Max.
-
-
150+3.4*
-
-
320+4.5*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
CL≤50pF; pin out
L
driver=medium
-
-
70+1.1*(
CL-50)
ns
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
20+0.2*C ns
CL≤50pF;
edge=medium ; pin out
driver=strong
L
-
-
30+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
13+0.2*C ns
CL≤50pF; edge=sharp
L
; pin out driver=strong
-
-
7.65
ns
CL = 15pF; VEXT/FLEX =
3.135V; V = 0V to
2.0V; edge=sharp ; pin
out driver=strong
-
-
5.42
ns
CL = 15pF; VEXT/FLEX =
3.135V; V = 3.135V to
0.8V; edge=sharp ; pin
out driver=strong
-
-
7.36
ns
CL = 15pF; VEXT/FLEX =
3.201V; V = 0V to
2.0V; edge=sharp ; pin
out driver=strong
-
-
5.32
ns
CL = 15pF; VEXT/FLEX =
3.201V; V = 3.201V to
0.8V; edge=sharp ; pin
out driver=strong
-
-
5.9
ns
CL = 15pF; VEXT/FLEX =
3.63V; V = 0V to 2.0V;
edge=sharp ; pin out
driver=strong
-
-
4.8
ns
CL = 15pF; VEXT/FLEX =
3.63V; V = 3.63V to
0.8V; edge=sharp ; pin
out driver=strong
-
-
23+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
V 1.1
2019-03
edge=sharp
; pin
out
driver=strong
4.5
ns
from 0.2 * VEXT/FLEX to
Data Sheet
3-335
-
-
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-12 Class MP+ 3.3V (cont’d)
Parameter
Symbol
Values
Min.
Input high voltage for MP+ pad VIHMPP SR
Typ.
Unit
Note / Test Condition
Max.
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Input low / high voltage for MP+ VILHMPP CC 1.1
pad
-
1.9
V
Hysteresis inactive
Pad set-up time for MP+ pad
tSET_MPP CC -
-
100
ns
Short circuit current for MP+
pad 6)
ISCMPP SR
-10
-
10
mA
-
-
20
%
Input low voltage for MP+ pad
VILMPP SR
Deviation of symmetry for rising SYM CC
and falling edges
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
6) The values are only valid if the pad is not used during operation, otherwise ISC defines the limits for operation.
Table 3-13 Class MPR 5V
Parameter
Input frequency
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
0.09 *
-
-
V
AL
-
-
V
TTL
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPR CC |30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
IPDLMPR CC -
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
fIN SR
Input Hysteresis for MPR pads HYSMPR
1)
CC
VEXT/FLEX
0.075*
VEXT/FLEX
Input leakage current class
MPR
Pull-up current
Pull-down current
Data Sheet
IOZMPR CC
3-336
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-13 Class MPR 5V (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
On-resistance of the MPR pad, RDSONMPRW
weak driver 2)
CC
200
620
1040
On-resistance of the MPR pad, RDSONMPRM
medium driver 2)
CC
50
On-resistance of the MPR pad, RDSONMPRS
strong driver 2)
CC
20
55
90
Rise/fall time 3)
-
-
95+2.1*C ns
L
CL≤50pF; pin out
driver=weak
-
-
200+2.9*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
25+0.5*C ns
L
CL≤50pF; pin out
driver=medium
tMPR CC
Ohm
155
260
Ohm
Input low voltage, class MPR
pads
Input low / high voltage, class
MPR pads
Data Sheet
VIHMPR SR
VILMPR SR
PMOS/NMOS ;
IOH=2mA; IOL=2mA
Ohm
PMOS/NMOS ;
IOH=8mA; IOL=8mA
-
-
50+0.75*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
9+0.16*C ns
CL≥0pF; CL≤50pF;
L
edge=medium ; pin out
driver=strong
-
-
17+0.2*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
4+0.16*C ns
CL≤50pF; edge=sharp
; pin out driver=strong
L
Input high voltage, class MPR
pads
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
-
-
12+0.21*( ns
CL-50)
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
edge=sharp ; pin out
driver=strong
-
-
4.5
ns
from 0.2 * VEXT/FLEX to
0.8 * VEXT/FLEX;
CL=15pF; edge=sharp
; pin out driver=strong
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
2.03 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.8 5)
V
Hysteresis active, TTL
-
2.3
V
Hysteresis inactive
VILHMPR SR 1.2
3-337
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-13 Class MPR 5V (cont’d)
Parameter
Symbol
Values
Min.
Pad set-up time
tSET_MPR CC -
Unit
Typ.
Max.
-
100
ns
Short circuit current Class MPR ISC SR
-10
-
10
mA
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
Note / Test Condition
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
Table 3-14 Class MPR 3.3V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
Input Hysteresis for MPR pads HYSMPR
1)
CC
0.05 *
-
-
V
AL and TTL
Input leakage current class
MPR
-750
-
750
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-1500
-
1500
nA
else
IPUHMPR CC |17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
IPDLMPR CC -
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
On-resistance of the MPR pad, RDSONMPRW
weak driver 2)
CC
250
875
1500
Ohm
On-resistance of the MPR pad, RDSONMPRM
medium driver 2)
CC
70
235
400
Ohm
On-resistance of the MPR pad, RDSONMPRS
strong driver 2)
CC
20
75
130
Ohm
Input frequency
Pull-up current
Pull-down current
Data Sheet
fIN SR
IOZMPR CC
VEXT/FLEX
; NMOS/PMOS ;
IOH=0.25mA;
IOL=0.25mA
; NMOS/PMOS ;
IOH=1mA; IOL=1mA
PMOS/NMOS ;
IOH=4mA; IOL=4mA
3-338
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-14 Class MPR 3.3V (cont’d)
Parameter
Rise/fall time
Symbol
3)
tMPR CC
Values
Unit
Note / Test Condition
ns
CL
CL≤50pF; pin out
driver=weak
Min.
Typ.
Max.
-
-
150+3.4*
-
-
320+4.5*( ns
CL-50)
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
30+0.8*C ns
CL≤50pF; pin out
L
driver=medium
-
-
70+1.1*(
CL-50)
ns
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
20+0.2*C ns
CL≥0pF; CL≤50pF;
edge=medium ; pin out
driver=strong
L
Input high voltage, class MPR
pads
Input low voltage, class MPR
pads
VIHMPR SR
VILMPR SR
-
-
30+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
-
-
13+0.2*C ns
CL≤50pF; edge=sharp
L
; pin out driver=strong
-
-
23+0.3*(
CL-50)
ns
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
-
-
5
ns
from 0.8V to 2.0V
(RMII) ; CL=25pF;
edge=sharp ; pin out
driver=strong
-
-
4.5
ns
from 0.2 * VEXT/FLEX to
0.8 * VEXT/FLEX;
CL=15pF; edge=sharp
; pin out driver=strong
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active, AL
1.6 4)
-
-
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active, AL
-
-
0.5 5)
V
Hysteresis active, TTL
Hysteresis inactive
Input low / high voltage, class
MPR pads
VILHMPR SR 0.8
-
1.7
V
Pad set-up time
tSET_MPR CC -
-
100
ns
-
10
mA
Short circuit current Class MPR ISC SR
-10
absolute max value
(PSI5)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
Data Sheet
3-339
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
3) Rise / fall times are defined 10% - 90% of VEXT/FLEX.
4) VIHx = 0.27 * VEXT/FLEX + 0.545V
5) VILx = 0.17 * VEXT/FLEX
Table 3-15 Class S
Parameter
Symbol
Input frequency
Input Hysteresis for S pad
Pull-up current for S pad
Pull-down current for S pad
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
HYSS CC
0.3
-
-
V
IPUHS CC
|30|
-
-
µA
VIHmin
-
-
|107|
µA
VILmax
-
-
|100|
µA
VIHmin
|46|
-
-
µA
VILmax
-350
-
350
nA
Analog Inputs with pull
down diagnostics
-150
-
150
nA
else
-
(0.73*VDD V
M)-0.25
Hysteresis active
fIN SR
1)
Values
IPDLS CC
Input Leakage current Class S IOZS CC
Input voltage high for S pad
VIHS SR
-
Input voltage low for S pad
VILS SR
(0.52*VDD M)-0.25
-
V
Hysteresis active
Input low threshold variation for VILSD SR
S pad 2)
-50
-
50
mV
max. variation of 1ms;
VDDM=constant
Input capacitance for S pad
CINS CC
-
-
10
pF
Pad set-up time for S pad
tSETS CC
-
-
100
ns
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VILSD is implemented to ensure J2716 specification. For details of dedicated pins please see AP32286 for details.
Table 3-16 Class I 5V
Parameter
Input frequency
Input Hysteresis for I pad 1)
Symbol
fIN SR
HYSI CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
75
MHz
Hysteresis active
-
-
150
MHz
Hysteresis inactive
0.07 *
-
-
V
PORST pad only
-
-
V
AL
-
-
V
TTL
|30|
-
-
µA
VIHmin; AL
|43|
-
-
µA
VIHmin; TTL
-
-
|107|
µA
VILmax; AL and TTL
VEXT/FLEX
0.09 *
VEXT/FLEX
0.075 *
VEXT/FLEX
Pull-up current for I pad
Data Sheet
IPUHI CC
3-340
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-16 Class I 5V (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
|100|
µA
VIHmin; AL and TTL
|46|
-
-
µA
VILmax; AL
|21|
-
-
µA
VILmax; TTL
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
2.03 2)
-
-
V
Hysteresis active, TTL
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active; AL;
not available for the
PORST pad
-
-
0.8 3)
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active; AL;
not available for the
PORST pad
Input low / high voltage for I pad VILHI CC
1.85
-
3.0
V
Hysteresis inactive
Pad set-up time for I pad
-
-
100
ns
Pull-down current for I pad
IPDLI CC
Input Leakage Current for I pad IOZI CC
Input high voltage for I pad
Input low voltage for I pad
VIHI SR
VILI SR
tSETI CC
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VIHx = 0.27 * VEXT/FLEX + 0.545V
3) VILx = 0.17 * VEXT/FLEX
Table 3-17 Class I 3.3V
Parameter
Symbol
Input frequency
Input Hysteresis for I pad
fIN SR
1)
HYSI CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
50
MHz
Hysteresis active
-
-
100
MHz
Hysteresis inactive
0.045 *
-
-
V
PORST pad only
-
-
V
AL and TTL
|17|
-
-
µA
VIHmin; AL
|19|
-
-
µA
VIHmin; TTL
-
-
|75|
µA
VILmax; AL and TTL
-
-
|75|
µA
VIHmin; AL and TTL
|22|
-
-
µA
VILmax; AL
|11|
-
-
µA
VILmax; TTL
-150
-
150
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-350
-
350
nA
else
VEXT/FLEX
0.05 *
VEXT/FLEX
Pull-up current for I pad
Pull-down current for I pad
IPUHI CC
IPDLI CC
Input Leakage Current for I pad IOZI CC
Data Sheet
3-341
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-17 Class I 3.3V (cont’d)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
Typ.
Max.
-
-
V
Hysteresis active, TTL
(0.73*VEX T/FLEX)0.25
-
V
Hysteresis active; AL;
not available for the
PORST pad
-
-
0.5 3)
V
Hysteresis active, TTL
-
-
(0.52*VEX V
T/FLEX)0.25
Hysteresis active; AL;
not available for the
PORST pad
Input low / high voltage for I pad VILHI CC
1.1
-
1.9
V
Hysteresis inactive
Pad set-up time for I pad
-
-
100
ns
Input high voltage for I pad
VIHI SR
Input low voltage for I pad
VILI SR
tSETI CC
1.6
2)
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) VIHx = 0.27 * VEXT/FLEX + 0.545V
3) VILx = 0.17 * VEXT/FLEX
Table 3-18 Class A2
Parameter
Symbol
Input frequency
Input Hysteresis for A2 pad
Unit
Typ.
Max.
-
-
160
MHz
HYSA2 CC 0.1 *
VDDP3
-
-
V
TTL;else
0.06 *
-
-
V
valid for P21.6 and
P21.7
-300
-
300
nA
(0.1*VEXT/FLEX) < VIN <
(0.9*VEXT/FLEX)
-800
-
500
nA
else
-
-
|100|
µA
VIHmin
|25|
-
-
µA
VILmax
|23|
-
-
µA
VIHmin
-
-
|100|
µA
VILmax
100
200
325
Ohm
VDDP3
Input Leakage current for A2
pad
Pull-up current for A2 pad
Pull-down current for A2 pad
IOZA2 CC
IPUHA2 CC
IPDLA2 CC
On-Resistance for A2 pad,
weak driver 2)
CC
On-Resistance for A2 pad,
medium driver 2)
CC
On-Resistance for A2 pad,
strong driver 2)
Data Sheet
Note / Test Condition
Min.
fIN SR
1)
Values
RDSONA2W
RDSONA2M
RDSONA2S
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
40
70
100
Ohm
PMOS/NMOS ;
IOH=2mA; IOL=2mA
20
35
CC
50
Ohm
PMOS/NMOS ;
IOH=8mA; IOL=8mA
3-342
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-18 Class A2 (cont’d)
Parameter
Rise/fall time for A2 pad
Symbol
3)
tA2 CC
Values
Unit
Min.
Typ.
Max.
-
-
20+0.8*C ns
L
CL≤50pF; pin out
driver=weak
-
-
17.5+0.85 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
12+0.16*
CL≤50pF; pin out
ns
CL
driver=medium
-
-
11.5+0.17 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
6+0.06*C ns
CL≤50pF;
edge=medium ; pin out
driver=strong
L
-
-
-
-
5.5+0.07* ns
CL
CL≥50pF; CL≤200pF;
edge=medium ; pin out
driver=strong
0.0+0.12* ns
CL≤50pF; edge=sharp
CL
; pin out driver=strong
0.0+0.12* ns
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=strong
CL
Input high voltage for A2 pad
VIHA2 SR
2.04 4)
-
-
V
TTL;valid for all A2
pads except
TMS/DAP1, TRST,
and TCK/DAP0
0.7 *
-
-
V
valid for TMS/DAP1,
TRST, and TCK/DAP0
-
-
0.8 5)
V
TTL;valid for all A2
pads except
TMS/DAP1, TRST,
and TCK/DAP0
-
-
0.3 *
V
valid for TMS/DAP1,
TRST, and TCK/DAP0
VDDP3
Input low voltage for A2 pad
VILA2 SR
VDDP3
Pad set-up time for A2 pad
tSETA2 CC
Deviation of symmetry for rising SYM CC
and falling edges
Note / Test Condition
-
-
100
ns
-
-
20
%
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VDDP3.
4) VIHx = 0.57 * VDDP3 - 0.03V
5) VILx = 0.25 * VDDP3 + 0.058V
Data Sheet
3-343
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical Specification5 V / 3.3 V switchable Pads
Table 3-19 Driver Mode Selection for LP Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
X
0
Speed grade 1
medium (LPm)
X
X
1
Speed grade 2
weak (LPw)
Table 3-20 Driver Mode Selection for MP / MP+ Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
0
0
Speed grade 1
Strong sharp edge (MPss / MP+ss)
X
0
1
Speed grade 2
Strong medium edge (MPsm / MP+sm)
X
1
0
Speed grade 3
medium (MPm / MP+m)
X
1
1
Speed grade 4
weak (MPw / MP+w)
Table 3-21 Driver Mode Selection for A2 Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
0
0
Speed grade 1
Strong sharp edge
X
0
1
Speed grade 2
Strong medium edge
X
1
0
Speed grade 3
medium
X
1
1
Speed grade 4
weak
Table 3-22 Driver Mode Selection for F Pads
PDx.2
PDx.1
PDx.0
Port Functionality
Driver Setting
X
0
0
Speed grade 1
Reduced Strong sharp edge
X
0
1
Speed grade 2
Reduced Strong medium edge
X
1
0
Speed grade 3
medium
X
1
1
Speed grade 4
weak
Data Sheet
3-344
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
3.6
High performance LVDS Pads (LVDSH)
This LVDS pad type is used for the high speed chip to chip communication inferface of the new TC290 / TC297 /
TC298 / TC299. It compose out of a LVDSH pad and a Class F pad.
This pad combination is always supplied by the 3.3V supply rail.
Table 3-23 Class F
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Input frequency
fIN SR
-
-
75
MHz
Input Hysteresis for F pad 1)
HYSF CC
0.1 *
-
-
V
TTL
-1000
-
-
nA
(0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.0, P21.1, P21.2
and P21.3; TJ = 150°C
-
-
1000
nA
(0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.0, P21.1, P21.2
and P21.3; TJ =
150°C
-1500
-
1500
nA
(0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.0, P21.1, P21.2
and P21.3; TJ =
170°C
-300
-
300
nA
(0.1*VDDP3) < VIN <
(0.9*VDDP3); valid for
P21.4 and P21.5
-
-
2000
nA
else; valid for P21.0,
P21.1, P21.2 and
P21.3; TJ = 150°C
-2000
-
-
nA
else; valid for P21.0,
P21.1, P21.2 and
P21.3; TJ = 150°C
-3000
-
3000
nA
else; valid for P21.0,
P21.1, P21.2 and
P21.3; TJ = 170°C
-600
-
600
nA
else; valid for P21.4
and P21.5
|25|
-
-
µA
VIHmin
-
-
|100|
µA
VILmax
-
-
|100|
µA
VIHmin
|25|
-
-
µA
VILmax
100
200
325
Ohm
PMOS/NMOS ;
IOH=0.5mA; IOL=0.5mA
VDDP3
Input Leakage Current for F
pad
Pull-up current for F pad
IOZF CC
IPUHF CC
Pull-down current for class F
pads
IPDLF CC
On resistance for F pad, weak
driver 2)
RDSONFW
Data Sheet
CC
3-345
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Table 3-23 Class F (cont’d)
Parameter
On resistance for F pad,
medium driver 2)
Symbol
RDSONFM
Values
Unit
Min.
Typ.
Max.
40
70
100
Ohm
CC
PMOS/NMOS ;
IOH=2mA; IOL=2mA
On resistance for F pad, strong RDSONFS CC 20
driver 2)
50
Rise/fall time for F pad 3)
-
trfF CC
Note / Test Condition
-
80
Ohm
PMOS/NMOS ;
IOH=4mA; IOL=4mA
20+0.8*C ns
CL≤50pF; pin out
L
driver=weak
-
-
17.5+0.85 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=weak
-
-
12+0.16*
CL
CL≤50pF; pin out
driver=medium
ns
-
-
11.5+0.17 ns
*CL
CL≥50pF; CL≤200pF;
pin out driver=medium
-
-
7+0.16*C ns
CL≤50pF;
edge=medium ; pin out
driver=reduced strong
L
-
-
6.5+0.17* ns
CL
-
-
4+0.16*C ns
L
-
-
3.5+0.17* ns
CL
CL≥50pF; CL≤200pF;
edge=meduim ; pin out
driver>reduced strong
CL≤50pF; edge=sharp
; pin out
driver=reduced strong
CL≥50pF; CL≤200pF;
edge=sharp ; pin out
driver=reduced strong
Input high voltage for F pad
VIHF SR
2.04 4)
-
-
V
TTL
Input low voltage for F pad
VILF SR
-
-
0.8 5)
V
TTL
Pad set-up time for F pad
tSETF CC
-
-
100
ns
Deviation of symmetry for rising SYM CC
and falling edges
-
-
20
%
1) Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It can't be guaranteed
that it suppresses switching due to external system noise.
2) For currents smaller than the IOL/OH from the test condition the defined Max. value stays unchanged.
3) Rise / fall times are defined 10% - 90% of VDDP3.
4) VIHx = 0.57 * VDDP3 - 0.03V
5) VILx = 0.25 * VDDP3 + 0.058V
CL = 2.5 pF for all LVDSH parameters.
Data Sheet
3-346
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Table 3-24 LVDSH - IEEE standard LVDS general purpose link (GPL)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
R0 CC
40
-
140
Ohm
Vcm = 1.0 V and 1.4 V
trise20 CC
-
-
0.5
ns
ZL = 100 Ohm ±5%
@2 pF
Fall time 1)
tfall20 CC
-
-
0.5
ns
ZL = 100 Ohm ±5% @
2 pF
Output differential voltage
VOD CC
250
-
400
mV
RT = 100 Ohm ±5%
Output voltage high
VOH CC
-
-
1475
mV
RT = 100 Ohm ±5%
(400 mV/2) + 1275 mV
Output voltage low
VOL CC
925
-
-
mV
RT = 100 Ohm ±5%
1125
-
1275
mV
RT = 100 Ohm ±5%
0
-
1600
mV
Driver ground potential
difference < 925 mV;
RT = 100 Ohm ±10%
0
-
2000
mV
Driver ground potential
difference < 925 mV;
RT = 100 Ohm ±20%
Output impedance
Rise time
1)
Output offset (Common mode) VOS CC
voltage
Input voltage range
VI SR
Input differential threshold
Vidth SR
-100
-
100
mV
Driver ground potential
difference < 925 mV
Delta output impedance
dR0 SR
-
-
10
%
Vcm = 1.0 V and 1.4 V
(mismatch Pd and Pn)
Change in VOS between 0 and dVOS CC
1
-
-
25
mV
RT = 100 Ohm ±5%
Change in Vod between 0 and dVod CC
1
-
-
25
mV
RT = 100 Ohm ±5%
Duty cycle
45
-
55
%
tduty CC
1) Rise / fall times are defined for 20% - 80% of VOD
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Output impedance
R0 CC
40
-
140
Ohm
Vcm = 1.0 V and 1.4 V
Output differential voltage
VOD CC
150
-
250
mV
RT = 100 Ohm ±5%
Output voltage high
VOH CC
-
-
1375
mV
RT = 100 Ohm ±5%
Output voltage low
VOL CC
1025
-
-
mV
RT = 100 Ohm ±5%
Output offset (Common mode) VOS CC
voltage
1125
-
1275
mV
RT = 100 Ohm ±5%
825
-
1575
mV
Driver ground potential
difference < 50 mV
Input voltage range
Data Sheet
VI SR
3-347
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationHigh performance LVDS Pads (LVDSH)
Table 3-25 LVDSH - IEEE standard LVDS reduced link (REDL) (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-100
-
100
mV
Driver ground potential
difference < 50 mV
Change in VOS between 0 and dVOS CC
1
-
-
25
mV
RT = 100 Ohm ±5%
Change in Vod between 0 and dVod CC
1
-
-
25
mV
RT = 100 Ohm ±5%
tduty CC
45
-
55
%
tfall10 CC
-
-
0.5
ns
ZL = 100 Ohm ±5% @
2pF
trise10 CC
-
-
0.5
ns
ZL = 100 Ohm ±5% @
2pF
Input differential threshold
Duty cycle
VOD Fall time
VOD Rise time
1)
1)
Vidth SR
1) Rise / fall times are defined for 10% - 90% of VOD
default after start-up = CMOS function
P
Htotal=5nH
Ctotal=3.5pF
Cext=2pF
Rin
LVDSH
IN
RT=100Ohm
N
Htotal=5nH
Ctotal=3.5pF
Cext=2pF
LVDSH _Input _Pad _Model .vsd
Figure 3-1 LVDSH pad Input model
Data Sheet
3-348
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMedium performance LVDS Pads (LVDSM)
3.7
Medium performance LVDS Pads (LVDSM)
This LVDS pad type is used for the medium speed chip to chip communication inferface of the new TC290 / TC297
/ TC298 / TC299. It compose out of a LVDSM pad and a MP pad.
This pad combination is always supplied by the 5V or 3.3V.
For the parameters of the MP pad please see Chapter 3.5.
Table 3-26 LVDSM
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Output impedance
RO CC
40
100
140
Ohm
Fall time
tF CC
-
-
2.5
ns
Zload = 100 Ohm;
termination 100 Ohm
±1%
Rise time
tR CC
-
-
2.5
ns
Zload = 100 Ohm;
termination 100 Ohm
±1%
tSET_LVDS
-
10
13
µs
Pad set-up time
CC
Output Differential Voltage
VOD CC
250
-
400
mV
termination 100 Ohm
±1%
Output voltage high
VOH CC
-
-
1475
mV
termination 100 Ohm
±1%
Output voltage low
VOL CC
925
-
-
mV
termination 100 Ohm
±1%
Output Offset Voltage
VOS CC
1125
-
1275
mV
termination 100 Ohm
±1%
default after start-up = CMOS function
Data Sheet
3-349
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationVADC Parameters
3.8
VADC Parameters
VADC parameter are valid for VDDM = 4.5 V to 5.5 V.
This table also covers the parameters for Class D pads.
Table 3-27 VADC
Parameter
Symbol
Analog reference voltage
1)
VAREF SR
Values
Min.
Typ.
Max.
VAGND +
-
VDDM +
1.0
Analog reference ground
VAGND SR
Unit
VSSM -
Note / Test Condition
V
0.05
-
0.05
VSSM +
V
0.05
Analog input voltage range
VAIN SR
VAGND
-
VAREF
V
Converter reference clock
fADCI SR
2
-
20
MHz
Charge consumption per
conversion 2) 3)
QCONV CC
-
50
75
pC
VAIN = 5 V, charge
consumed from
reference pin,
precharging disabled
-
10
22
pC
VAIN = 5 V, charge
consumed from
reference pin,
precharging enabled
Conversion time for 12-bit
result
tC12 CC
-
(16 +
STC) x
tADCI + 2 x
Includes sample time
and post calibration
tVADC
Conversion time for 10-bit
result
tC10 CC
-
(14 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for 8-bit result tC8 CC
-
(12 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for fast
compare mode
tCF CC
-
(4 + STC) x tADCI + 2
x tVADC
Broken wire detection delay
against VAGND 4)
tBWG CC
-
-
120
cycles Result below 10%
Broken wire detection delay
against VAREF 5)
tBWR CC
-
-
60
cycles Result above 80%
Input leakage at analog inputs
IOZ1 CC
-350
-
350
nA
Analog Inputs overlaid
with class LP pads or
pull down diagnostics
-150
-
150
nA
else
LSB
12-bit resolution
Total Unadjusted Error
Data Sheet
1)
TUE CC
-4
6)
-
3-350
4
Includes sample time
6)
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationVADC Parameters
Table 3-27 VADC (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
EAINL CC
-3
-
3
LSB
12-bit resolution
EAGAIN CC
-3.5
-
3.5
LSB
12-bit resolution
EADNL CC
-3
-
3
LSB
12-bit resolution
EAOFF CC
-4
-
4
LSB
12-bit resolution
Total capacitance of an analog CAINT CC
input
-
-
30
pF
CAINS CC
2
4
7
pF
Resistance of the analog input RAIN CC
path
-
-
1.5
kOhm
else
-
-
1.8
kOhm
valid for analog inputs
mapped to GPIOs
Switched capacitance of a
reference input
CAREFS CC
-
-
30
pF
RMS Noise 7)
ENRMS CC
-
0.5
0.8 6)8)
LSB
Positive reference VAREFx pin
leakage
IOZ2 CC
-7
-
7
µA
VAREFx = VAREF2;
VAREF>VDDMV;
TJ>150°C
-4
-
4
µA
VAREFx = VAREF2;
VAREF>VDDMV;
TJ≤150°C
-2
-
3
µA
VAREFx = VAREF2;
VAREF≤VDDMV;
TJ>150°C
-1
-
1
µA
VAREFx = VAREF2;
VAREF≤VDDMV;
TJ≤150°C
-13
-
13
µA
VAGNDx = VAGND2;
VAGND150°C
-7
-
7
µA
VAGNDx = VAGND2;
VAGND150°C
-2.5
-
1
µA
VAGNDx = VAGND2;
VAREF≤VDDMV;
TJ≤150°C
INL Error
Gain Error
DNL error
1)
1)
Offset Error
1)
Switched capacitance of an
analog input
Negative reference VAGNDx pin
leakage
IOZ3 CC
Resistance of the reference
input path
RAREF CC
-
-
1
kOhm
CSD resistance 9)
RCSD CC
-
-
28
kOhm
Data Sheet
3-351
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationVADC Parameters
Table 3-27 VADC (cont’d)
Parameter
Symbol
Values
Min.
Resistance of the multiplexer
diagnostics pull-down device
RMDD CC
Resistance of the multiplexer
diagnostics pull-up device
RMDU CC
Typ.
Unit
Note / Test Condition
Max.
25 + 1*VIN -
35 - 8*VIN kOhm
0 V ≤ VIN ≤ 2.5 V
-5 +
13*VIN
-
15 +
16*VIN
kOhm
2.5 V ≤ VIN ≤ VDDM
45 - 6*VIN -
90 16*VIN
kOhm
0 V ≥ VIN ≤ 2.5 V
40 - 4*VIN -
65 - 6*VIN kOhm
Resistance of the pull-down
test device 10)
RPDD CC
-
-
0.3
kOhm
CSD voltage accuracy 11) 12)
dVCSD CC -
-
10
%
Wakeup time
tWU CC
-
12
µs
-
2.5 V ≤ VIN ≤ VDDM
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor
1/k. VAREF must be decoupled with an external capacitor.
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 500 ms.
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS.
7) This parameter is valid for soldered devices and requires careful analog board design.
8) Value is defined for one sigma Gauss distribution.
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad
itself adds another 200-Ohm series resistance, when measuring through the pin.
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current
of max. VAREF / 45 kOhm.
The following VADC parameter are valid for VDDM = 2.97 V to 4.5 V.
This table also covers the parameters for Class D pads.
Table 3-28 VADC_33V
Parameter
Analog reference voltage
Symbol
1)
VAREF SR
Values
Min.
Typ.
Max.
VAGND +
-
VDDM +
1.0
Analog reference ground
VAGND SR
Unit
VSSM -
V
0.05
-
0.05
VSSM +
V
0.05
Analog input voltage range
VAIN SR
VAGND
-
VAREF
V
Converter reference clock
fADCI SR
2
-
20
MHz
Data Sheet
Note / Test Condition
3-352
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationVADC Parameters
Table 3-28 VADC_33V (cont’d)
Parameter
Symbol
Charge consumption per
conversion 2) 3)
QCONV CC
Values
Min.
Typ.
Max.
-
35
50
Unit
Note / Test Condition
pC
VAIN = 3.3 V, charge
consumed from
reference pin,
precharging disabled
-
8
17
pC
VAIN = 3.3 V, charge
consumed from
reference pin,
precharging enabled
Conversion time for 12-bit
result
tC12 CC
-
(16 +
STC) x
tADCI + 2 x
Includes sample time
and post calibration
tVADC
Conversion time for 10-bit
result
tC10 CC
-
(14 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for 8-bit result tC8 CC
-
(12 +
STC) x
tADCI + 2 x
Includes sample time
tVADC
Conversion time for fast
compare mode
tCF CC
-
(4 + STC) x tADCI + 2
x tVADC
Broken wire detection delay
against VAGND 4)
tBWG CC
-
-
120
cycles Result below 10%
Broken wire detection delay
against VAREF 5)
tBWR CC
-
-
60
cycles Result above 80%
Input leakage at analog inputs
IOZ1 CC
-350
-
350
nA
Analog Inputs overlaid
with class LP pads or
pull down diagnostics
-150
-
150
nA
else
LSB
12-bit Resolution; TJ >
150 °C
Total Unadjusted Error
INL Error
Gain Error 1)
Data Sheet
1)
TUE CC
EAINL CC
EAGAIN CC
-12
6)
Includes sample time
6)
-
12
-6 6)
-
6 6)
LSB
12-bit Resolution; TJ ≤
150 °C
-12
-
12
LSB
12-bit Resolution; TJ >
150 °C
-5
-
5
LSB
12-bit Resolution; TJ ≤
150 °C
-6
-
6
LSB
12-bit Resolution; TJ >
150 °C
-5.5
-
5.5
LSB
12-bit Resolution; TJ ≤
150 °C
3-353
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationVADC Parameters
Table 3-28 VADC_33V (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
EADNL CC
-4
-
4
LSB
12-bit resolution
EAOFF CC
-6
-
6
LSB
12-bit Resolution; TJ >
150 °C
-5
-
5
LSB
12-bit Resolution; TJ ≤
150 °C
Total capacitance of an analog CAINT CC
input
-
-
30
pF
CAINS CC
2
4
7
pF
Resistance of the analog input RAIN CC
path
-
-
4.5
kOhm
Switched capacitance of a
reference input
CAREFS CC
-
-
30
pF
RMS Noise 7)
ENRMS CC
-
-
1.7 6)8)
LSB
target
Positive reference VAREFx pin
leakage
IOZ2 CC
-6
-
6
µA
VAREFx = VAREF2;
VAREF>VDDMV;
TJ>150°C
-3.5
-
3.5
µA
VAREFx = VAREF2;
VAREF>VDDMV;
TJ≤150°C
-2
-
2.5
µA
VAREFx = VAREF2;
VAREF≤VDDMV;
TJ>150°C
-1
-
1
µA
VAREFx = VAREF2;
VAREF≤VDDMV;
TJ≤150°C
-12
-
12
µA
VAGNDx = VAGND2;
VAGND150°C
-6.5
-
6.5
µA
VAGNDx = VAGND2;
VAGND150°C
-1
-
1
µA
VAGNDx = VAGND2;
VAREF≤VDDMV;
TJ≤150°C
DNL error
1)
Offset Error
1)
Switched capacitance of an
analog input
Negative reference VAGNDx pin
leakage
IOZ3 CC
Resistance of the reference
input path
RAREF CC
-
-
3
kOhm
CSD resistance 9)
RCSD CC
-
-
28
kOhm
Data Sheet
3-354
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationVADC Parameters
Table 3-28 VADC_33V (cont’d)
Parameter
Symbol
Values
Min.
Resistance of the multiplexer
diagnostics pull-down device
Resistance of the multiplexer
diagnostics pull-up device
RMDD CC
RMDU CC
Typ.
Unit
Note / Test Condition
kOhm
0 V ≤ VIN ≤ 1.667 V
Max.
25 + 3*VIN -
40 +
12*VIN
0 + 18*VIN -
0 + 18*VIN kOhm
1.667 V ≤ VIN ≤ VDDM
60 12*VIN
-
120 30*VIN
kOhm
0 V ≤ VIN ≤ 1.667 V
55 - 9*VIN -
95 15*VIN
kOhm
1.667 V ≤ VIN ≤ VDDM
Resistance of the pull-down
test device 10)
RPDD CC
-
-
0.9
kOhm
CSD voltage accuracy 11) 12)
dVCSD CC -
-
10
%
Wakeup time
tWU CC
-
12
µs
-
1) If the reference voltage is reduced by the factor k (k < 1), TUE,DNL,INL,Gain, and Offset errors increase also by the factor
1/k. VAREF must be decoupled with an external capacitor.
2) For QCONV = X pC and a conversion time of 1 µs a rms value of X µA results for IAREFx.
3) For the details of the mapping for a VADC group to pin VAREFx please see the User's Manual.
4) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 500 ms.
5) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion
rate higher than 1 conversion per 10 ms. This function is influenced by leakage current, in particular at high temperature.
6) Resulting worst case combined error is arithmetic combination of TUE and ENRMS.
7) This parameter is valid for soldered devices and requires careful analog board design.
8) Value is defined for one sigma Gauss distribution.
9) In order to avoid an additional error due to incomplete sampling, the sampling time shall be set greater than 5 * RCSD * CAINS.
10) The pull-down resistor RPDD is connected between the input pad and the analog multiplexer. The input pad
itself adds another 200-Ohm series resistance, when measuring through the pin.
11) CSD: Converter Self Diagnostics, for details please consult the User's Manual.
12) Note, that in case CSD voltage is chosen to nom. 1/3 or 2/3 of VAREF voltage, the reference voltage is loaded with a current
of max. VAREF / 45 kOhm.
RSource
V AIN
R AIN, On
C AINT - C AINS
C Ext
A/D Converter
CAINS
MCS05570
Figure 3-2 Equivalent Circuitry for Analog Inputs
Data Sheet
3-355
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationDSADC Parameters
3.9
DSADC Parameters
The following DSADC parameter are valid for VDDM = 4.5 V to 5.5 V.
Table 3-29 DSADC
Parameter
Symbol
Analog input voltage range
1)
VDSIN SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
0
-
5
V
single ended
0
-
10
V
differential;VDSxP -
VDSxN
Reference load current
IREF SR
-
4.5
5.5
µA
Modulator clock frequency 2)
fMOD SR
10
-
20
MHz
Gain error
EDGAIN CC -1
-3.5
DC offset error
EDOFF CC
4)
Input impedance
Signal-Noise Ratio 7) 8) 9) 10)
Calibrated once
3.5
%
Uncalibrated
5)
%
calibrated; GAIN = 1;
MODCFG.INCFGx=01
mV
calibrated
mV
calibrated once
mV
gain = 1; uncalibrated
-
0.2
-5
-
5 5)
-100
6)
-
%
4)
-0.2
-50
Common Mode Rejection Ratio EDCM CC
1
3)
4)
0
50
4)
per twin-modulator (1
or 2 channels)
100
4)
200
500
-
RDAIN CC
100
130
170
kOhm
Exact value (±1%)
available in UCB
SNR CC
80
-
-
dB
fPB = 30 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
78
-
-
dB
fPB = 50 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
70
-
-
dB
fPB = 100 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
74
-
-
dB
fPB = 100 kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
76
-
-
dB
fPB = 30 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
74
-
-
dB
fPB = 50 kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
Output data rate fD =
fPB * 3
Pass band
fPB CC
10 11)
-
100
kHz
Pass band ripple 8)
dfPB CC
-1
-
1
%
Output sampling rate
fD CC
30
-
330
kHz
Data Sheet
3-356
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationDSADC Parameters
Table 3-29 DSADC (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
10-5 fD
DC compensation factor
DCF CC
-3
-
-
dB
Positive reference VAREF1 pin
leakage
IOZ5 CC
-2
-
2
µA
Negative reference VAGND1 pin
leakage
IOZ6 CC
-3
-
2
µA
Stop band attenuation 8)
SBA CC
40
-
-
dB
0.5 ... 1 fD
45
-
-
dB
1 ... 1.5 fD
50
-
-
dB
1.5 ... 2 fD
55
-
-
dB
2 ... 2.5 fD
60
-
-
dB
2.5 ... OSR/2 fD
VSSM -
-
VSSM +
V
Reference ground voltage
Positive reference voltage
VAGND SR
VAREF SR
0.05
0.05
VDDMnom * -
VDDM +
0.9
0.05
V
Common mode voltage
accuracy
dVCM CC
-100
-
100
mV
from selected voltage
Common mode hold voltage
deviation 12)
dVCMH CC
-200
-
200
mV
From common mode
voltage
Analog filter settling time
tAFSET CC
-
2
4
µs
If enabled
Modulator recovery time
tMREC CC
-
3.5
5.5
µs
After leaving overdrive
state
Modulator settling time 13)
tMSET CC
-
1
-
µs
After switching on,
voltage regulator
already running
60
-
-
dB
VCM = 2.2 V, DC
coupled; VDDM = ±10%
Spurious Free Dynamic Range SFDR CC
7)14)
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external
common mode voltage. In this case the Amplitude is limited to VCM * 2.
2) All modulators must run on the same frequency.
3) The calibration sequence must be executed once after an Application Reset
4) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF
5) Recalibration needed in case of a temperature change > 20ºC
6) The variation of the impedance between different channels is < 1.5%.
7) Derating factors:
-2 dB in standard-performance mode.
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.
8) CIC3, FIR0, FIR1 filters enabled.
9) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM
(GAIN = 2).
10) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM.
11) 10 kHz only reachable with 10 MHz modulator clock frequency.
12) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM.
13) The modulator needs to settle after being switched on and after leaving the overdrive state.
14) SFDR = 20 * log(INL / 2N); N = amount of bits
Data Sheet
3-357
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationDSADC Parameters
The following DSADC parameter are valid for VDDM = 2.97 V to 4.5 V.
Table 3-30 DSADC_33V
Parameter
Symbol
Analog input voltage range
1)
VDSIN SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
0
-
3.3
V
single ended
0
-
6.6
V
differential;VDSxP -
VDSxN
Reference load current
IREF SR
-
4.5
5.5
Modulator clock frequency 2)
fMOD SR
10
-
20
Gain error
EDGAIN CC -1.5
-10
DC offset error
Signal-Noise Ratio 7) 8) 9) 10)
-
MHz
3)
1.5
10
4)
5)
%
Calibrated once
%
Uncalibrated
%
calibrated; GAIN = 1;
MODCFG.INCFGx=01
-
0.3
-5
-
5 5)
mV
calibrated
-50
-
50
mV
calibrated once
-100 4)
04)
100 4)
mV
gain = 1; uncalibrated
200
500
-
RDAIN CC
100
130
170
kOhm
Exact value (±1%)
available in UCB
SNR CC
45
63
-
dB
fPB = 100kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
60
69
-
dB
fPB = 100kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
60
68
-
dB
fPB = 30kHz; VDDM =
±10%; fMOD = 20 MHz;
Common Mode Rejection Ratio EDCM CC
Input impedance
-
per twin-modulator (1
or 2 channels)
-0.3
EDOFF CC
6)
4)
µA
GAIN = 1
69
74
-
dB
fPB = 30kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
55
66
-
dB
fPB = 50kHz; VDDM =
±10%; fMOD = 20 MHz;
GAIN = 1
65
72
-
dB
fPB = 50kHz; VDDM =
±5%; fMOD = 20 MHz;
GAIN = 1
Pass band
fPB CC
10
11)
-
100
kHz
Output data rate fD =
fPB * 3
Pass band ripple 8)
dfPB CC
-1
-
1
%
Output sampling rate
fD CC
30
-
330
kHz
DC compensation factor
DCF CC
-3
-
-
dB
Data Sheet
3-358
10-5 fD
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationDSADC Parameters
Table 3-30 DSADC_33V (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Positive reference VAREF1 pin
leakage
IOZ5 CC
-2
-
2
µA
Negative reference VAGND1 pin
leakage
IOZ6 CC
-3
-
2
µA
Stop band attenuation 8)
SBA CC
40
-
-
dB
0.5 ... 1 fD
45
-
-
dB
1 ... 1.5 fD
50
-
-
dB
1.5 ... 2 fD
55
-
-
dB
2 ... 2.5 fD
60
-
-
dB
2.5 ... OSR/2 fD
VSSM -
-
VSSM +
V
Reference ground voltage
Positive reference voltage
VAGND SR
VAREF SR
0.05
0.05
VDDMnom * -
VDDM +
0.9
0.05
V
Common mode voltage
accuracy
dVCM CC
-100
-
100
mV
from selected voltage
Common mode hold voltage
deviation 12)
dVCMH CC
-200
-
200
mV
From common mode
voltage
Analog filter settling time
tAFSET CC
-
2
4
µs
If enabled
Modulator recovery time
tMREC CC
-
3.5
-
µs
After leaving overdrive
state
Modulator settling time 13)
tMSET CC
-
1
-
µs
After switching on,
voltage regulator
already running
52
-
-
dB
VCM = 2.2 V, DC
coupled; VDDM = ±10%
60
-
-
dB
VCM = 2.2 V, DC
coupled; VDDM = ±5%
Spurious Free Dynamic Range SFDR CC
7)14)
1) The maximum input range for symmetrical signals (e.g. AC-coupled inputs) depends on the selected internal/external
common mode voltage. In this case the Amplitude is limited to VCM * 2.
2) All modulators must run on the same frequency.
3) The calibration sequence must be executed once after an Application Reset
4) The total DC error for the uncalibrated case can be calculated by the geometric addition of EDGAIN and EDOFF
5) Recalibration needed in case of a temperature change > 20ºC.
6) The variation of the impedance between different channels is < 1.5%.
7) Derating factors:
-2 dB in standard-performance mode.
-3 dB for CMV = 10B, i.e. VCM = (VAREF±2%) / 2.0.
8) CIC3, FIR0, FIR1 filters enabled.
9) Single-ended mode reduces the SNR by 6 dB if the unused input is grounded, by 3 dB if the unused input connects to VCM
(GAIN = 2).
10) The defined limits are only valid if the following condition is not applicable: TJ > 150°C and VVAREF > VDDM.
11) 10 kHz bandwidth only with 10Mhz modulator clock frequency reachable
12) Voltage VCM is proportional to VAREF, voltage VCMH is proportional to VDDM.
13) The modulator needs to settle after being switched on and after leaving the overdrive state.
Data Sheet
3-359
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationDSADC Parameters
14) SFDR = 20 * log(INL / 2N); N = amount of bits
37 kΩ
37 kΩ
V CM
Gain
Input
V OFFSET
130 kΩ
=
130 kΩ
Modu lator
Gain
MC_DSADC_MODULATORBLOCK
Figure 3-3 DSADC Analog Inputs
Data Sheet
3-360
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMHz Oscillator
3.10
MHz Oscillator
OSC_XTAL is used as accurate and exact clock source. OSC_XTAL supports 8 MHz to 40 MHz crystals external
outside of the device. Support of ceramic resonators is also provided.
Table 3-31 OSC_XTAL
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Input current at XTAL1
IIX1 CC
-25
-
25
µA
VIN>0V; VIN
25MHz
V
If shaper is not
bypassed; fOSC ≤
25MHz
0.5
Input low voltage at XTAL1
VILBX SR
-0.5
-
Input voltage at XTAL1
VIX SR
-0.5
-
0.5
Input amplitude (peak to peak) VPPX SR
at XTAL1
0.3 *
-
1.0
VDDP3
0.4 *
VDDP3 +
-
VDDP3 +
1.0
VDDP3
Internal load capacitor
CL0 CC
2
2.35
2.7
pF
Internal load capacitor
CL1 CC
2
2.35
2.7
pF
Internal load capacitor
CL2 CC
3
3.5
4
pF
Internal load capacitor
CL3 CC
5.1
5.9
6.6
pF
1) tOSCS is defined from the moment when VDDP3 = 3.13V until the oscillations reach an amplitude at XTAL1 of 0.3 * VDDP3.
The external oscillator circuitry must be optimized by the customer and checked for negative resistance as recommended
and specified by crystal suppliers.
2) This value depends on the frequency of the used external crystal. For faster crystal frequencies this value decrease.
Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target
system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits
specified by the crystal or ceramic resonator supplier.
Data Sheet
3-361
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationBack-up Clock
3.11
Back-up Clock
The back-up clock provides an alternative clock source.
Table 3-32 Back-up Clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
75
100
125
MHz
VEXT≥2.97V
Slow speed Back-up clock
fBACKSS CC 75
100
125
kHz
VEXT≥2.97V
Back-up clock after trimming
fBACKT CC
100
102.5
MHz
VEXT≥2.97V
Back-up clock before trimming fBACKUT CC
Data Sheet
97.5
3-362
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationTemperature Sensor
3.12
Temperature Sensor
Table 3-33 DTS
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
-
-
100
µs
Calibration reference accuracy TCALACC CC -1
-
1
°C
Non-linearity accuracy over
temperature range
TNL CC
-2
-
2
°C
Temperature sensor range
TSR SR
-40
-
170
°C
Start-up time after resets
inactive
tTSST SR
-
-
20
µs
Measurement time
tM CC
Note / Test Condition
calibration points @
TJ=-40°C and
TJ=127°C
The following formula calculates the temperature measured by the DTS in [oC] from the RESULT bit field of the
DTSSTAT register.
(3.1)
DTSSTATRESULT – ( 607 )
Tj = ---------------------------------------------------------------------------2, 13
Data Sheet
3-363
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower Supply Current
3.13
Power Supply Current
The total power supply current defined below consists of leakage and switching component.
Application relevant values are typically lower than those given in the following table and depend on the customer's
system operating conditions (e.g. thermal connection or used application configurations).
The operating conditions for the parameters in the following table are:
The real (realisic) power pattern defines the following conditions:
•
•
TJ = 150 °C
fCPU0 = 200 MHz
fSRI = fMAX = fCPU1 = fCPU2 300 MHz
fSPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 50 MHz
VDD = 1.326 V
VDDP3 = 3.366 V
VEXT / FLEX = VDDM = 5.1 V
•
all cores are active including one lockstep core
•
the following peripherals are inactive: EBU, HSM, HSCT, Ethernet, PSI5, I2C, FCE, MTU, and 50% of the
DSADC channels
•
•
•
•
•
The max power pattern defines the following conditions:
•
•
TJ = 150 °C
fCPU0 = 200 MHz
fSRI = fMAX = fCPU1 = fCPU2 300 MHz
fSPB = fSTM = fGTM = fBAUD1 = fBAUD2 = fASCLIN = 100 MHz
VDD = 1.43 V
VDDP3 = 3.63 V
VEXT / FLEX = VDDM = 5.5 V
•
all cores and lockstep cores are active
•
all peripherals are active
•
•
•
•
•
Data Sheet
3-364
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower Supply Current
Table 3-34 Power Supply
Parameter
∑ Sum of IDD 1.3 V core and
peripheral supply currents
Data Sheet
Symbol
IDD CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
750
mA
max power pattern
with fSRI/CPUx = 270
MHz with VDD = 1.3V +
10%; valid for Feature
Package T, TP, and
TC products
-
-
800
mA
max power pattern
with fSRI/CPUx = 300
MHz with VDD = 1.33V
+ 7.5%. valid for
Feature Package T,
TP, and TC products
-
-
950
mA
max power pattern.
valid for Feature
Package TA and TB
products
-
-
930
mA
max power pattern.
valid for Feature
Package TX and TY
products
-
-
567
mA
real power pattern.
valid for Feature
Package T, TP, and
TC products
-
-
637
mA
real power pattern.
valid for Feature
Package TA, TB, TX
and TY products
3-365
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower Supply Current
Table 3-34 Power Supply (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
140
mA
valid for Feature
Package T, TP, and
TC products;
TJ=125°C
-
-
220
mA
valid for Feature
Package T, TP, and
TC products;
TJ=150°C
-
-
176
mA
valid for Feature
Package TA, TB, TX,
and TY products;
TJ=125°C
-
-
310
mA
valid for Feature
Package T, TP, and
TC products;
TJ=165°C
-
-
290
mA
valid for Feature
Package TA, TB, TX,
and TY products;
TJ=150°C
-
-
405
mA
valid for Feature
Package TA, TB, TX,
and TY products;
TJ=165°C
IDD core current of CPU1 main IDDC10 CC
core with CPU1 lockstep core
inactive
-
-
62
mA
real power pattern
IDD core current of CPU1 main IDDC11 CC
core with lockstep core active
-
-
IDDC10 +
mA
real power pattern
IDD core current of CPU2 main IDDC20 CC
core
-
-
60
mA
real power pattern
IDD core current added by HSM IDDHSM CC
-
-
20
mA
HSM running at
100MHz.
IDD core current added by AMU IDDAMU CC
-
-
48
mA
real power pattern
IDD core current added by FFT IDDFFT CC
-
-
40
mA
FFT running at
200MHz
∑ Sum of 3.3 V supply currents IDDx3RAIL CC without pad activity
-
104 1)
mA
real power pattern
IDDFL3 Flash memory current
-
84 2)
mA
flash read current
-
3)
mA
flash read current
while programming
Dflash
IDD core current during active
power-on reset (PORST held
low)
IDDPORST
CC
IDDFL3 CC
48
-
Data Sheet
3-366
84
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower Supply Current
Table 3-34 Power Supply (cont’d)
Parameter
IDDP3 supply current without
Symbol
IDDP3 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
29 2)
mA
real power pattern;
incl. OSC & flash read
current
-
-
46 3)
mA
incl. OSC and flash
programming current
-
-
46 4)
mA
incl. OSC current and
flash 3.3V
programming current
when using external
5V supply
pad activity
IDDP3 supply current for LVDSH IDDP3LVDSH
-
-
16
mA
pads in LVDS mode
CC
Σ Sum of external and ADC
supply currents (incl.
IEXTFLEX+IDDM+IEXTLVDSM)
IEXTRAIL CC -
-
98
mA
real power pattern
Sum of IEXT and IFLEX supply
current without pad activity
IEXT/FLEX CC -
-
16
mA
real power pattern;
PORST output
inactive.
-
-
20 5)
mA
real power pattern
-
-
62
mA
real power pattern;
sum of currents of
DSADC and VADC
modules
-
-
52
mA
current for DSADC
module only; 50%
DSADC channels
active.
-
-
100 6)
mA
max power pattern; All
DSADC channels
active 100% time.
-
-
10
mA
real pattern; current for
VADC only
-
-
20 7)
mA
max power pattern; All
VADC converters are
active 100% time
-
-
770
mA
real power pattern;
valid for Feature
Package T, TP, and
TC products
-
-
840
mA
real power pattern;
valid for Feature
Package TA, TB, TX,
and TY products
IEXT supply current for LVDSM IEXTLVDSM
pads in LVDS mode
CC
IDDM supply current
IDDM CC
Σ Sum of all currents (incl.
IEXTRAIL+IDDx3RAIL+IDD)
Data Sheet
IDDTOT CC
3-367
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower Supply Current
Table 3-34 Power Supply (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
460
mA
real power pattern;
VEXT = 3.3V
-
-
370
mA
real power pattern;
VEXT = 5V
Σ Sum of all currents with DCDC EVR13 regulator active 8)
IDDTOTDC3
Σ Sum of all currents with DCDC EVR13 regulator active 8)
IDDTOTDC5
∑ Sum of all currents
(STANDBY mode)
IEVRSB CC
-
-
150 9)
µA
Standby RAM is
active. Power to
remaining domains
switched off. TJ =
25°C; VEVRSB = 5V
∑ Sum of all currents (SLEEP
mode)
ISLEEP CC
-
-
24
mA
All CPUs in idle, All
peripherals in sleep,
fSRI/SPB = 1 MHz via
LPDIV divider; TJ =
25°C; valid for Feature
Package T, TP, and
TC products
-
-
26
mA
All CPUs in idle, All
peripherals in sleep,
fSRI/SPB = 1 MHz via
LPDIV divider; TJ =
25°C; valid for Feature
Package TA, TB, TX,
and TY products
-
-
2382
mW
max power pattern ;
valid for Feature
Package TA and TB
products
-
-
2140
mW
max power pattern.
valid for Feature
Package T, TP, and
TC products
-
-
2350
mW
max power pattern.
valid for Feature
Package TX and TY
products
-
-
1600
mW
real power pattern.
valid for Feature
Package T, TP, and
TC products
-
-
1700
mW
real power pattern.
valid for Feature
Package TA, TB, TX,
and TY products
Maximum power dissipation
CC
CC
PD CC
1) In case EVR33 is not used, Injection current into 3.3V VDDP3 supply rail with active sink on 5V VEXT rail should be limited
to 500 mA if during power sequencing 3.3V is supplied before 5V by external regulator.
Data Sheet
3-368
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower Supply Current
2) Realistic Pflash read pattern with 70% Pflash bandwidth utlilization and a code mix of 50% 0s and 50% 1s. A common
decoupling capacitor of atleast 100nF for (VDDFL3+VDDP3) is used. Dflash read current is also included. Flash read current
is predominantly drawn from VDDFL3 pin and a minor part drawn from the neighbouring VDDP3 pin.
3) Continuous Dflash programming in burst mode with 3.3 V supply and realistic Pflash read access in parallel. Erase currents
of the corresponding flash modules are less than the respective programming currents at VDDP3 pin. Programming and
erasing flash may generate transient current spikes of up to x mA for maximum x us which is handled by the decoupling
and buffer capacitors. This parameter is relevant for external power supply dimensioning and not for thermal
considerations.
4) In addition to the current specified, upto 4 mA is additionally drawn at VEXT supply in burst programming mode with 5V
external supply. Erase currents of the corresponding flash modules are less than the respective programming currents at
VDDP3 supply. This parameter is relevant for external power supply dimensioning and not for thermal considerations.
5) The current consumption is for 2 pairs of LVDSM differential pads (8 pins). A single pair of LVDSM differential pads (4 pins)
consumes 7 mA.
6) The current consumption is for 6 DS channels with standard performance (MCFG=11b). A single DS channel instance
consumes 6-8 mA.
7) A single converter instance of VADC unit consumes 2 mA.
8) The total current drawn from external regulator is estimated with 72% EVR13 SMPS regulator Efficiency. IDDTOTDCx is
calculated from IDDTOT using the scaled core current [(IDD x VDD)/(VinxEfficiency)] and constitutes all other rail currents and
IDDM.
9) Σ Sum of all currents during RUN mode at VEVRSB supply pin is less than (8 mA + ISCRSB) . It is recommended to have
atleast 100 nF decoupling capacitor at this pin.
3.13.1
Calculating the 1.3 V Current Consumption
The current consumption of the 1.3 V rail compose out of two parts:
•
Static current consumption
•
Dynamic current consumption
The static current consumption is related to the device temperature TJ and the dynamic current consumption
depends of the configured clocking frequencies and the software application executed. These two parts needs to
be added in order to get the rail current consumption.
Valid for Feature Package T, TP, and TC products:
(3.2)
mA
I 0 = 0, 894 --------- × e 0, 0289 × T J [ C ]
C
(3.3)
mA
I 0 = 4, 319 --------- × e 0, 0259 × T J [ C ]
C
Valid for Feature Package TA, TB, TX, and TY products:
(3.4)
mA
I 0 = 2, 731 --------- × e 0, 0244 × T J [ C ]
C
(3.5)
mA
I 0 = 5, 832 --------- × e 0, 0257 × T J [ C ]
C
Data Sheet
3-369
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower Supply Current
Function 2 / 4 defines the typical static current consumption and Function 3 / 5 defines the maximum static current
consumption. Both functions are valid for VDD = 1.326 V.
Data Sheet
3-370
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
3.14
Power-up and Power-down
3.14.1
External Supply Mode
5 V & 1.3 V supplies are externally supplied. 3.3V is generated internally by EVR33.
•
External supplies VEXT and VDD may ramp-up or ramp-down independent of each other with regards to start,
rise and fall time(s). Voltage Ramp-up from a residual threshold (Eg : up to 1 V) should also lead to a normal
startup of the device.
•
The rate at which current is drawn from the external regulator (dIEXT /dt or dIDD /dt) is limited in the Start-up
phase to a maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary
reset thresholds.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-4 is enumerated below
–
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supplies
ramp up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR33 regulator is initiated.
–
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR33 regulator
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.
Firmware execution is initiated.
–
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset
thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
3-371
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
1
2
3
4
5.5 V
5.0 V
4.5 V
2.97 V
Primary Reset Threshold
0V
VDD (externally supplied )
1.33 V
1.30 V
1.17 V Primary Reset Threshold
0V
PORST (output )
PORST (input)
VDDP3 (internally generated
by EVR33)
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
T0
T2
T1
Basic Supply & Clock
Infrastructure
EVR33 Ramp-up Phase
T3
Firmware Execution
User Code Execution
fCPU =100MHz default
on firmware exit
T4
Power Ramp-down phase
Startup_Diag_1 v 0.1
Figure 3-4 External Supply Mode - 5 V and 1.3 V externally supplied
Data Sheet
3-372
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
3.14.2
Single Supply Mode
5 V single supply mode. 1.3 V & 3.3 V are generated internally by EVR13 & EVR33.
•
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a
maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary
reset threshold.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-5 is enumerated below
–
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR13 and EVR33 regulators are initiated.
–
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 and EVR33
regulators have ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST
rising edge. Firmware execution is initiated.
–
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset
thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
3-373
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
1
2
3
4
5.5 V
5.0 V
4.5 V
2.97 V
Primary Reset Threshold
0V
PORST (output )
PORST (input)
VDD
1.33 V
(internally generated
by EVR13)
1.30 V
1.17 V Primary Reset Threshold
0V
VDDP3 (internally generated
by EVR33)
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
T0
T1
Basic Supply & Clock
Infrastructure
T2
EVR13 & EVR 33 Ramp-up
Firmware Execution
Phase
T3
User Code Execution
fCPU =100MHz default
on firmware exit
T4
Power Ramp-down phase
Startup_Diag_2 v 0.1
Figure 3-5 Single Supply Mode - 5 V single supply
Data Sheet
3-374
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
3.14.3
External Supply Mode
All supplies, namely 5 V, 3.3 V & 1.3 V, are externally supplied.
•
External supplies VEXT ,, VDDP3 & VDD may ramp-up or ramp-down independent of each other with regards
to start, rise and fall time(s).
•
The rate at which current is drawn from the external regulator (dIEXT /dt, dIDD /dt or dIDDP3 /dt) is limited in
the Start-up phase to a maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until all the external supplies are above their primary
reset thresholds.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V, 3.3 V or 5 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-6 is enumerated below
–
T1 refers to the point in time when all supplies are above their primary reset thresholds and basic clock
infrastructure is available. The supply mode is evaluated based on the HWCFG [0:2] pins. PORST (output)
is deasserted and HWCFG [0:7] pins are latched on PORST rising edge. Firmware execution is initiated.
–
T2 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T3 refers to the point in time during the Ramp-down phase when atleast one of the externally provided
supplies (1.3 V, 3.3 V or 5 V) drop below their respective primary under-voltage reset thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
3-375
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
1
2
3
5.5 V
5.0 V
4.5 V
2.97 V
Primary Reset Threshold
0V
VDD (externally supplied )
1.33 V
1.30 V
1.17 V Primary Reset Threshold
0V
VDDP3
(externally supplied)
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
PORST (output )
PORST (input)
T0
T1
Basic Supply & Clock
Infrastructure
T3
T2
User Code Execution
fCPU =100 MHz default
on firmware exit
Firmware Execution
Power Ramp-down phase
Startup_Diag_3 v 0.1
Figure 3-6 External Supply Mode - 5 V, 3.3 V & 1.3 V externally supplied
Data Sheet
3-376
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
3.14.4
Single Supply Mode
3.3 V single supply mode. 1.3 V is generated internally by EVR13.
•
The rate at which current is drawn from the external regulator (dIEXT /dt) is limited in the Start-up phase to a
maximum of 50 mA/100 us.
•
PORST is active/asserted when either PORST (input) or PORST (output) is active/asserted.
•
PORST (input) active means that the reset is held active by external agents by pulling the PORST pin low. It
is recommended to keep the PORST (input) asserted until the external supply is above the respective primary
reset threshold.
•
PORST (output) active means that µC asserts the reset internally and drives the PORST pin low thus
propagating the reset to external devices. The PORST (output) is asserted by the µC when atleast one among
the three supply domains (1.3 V or 3.3 V) violate their primary under-voltage reset thresholds.The
PORST (output) is deasserted by the µC when all supplies are above their primary reset thresholds and the
basic supply and clock infrastructure is available.
•
The power sequence as shown in Figure 3-7 is enumerated below
–
T1 refers to the point in time when basic supply and clock infrastructure is available as the external supply
ramps up. The supply mode is evaluated based on the HWCFG [0:2] pins and consequently a soft start of
EVR13 regulator is initiated.
–
T2 refers to the point in time when all supplies are above their primary reset thresholds. EVR13 regulator
has ramped up. PORST (output) is deasserted and HWCFG [0:7] pins are latched on PORST rising edge.
Firmware execution is initiated.
–
T3 refers to the point in time when Firmware execution is completed. User code execution starts with a
default frequency of 100 MHz.
–
T4 refers to the point in time during the Ramp-down phase when atleast one of the externally provided or
generated supplies (1.3 V or 3.3 V) drop below their respective primary under-voltage reset thresholds.
Please note that there is no special requirements for PORST slew rates.
Data Sheet
3-377
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPower-up and Power-down
VEXT (externally supplied ) 0
&
VDDP3 (externally supplied )
1
2
3
4
T3
User Code Execution
fCPU =100MHz default
on firmware exit
T4
3.63 V
3.30 V
2.97 V
Primary Reset Threshold
0V
PORST (output )
PORST (input)
VDD (internally generated
1.33 V
1.30 V
1.17 V
by EVR 13)
Primary Reset Threshold
0V
T2
T1
T0
Basic Supply & Clock
Infrastructure
EVR13 Ramp-up Phase
Firmware Execution
Power Ramp-down phase
Startup_Diag_4 v 0.1
Figure 3-7 Single Supply Mode - 3.3 V single supply
Data Sheet
3-378
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationReset Timing
3.15
Reset Timing
Table 3-35 Reset Timings
Parameter
Symbol
Application Reset Boot Time
1)
System Reset Boot Time
Power on Reset Boot Time
3)
Values
Note / Test Condition
operating with max.
frequencies.
Min.
Typ.
Max.
tB CC
-
-
350 2)
µs
tBS CC
-
-
1
ms
tBP CC
-
-
2.5
-
-
tEVRstartup
2)
ms
dV/dT=1V/ms.
including EVR rampup and Firmware
execution time
1.11 2)
ms
Firmware execution
time; without EVR
operation (external
supply only)
-
-
µs
-
-
1
ms
1
-
-
ms
-
1200
ns
Minimum PORST hold time
tEVRPOR CC 10
incase of power fail event
issued by EVR primary monitor
EVR start-up or ramp-up time
Unit
CC
Minimum PORST active hold
time after power supplies are
stable at operating levels 4)
tPOA CC
tPORSTDF CC 600
Configurable PORST digital
filter delay in addition to analog
pad filter delay
HWCFG pins hold time from
ESR0 rising edge
tHDH CC
16 / fSPB
-
-
ns
HWCFG pins setup time to
ESR0 rising edge
tHDS CC
0
-
-
ns
Ports inactive after ESR0 reset tPI CC
active
-
-
8/fSPB
ns
Ports inactive after PORST
reset active 5)
tPIP CC
-
-
150
ns
Hold time from PORST rising
edge
tPOH SR
150
-
-
ns
Setup time to PORST rising
edge
tPOS SR
0
-
-
ns
dV/dT=1V/ms. EVR13
and EVR33 active
1) The duration of the boot time is defined between the rising edge of the internal application reset and the clock cycle when
the first user instruction has entered the CPU pipeline and its processing starts.
2) The timing values assumes programmed BMI with ESR0CNT inactive.
3) The duration of the boot time is defined by all external supply voltages are inside there operation condictions and the clock
cycle when the first user instruction has entered the CPU pipeline and its processing starts.
Data Sheet
3-379
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationReset Timing
4) The regulator that supplies VEXT should ensure that VEXT is in the operational region before PORST is externally released
by the regulator. Incase of 5V nominal supply, it should be ensured that VEXT > 4V before PORST is released. Incase of
3.3V nominal supply , it should be ensured that VEXT > 3V before PORST is released. The additional minimum PORST hold
time is required as an additional mechanism to avoid consecutive PORST toggling owing to slow supply slopes or residual
supply ramp-ups. It is also required to activate external PORST atleast 100us before power-fail is recognised to avoid
consecutive PORST toggling on a power fail event.
5) This parameter includes the delay of the analog spike filter in the PORST pad.
VDDP
V D DPPA
VDD PPA
V DDPR
VDD
tPOA
tPOA
PORST
Warm
Cold
ESR0
t PI
tP I
tP IP
Tristate Z / pullup H
Pads
Programmed
Z/ H
Programmed
Z /H
Programmed
Padstate
undefined
TRST
Padstate
undefined
t P OS
t P OS
t P OH
tP OH
TESTMODE
t HDH
HWCFG
power -on config
t HDA
t HDH
config
t HDA
t HDH
config
reset_beh_aurix
Figure 3-8 Power, Pad and Reset Timing
Data Sheet
3-380
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEVR
3.16
EVR
Table 3-36 3.3V
Parameter
Input voltage range
Symbol
1)
Output voltage operational
range including load/line
regulation and aging incase of
LDO regulator
VIN SR
VOUT CC
VOUTT CC
Output VDDx3 static voltage
accuracy after trimming and
aging without dynamic load/line
Regulation incase of LDO
regulator.
Output buffer capacitance on
VOUT
2)
COUT CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
5.50
V
pass device=off chip
4
-
5.50
V
pass device=on chip
2.97
3.3
3.63
V
pass device=off chip
2.97
3.3
3.63
V
pass device=on chip
3.225
3.3
3.375
V
pass device=off chip
3.225
3.3
3.375
V
pass device=on chip
-
2.2
-
µF
pass device=off chip
-
2.2
-
µF
pass device=on chip
Primary Undervoltage Reset
threshold for VDDx3 3)
VRST33 CC
-
-
3.0
V
by reset release before
EVR trimming on
supply ramp-up.
Startup time
tSTR CC
-
-
1000
µs
pass device=off chip
-
-
1000
µs
pass device=on chip
dVin/dT
-
1
50
V/ms
pass device=off chip
SR
-
1
50
V/ms
pass device=on chip
dVout/dIout -
-
240
mV
dI=-100mA;
Tsettle=20µs; pass
External VIN supply ramp 4)
Load step response
CC
device=off chip
-
-
240
mV
dI=-70mA/20ns;
Tsettle=20us; pass
device=on chip
-240
-
-
mV
dI=100mA;
Tsettle=20µs; pass
device=off chip
-240
-
-
mV
dI=50mA/20ns;
Tsettle=20us; pass
device=on chip
Line step response
dVout/dVin -20
-
20
mV
CC
dV/dT=1V/ms; pass
device=off chip
-20
-
20
mV
dV/dT=1V/ms; pass
device=on chip
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device
operation.
Data Sheet
3-381
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEVR
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.
3) The reset release on supply ramp-up is delayed by a time duration 20-40 us after reaching undervoltage reset threshold.
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to
voltage drop/current jumps when reset is released. The reset limit of 2,97V at pin is for the case with 3.3V generated
internally from EVR33. In case the 3.3V supply is provided externally, the bondwire drop will cause a reset at a higher
voltage of 3.0V at the VDDP3 pin.
4) EVR robust against residual voltage ramp-up starting between 0-1 V.
Table 3-37 1.3V
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
VIN SR
2.97
-
5.5
V
pass device=off chip
VOUT CC
1.17
1.3
1.43
V
pass device=off chip
VOUTT CC
Output VDD static voltage
accuracy after trimming without
dynamic load/line regulation
with aging incase of LDO
regulator.
1.275
1.3
1.325
V
pass device=off chip
Output buffer capacitance on
COUT CC
3
4.7
6.3
µF
pass device=off chip
Primary undervoltage reset
threshold for VDD 3)
VRST13 CC
-
-
1.17
V
by reset release before
EVR trimming on
supply ramp-up. pass
device=off chip
Startup time
tSTR CC
-
-
1000
µs
pass device=off chip
dVin/dT
-
1
50
V/ms
pass device=off chip
dVout/dIout -
-
100
mV
dI=-150mA;
Tsettle=20µs; pass
Input voltage range
1)
Output voltage operational
range including load/line
regulation and aging incase of
LDO regulator
VOUT 2)
External VIN supply ramp
4)
SR
Load step response
CC
device=off chip
-100
-
-
mV
dI=100mA;
Tsettle=20µs; pass
device=off chip
Line step response
dVout/dVin -10
-
CC
10
mV
dV/dT=1V/ms; pass
device=off chip
1) A maximum pass device dropout voltage of 700mV is included in the minimum input voltage to ensure optimal pass device
operation.
2) It is recommended to select a capacitor with ESR less than 50 mOhm (0.5MHz - 10 MHz). It is also recommended that the
resistance of the supply trace from the pin to the EVR output capacitor is less than 100 mOhm.
3) The reset release on supply ramp-up is delayed by a time duration 30-60 µs after reaching undervoltage reset threshold.
This serves as a time hysteresis to avoid multiple consecutive cold PORST events during slow supply ramp-ups owing to
voltage drop/current jumps when reset is released.The reset limit of 1,17V at pin is for the case with 1.3V generated
internally from EVR13. In case the 1.3V supply is provided externally, the bondwire drop will cause a reset at a higher
voltage of 1.18V at the VDD pin.
4) EVR robust against residual voltage ramp-up starting between 0-1 V.
Data Sheet
3-382
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEVR
Table 3-38 Supply Monitoring
Parameter
Symbol
VEXT primary undervoltage
VEXTPRIUV
monitor accuracy after
trimming 1)
SR
VDDP3 primary undervoltage
monitor accuracy after
trimming 1)
VDDP3PRIUV
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
2.86
2.92
2.97
V
VEXT = Undervoltage
Reset Threshold
2.86
2.90
2.97
V
VDDP3 = Undervoltage
Reset Threshold
1.13
1.15
1.17
V
VDD = Undervoltage
SR
VDD primary undervoltage
VDDPRIUV
monitor accuracy after
trimming 1)
SR
Reset Threshold
VEXT secondary supply monitor VEXTMON CC 4.9
5.0
5.1
V
SWDxxVAL VEXT
monitoring
threshold=5V=DAh
3.23
3.30
3.37
V
EVR33xxVAL VDDP3
monitoring
threshold=3.3V=90h
VDD secondary supply monitor VDDMON CC 1.27
1.30
1.33
V
EVR13xxVAL VDD
monitoring
threshold=1.3V=DFh
-
1.8
µs
accuracy
VDDP3 secondary supply
VDDP3MON
monitor accuracy
CC
accuracy
EVR primary and secondary
monitor measurement latency
for a new supply value
tEVRMON CC -
1) The monitor tolerances constitute the inherent variation of the bandgap and ADC over process, voltage and temperature
operational ranges. The xxxPRIUV parameters are device individually tested in production with ±1% tolerance about the
min and max xxxPRIUV limits. In TQFP100 and QFP80 pin packages, VDDPRIUV is not tested as HWCFG2 pin is absent.
Table 3-39 EVR13 SMPS External components
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
15.4
22
29.7
µF
IDDDC=1A
6.5
10
13.5
µF
IDDDC=400mA
External output capacitor ESR CDC_ESR SR -
-
50
mOhm f≥0.5MHz; f≤10MHz
-
-
100
Ohm
f=10Hz
6.5
10
13.5
µF
IDDDC=1A
4.42
6.8
9.18
µF
IDDDC=400mA
CIN_ESR SR -
-
50
mOhm f≥0.5MHz; f≤10MHz
-
-
100
Ohm
f=100Hz
2.31
3.3
4.29
µH
fDCDC=1.5MHz
3.29
4.7
6.11
µH
fDCDC=1MHz
External output capacitor value COUTDC SR
1)
External input capacitor value
External input capacitor ESR
External inductor value
2)
1)
CIN SR
LDC SR
External inductor ESR
LDC_ESR SR -
-
0.2
Ohm
P + N-channel MOSFET logic
level
VLL SR
-
2.5
V
Data Sheet
-
3-383
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEVR
Table 3-39 EVR13 SMPS External components (cont’d)
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Note / Test Condition
P + N-channel MOSFET drain
source breakdown voltage
|VBR_DS| SR -
-
7
V
P + N-channel MOSFET drain
source ON-state resistance
RON SR
-
-
150
mOhm IDDDC=1A;VGS=2.5V ;
TA=25°C
-
-
200
mOhm IDDDC=400mA;VGS=2.5
V ; TA=25°C
-
4
-
nC
IDDDC=1A; MOSVGS=5V
-
8
-
nC
IDDDC=400mA; MOSVGS=5V
configurable
P + N-channel MOSFET Gate
Charge
Qac SR
External MOSFET
commutation time
tc SR
10
30
40
ns
N-channel MOSFET reverse
diode forward voltage
VRDN SR
-
0.8
-
V
1) Capacitor min-max range represent typical ±35% tolerance including DC bias effect. The trace resistance from the
capacitor to the supply or ground rail should be limited to 25 mOhm.
2) External inductor min-max range represent typical ±30% tolerance at a DC bias current of 100mA.
Table 3-40 EVR13 SMPS
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Input VDDP3 voltage range
VIN CC
2.97
-
3.63
V
Input VEXT Voltage range
VIN SR
2.97
-
5.5
V
SMPS regulator output voltage VDDDC CC
range including load/line
regulation and aging 1)
1.17
-
1.43
V
VDD≥2.97V; VDD≤5.5V;
IDDDC≥1mA; IDDDC≤1A
SMPS regulator static voltage VDDDCT CC
output accuracy after trimming
without dynamic load/line
Regulation with aging. 2)
1.275
1.3
1.325
V
VDD≥2.97V; VDD≤5.5V;
IDDDC≥1mA; IDDDC≤1A
0.4
-
2.0
MHz
Programmable switching
frequency
fDCDC CC
Switching frequency
modulation spread
∆fDCSPR CC -
-
2%
MHz
Maximum ripple at IMAX (peak- ∆VDDDC CC to-peak) 3)
-
15
mV
VDD≥2.97V; VDD≤5.5V;
IDDDC≥300mA;
IDDDC≤1A
No load current consumption of IDCNL CC
SMPS regulator
5
10
mA
fDCDC=1MHz
Data Sheet
-
3-384
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEVR
Table 3-40 EVR13 SMPS (cont’d)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
Typ.
Max.
-
25
mV
dI < 200mA ;
fDCDC=1MHz; tr=0.1µs;
tf=0.1µs; VDDDC=1.3V
-65
-
65
mV
dI < 400mA ;
fDCDC=1MHz; tr=0.1µs;
tf=0.1µs; VDDDC=1.3V
-130
-
130
mV
dI < 700mA ;
fDCDC=1MHz; tr=0.1µs;
tf=0.1µs; VDDDC=1.3V
Maximum output current of the IMAX SR
regulator
-
-
1
A
limited by thermal
constraints and
component choice
SMPS regulator efficiency
-
85
-
%
VIN=3.3V;
IDDDC=300mA;
fDCDC=1MHz
-
75
-
%
VIN=5V; IDDDC=400mA;
fDCDC=1.5MHz
-
80
-
%
VIN=5V; IDDDC=400mA;
fDCDC=1MHz
SMPS regulator load transient
response
dVout/dIout -25
CC
nDC CC
1) Incase of SMPS mode, It shall be ensured that the VDD output pin shall be connected on PCB level to all other VDD Input
pins.
2) Incase of fSRI running with max frequency, it shall be ensured that the VDD operating range is limited to 1.235V upto 1.430V.
The DCDC may be configured in this case with a nominal voltage of 1.33V±7.5%. The static accuracy and regulation
parameter ranges remain also valid for this case.
3) If frequency spreading (SDFREQSPRD = 1) is activated, an additional ripple of 1% need to be considered.
Data Sheet
3-385
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPhase Locked Loop (PLL)
3.17
Phase Locked Loop (PLL)
Table 3-41 PLL
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Note / Test Condition
PLL base frequency
fPLLBASE CC 80
150
360
MHz
VCO frequency range
fVCO SR
400
-
800
MHz
VCO Input frequency range
fREF CC
8
-
24
MHz
Modulation Amplitude
MA CC
0
-
2
%
Peak Period jitter
DP CC
-200
-
200
ps
Peak Accumulated Jitter
DPP CC
-5
-
5
ns
without modulation
Total long term jitter
JTOT CC
-
-
11.5
ns
including modulation;
MA ≤ 1%
System frequency deviation
fSYSD CC
-
-
0.01
%
with active modulation
2
3.6
5.4
MHz
11.5
-
200
µs
Modulation variation frequency fMV CC
PLL lock-in time
tL CC
Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the
maximum driver and sharp edge.
Note: The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of
VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the
supply pins and using PCB supply and ground planes.
Data Sheet
3-386
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationERAY Phase Locked Loop (ERAY_PLL)
3.18
ERAY Phase Locked Loop (ERAY_PLL)
Table 3-42 PLL_ERAY
Parameter
Symbol
Values
Min.
PLL Base Frequency of the
ERAY PLL
VCO frequency range of the
ERAY PLL
Unit
Typ.
Max.
200
320
MHz
400
-
480
MHz
fPLLBASE_ERA 50
Note / Test Condition
Y CC
fVCO_ERAY
SR
VCO input frequency of the
ERAY PLL
fREF SR
16
-
24
MHz
Accumulated_Jitter
DP CC
-0.5
-
0.5
ns
Accumulated jitter at SYSCLK
pin
DPP CC
-0.8
-
0.8
ns
PLL lock-in time
tL CC
5.6
-
200
µs
Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF with the
maximum driver and sharp edge.
Note: The maximum peak-to-peak noise on the power supply voltage, is limited to a peak-to-peak voltage of
VPP = 100 mV for noise frequencies below 300 KHz and VPP = 40 mV for noise frequencies above 300 KHz.
These conditions can be achieved by appropriate blocking of the supply voltage as near as possible to the
supply pins and using PCB supply and ground planes.
Data Sheet
3-387
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationAC Specifications
3.19
AC Specifications
All AC parameters are specified for the complette operating range defined in Chapter 3.4 unless otherwise noted
in colum Note / test Condition.
Unless otherwise noted in the figures the timings are defined with the following guidelines:
VEXT/FL EX / VD DP3
90%
VSS
90%
10%
10%
tr
tf
rise_fall
Figure 3-9 Definition of rise / fall times
VEXT/FL EX / VD D P3
VEXT/FL EX / VD D P3
2
VSS
Timing
Reference
Points
VEXT /FL EX / VD D P3
2
timing_reference
Figure 3-10 Time Reference Point Definition
Data Sheet
3-388
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationJTAG Parameters
3.20
JTAG Parameters
The following parameters are applicable for communication through the JTAG debug interface. The JTAG module
is fully compliant with IEEE1149.1-2000.
Table 3-43 JTAG
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
TCK clock period
t1 SR
25
-
-
ns
TCK high time
t2 SR
10
-
-
ns
TCK low time
t3 SR
10
-
-
ns
TCK clock rise time
t4 SR
-
-
4
ns
TCK clock fall time
t5 SR
-
-
4
ns
TDI/TMS setup to TCK rising
edge
t6 SR
6.0
-
-
ns
TDI/TMS hold after TCK rising t7 SR
edge
6.0
-
-
ns
TDO valid after TCK falling
edge (propagation delay) 1)
t8 CC
3.0
-
-
ns
CL≤20pF
-
-
16.5
ns
CL≤50pF
TDO hold after TCK falling
edge 1)
t18 CC
2
-
-
ns
TDO high impedance to valid
from TCK falling edge 1)2)
t9 CC
-
-
17.5
ns
CL≤50pF
TDO valid output to high
impedance from TCK falling
edge 1)
t10 CC
-
-
17.5
ns
CL≤50pF
1) The falling edge on TCK is used to generate the TDO timing.
2) The setup time for TDO is given implicitly by the TCK cycle time.
t1
0.9 VD D P
0.5 VD D P
t5
t2
t4
0.1 VD D P
t3
MC_ JTAG_ TCK
Figure 3-11 Test Clock Timing (TCK)
Data Sheet
3-389
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationJTAG Parameters
TCK
t6
t7
t6
t7
TMS
TDI
t9
t8
t1 0
TDO
t18
MC_JTAG
Figure 3-12 JTAG Timing
Data Sheet
3-390
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationDAP Parameters
3.21
DAP Parameters
The following parameters are applicable for communication through the DAP debug interface.
Table 3-44 DAP
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
DAP0 clock period
t11 SR
6.25
-
-
ns
DAP0 high time
t12 SR
2
-
-
ns
DAP0 low time
t13 SR
2
-
-
ns
DAP0 clock rise time
t14 SR
-
-
1
ns
f=160MHz
-
-
2
ns
f=80MHz
-
-
1
ns
f=160MHz
-
-
2
ns
f=80MHz
DAP0 clock fall time
t15 SR
DAP1 setup to DAP0 rising
edge
t16 SR
4
-
-
ns
DAP1 hold after DAP0 rising
edge
t17 SR
2
-
-
ns
DAP1 valid per DAP0 clock
period 1)
t19 CC
3
-
-
ns
CL=20pF; f=160MHz
8
-
-
ns
CL=20pF; f=80MHz
10
-
-
ns
CL=50pF; f=40MHz
1) The Host has to find a suitable sampling point by analyzing the sync telegram response.
t11
0.9 VD D P
0.5 VD D P
t1 5
t1 2
t14
0.1 VD D P
t1 3
MC_DAP0
Figure 3-13 Test Clock Timing (DAP0)
DAP0
t1 6
t1 7
DAP1
MC_ DAP1_RX
Figure 3-14 DAP Timing Host to Device
Data Sheet
3-391
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationDAP Parameters
t1 1
DAP1
t1 9
MC_ DAP1_TX
Figure 3-15 DAP Timing Device to Host (DAP1 and DAP2 pins)
Note: The DAP1 and DAP2 device to host timing is individual for both pins. There is no guaranteed max. signal
skew.
Data Sheet
3-392
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
3.22
ASCLIN SPI Master Timing
This section defines the timings for the ASCLIN in the TC290 / TC297 / TC298 / TC299, for 5V power supply.
Note: Pad asymmetry is already included in the following timings.
Table 3-45 Master Mode MP+ss/MPRss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
20
-
-
ns
CL=25pF
-3
-
3
ns
0 < CL < 50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-7
-
6
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
5
-
35
ns
CL=25pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR
30
-
-
ns
CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR
-4.5
-
-
ns
CL=25pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-46 Master Mode MP+sm/MPRsm output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
50
-
-
ns
CL=50pF
-2
-
3+0.01 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-10
-
10
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
5
-
35
ns
CL=50pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR
50
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-9
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
3-393
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
Table 3-47 Master Mode MPss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
ns
CL=25pF
Min.
Typ.
Max.
20
-
-
-2
-
3.5+0.035 ns
* CL
0 < CL < 200pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-7
-
6
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-7
-
6
ns
CL=25pF
MRST setup to ASCLKO
latching edge
t52 SR
31
-
-
ns
CL=25pF, else
-
-
ns
CL=25pF, for P14.2,
33
3)
P14.4, and P15.1
MRST hold from ASCLKO
latching edge
t53 SR
-5
-
-
ns
CL=25pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
3) Please note that these pins didn't support the hystereses inactive feature.
Table 3-48 Master Mode MPsm output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
100
-
-
ns
CL=50pF
-3
-
4+0.04 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-11
-
10
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-11
-
10
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
60
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-10
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
3-394
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
Table 3-49 Master Mode medium output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
200
-
-
ns
CL=50pF
-8
-
4+0.06 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-20
-
18.5
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-20
-
20
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
70
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-10
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-50 Master Mode weak output pads
Parameter
ASCLKO clock period 1)
Symbol
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Min.
Typ.
Max.
1000
-
-
-30
-
2)
Unit
Note / Test Condition
ns
CL=50pF
30+0.15 * ns
0 < CL < 200pF
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-75
-
75
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-65
-
65
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
510
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-50
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
3-395
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
t50
ASCLKO
t51
t500
t51
MTSR
t52
MRST
t53
Data valid
Data valid
t510
ASLSO
ASCLIN_TmgMM.vsd
Figure 3-16 ASCLIN SPI Master Timing
Data Sheet
3-396
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
3.23
ASCLIN SPI Master Timing
This section defines the timings for the ASCLIN in the TC290 / TC297 / TC298 / TC299, for 3.3V power supply,
Medium Performance pads, strong sharp edge (MPss), CL=25pF.
Note: Pad asymmetry is already included in the following timings.
Table 3-51 Master Mode MP+ss/MPRss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=25pF
-5
-
5
ns
0 < CL < 50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-12
-
12
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
0
-
60
ns
CL=25pF; pad used =
MRST setup to ASCLKO
latching edge
t52 SR
50
-
-
ns
CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR
-5
-
-
ns
CL=25pF
LPm
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-52 Master Mode MP+sm/MPRsm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
100
-
-
ns
CL=50pF
Deviation from ideal duty cycle t500 CC
-3
-
7
ns
0 < CL < 200pF
MTSR delay from ASCLKO
shifting edge
t51 CC
-17
-
17
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
0
-
60
ns
CL=50pF; pad used =
LPm
MRST setup to ASCLKO
latching edge
t52 SR
85
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-5
-
-
ns
CL=50pF
ASCLKO clock period
1)
t50 CC
2)
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
3-397
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
Table 3-53 Master Mode MPss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=25pF
-5
-
7+0.07 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-12
-
12
ns
CL=25pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-12
-
12
ns
CL=25pF
MRST setup to ASCLKO
latching edge
t52 SR
50
-
-
ns
CL=25pF
MRST hold from ASCLKO
latching edge
t53 SR
-5
-
-
ns
CL=25pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-54 Master Mode MPsm output pads
Parameter
Symbol
ASCLKO clock period 1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
200
-
-
ns
CL=50pF
-5
-
9+0.06 *
ns
0 < CL < 200pF
2)
CL
MTSR delay from ASCLKO
shifting edge
t51 CC
-19
-
17
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-19
-
17
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
100
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-13
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-55 Master Mode medium output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
2)
Data Sheet
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
400
-
-
ns
CL=50pF
-6-0.07 *
-
6+0.07 *
ns
0 < CL < 200pF
CL
CL
3-398
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
Table 3-55 Master Mode medium output pads (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
MTSR delay from ASCLKO
shifting edge
t51 CC
-33
-
25
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-35
-
35
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
120
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-13
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-56 Master Mode weak output pads
Parameter
Symbol
ASCLKO clock period 1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
2000
-
-
ns
CL=50pF
-110
-
150
ns
0 < CL < 200pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-170
-
170
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-170
-
170
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
510
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
-40
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-57 Master Mode A2ss output pads
Parameter
ASCLKO clock period
Symbol
1)
t50 CC
Deviation from ideal duty cycle t500 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
20
-
-
ns
CL=50pF
-3
-
3
ns
CL=50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-4
-
4
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-5
-
4
ns
CL=50pF
Data Sheet
3-399
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationASCLIN SPI Master Timing
Table 3-57 Master Mode A2ss output pads (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
MRST setup to ASCLKO
latching edge
t52 SR
17
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
0
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Table 3-58 Master Mode A2sm output pads
Parameter
ASCLKO clock period
Symbol
1)
Values
t50 CC
Deviation from ideal duty cycle t500 CC
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=50pF
-4
-
4
ns
CL=50pF
2)
MTSR delay from ASCLKO
shifting edge
t51 CC
-8
-
6
ns
CL=50pF
ASLSOn delay from the first
ASCLKO edge
t510 CC
-8
-
9
ns
CL=50pF
MRST setup to ASCLKO
latching edge
t52 SR
26
-
-
ns
CL=50pF
MRST hold from ASCLKO
latching edge
t53 SR
0
-
-
ns
CL=50pF
1) PLL Jitter not included. Should be considered additionally, corresponding to the used baudrate. The duty cycle can be
adjusted using the BITCON.SAMPLEPOINT bitfield with the finest granularity of TMAX = 1 / fMAX.
2) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
t50
ASCLKO
t51
t500
t51
MTSR
t52
MRST
t53
Data valid
Data valid
t510
ASLSO
ASCLIN_TmgMM.vsd
Figure 3-17 ASCLIN SPI Master Timing
Data Sheet
3-400
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
3.24
QSPI Timings, Master and Slave Mode
This section defines the timings for the QSPI in the TC290 / TC297 / TC298 / TC299, for 5V pad power supply.
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:
•
LVDSM output pads,LVDSH input pad, master mode, CL=25pF
•
Medium Performance Plus Pads (MP+):
•
•
–
strong sharp edge (MP+ss), CL=25pF
–
strong medium edge (MP+sm), CL=50pF
–
medium edge (MP+m), CL=50pF
–
weak edge (MP+w), CL=50pF
Medium Performance Pads (MP):
–
strong sharp edge (MPss), CL=25pF
–
strong medium edge (MPsm), CL=50pF
Medium and Low Performance Pads (MP/LP), the identical output strength settings:
–
medium edge (LP/MPm), CL=50pF
–
weak edge (MPw), CL=50pF
Table 3-59 Master Mode Timing, LVDSM output pads for data and clock
Parameter
Symbol
Values
Min.
SCLKO clock period
1)
2)
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
CL=25pF
t50 CC
20
Deviation from the ideal duty
cycle 3) 4)
t500 CC
-1
-
1
ns
CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC
-3
-
3
ns
CL=25pF
0
-
30
ns
CL=25pF; MPsm
-5
-
7
ns
CL=25pF; MPss
-4
-
7
ns
MP+ss; CL=25pF
-
15
ns
MP+sm; CL=25pF
-
-
ns
CL=25pF; LVDSM 5V
output and LVDSH
3.3V input
-
-
ns
CL=25pF; LVDSM 5V
SLSOn deviation from the ideal t510 CC
programmed position
-1
MRST setup to SCLK latching
edge 5)
t52 SR
MRST hold from SCLK latching t53 SR
edge
19
5)
-6 5)
output and LVDSH
3.3V input
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
3) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
4) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
5) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
Data Sheet
3-401
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Table 3-60 Master Mode MP+ss/MPRss output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
20
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-3
-
3
ns
0 < CL < 50pF
MTSR delay from SCLKO
shifting edge
t51 CC
-7
-
6
ns
CL=25pF
-7
-
6
ns
CL=25pF
27 4)5)
-
-
ns
CL=25pF
-4.5 4)5)
-
-
ns
CL=25pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
t52 SR
MRST hold from SCLK latching t53 SR
edge
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-61 Master Mode MP+sm/MPRsm output pads for data and clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
50
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-2
-
3+0.01 *
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
-10
-
10
ns
CL=50pF
-10
-
10
ns
MP+sm; CL=50pF
-13
-
1
ns
MPss; CL=50pF
0
-
40
ns
MP+m, MPm, LPm;
CL=50pF
t52 SR
50 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-9 4)5)
-
-
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
3-402
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-62 Master Mode timing MPss output pads for data and clock, CL=50pF
Parameter
Symbol
Values
Unit
Note / Test Condition
ns
CL=50pF
Min.
Typ.
Max.
t50 CC
40
-
-
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-2
-
3.5+0.035 ns
* CL
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
-8
-
8
ns
CL=50pF
-8
-
8
ns
MPss; CL=50pF
-1
-
15
ns
MP+sm; CL=50pF
0
-
50
ns
MP+m, MPm, LPm;
CL=50pF
t52 SR
40 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-5 4)5)
-
-
ns
CL=50pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-63 Master Mode timing MPsm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
100
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-3
-
4+0.04 *
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
-11
-
10
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
-11
-
10
ns
CL=50pF
MRST setup to SCLK latching
edge 4)
60 4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
t52 SR
MRST hold from SCLK latching t53 SR
edge
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
Data Sheet
3-403
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-64 Master Mode timing MPRm/MP+m/MPm/LPm output pads
Parameter
Symbol
Values
Min.
Typ.
Max.
t50 CC
200
-
-
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-10
-
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
Note / Test Condition
ns
CL=50pF
16+0.04 * ns
0 < CL < 200pF
CL
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
Unit
t52 SR
MRST hold from SCLK latching t53 SR
edge
-15
-
20
ns
CL=50pF
-20
-
20
ns
CL=50pF
70 4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-65 Master Mode Weak output pads
Parameter
Symbol
Values
Min.
Typ.
Max.
-
SCLKO clock period 1)
t50 CC
1000
-
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-30
-
MTSR delay from SCLKO
shifting edge
t51 CC
Unit
Note / Test Condition
ns
CL=50pF
30+0.15 * ns
0 < CL < 200pF
CL
-65
-
65
ns
CL=50pF
-65
-
65
ns
CL=50pF
t52 SR
300 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-40 4)5)
-
-
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
Data Sheet
3-404
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-66 Slave mode timing
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
SCLK clock period
t54 SR
4 x TMAX
-
-
ns
SCLK duty cycle
t55/t54 SR
40
MTSR setup to SCLK latching
edge
t56 SR
MTSR hold from SCLK latching t57 SR
edge
SLSI setup to first SCLK shift
edge
t58 SR
-
60
%
4
1)
-
-
ns
Hystheresis Inactive
5
1)
-
-
ns
Input Level AL
5
1)
-
-
ns
Input Level TTL
3.5
-
-
ns
Hystheresis Inactive
6
-
-
ns
Input Level AL
9
1)
-
-
ns
Input Level TTL
5
1)
-
-
ns
Hystheresis Inactive
4 1)
-
-
ns
Input Level AL
1)
-
-
ns
Input Level TTL
6
MRST delay from SCLK shift
edge
SLSI to valid data on MRST
t59 SR
t60 CC
t61 SR
1)
1)
8
SLSI hold from last SCLK
latching edge
Note / Test Condition
-
-
ns
Only for pin 15.1, AL
3
1)
-
-
ns
Hystheresis Inactive
4
1)
-
-
ns
Input Level AL
8
1)
-
-
ns
Input Level TTL
10
-
70
ns
MP+m/MPRm;
CL=50pF
9
-
50
ns
MP+sm/MPRsm;
CL=50pF
5
-
30
ns
MP+ss/MPRss;
CL=25pF
40
-
300
ns
MP+w/MPRw;
CL=50pF
10
-
70
ns
MPm/LPm; CL=50pF
10
-
55
ns
MPsm; CL=50pF
5
-
30
ns
MPss; CL=25pF
40
-
300
ns
MPw/LPw; CL=50pF
-
-
5
ns
1) Except pin P15.1.
Data Sheet
3-405
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
t50
t500
0.5 VEXT/FLEX
SCLK1)2)
t51
SAMPLING POINT
0.5 VEXT/FLEX
MTSR1)
t52
t53
Data valid
MRST1)
Data valid
t510
0.5 VEXT/FLEX
SLSOn2)
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.
QSPI_TmgMM.vsd
Figure 3-18 Master Mode Timing
t54
SCLKI
t55
MTSR
1)
MRST
1)
Last latching
SCLK edge
First latching
SCLK edge
First shift
SCLK edge
1)
t56
0.5 VEXT/FLEX
t55
t56
t57
Data
valid
t60
t57
Data
valid
t60
0.5 VEXT/FLEX
t58
t59
t61
SLSI
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0. QSPI_TmgSM.vsd
Figure 3-19 Slave Mode Timing
3.25
QSPI Timings, Master and Slave Mode
This section defines the timings for the QSPI in the TC290 / TC297 / TC298 / TC299, for 3.3V pad power supply.
It is assumed that SCLKO, MTSR, and SLSO pads have the same pad settings:
•
LVDSM output pads,LVDSH input pad, master mode, CL=25pF
•
Medium Performance Plus Pads (MP+):
•
•
–
strong sharp edge (MP+ss), CL=25pF
–
strong medium edge (MP+sm), CL=50pF
–
medium edge (MP+m), CL=50pF
–
weak edge (MP+w), CL=50pF
Medium Performance Pads (MP):
–
strong sharp edge (MPss), CL=25pF
–
strong medium edge (MPsm), CL=50pF
Medium and Low Performance Pads (MP/LP), the identical output strength settings:
Data Sheet
3-406
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
–
medium edge (LP/MPm), CL=50pF
–
weak edge (MPw), CL=50pF
Table 3-67 Master Mode Timing, LVDSM output pads for data and clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
20
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-2
-
2
ns
CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC
-5
-
5
ns
CL=25pF
-2
-
55
ns
CL=25pF; MPsm
-9
-
12
ns
CL=25pF; MPss
-7
-
12
ns
MP+ss; CL=25pF
-2
-
26
ns
MP+sm; CL=25pF
t52 SR
20
-
-
ns
CL=25pF; LVDSM 5V
output and LVDSH
3.3V input
MRST hold from SCLK latching t53 SR
edge
-6
-
-
ns
CL=25pF; LVDSM 5V
output and LVDSH
3.3V input
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
Table 3-68 Master Mode MP+ss/MPRss output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
40
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-5
-
5
ns
0 < CL < 50pF
MTSR delay from SCLKO
shifting edge
t51 CC
-12
-
12
ns
CL=25pF
-12
-
12
ns
CL=25pF
t52 SR
50 4)5)
-
-
ns
CL=25pF
MRST hold from SCLK latching t53 SR
edge
-5 4)5)
-
-
ns
CL=25pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
Data Sheet
3-407
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-69 Master Mode MP+sm/MPRsm output pads for data and clock
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
100
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-3
-
7
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
-17
-
17
ns
CL=50pF
-17
-
17
ns
MP+sm; CL=50pF
-22
-
2
ns
MPss; CL=50pF
0
-
70
ns
MP+m; MPm; LPm;
CL=50pF
85 4)5)
-
-
ns
CL=50pF
-10 4)5)
-
-
ns
CL=50pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
t52 SR
MRST hold from SCLK latching t53 SR
edge
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-70 Master Mode timing MPss output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
40
-
-
ns
CL=25pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-5
-
5+0.04 *
ns
CL=25pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
SLSOn deviation from the ideal t510 CC
programmed position
Data Sheet
-7
-
7
ns
CL=25pF
-10
-
10
ns
CL=25pF
3-408
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Table 3-70 Master Mode timing MPss output pads (cont’d)
Parameter
Symbol
Values
Min.
MRST setup to SCLK latching
edge 4)
t52 SR
MRST hold from SCLK latching t53 SR
edge
50
4)5)
-6 4)5)
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
CL=25pF
-
-
ns
CL=25pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-71 Master Mode timing MPsm output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
200
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-5
-
9+0.06 *
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
SCLKO clock period
1)
CL
-19
-
19
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
-19
-
17
ns
CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR
100 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-13 4)5)
-
-
ns
CL=50pF
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-72 Master Mode timing MPRm/MP+m/MPm/LPm output pads
Parameter
SCLKO clock period
Symbol
1)
Deviation from the ideal duty
cycle 2) 3)
Data Sheet
Values
Unit
Note / Test Condition
ns
CL=50pF
Min.
Typ.
Max.
t50 CC
400
-
-
t500 CC
-6-0.07 *
-
6+0.095 * ns
CL
0 < CL < 200pF
CL
3-409
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Table 3-72 Master Mode timing MPRm/MP+m/MPm/LPm output pads (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-25
-
33
ns
CL=50pF
SLSOn deviation from the ideal t510 CC
programmed position
-35
-
35
ns
CL=50pF
MRST setup to SCLK latching
edge 4)
t52 SR
120 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-13 4)5)
-
-
ns
CL=50pF
MTSR delay from SCLKO
shifting edge
t51 CC
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Table 3-73 Master Mode Weak output pads
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t50 CC
2000
-
-
ns
CL=50pF
Deviation from the ideal duty
cycle 2) 3)
t500 CC
-110
-
125
ns
0 < CL < 200pF
MTSR delay from SCLKO
shifting edge
t51 CC
-170
-
170
ns
CL=50pF
-170
-
170
ns
CL=50pF
t52 SR
510 4)5)
-
-
ns
CL=50pF
MRST hold from SCLK latching t53 SR
edge
-40 4)5)
-
-
ns
CL=50pF
SCLKO clock period
1)
SLSOn deviation from the ideal t510 CC
programmed position
MRST setup to SCLK latching
edge 4)
1) Documented value is valid for master transmit or slave receive only. For full duplex the external SPI counterpart timing has
to be taken into account.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted using the bit fields ECONz.A, B and C with the finest granularity of TMAX = 1 / fMAX.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) For compensation of the average on-chip delay the QSPI module provides the bit fields ECONz.A, B and C.
5) The setup and hold times are valid for both settings of the input pads thresholds: TTL and AL.
Data Sheet
3-410
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
Table 3-74 Slave mode timing
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
SCLK clock period
t54 SR
4 x TMAX
-
-
ns
SCLK duty cycle
t55/t54 SR
40
MTSR setup to SCLK latching
edge
t56 SR
MTSR hold from SCLK latching t57 SR
edge
SLSI setup to first SCLK shift
edge
t58 SR
-
60
%
7
1)
-
-
ns
Hystheresis inactive
9
1)
-
-
ns
Input Level AL
7
1)
-
-
ns
Input Level TTL
5 1)
-
-
ns
Hystheresis inactive
11
1)
-
-
ns
Input Level AL
16
1)
-
-
ns
Input Level TTL
7
1)
-
-
ns
Hystheresis inactive
7
1)
-
-
ns
Input Level AL
-
-
ns
Input Level TTL
14
1)
11
SLSI hold from last SCLK
latching edge
t59 SR
-
-
ns
Only for pin P15.1, AL
1)
-
-
ns
Hystheresis inactive
7 1)
-
-
ns
Input Level AL
-
-
ns
Input Level TTL
13
-
120
ns
MP+m/MPRm;
CL=50pF
12.5
-
85
ns
MP+sm/MPRsm;
CL=50pF
5.5
-
50
ns
MP+ss/MPRss;
CL=25pF
70
-
500
ns
MP+w/MPRw;
CL=50pF
13
-
120
ns
MPm/LPm; CL=50pF
13
-
100
ns
MPsm; CL=50pF
6
-
52
ns
MPss; CL=25pF
70
-
500
ns
MPw/LPw; CL=50pF
-
-
9
ns
5
14
MRST delay from SCLK shift
edge
SLSI to valid data on MRST
t60 CC
t61 SR
Note / Test Condition
1)
1) Except pin P15.1
Data Sheet
3-411
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQSPI Timings, Master and Slave Mode
t50
t500
0.5 VEXT/FLEX
SCLK1)2)
t51
SAMPLING POINT
0.5 VEXT/FLEX
MTSR1)
t52
MRST
t53
Data valid
1)
Data valid
t510
SLSOn
0.5 VEXT/FLEX
2)
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0, ECON.B=0 (no sampling point delay).
2) t510 is the deviation from the ideal position configured with the leading delay, BACON.LPRE and BACON.LEAD > 0.
QSPI_TmgMM.vsd
Figure 3-20 Master Mode Timing
t54
First shift
SCLK edge
SCLKI1)
t55
Last latching
SCLK edge
First latching
SCLK edge
t56
t56
t57
Data
valid
MTSR1)
t60
MRST
0.5 VEXT/FLEX
t55
t57
Data
valid
t60
1)
0.5 VEXT/FLEX
t58
t59
t61
SLSI
1) This timing is based on the following setup: ECON.CPH = 1, ECON.CPOL = 0. QSPI_TmgSM.vsd
Figure 3-21 Slave Mode Timing
Data Sheet
3-412
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 5 V Operation
3.26
MSC Timing 5 V Operation
The following section defines the timings for 5V pad power supply.
Note: Pad asymmetry is already included in the following timings.
Note: Load for LVDS pads are defined as differential loads in the following timings.
Table 3-75 LVDS clock/data (LVDS pads in LVDS mode)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
2 * TA
2) 3)
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
LVDSM; CL=50pF
Deviation from ideal duty cycle t400 CC
-1
-
1
ns
LVDSM; 0 < CL < 50pF
SOPx output delay 6)
-3
-
4
ns
LVDSM; CL=50pF;
option EN01
-4
-
4.5
ns
LVDSM; CL=50pF;
option EN01D
-4
-
5
ns
MP+ss/MPRss; option
EN01; CL=25pF
-3.5
-
7
ns
MP+ss/MPRss; option
EN01; CL=50pF
-3
-
11
ns
MP+sm/MPRsm;
option EN01D;
CL=50pF
-2.5
-
9
ns
MP+ss/MPRss; option
EN23; CL=25pF
-2.5
-
10
ns
MP+ss/MPRss; option
EN23; CL=50pF
-3
-
11
ns
MPss; option EN01;
CL=50pF
-7
-
3
ns
MP+ss/MPRss; option
EN01; CL=0pF
-5
-
3
ns
MP+sm/MPRsm;
option EN01D; CL=0pF
-4
-
6
ns
MP+ss/MPRss; option
EN23; CL=0pF
-7
-
4
ns
MPss; option EN01;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
4) 5)
ENx output delay 6)
SDI bit time
SDI rise time
SDI fall time
7)
7)
t44 CC
t45 CC
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
Data Sheet
3-413
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 5 V Operation
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Data Sheet
3-414
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 5 V Operation
Timing Options for t45
The wiring shown in the Figure 3-22 provides three useful timing options for t45. depending on the signals selected
with the alternate output lines (ALT1 to ALT7) in the ports:
•
EN01
- FCLN, SON, EN0, EN1
•
EN01D - FCLND, SOND, EN0, EN1
- t45 window shifted to the left
•
EN23
- t45 window shifted to the right
- FCLN, SON, EN2, EN3
- t45 reference timing
The timings corresponding to EN01, EN01D, and EN23 are defined in the LVDS mode. In order to use the EN23
timings, the application should use the EN2 and EN3 outputs of the MSC module.
ALT1
FCLN
ALTx
LVDSM
ALTy
FCLP
FCLND
FCLN
ALT7
PAD
ALT1
SON ALTx
LVDSM
ALTy
SOP
SOND
SON
ALT7
PAD
ALT1
EN0
ALTx
CMOS
ALTy
EN1
ALT7
PAD
EN2
ALT1
ALTx
EN3
CMOS
ALTy
MSC
ALT7
PAD
_DoublePath_4a.vsd
Figure 3-22 Timing Options for t45
Mapping B, CMOS MP Pads
This timing applies for the dedicated CMOS pads, pin Mapping B:
•
MP strong sharp (MPss) output pads for the clock and the data signals
•
MP strong sharp or strong medium (MP+ss or MP+sm) output pads for enable signals
Table 3-76 MPss clock/data (LVDS pads in CMOS mode, option EN01)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
Deviation from ideal duty cycle t400 CC
2 * TA
-2
2) 3)
Note / Test Condition
ns
MPss; CL=50pF
Typ.
Max.
-
-
-
3+0.035 * ns
4) 5)
Data Sheet
Unit
MPss; 0 < CL < 100pF
CL
3-415
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 5 V Operation
Table 3-76 MPss clock/data (LVDS pads in CMOS mode, option EN01) (cont’d)
Parameter
Symbol
SOPx output delay
ENx output delay
6)
6)
SDI bit time
SDI rise time
SDI fall time
7)
7)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
t44 CC
-4
-
7
ns
MPss; CL=50pF
t45 CC
-6
-
7
ns
MP+ss/MPRss;
CL=50pF
-2
-
16.5
ns
MP+sm/MPRsm;
CL=50pF
-4
-
10
ns
MPss; CL=50pF
0
-
32
ns
MPsm; CL=50pF;
except pin P13.0
0
-
32
ns
MPsm; CL=50pF; pin
P13.0
5
-
45
ns
MPm/MP+m/MPRm;
CL=50pF
-11
-
7.5
ns
MP+ss/MPRss;
CL=0pF
-4
-
13
ns
MP+sm/MPRsm;
CL=0pF
-10
-
7
ns
MPss; CL=0pF
-1
-
22
ns
MPsm; CL=0pF
-2
-
25
ns
MP+m/MPm/MPRm;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TA depends on the clock source selected for baud rate generation in the ABRA block of the MSC.
3) FCLP signal high and low can be minimum 1 * TMSC.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Table 3-77 MP+sm/MPRsm clock/data
Parameter
FCLPx clock period
Symbol
1)
t40 CC
Deviation from ideal duty cycle t400 CC
Values
Note / Test Condition
Min.
Typ.
Max.
2 * TA
-
-
ns
MP+sm/MPRsm;
CL=50pF
-3
-
3+0.01 *
ns
MP+sm/MPRsm; 0 <
CL < 200pF
2) 3)
Data Sheet
Unit
CL
3-416
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 5 V Operation
Table 3-77 MP+sm/MPRsm clock/data (cont’d)
Parameter
Symbol
SOPx output delay
ENx output delay
4)
4)
t44 CC
t45 CC
Values
Min.
Typ.
Max.
-5
-
7
5)
Unit
Note / Test Condition
ns
MP+sm; CL=50pF
ns
MPss; CL=50pF
-13
-
2
-5
-
11
ns
MP+sm/MPRsm;
CL=50pF
1
-
25
ns
MPsm; CL=50pF
3
-
37
ns
MP+m/MPm/MPRm;
CL=50pF
-19
-
2
ns
MPss; CL=0pF
-13
-
8
ns
MP+sm; CL=0pF
-5
-
17
ns
MPsm; CL=0pF
-5
-
20
ns
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) From FCLP rising edge.
5) If EN1 is configured to P13.0 the max limt is increased by 0.5ns to 2.5ns.
Table 3-78 MPm/MP+m/MPRm clock/data
Parameter
FCLPx clock period
Symbol
1)
t40 CC
Deviation from ideal duty cycle t400 CC
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
2 * TA
-
-
ns
MPm/MP+m/MPRm;
CL=50pF
-16
-
4+0.04 *
ns
MPm/MP+m; 0 < CL <
200pF
2) 3)
CL
SOPx output delay 4)
t44 CC
-11
-
20
ns
MPm/MP+m; CL=50pF
ENx output delay 4)
t45 CC
-13
-
24
ns
MPm/MP+m/MPRm;
CL=50pF
-33
-
17
ns
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) From FCLP rising edge.
Data Sheet
3-417
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
t40
t400
FCLP
t44
t44
t45
t45
SOP
EN
0.5 VEXT/FLEX
t48
t49
0.9 VEXT/FLEX
SDI
0.1 VEXT/FLEX
t46
t46
MSC_Timing_A.vsd
Figure 3-23 MSC Interface Timing
Note: The SOP data signal is sampled with the falling edge of FCLP in the target device.
3.27
MSC Timing 3.3 V Operation
The following section defines the timings for 3.3V pad power supply.
Mapping A, Combo Pads in LVDS Mode or CMOS Mode
The timing applies for the LVDS pads in LVDS operating mode:
•
The LVDSM output pads for clock and data signals set in LVDS mode
•
The CMOS MP pads for enable signals, with strong driver sharp edge (MPss) or strong driver medium edge
(MPsm).
Table 3-79 LVDS clock/data (LVDS pads in LVDS mode)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
2 * TA
2) 3)
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
LVDSM; CL=50pF
Deviation from ideal duty cycle t400 CC
-2
-
2
ns
LVDSM; 0 < CL < 50pF
SOPx output delay 6)
-5
-
5
ns
LVDSM; CL=50pF;
option EN01
-7
-
7
ns
LVDSM; CL=50pF;
option EN01D
4) 5)
Data Sheet
t44 CC
3-418
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Table 3-79 LVDS clock/data (LVDS pads in LVDS mode) (cont’d)
Parameter
Symbol
ENx output delay
6)
SDI bit time
SDI rise time
SDI fall time
7)
7)
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-7
-
9.5
ns
MP+ss/MPRss; option
EN01; CL=25pF
-5
-
13
ns
MP+ss/MPRss; option
EN01; CL=50pF
-5
-
26
ns
MP+sm/MPRsm;
option EN01D;
CL=50pF
-4
-
16
ns
MP+ss/MPRss; option
EN23; CL=25pF
-4
-
17
ns
MP+ss/MPRss; option
EN23; CL=50pF
-5
-
19
ns
MPss; option EN01;
CL=50pF
-12
-
5.5
ns
MP+ss/MPRss; option
EN01; CL=0pF
-9
-
11
ns
MP+sm/MPRsm;
option EN01D; CL=0pF
-7
-
9
ns
MP+ss/MPRss; option
EN23; CL=0pF
-12
-
7
ns
MPss; option EN01;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
t45 CC
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns
3) The capacitive load on the LVDS pins is differential, the capacitive load on the CMOS pins is single ended.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Mapping B, CMOS MP Pads
This timing applies for the dedicated CMOS pads, pin Mapping B:
•
MP strong sharp (MPss) output pads for the clock and the data signals
•
MP strong sharp or strong medium (MPss or MPsm) output pads for enable signals
Data Sheet
3-419
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Table 3-80 MPss clock/data (LVDS pads in CMOS mode, option EN01)
Parameter
Symbol
Values
Min.
FCLPx clock period
1)
t40 CC
Deviation from ideal duty cycle t400 CC
2 * TA
2) 3)
-5
Unit
Note / Test Condition
Typ.
Max.
-
-
ns
MPss; CL=50pF
7+0.07 *
ns
MPss; 0 < CL < 100pF
-
4) 5)
CL
SOPx output delay 6)
t44 CC
-7
-
12
ns
MPss; CL=50pF
ENx output delay 6)
t45 CC
-9
-
12
ns
MP+ss/MPRss;
CL=50pF
-4
-
26
ns
MP+sm/MPRsm;
CL=50pF
-7
-
17
ns
MPss; CL=50pF
0
-
56
ns
MPsm; CL=50pF;
except pin P13.0
0
-
58
ns
MPsm; CL=50pF; pin
P13.0
4
-
77
ns
MPm/MP+m/MPRm;
CL=50pF
-19
-
8
ns
MP+ss/MPRss;
CL=0pF
-7
-
19
ns
MP+sm/MPRsm;
CL=0pF
-17
-
8
ns
MPss; CL=0pF
-2
-
38
ns
MPsm; CL=0pF
-4
-
41
ns
MP+m/MPm/MPRm;
CL=0pF
t46 CC
8 * tMSC
-
-
ns
Upstream Timing
t48 SR
-
-
200
ns
Upstream Timing
t49 SR
-
-
200
ns
SDI bit time
SDI rise time
SDI fall time
7)
7)
Upstream Timing
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) TAmin = TMAX. When TMAX = 100 MHz,t40 = 20 ns
3) FCLP signal high and low can be minimum 1 * TMSC.
4) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
5) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
6) From FCLP rising edge.
7) When using slow and asymmetrical edges, like in case of open drain upstream connection, the application must take care
that the bit is long enough (the baud rate is low enough) so that under worst case conditions the three sampling points in
the middle of the bit are not violated.
Data Sheet
3-420
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
Table 3-81 MP+sm/MPRsm clock/data
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
2 * TA
-
-
ns
MP+sm/MPRsm;
CL=50pF
Deviation from ideal duty cycle t400 CC
-6
-
7
ns
MP+sm/MPRsm; 0 <
CL < 200pF
SOPx output delay 4)
t44 CC
-9
-
12
ns
MP+sm; CL=50pF
t45 CC
-20
-
4
ns
MPss; CL=50pF
-9
-
19
ns
MP+sm/MPRsm;
CL=50pF
0
-
44
ns
MPsm; CL=50pF
0
-
63
ns
MP+m/MPm/MPRm;
CL=50pF
-33
-
0
ns
MPss; CL=0pF
-23
-
9
ns
MP+sm/MPRsm;
CL=0pF
-9
-
28
ns
MPsm; CL=0pF
-9
-
31
ns
FCLPx clock period
1)
t40 CC
2) 3)
ENx output delay
4)
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
4) From FCLP rising edge.
Table 3-82 MPm/MP+m/MPRm clock/data
Parameter
Symbol
FCLPx clock period
1)
t40 CC
Deviation from ideal duty cycle t400 CC
2) 3)
4)
4)
Unit
Note / Test Condition
Min.
Typ.
Max.
2 * TA
-
-
ns
MPm/MP+m/MPRm;
CL=50pF
-6-0.95 *
-
6+0.07 *
ns
MPm/MP+m/MPRm; 0
< CL < 200pF
CL
SOPx output delay
ENx output delay
Values
CL
t44 CC
-19
-
34
ns
MPm/MP+m; CL=50pF
t45 CC
-19
-
38
ns
MPm/MP+m/MPRm;
CL=50pF
-57
-
27
ns
MPm/MP+m/MPRm;
CL=0pF
1) FCLP signal rise/fall times are the rise/fall times of the LVDSM pads, and the high/low times are min 1 * TA.
2) The PLL jitter is not included. It should be considered additionally, corresponding to the used baudrate. The duty cycle can
be adjusted if the ABRA block is used.
3) Positive deviation lenghtens the high time and shortens the low time of a clock period. Negative deviation does the
opposite.
Data Sheet
3-421
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationMSC Timing 3.3 V Operation
4) From FCLP rising edge.
t40
t400
FCLP
t44
t44
t45
t45
SOP
EN
0.5 VEXT/FLEX
t48
t49
0.9 VEXT/FLEX
SDI
0.1 VEXT/FLEX
t46
t46
MSC_Timing_A.vsd
Figure 3-24 MSC Interface Timing
Note: The SOP data signal is sampled with the falling edge of FCLP in the target device.
Data Sheet
3-422
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.28
Ethernet Interface (ETH) Characteristics
3.28.1
ETH Measurement Reference Points
ETH Clock
1.4 V
1.4 V
ETH I/O
2.0 V
0.8 V
2.0 V
0.8 V
tR
tF
ETH_Testpoints.vsd
Figure 3-25 ETH Measurement Reference Points
Data Sheet
3-423
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.28.2
ETH Management Signal Parameters (ETH_MDC, ETH_MDIO)
Table 3-83 ETH Management Signal Parameters
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
ETH_MDC period
t1 CC
400
-
-
ns
CL=25pF
ETH_MDC high time
t2 CC
160
-
-
ns
CL=25pF
ETH_MDC low time
t3 CC
160
-
-
ns
CL=25pF
ETH_MDIO setup time (output) t4 CC
10
-
-
ns
CL=25pF
ETH_MDIO hold time (output)
t5 CC
10
-
-
ns
CL=25pF
ETH_MDIO data valid (input)
t6 SR
0
-
300
ns
CL=25pF
t1
t3
t2
ETH_MDC
ETH_MDIO
sourced by controller :
ETH_MDC
t4
ETH_MDIO
(output )
t5
Valid Data
ETH_MDIO sourced by PHY:
ETH_MDC
t6
ETH_MDIO
(input )
Valid Data
ETH_Timing-Mgmt.vsd
Figure 3-26 ETH Management Signal Timing
Data Sheet
3-424
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.28.3
ETH MII Parameters
In the following, the parameters of the MII (Media Independent Interface) are described.
Table 3-84 ETH MII Signal Timing Parameters
Parameter
Symbol
Clock period
t7 SR
Clock high time
t8 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
40
-
-
ns
CL=25pF;
baudrate=100Mbps
400
-
-
ns
CL=25pF;
baudrate=10Mbps
14
-
26
ns
CL=25pF;
baudrate=100Mbps
140 1)
-
260 2)
ns
CL=25pF;
baudrate=10Mbps
Clock low time
t9 SR
14
-
26
ns
CL=25pF;
baudrate=100Mbps
140 1)
-
260 2)
ns
CL=25pF;
baudrate=10Mbps
Input setup time
t10 SR
10
-
-
ns
CL=25pF
Input hold time
t11 SR
10
-
-
ns
CL=25pF
Output valid time
t12 CC
0
-
25
ns
CL=25pF
1) Defined by 35% of clock period.
2) Defined by 65% of clock period.
t7
t9
ETH_MII_RX_CLK
ETH_MII_TX_CLK
t8
ETH_MII_RX_CLK
t1 0
ETH_MII_RXD[3:0]
ETH_MII_RX_DV
ETH_MII_RX_ER
(sourced by PHY )
t1 1
Valid Data
ETH_MII_TX_CLK
t1 2
ETH_MII_TXD[3:0]
ETH_MII_TXEN
(sourced by controller )
Valid Data
ETH_Timing-MII.vsd
Figure 3-27 ETH MII Signal Timing
Data Sheet
3-425
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEthernet Interface (ETH) Characteristics
3.28.4
ETH RMII Parameters
In the following, the parameters of the RMII (Reduced Media Independent Interface) are described.
Table 3-85 ETH RMII Signal Timing Parameters
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
20
-
-
ns
CL=25pF; 50ppm
ETH_RMII_REF_CL clock high t14 CC
time
7 1)
-
13 2)
ns
CL=25pF
ETH_RMII_REF_CL clock low t15 CC
time
7 1)
-
13 2)
ns
CL=25pF
ETH_RMII_REF_CL clock
period
t13 CC
ETHTXEN, ETHTXD[1:0],
ETHRXD[1:0], ETHCRSDV,
ETHRXER; setup time
t16 CC
4
-
-
ns
CL=25pF
ETHTXEN, ETHTXD[1:0],
ETHRXD[1:0], ETHCRSDV,
ETHRXER; hold time
t17 CC
2
-
-
ns
CL=25pF
1) Defined by 35% of clock period.
2) Defined by 65% of clock period.
t1 3
t1 5
t14
ETH_RMII_REF_CL
ETH_RMII_REF_CL
t1 6
ETHTXEN,
ETHTXD[1:0],
ETHRXD[1:0],
ETHCRSDV,
ETHRXER
t17
Valid Data
ETH_Timing-RMII .vsd
Figure 3-28 ETH RMII Signal Timing
Data Sheet
3-426
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationE-Ray Parameters
3.29
E-Ray Parameters
The timings of this section are valid for the strong driver and either sharp edge settings of the output drivers with
CL = 25 pF. For the inputs the hysteresis has to be configured to inactive.
Table 3-86 Transmit Parameters
Parameter
Symbol
Values
Min.
Rise time of TxEN
tdCCTxENRise2 5
Fall time of TxEN
Unit
Note / Test Condition
Typ.
Max.
-
9
ns
CL=25pF
-
9
ns
CL=25pF
-
9
ns
20% - 80%; CL=25pF
CC
tdCCTxENFall25 CC
Sum of rise and fall time
tdCCTxRise25+ dCCTxFall25
CC
Sum of delay between TP1_FF tdCCTxEN01
CC
and TP1_CC and delays
derived from TP1_FFi, rising
edge of TxEN
-
-
25
ns
Sum of delay between TP1_FF tdCCTxEN10
CC
and TP1_CC and delays
derived from TP1_FFi, falling
edge of TxEN
-
-
25
ns
-2.45
-
2.45
ns
Sum of delay between TP1_FF tdCCTxD01
and TP1_CC and delays
CC
derived from TP1_FFi, rising
edge of TxD
-
-
25
ns
Sum of delay between TP1_FF tdCCTxD10
CC
and TP1_CC and delays
derived from TP1_FFi, falling
edge of TxD
-
-
25
ns
TxD signal sum of rise and fall ttxd_sum CC
time at TP1_BD
-
-
9
ns
Asymmetry of sending
ttx_asym CC
CL=25pF
Table 3-87 Receive Parameters
Parameter
Symbol
Values
Min.
Max.
-
43.0
ns
CL=25pF
-
44.0
ns
CL=15pF
35
-
70
%
30
-
65
%
tdCCTxAsymAcc -30.5
Acceptance of asymmetry at
receiving part
tdCCTxAsymAcc -31.5
Threshold for detecting logical
high
TuCCLogic1
SR
Threshold for detecting logical
low
SR
Data Sheet
Note / Test Condition
Typ.
Acceptance of asymmetry at
receiving part
ept25
Unit
SR
ept15 SR
TuCCLogic0
3-427
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationE-Ray Parameters
Table 3-87 Receive Parameters (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Sum of delay between TP4_CC tdCCRxD01
and TP4_FF and delays
CC
derived from TP4_FFi, rising
edge of RxD
-
-
10
ns
Sum of delay between TP1_CC tdCCRxD10
CC
and TP1_CC and delays
derived from TP4_FFi, falling
edge of RxD
-
-
10
ns
Data Sheet
3-428
Note / Test Condition
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationHSCT Parameters
3.30
HSCT Parameters
Table 3-88 HSCT - Rx/Tx setup timing
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
RX o/p duty cycle
DCrx CC
40
-
60
%
Bias startup time
tbias CC
-
5
10
µs
Bias distributor waking
up from power down
and provide stable
Bias.
RX startup time
trxi CC
-
5
-
µs
Wake-up RX from
power down.
TX startup time
ttx CC
-
5
-
µs
Wake-up TX from
power down.
Unit
Note / Test Condition
Total Budget for
complete receiver
including silicon,
package, pins and
bond wire
Table 3-89 HSCT - Rx parasitics and loads
Parameter
Symbol
Values
Min.
Typ.
Max.
Capacitance total budget
Ctotal CC
-
3.5
5
pF
Parasitic inductance budget
Htotal CC
-
5
-
nH
Table 3-90 LVDSH - Reduced TX and RX (RED)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Output differential voltage
VOD CC
150
200
285
mV
Rt = 100 Ohm ±20%
@2pF
Output voltage high
VOH CC
-
-
1463
mV
Rt = 100 Ohm ±20%
Output voltage low
VOL CC
937
-
-
mV
Rt = 100 Ohm ±20%
Output offset (Common mode) VOS CC
voltage
1.08
1.2
1.32
V
Rt = 100 Ohm ±20%
@2pF
Input voltage range
-
-
1.6
V
Absolute max = 1.6 V +
(285mV/2) = 1.743
0.15
-
-
V
Absolute min = 0.15 V (285 mV /2) = 0 V
100 mV for 55% of bit
period; Note Absolute
Value (Vidth - Vidthl)
VI SR
Input differential threshold
Vidth SR
-100
-
100
mV
Data frequency
DR CC
5
-
320
Mbps
Data Sheet
3-429
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationHSCT Parameters
Table 3-90 LVDSH - Reduced TX and RX (RED) (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
90
100
110
Ohm
0 V < VI < 1.6V
80
100
120
Ohm
1.6 V < VI < 2.0V
-
-
2
V/ns
Change in VOS between 0 and dVOS CC
1
-
-
50
mV
Peak to peak
(including DC
transients).
Change in Vod between 0 and dVod CC
1
-
-
50
mV
Peak to peak
(including DC
transients)
Fall time 1)
tfall CC
0.26
-
1.2
ns
Rt = 100 Ohm ±20%
@2pF
Rise time 1)
trise CC
0.26
-
1.2
ns
Rt = 100 Ohm ±20%
@2pF
Unit
Note / Test Condition
Receiver differential input
impedance
Rin CC
Slew rate
SRtx CC
1) Rise / fall times are defined for 10% - 90% of VOD
Table 3-91 HSCT PLL
Parameter
Symbol
Values
Min.
Typ.
Max.
PLL frequency range
fPLL CC
12.5
320
320
MHz
PLL input frequency
fREF CC
10
-
20
MHz
PLL lock-in time
tLOCK CC
-
-
50
µs
Bit Error Rate based on 10 MHz BER10 CC
reference clock at Slave PLL
side
-
-
10EXP-9
-
Bit Error Rate based
on Slave interface
reference clock at 10
MHz
Bit Error Rate based on 20 MHz BER20 CC
reference clock at Slave PLL
side
-
-
10EXP12
-
Bit Error Rate based
on Slave interface
reference clock at 20
MHz
Absolute RMS Jitter (TX out)
JABS10 CC
-125
-
125
ps
Measured at link TX
out; valid for
Reference frequency
at 10 MHz
Absolute RMS Jitter (TX out)
JABS20 CC
-85
-
85
ps
Measured at link TX
out; valid for
Reference frequency
at 20 MHz
Data Sheet
3-430
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationHSCT Parameters
Table 3-91 HSCT PLL (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Accumulated RMS Jitter (RX
side)
JACC10 CC
-
-
145
ps
Measured at link RX
input, based on 5000
measures, each 300
clock cycles; valid for
Reference frequency
at 10 MHz
Accumulated RMS Jitter (link
RX side)
JACC20 CC
-
-
115
ps
Measured at link RX
input, based on 5000
measures, each 300
clock cycles; valid for
Reference frequency
at 20 MHz
Total Jitter peak to peak
TJpp CC
-
-
2083
ps
Total Jitter as sum of
deterministic jitter and
random jitter
Unit
Note / Test Condition
Table 3-92 HSCT Sysclk
Parameter
Symbol
Values
Min.
Typ.
Max.
Frequency
fSYSCLK CC
10
-
20
MHz
Frequency error
dfERR CC
-1
-
1
%
Duty Cycle
DCsys CC
45
-
55
%
Load impedance
RLOAD CC
10
-
-
kOhm
Load capacitance
CLOAD CC
-
-
10
pF
Integrated phase noise
IPN CC
-
-
-58
dB
Data Sheet
3-431
single sideband phase
noise in 10 kHz to 10
Mhz at 20 MHz SysClk
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationInter-IC (I2C) Interface Timing
3.31
Inter-IC (I2C) Interface Timing
This section defines the timings for I2C in the TC290 / TC297 / TC298 / TC299.
All I2C timing parameter are SR for Master Mode and CC for Slave Mode.
Table 3-93 I2C Standard Mode Timing
Parameter
Symbol
Values
Unit
Note / Test Condition
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Min.
Typ.
Max.
Fall time of both SDA and SCL t1
-
-
300
ns
Capacitive load for each bus
line
-
-
400
pF
Bus free time between a STOP t10
and ATART condition
4.7
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Rise time of both SDA and SCL t2
-
-
1000
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data hold time
t3
0
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data set-up time
t4
250
-
-
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Low period of SCL clock
t5
4.7
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
High period of SCL clock
t6
4
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Hold time for the (repeated)
START condition
t7
4
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data Sheet
Cb SR
3-432
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationInter-IC (I2C) Interface Timing
Table 3-93 I2C Standard Mode Timing (cont’d)
Parameter
Set-up time for (repeated)
START condition
Symbol
t8
Set-up time for STOP condition t9
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
4.7
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
4
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Unit
Note / Test Condition
300
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Table 3-94 I2C Fast Mode Timing
Parameter
Symbol
Values
Min.
Fall time of both SDA and SCL t1
Typ.
20+0.1*C -
Max.
b
Capacitive load for each bus
line
Cb SR
-
-
400
pF
Bus free time between a STOP t10
and ATART condition
1.3
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Rise time of both SDA and SCL t2
20+0.1*C -
300
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
b
Data hold time
t3
0
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data set-up time
t4
100
-
-
ns
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Low period of SCL clock
t5
1.3
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
High period of SCL clock
t6
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Data Sheet
3-433
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationInter-IC (I2C) Interface Timing
Table 3-94 I2C Fast Mode Timing (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Hold time for the (repeated)
START condition
t7
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Set-up time for (repeated)
START condition
t8
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
Set-up time for STOP condition t9
0.6
-
-
µs
Measured with a pullup resistor of 4.7
kohms at each of the
SCL and SDA line
t1
SDA
t2
t4
70%
30%
t1
t3
t2
t6
SCL
th
S
t7
9
clock
t5
t10
SDA
t8
t7
t9
SCL
th
9
clock
Sr
P
S
Figure 3-29 I2C Standard and Fast Mode Timing
Data Sheet
3-434
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEBU Timings
3.32
EBU Timings
3.32.1
BFCLKO Output Clock Timing
VSS = 0 V;VDD = 1.3 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%,;
CL = 35 pF
Table 3-95 BFCLK0 Output Clock Timing Parameters1)
Parameter
Symbol
Values
Unit
Note /
Test Conditi
on
Min.
Typ.
Max.
13.332)
–
–
ns
–
BFCLKO clock period
tBFCLKO CC
BFCLKO high time
t5
CC
3
–
–
ns
–
BFCLKO low time
t6
CC
3
–
–
ns
–
BFCLKO rise time
t7
CC
–
–
3
ns
–
–
–
3
ns
–
35
50
55
%
–
BFCLKO fall time
t8
3)
BFCLKO duty cycle t5/(t5 + t6)
CC
DC
1) Not subject to production test, verified by design/characterization.
2) The PLL jitter characteristics add to this value according to the application settings. See the PLL jitter parameters.
3) The PLL jitter is not included in this parameter. If the BFCLKO frequency is equal to fCPU, the K divider has to be regarded.
tBFCLKO
BFCLKO
0.9 VDD
0.1 VDD
0.5 VDDP05
t5
t8
t6
t7
MCT04883_mod
Figure 3-30 BFCLKO Output Clock Timing
3.32.2
EBU Asynchronous Timings
VSS = 0 V;VDD = 1.3 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%, Class B pins;
CL = 35 pF for address/data; CL = 40pF for the control lines.
For each timing, the accumulated PLL jitter of the programed duration in number of clock periods must be added
separately. Operating conditions apply and CL = 35 pF.
Table 3-96 Common Asynchronous Timings
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
AD(31:0) output delay to ADV# t13 CC
rising edge, multiplexed read /
write
-5.5
-
2
ns
AD(31:0) output delay to ADV# t14 CC
rising edge, multiplexed read /
write
-5.5
-
2
ns
Data Sheet
3-435
Note / Test Condition
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEBU Timings
Table 3-96 Common Asynchronous Timings (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Address valid to CS falling
edge (deviation from
programmed value)
t15 CC
-2
-
2
ns
Address valid -> ADV falling
edge (deviation from
programmed value)
t16 CC
-2
-
2
ns
ADV falling edge -> CS falling
edge (deviation from
programmed value)
t17 CC
-2
-
2
ns
-0.8
-
0.8
ns
edge=medium
-0.8
-
0.8
ns
edge=sharp
Unit
Note / Test Condition
Pulse wdih deviation from the ta CC
ideal programmed width due to
pad asymmetry, rise delay - fall
delay
Table 3-97 Asynchronous Read Timings
Parameter
Symbol
Values
Min.
Typ.
Max.
A(23:0) output delay to RD
t0 CC
rising edge, deviation from the
ideal programmed value
-2.5
-
2.5
ns
AD(31:0) output delay to ADV# t13 CC
rising edge, multiplexed read /
write
-2.5
-
10
ns
AD(31:0) output delay to ADV# t14 CC
rising edge, multiplexed read /
write
-2.5
-
10
ns
Data input Hold from CS rising t18 CC
edge
-4
-
-
ns
t19 CC
12
-
-
ns
-2.5
-
2.5
ns
Data input Setup to CS rising
edge
t1 CC
A(23:0) output delay to RD
rising edge, deviation from the
ideal programmed value
CS rising edge to RD rising
edge, deviation from the ideal
programmed value
t2 CC
-2
-
2.5
ns
ADV rising edge to RD rising
edge, deviation from the ideal
programmed value
t3 CC
-1.5
-
4.5
ns
BC rising edge to RD rising
edge, deviation from the ideal
programmed value
t4 CC
-2.5
-
2.5
ns
Data Sheet
3-436
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEBU Timings
Table 3-97 Asynchronous Read Timings (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
WAIT input setup to RD rising
edge
t5 SR
12
-
-
ns
WAIT input hold to RD rising
edge
t6 SR
0
-
-
ns
Data input setup to RD rising
edge
t7 SR
12
-
-
ns
Data input hold to RD rising
edge
t8 SR
0
-
-
ns
-2.5
-
1.5
ns
Address
Phase
Address Hold
Phase (opt.)
Command
Phase
Data
Hold Phase
Recovery
Phase (opt.)
ADDRC
AHOLDC
RDWAIT
DATAC
RDRECOVC
1...31
0...15
t9 CC
MR / W output delay to RD#
rising edge, deviation from the
ideal programmed value
EBU
STATE
Control Bitfield:
Duration Limits in
EBU_CLK Cycles
1...15
0...15
A[23:0]
0...15
pv + t30
pv +
New Addr.
Phase
ADDRC
1...15
Next
Addr.
Valid Address
CS[3:0]
CSCOMB
Note / Test Condition
pv + t31
ta
pv + t32
pv + t33
pv + ta
ADV
pv +
ta
RD/WR
pv +
ta
pv +
ta
BC[3:0]
t34
t35
WAIT
t36
pv +
AD[31:0]
t14
t13
t37
Data Out
Address Out
MR/W
pv + t38
pv + t39
pv = programmed value,
TEBU_CLK * sum (correponding bitfield values)
new_MuxWR_Async_10.vsd
Figure 3-31 Multiplexed Read Access
Data Sheet
3-437
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEBU Timings
EBU
STATE
Control Bitfield:
Duration Limits in
EBU_CLK Cycles
Address
Phase
Address Hold
Phase (opt.)
ADDRC
AHOLDC
1...15
0...15
A[23:0]
Command
Phase
Data
Hold Phase
RDWAIT
DATAC
1...31
0...15
Recovery
Phase (opt.)
New Addr.
Phase
RDRECOVC
0...15
ADDRC
1...15
Next
Addr.
Valid Address
pv + t30
pv +
CS[3:0]
CSCOMB
pv + t31
ta
pv + t32
pv + t33
pv + ta
ADV
pv +
ta
RD/WR
pv +
ta
pv +
ta
BC[3:0]
t34
t35
WAIT
t36
t37
AD[31:0]
pv + t38
Data Out
pv + t39
MR/W
pv = programmed value,
TEBU_CLK * sum (correponding bitfield values)
new_DemuxWR_Async_10.vsd
Figure 3-32 Demultiplexed Read Access
Table 3-98 Asynchronous Write Timings
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
A(23:0) output delay to WR
t30 CC
rising edge, deviation from the
ideal programmed value
-2.5
-
2.5
ns
t31 CC
A(23:0) output delay to WR
rising edge, deviation from the
ideal programmed value
-2.5
-
2.5
ns
-2
-
2
ns
CS rising edge to WR rising
edge, deviation from the ideal
programmed value
Data Sheet
t32 CC
3-438
Note / Test Condition
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEBU Timings
Table 3-98 Asynchronous Write Timings (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
ADV rising edge to WR rising
edge, deviation from the ideal
programmed value
t33 CC
-2.5
-
2
ns
BC rising edge to WR rising
edge, deviation from the ideal
programmed value
t34 CC
-2.5
-
2
ns
12
-
-
ns
0
-
-
ns
Data output delay to WR rising t37 CC
edge, deviation from the ideal
programmed value
-5.5
-
10
ns
Data output delay to WR rising t38 CC
edge, deviation from the ideal
programmed value
-5.5
-
2
ns
t39 CC
MR / W output delay to WR
rising edge, deviation from the
ideal programmed value
-2.5
-
1.5
ns
WAIT input setup to WR rising t35 SR
edge, deviation from the ideal
programmed value
WAIT input hold to WR rising
edge, deviation from the ideal
programmed value
3.32.3
t36 CC
Note / Test Condition
EBU Burst Mode Access Timing
VSS = 0 V;VDD = 1.3 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5%;
CL = 35 pF;
Table 3-99 Burst Read Timings
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Output delay from BFCLKO
rising edge
t10 CC
-2
-
2
ns
D(31:0) Output delay from
BFCLKO rising edge
t10a CC
-2
-
10
ns
-2
-
2
ns
RD and RD/WR active/inactive t12 CC
after BFCLKO active edge
CSx output delay from
BFCLKO active edge
t21 CC
-2.5
-
1.5
ns
ADV active/inactive after
BFCLKO active edge
t22 CC
-2
-
2
ns
BAA active/inactive after
BFCLKO active edge
t22a CC
-2.5
-
4.5
ns
Data setup to BFCLKI rising
edge
t23 SR
3
-
-
ns
Data Sheet
3-439
Note / Test Condition
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEBU Timings
Table 3-99 Burst Read Timings (cont’d)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Data hold from BFCLKI rising
edge
t24 SR
0
-
-
ns
WAIT setup (low or high) to
BFCLKI rising edge
t25 SR
3
-
-
ns
WAIT hold (low or high) from
BFCLKI rising edge
t26 SR
0
-
-
ns
Address
Phase(s)
BFCLKI
BFCLKO
Command
Phase(s)
Burst
Phase(s)
Burst
Phase(s)
Recovery
Phase(s)
Note / Test Condition
Next Addr.
Phase(s)
1)
t10
t10
A[23:0]
Next
Addr.
Burst Start Address
t22
t22
t22
ADV
t21
t21
t21
CS[3:0]
CSCOMB
t12
t12
RD
RD/WR
t22a
t22a
BAA
t24
t23
D[31:0]
(32-Bit)
D[15:0]
(16-Bit)
t25
t24
t23
Data (Addr+0)
Data (Addr+4)
Data (Addr+0)
Data (Addr+2)
t26
WAIT
1)
Output delays are always referenced to BCLKO. The reference clock for input
characteristics depends on bit EBU_BFCON.FDBKEN.
EBU_BFCON.FDBKEN = 0: BFCLKO is the input reference clock.
EBU_BFCON.FDBKEN = 1: BFCLKI is the input reference clock (EBU clock
feedback enabled).
BurstRDWR_4.vsd
Figure 3-33 EBU Burst Mode Read / Write Access Timing
Data Sheet
3-440
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationEBU Timings
3.32.4
EBU Arbitration Signal Timing
VSS = 0 V;VDD = 1.5 V ± 5%; VDDEBU = 2.5 V ± 5% and 3.3 V ± 5% ;
TA = -40°C to +125°C; CL = 35 pF;
Table 3-100 EBU Arbitration Timings
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Output delay from BFCLKO
rising edge
t27 CC
-
-
4.5
ns
Data setup to BFCLKO falling
edge
t28 SR
15
-
-
ns
2
-
-
ns
Data hold from BFCLKO falling t29 SR
edge
Note / Test Condition
BFCLKO
t27
t27
HLDA Output
t27
t27
BREQ Output
BFCLKO
t28
t28
t29
t29
HOLD Input
HLDA Input
EBUArb_1
Figure 3-34 EBU Arbitration Signal Timing
Data Sheet
3-441
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationCIF Parameters
3.33
CIF Parameters
CIF timings are valid only for temperatures up the TJ = 150°C.
Table 3-101 Timings for 5V
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
96 MHz
HSYNC, VSYNC set up time
t71 SR
2.5
-
-
ns
AL input level,
hysteresis bypass
2
-
-
ns
TTL input level,
hysteresis bypass
6.5
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
2.5
-
-
ns
AL input level,
hysteresis bypass
2.5
-
-
ns
TTL input level,
hysteresis bypass
7
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
2.5
-
-
ns
AL input level,
hysteresis bypass
2
-
-
ns
TTL input level,
hysteresis bypass
6.5
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
2.5
-
-
ns
AL input level,
hysteresis bypass
2.5
-
-
ns
TTL input level,
hysteresis bypass
7
-
-
ns
TTL input level,
hysteresis on
4
-
-
ns
AL input level,
hysteresis on
HSYNC, VSYNC hold time
Pixel data set up time
Pixel data hold time
Data Sheet
t72 SR
t73 SR
t74 SR
3-442
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationCIF Parameters
Table 3-102 Timings for 3.3V
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3.5
-
-
ns
AL input level,
hysteresis bypass
4.5
-
-
ns
AL input level,
hysteresis on
9
-
-
ns
TTL input level,
hysteresis on
3
-
-
ns
TTL input level,
hysteresis bypass
4
-
-
ns
AL input level,
hysteresis bypass
5
-
-
ns
AL input level,
hysteresis on
10
-
-
ns
TTL input level,
hysteresis on
3.5
-
-
ns
TTL input level,
hysteresis bypass
3.5
-
-
ns
AL input level,
hysteresis bypass
4.5
-
-
ns
AL input level,
hysteresis on
9
-
-
ns
TTL input level,
hysteresis on
3
-
-
ns
TTL input level,
hysteresis bypass
4
-
-
ns
AL input level,
hysteresis bypass
5
-
-
ns
AL input level,
hysteresis on
10
-
-
ns
TTL input level,
hysteresis on
3.5
-
-
ns
TTL input level,
hysteresis bypass
Unit
Note / Test Condition
HSYNC, VSYNC hold time
Pixel data set up time
Pixel data hold time
t72 SR
t73 SR
t74 SR
Table 3-103 Timings for 0.4V to 2.4V input signals (2.8V imager)
Parameter
Pixel clock period
Data Sheet
Symbol
t70 SR
Values
Min.
Typ.
Max.
10.42
-
-
3-443
ns
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationCIF Parameters
Table 3-103 Timings for 0.4V to 2.4V input signals (2.8V imager) (cont’d)
Parameter
HSYNC, VSYNC set up time
HSYNC, VSYNC hold time
Pixel data set up time
Pixel data hold time
Symbol
t71 SR
t72 SR
t73 SR
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3
-
-
ns
Hysteresis Bypass,
3.3V±10%
9
-
-
ns
TTL Input Levels,
3.3V±10%
4.5
-
-
ns
TTL Input Levels,
5V±10%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±10%
10
-
-
ns
TTL Input Levels,
3.3V±10%
5
-
-
ns
TTL Input Levels,
5V±10%
3
-
-
ns
Hysteresis Bypass,
3.3V±10%
9
-
-
ns
TTL Input Levels,
3.3V±10%
4.5
-
-
ns
TTL Input Levels,
5V±10%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±10%
10
-
-
ns
TTL Input Levels,
3.3V±10%
5
-
-
ns
TTL Input Levels,
5V±10%
Table 3-104 Timings for 0.4V to 2.4V input signals (2.8V imager), ±5% pad power supply
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3
-
-
ns
Hysteresis Bypass,
3.3V±5%
9
-
-
ns
TTL Input Levels,
3.3V±5%
4.5
-
-
ns
TTL Input Levels,
5V±5%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±5%
10
-
-
ns
TTL Input Levels,
3.3V±5%
5
-
-
ns
TTL Input Levels,
5V±5%
HSYNC, VSYNC hold time
Data Sheet
t72 SR
3-444
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationCIF Parameters
Table 3-104 Timings for 0.4V to 2.4V input signals (2.8V imager), ±5% pad power supply (cont’d)
Parameter
Pixel data set up time
Pixel data hold time
Symbol
t73 SR
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3
-
-
ns
Hysteresis Bypass,
3.3V±5%
9
-
-
ns
TTL Input Levels,
3.3V±5%
4.5
-
-
ns
TTL Input Levels,
5V±5%
3.5
-
-
ns
Hysteresis Bypass,
3.3V±5%
10
-
-
ns
TTL Input Levels,
3.3V±5%
5
-
-
ns
TTL Input Levels,
5V±5%
Unit
Note / Test Condition
Table 3-105 Timings for 1.8V imager, TTL input level
Parameter
Symbol
Values
Min.
Typ.
Max.
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
HSYNC, VSYNC hold time
Pixel data set up time
Data Sheet
t72 SR
t73 SR
3-445
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationCIF Parameters
Table 3-105 Timings for 1.8V imager, TTL input level (cont’d)
Parameter
Pixel data hold time
Symbol
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
Table 3-106 Timings for 1.8V imager, 3.3V±5% pad power supply, TTL input level
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Pixel clock period
t70 SR
10.42
-
-
ns
HSYNC, VSYNC set up time
t71 SR
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
3
-
-
ns
Input signal 0.1V to
1.7V
9
-
-
ns
Input signal 0.2V to
1.6V
4.5
-
-
ns
Input signal 0.3V to
1.5V
3.5
-
-
ns
Input signal 0.4V to
1.4V
HSYNC, VSYNC hold time
Pixel data set up time
Data Sheet
t72 SR
t73 SR
3-446
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationCIF Parameters
Table 3-106 Timings for 1.8V imager, 3.3V±5% pad power supply, TTL input level (cont’d)
Parameter
Pixel data hold time
Data Sheet
Symbol
t74 SR
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
3.5
-
-
ns
Input signal 0.1V to
1.7V
10
-
-
ns
Input signal 0.2V to
1.6V
5
-
-
ns
Input signal 0.3V to
1.5V
4
-
-
ns
Input signal 0.4V to
1.4V
3-447
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationFlash Target Parameters
3.34
Flash Target Parameters
Program Flash program and erase operation is only allowed up the TJ = 150°C. Flash timing parameter are valid
for fFSI = 100 MHz.
Table 3-107 FLASH
Parameter
Symbol
Program Flash Erase Time per tERP CC
logical sector
Program Flash Erase Time per tMERP CC
Multi-Sector Command
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
1
s
cycle count < 1000
-
0.207 +
0.003 * (S
[KByte]) /
(fFSI
[MHz])1)
s
cycle count < 1000, for
sector of size S
-
-
1
s
For consecutive logical
sectors in a physical
sector, cycle count <
1000
-
0.207 +
0.003 * (S
[KByte]) /
(fFSI
[MHz])1)
s
For consecutive logical
sector range of size S
in a physical sector,
cycle count < 1000
Program Flash program time
per page in 5 V mode
tPRP5 CC
-
-
50 +
µs
3000/(fFSI
[MHz])
32 Byte
Program Flash program time
per page in 3.3 V mode
tPRP3 CC
-
-
81 +
µs
3400/(fFSI
[MHz])
32 Byte
Program Flash program time
per burst in 5 V mode
tPRPB5 CC
-
-
µs
125 +
9500/(fFSI
[MHz])
256 Byte
Program Flash program time
per burst in 3.3 V mode
tPRPB3 CC
-
-
410 +
µs
12000/(fF
SI [MHz])
256 Byte
Program Flash program time
for 1 MByte with burst
programming in 5 V mode
excluding communication
tPRPB5_1MB
-
-
0.9
s
Derived value for
documentation
purpose, valid for fFSI =
100MHz
Program Flash program time
tPRPB5_PF
for complete PFlash with burst CC
programming in 5 V mode
excluding communication
-
-
7.2
s
Derived value for
documentation
purpose, valid for fFSI =
100MHz
Write Page Once adder
-
-
15 +
500/(fFSI
[MHz])
µs
Adder to Program
Time when using Write
Page Once
Data Sheet
CC
tADD CC
3-448
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationFlash Target Parameters
Table 3-107 FLASH (cont’d)
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
Program Flash suspend to read tSPNDP CC
latency
-
-
12000/(fF µs
SI [MHz])
For Write Burst, Verify
Erased and for multi(logical) sector erase
commands
Data Flash Erase Time per
Sector 2)
-
0.12 +
0.08/(fFSI
[MHz])1)
-
s
cycle count < 1000
-
0.57 +
0.15/(fFSI
[MHz])1)
0.928 +
0.15/(fFSI
[MHz])
s
cycle count < 125000
-
0.12 +
0.01 * (S
[KByte]) /
(fFSI
[MHz])1)
s
For consecutive logical
sector range of size S,
cycle count < 1000
-
0.57 +
0.019 * (S
[KByte]) /
(fFSI
[MHz])1)
s
0.928 +
0.019 * (S
[KByte]) /
(fFSI
[MHz])
For consecutive logical
sector range of size S,
cycle count < 125000
Data Flash Erase Time per
Multi-Sector Command 2)
tERD CC
tMERD CC
Data Flash erase disturb limit
NDFD CC
-
-
50
Program time data flash per
page 3)
tPRD CC
-
-
50 +
µs
2500/(fFSI
[MHz]) 3)
8 Byte
Complete Device Flash Erase
Time PFlash and DFlash 4)
tER_Dev CC
-
-
17
Derived value for
documentation
purpose (excl. UCBs
and HSMs), valid for
fFSI = 100MHz
Data Flash program time per
burst 3)
tPRDB CC
-
-
96 +
µs
4400/(fFSI
[MHz]) 3)
Data Flash suspend to read
latency
tSPNDD CC
-
-
12000/(fF µs
SI [MHz])
tFL_MarginDel
-
-
10
µs
Program Flash Retention Time, tRET CC
Sector
20
-
-
years
Data Flash Endurance per
EEPROMx sector 5)
125000
-
-
cycles Max. data retention
time 10 years
NE_HSM CC 125000
-
-
cycles Max. data retention
time 10 years
Wait time after margin change
cycles
s
32 Bytes
CC
Data Flash Endurance per
HSMx sector 5)
Data Sheet
NE_EEP10
CC
3-449
Max. 1000
erase/program cycles
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationFlash Target Parameters
Table 3-107 FLASH (cont’d)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
UCB Retention Time
tRTU CC
20
-
-
years
Max. 100
erase/program cycles
per UCB, max 400
erase/program cycles
in total
Data Flash access delay
tDF CC
-
-
100
ns
see
PMU_FCON.WSDFLA
SH
Data Flash ECC Delay
tDFECC CC
-
-
20
ns
see
PMU_FCON.WSECD
F
Program Flash access delay
tPF CC
-
-
30
ns
see
PMU_FCON.WSPFLA
SH
Program Flash ECC delay
tPFECC CC
-
-
10
ns
see
PMU_FCON.WSECP
F
Number of erase operations on NERD0 CC
DF0 over lifetime
-
-
750000
cycles
Number of erase operations on NERD1 CC
DF1 over lifetime
-
-
500000
cycles
-
-
150
°C
Junction temperature limit for
PFlash program/erase
operations
TJPFlash SR
1) All typical values were characterised, but are not tested. Typical values are safe median values at room temperature
2) Under out-of-spec conditions (e.g. over-cycling) or in case of activation of WL oriented defects, the duration of erase
processes may be increased by up to 50%.
3) Time is not dependent on program mode (5V or 3.3V).
4) Using 512 KByte erase commands.
5) Only valid when a robust EEPROM emulation algorithm is used. For more details see the Users Manual.
Data Sheet
3-450
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPackage Outline
Package Outline
17 ±0. 1
B
1 .7 MAX
A
292 x
0.15 M C A B
0.08 M C
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
1 7 ±0.1
0.1 C
CODE
COPLANARITY
INDEX MARKING
(LASERED )
SEATIN G PLAN E
292 x
0.15
Y W V U T R P N M L K J HG F E D C B A
19 x 0 .8 = 1 5.2
0 .5 ±0.05
0 .8
3.35
INDEX
MARKING
0.8
19 x 0.8 = 15 .2
C
0.33 MIN
STANDOFF
Figure 3-35 Package Outlines LF-BGA-292-6 / LF-BGA-292-10
d
0.1 2 x
25 x 1 .0 = 25
2 .15 MAX
A
27
B
(0.56)
2x
d 0 .1
+0.07
1.0
(0.95 )
0.63 -0.13
416 x
0 .25 M C A B
0.1 M C
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
416 x
0.15 C
COPLANARITY
27
CODE
(LASERED )
AF AD AB Y W V U T R P N M L K J H G F E D C B A
AE
AC AA
C
INDEX MARKING
SEATIN G PL ANE
0.1 C
0 ,41 MIN
STAND OFF
1.0
Figure 3-36 Package Outlines PG-BGA-416-26 / PG-BGA-416-29
Data Sheet
3-451
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPackage Outline
0.1 2 x
d
B
29 x 0.8 = 23.2
1.7 MAX
A
25 ±0.1
2x
d 0.1
0 .8
0.5 ±0.05
516 x
0 .1 5 M C A B
0.08 M C
30
0.15
CODE
25 ±0.1
COPLANARITY
2
1
AK
AJ AG AE AC AA Y W V U T R P N M L K J H G F E D C B A
AH AF AD AB
0.8
C
INDEX MARKING
SEATIN G PL ANE
0.1 C
0.8
2 9 x 0 .8 = 23 .2
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
5 16x
INDEX
MARKING
0 ,3 MIN
(LASERED )
STAND OFF
Figure 3-37 Package Outlines PG-LFBGA-516-5 / PG-LFBGA-516-10
You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/products.
3.35.1
Package Parameters
Table 3-108 Thermal Characteristics of the Package
Device
Package
RQJCT1)
RQJCB1)
RQJA
Unit
TC297
LF-BGA-292-6 / LF-BGA292-10
3,0
4,3
15,1
K/W
TC298
PG-BGA-416-26 / PG-BGA- 2,9
416-29
5,4
12,8
K/W
TC299
PG-LFBGA-516-5 / PGLFBGA-516-10
4,3
15,1
K/W
2,8
Note
1) The top and bottom thermal resistances between the case and the ambient (RTCAT, RTCAB) are to be combined with the
thermal resistances between the junction and the case given above (RTJCT, RTJCB), in order to calculate the total thermal
resistance between the junction and the ambient (RTJA). The thermal resistances between the case and the ambient (RTCAT,
RTCAB) depend on the external system (PCB, case) characteristics, and are under user responsibility.
The junction temperature can be calculated using the following equation: TJ = TA + RTJA * PD, where the RTJA is the total
thermal resistance between the junction and the ambient. This total junction ambient resistance RTJA can be obtained from
the upper four partial thermal resistances.
Thermal resistances as measured by the ’cold plate method’ (MIL SPEC-883 Method 1012.1).
3.35.2
Data Sheet
TC290 Carrier Tape
3-452
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationPackage Outline
Figure 3-38 Carrier Tape Dimenions
Table 3-109 TC290 Chip Dimenions
Device
A
B
T
TC290
8,770 mm
9,357 mm
0,3 mm
Data Sheet
3-453
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
Electrical SpecificationQuality Declarations
3.36
Quality Declarations
Table 3-110 Quality Parameters
Parameter
Symbol
Values
Unit
Note / Test Condition
Min.
Typ.
Max.
-
-
24500
hour
ESD susceptibility according to VHBM
Human Body Model (HBM)
-
-
2000
V
ESD susceptibility of the LVDS VHBM1
pins
-
-
500
V
ESD susceptibility according to VCDM
Charged Device Model (CDM)
-
-
500
V
for all other balls/pins;
conforming to
JESD22-C101-C
-
-
750
V
for corner balls/pins;
conforming to
JESD22-C101-C
-
-
3
Operation Lifetime
Moisture Sensitivity Level
Data Sheet
tOP
MSL
3-454
Conforming to
JESD22-A114-B
Conforming to Jedec
J-STD--020C for 240C
V 1.1 2019-03
TC290 / TC297 / TC298 / TC299 BC-Step
HistoryChanges from TC29xBB_v1.1 to TC29xBC_v1.0
4
History
4.1
Changes from TC29xBB_v1.1 to TC29xBC_v1.0
•
•
VADC
–
Add parameter tWU
–
Add parameter RMDU
–
Add parameter RMDD
Changes in table 'Class LP 3.3V' of Standard_Pads
–
•
Changes in table 'Class LP 5V' of Standard_Pads
–
•
Change note of VILHLP from 'Hysteresis inactive; not available for P14.2, P14.4, and P15.1' to 'Hysteresis
inactive; not available for P14.2, P14.4, P15.1, P15.10 and P15.11'
ERAY
–
•
Change note of VILHLP from 'Hysteresis inactive; not available for P14.2, P14.4, and P15.1' to 'Hysteresis
inactive; not available for P14.2, P14.4, P15.1, P15.10 and P15.11'
Add statement ‘The timings of this section are valid for the strong driver and either sharp edge settings of
the output drivers with CL = 25 pF. For the inputs the hysteresis has to be configured to inactive.’
Package Outline
–
change values in table ‘TC290 Chip Dimenions’
4.2
Changes from v1.0 to v1.1
•
add package type version PG-LFBGA-516-10
•
add package type version PG-BGA-416-29
•
add package type version LF-BGA-292-10
Data Sheet
455
V 1.1 2019-03
w w w . i n f i n e o n . c o m
Published by Infineon Technologies AG