0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TDA7255V

TDA7255V

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    VFQFN40_EP

  • 描述:

    IC TRANSVR ASK/FSK 434MHZ 40VQFN

  • 数据手册
  • 价格&库存
TDA7255V 数据手册
TDA7255V ASK/FSK 434 MHz Wireless Transceiver Data Sheet Revision 1.1, 2010-11-10 Wireless Sense & Control Edition 2010-11-10 Published by Infineon Technologies AG 81726 Munich, Germany © 2010 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TDA7255V Revision History Page or Item Subjects (major changes since previous revision) Revision 1.1, 2010-11-10 Just minor changes Trademarks of Infineon Technologies AG AURIX™, BlueMoon™, COMNEON™, C166™, CROSSAVE™, CanPAK™, CIPOS™, CoolMOS™, CoolSET™, CORECONTROL™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, EUPEC™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, I²RF™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™, PROFET™, PRO-SIL™, PRIMARION™, PrimePACK™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SMARTi™, SmartLEWIS™, TEMPFET™, thinQ!™, TriCore™, TRENCHSTOP™, X-GOLD™, XMM™, X-PMU™, XPOSYS™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, PRIMECELL™, REALVIEW™, THUMB™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Sattelite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2010-06-09 Data Sheet 3 Revision 1.1, 2010-11-10 TDA7255V Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 1.1 1.2 1.3 1.4 1.5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.4.8 2.4.9 2.4.10 2.4.11 2.4.12 2.4.13 2.4.14 2.4.15 2.4.15.1 2.4.15.2 2.4.15.3 2.4.15.4 2.4.15.5 2.4.16 2.4.16.1 2.4.17 2.4.18 2.4.19 2.4.20 2.4.21 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Functional Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Functional Block Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Power Amplifier (PA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Low Noise Amplifier (LNA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Downconverter 1st Mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Downconverter 2nd I/Q Mixers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PLL Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 I/Q Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 I/Q Limiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 FSK Demodulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Data Slicer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Peak Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Bandgap Reference Circuitry and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Timing and Data Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Bus Interface and Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 I2C Bus Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Bus Data Format in I2C Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3-Wire Bus Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bus Data Format 3-Wire Bus Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Registers Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Register Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Wakeup Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Data Valid Detection, Data Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Sequence Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Clock Divider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 RSSI and Supply Voltage Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.2.1 3.2.1.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LNA and PA Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RX/TX-Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch in RX-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Switch in TX-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Crystal Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Synthesizer Frequency Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Possible Crystal Oscillator Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 4 6 6 6 7 7 7 56 56 56 57 60 61 67 70 70 Revision 1.1, 2010-11-10 TDA7255V Table of Contents 3.2.2 3.2.2.1 3.2.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.3 3.4 3.5 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.7 3.7.1 3.7.2 3.8 3.9 3.10 Transmit/Receive ASK/FSK Frequency Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FSK-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ASK-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parasitics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calculation of the External Capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . FSK-Switch Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fine-tuning and FSK Modulation Relevant Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chip and System Tolerances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IQ-Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Limiter and RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Slicer - Slicing Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RC Integrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak Detector - Analog Output Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Peak Detector – Power Down Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Valid Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Frequency Window for Data Rate Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSSI Threshold Voltage - RF Input Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calculation of ON_TIME and OFF_TIME . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Example for Self Polling Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Default Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.3 4.4 Reference Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Electrical Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 AC/DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Digital Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Test Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Test Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Data Sheet 5 70 70 72 73 74 75 75 76 77 79 80 82 82 84 86 87 88 89 90 91 92 94 Revision 1.1, 2010-11-10 TDA7255V Product Description 1 Product Description 1.1 Overview The TDA7255V is an ASK/FSK single-channel transceiver for 433 - 435 MHz frequency band in a tiny VQFN-40 package. Due to the very high level of integration the device requires only a few external components. The extreme low current consumption in receive, transmit and especially in power down mode and the wide supply voltage range make TDA7255V the ideal choice for small, battery driven applications. The device contains a low noise amplifier (LNA), a double balanced mixer, a fully integrated VCO, a PLL synthesizer, a crystal oscillator with FSK modulator, a limiter with RSSI generator, a FSK demodulator, a data filter, a data comparator (slicer), a positive and a negative data peak detector, a highly efficient power amplifier and a complex digital timing and control unit with I2C/3-wire microcontroller interface. Additionally there is a power down feature to save battery power. The transmit section uses direct ASK modulation by switching the power amplifier, and crystal oscillator detuning for FSK modulation. The necessary detuning load capacitors are external. The capacitors for fine tuning are integrated. The receive section is using a novel single-conversion/direct-conversion scheme that is combining the advantages of both receive topologies. The IF is contained on the chip, no RF channel filters are necessary as the channel filter is also on the chip. The self-polling logic can be used to let the device operate autonomously as a master for a decoding microcontroller. 1.2 • • • • • • • • • • • • • • • • • • • • Features FSK and ASK modulation and demodulation capability without external circuitry changes, FM demodulation capability Frequency range: 433 to 435 MHz Sensitivity FSK typically -115 dBm at 4 kbit/s data rate Sensitivity ASK typically -112 dBm at 4 kbit/s data rate Transmit power up to +13 dBm Low supply current (Is = 9 mA typ. in receive mode, Is = 13,5 mA typ. in transmit mode (both at 3 V supply voltage, 25°C) Very low supply current in power down mode (5 nA typ.) Supply voltage range: 2.1 V to 5.5 V Data rates up to 100 kbit/s Manchester encoded Fully integrated PLL synthesizer including VCO and loop filter on-chip with on-chip crystal oscillator tuning Differential receive signal path completely on-chip, therefore no external filters are necessary On-chip low pass channel select and data filter with tuneable bandwidth Data slicer with self-adjusting threshold and 2 peak detectors Self-polling logic with adjustable duty cycle and ultrafast data rate detection and timer mode providing periodical interrupt Adjustable LNA gain Digital RSSI and battery voltage readout Clock Out Pin for external microcontroller I2C/3-wire microcontroller interface, working at max. 400 kbit/s Operating temperature range -40°C to +85°C 5.5 x 6.5 mm small VQFN-40 package Data Sheet 6 Revision 1.1, 2010-11-10 TDA7255V Product Description 1.3 Application The TDA7255V is targeted specifically at highly size-sensitive industrial and consumer applications such as small home automation or security and alarm systems. Main applications: • • • • • • • Bi-directional remote control systems Home automation systems Lighting control Security and alarm systems Industrial control Remote keyless entry systems Low bit-rate communication systems 1.4 Ordering Information Type Ordering Code Package TDA7255V SP000698114 PG-VQFN-40-8 1.5 Package Outlines Figure 1 Package PG-VQFN-40-8 Figure 2 PG-VQFN-40-8 Package Outlines Data Sheet 7 Revision 1.1, 2010-11-10 TDA7255V 32 31 Figure 3 Data Sheet 30 29 28 27 26 25 24 23 EN RESET CLKDIV PWDDD DATA GNDRF3 RSSI CQ2x Pin Configuration CQ2 2.1 CI2x Functional Description CI2 2 GND Functional Description 22 21 CQ1x 33 20 XGND CQ1 34 19 XSWA CI1x 35 18 XIN CI1 36 17 XSWF VCC 37 16 XOUT BUSMODE 38 15 VSS LF 39 14 BUSCLK GNDRF1 40 13 GNDRF2 4 5 6 7 8 9 RXTX LIN LINX GND-PA PA VCC1 PDN PDP 10 11 12 BUSDTA 3 VDD 2 SLC 1 ASKFSK TDA7255V Pin Configuration TDA7255V 8 Revision 1.1, 2010-11-10 TDA7255V Functional Description 2.2 Pin Definitions and Functions Table 1 Pin Definition and Function Ball Name No. 1 Pin Buffer Type Type Function ASKFSK ASK/FSK-Mode Switch Input High = ASK Low = FSK 350 1 2 RXTX RX/TX-Mode Switch Input/Output High = RX Low = TX 350 2 TX 3 LNI RF Input to Differential Low Noise Amplifier (LNA) 5k 3 1.1V 5k 180 180 PWDN 4 LNIX 5 GND-PA 4 PWDN See Pin 3 Complementary RF Input to Differential LNA 28 26 and also 13, 40 Ground Return for Power Amplifier (PA) Driver Stage 15 5 Data Sheet 9 Revision 1.1, 2010-11-10 TDA7255V Functional Description Table 1 Ball Name No. 6 Pin Definition and Function (cont’d) Pin Buffer Type Type Function PA PA Output Stage 10 Ω 6 5 GND-PA 7 VCC1 Supply for LNA and PA 37 7 11 8 PDN 50k PWDN 350 50k Output of the Negative Peak Detector 3k 8 9 PDP 50k 350 50k Output of the Positive Peak Detector 3k 9 PWDN Data Sheet 10 Revision 1.1, 2010-11-10 TDA7255V Functional Description Table 1 Pin Definition and Function (cont’d) Ball Name No. 10 Pin Buffer Type Type Function SLC Slicer Level for the Data Slicer 1.2uA 350 50k 50k 50k 50k 50k 50k 10 1.2uA 11 VDD 12 BUSDTA See Pin 7 Digital Supply A 10 Ω serial resistor in the VDD supply line is strongly recommended; see also Chapter 4.4 Bus Data In/Output 15k 350 12 13 GNDRF2 14 BUSCLK See Pin 5 Ground Return for RF Except PA Bus Clock Input 350 14 15 VSS Data Sheet See Pin 5 Ground for Digital Section 11 Revision 1.1, 2010-11-10 TDA7255V Functional Description Table 1 Ball Name No. 16 Pin Definition and Function (cont’d) Pin Buffer Type Type Function XOUT 4k 16 Vcc Crystal Oscillator Output Can also be used as external reference frequency input Vcc-860m V 150μA 17 XSWF FSK Modulation Switch 18 4pF ..... 125pF 8pF ..... 250fF 17 20 18 XIN 19 XSWA See Pin 17 Ground for Digital Section ASK Modulation/FSK Center Frequency Switch 19 17 20 20 XGND 21 EN See Pin 19 Crystal Oscillator Ground Return 3-Wire Bus Enable Input, Active Low 350 21 Data Sheet 12 Revision 1.1, 2010-11-10 TDA7255V Functional Description Table 1 Pin Definition and Function (cont’d) Ball Name No. 22 Pin Buffer Type Type Function RESET Reset of the Entire System (to Default Values) Active Low 110k 350 22 10p 23 CLKDIV Clock Output 350 23 24 PWDDD Power Down Input (Active High), Data Detect Output (Active Low) 30k 350 24 25 DATA TX Data Input, RX Data Output (RX Powerdown: Pin 25 @ GND) 350 25 26 GNDRF3 Data Sheet See Pin 5 Ground Return for RF except PA 13 Revision 1.1, 2010-11-10 TDA7255V Functional Description Table 1 Ball Name No. 27 Pin Definition and Function (cont’d) Pin Buffer Type Type Function RSSI RSSI Output S&H 350 27 16p 37k 28 GND 29 CQ2x See Pin 5 Analog Ground Pin for External Capacitor Q-channel, stage 2 Stage1:Vcc-630mV Stage2: Vcc-560mV 29 30 CQ2 See Pin 29 Pin for External Capacitor Q-channel, stage 2 31 CI2x See Pin 29 Pin for External Capacitor I-channel, stage 2 32 CI2 See Pin 29 Pin for External Capacitor I-channel, stage 2 33 CQ1x See Pin 29 Pin for External Capacitor Q-channel, stage 1 34 CQ1 See Pin 29 Pin for External Capacitor Q-channel, stage 1 35 CI1x See Pin 29 Pin for External Capacitor I-channel, stage 1 36 CI1 See Pin 29 Pin for External Capacitor I-channel, stage 1 37 VCC See Pin 7 Analog Supply Antiparallel diodes between VCC, VCC1, VDD Data Sheet 14 Revision 1.1, 2010-11-10 TDA7255V Functional Description Table 1 Pin Definition and Function (cont’d) Ball Name No. 38 Pin Buffer Type Type Function BUSMODE Bus Mode Selection I2C/3 wire bus mode selection 350 38 39 LF Loop Filter and VCO Control Voltage 200 39 40 GNDRF1 Data Sheet See Pin 5 Ground Return for LNA 15 Revision 1.1, 2010-11-10 Figure 4 Data Sheet (LNA/PA) 16 PA VCC1 ANT (analog) GNDRF1 VCC 6 GND-PA 5 PA high/low Gain 40 (LNA) 4 (digital) :2 fRX= 578.85MHz fTX= 434.15MHz MIXER VCO :4 90° 0° f = 144.7MHz 39 LF LOOP FILTER MIXER TX/RX :6/8 Channel Filter Q PHASE DET. Charge P. TX/RX RSSI XIN 18 100k 6-bit SAR-ADC -Peak Det +Peak Det 19 XSWA 17 XSWF CRYSTAL Osc, FSKMod, Finetuning ASK/FSK fQ= 18.0896MHz XOUT 16 ASK DATA LIMITER ASK 20 XGND 32 31 30 29 LNA QUADRI CORRELATOR CI2 CI2x CQ2 CQ2x I Data FILTER 36 35 34 33 FSK DATA CLK Bandgap Reference 100k 100k ASK/FSK - SLICER + GNDRF3 26 21 38 GNDRF2 13 WAKEUP LOGIC CONTROLLER INTERFACE BUSDTA LP FILTER fIF= 144.7MHz FSK CI1 CI1x CQ1 CQ1x LIMITER 14 EN LINX 3 Channel Filter 12 BUSCLK LIN fRF= 434.15MHz MIXER SLC 10 VSS 15 (digital) BUSMODE single ended to differential conv. ANT 15 VDD 1 27 22 8 9 1 2 24 23 25 VCC RSSI RESET PDN PDP ASKFSK RXTX PWDDD CLKDIV Data (RX/TX 2.3 11 TDA7255V Functional Description Functional Block Diagram Main Block Diagram Revision 1.1, 2010-11-10 TDA7255V Functional Description 2.4 Functional Block Description 2.4.1 Power Amplifier (PA) The power amplifier is operating in C-mode. It can be used in either high or low power mode. In high-power mode the transmit power is approximately +13 dBm into 50 Ω at 5 V and +6 dBm at 2.1 V supply voltage. In low power mode the transmit power is approximately +11 dBm at 5 V and -32 dBm at 2.1 V supply voltage using the same matching network. The transmit power is controlled by the D0-bit of the CONFIG register (sub-address 00H) as shown in the following Table 2. The default output power mode is high power mode. Table 2 Sub Address 00H: CONFIG Bit Function Description Default D0 PA_PWR 0 = Low TX Power, 1 = High TX Power 1 In case of ASK modulation the power amplifier is turned fully on and off by the transmit baseband data, i.e. 100% On-Off-Keying. 2.4.2 Low Noise Amplifier (LNA) The LNA is an on-chip cascode amplifier with a voltage gain of 15 to 20 dB and symmetrical inputs. It is possible to reduce the gain to 0 dB via logic. Table 3 Sub Address 00H: CONFIG Bit Function Description Default D4 LNA_GAIN 0 = Low Gain, 1 = High Gain 1 2.4.3 Downconverter 1st Mixer The Double Balanced 1st Mixer converts the input frequency (RF) in the range of 434-435 MHz down to the intermediate frequency (IF) at approximately 144 MHz. The local oscillator frequency is generated by the PLL synthesizer that is fully implemented on-chip as described in Chapter 2.4.5. This local oscillator operates at approximately 578 MHz in receive mode providing the above mentioned IF frequency of 144 MHz. The mixer is followed by a low pass filter with a corner frequency of approximately 175 MHz in order to prevent RF and LO signals from appearing in the 144 MHz IF signal. 2.4.4 Downconverter 2nd I/Q Mixers The Low pass filter is followed by 2 mixers (inphase I and quadrature Q) that convert the 144 MHz IF signal down to zero-IF. These two mixers are driven by a signal that is generated by dividing the local oscillator signal by 4, thus equalling the IF frequency. Data Sheet 17 Revision 1.1, 2010-11-10 TDA7255V Functional Description 2.4.5 PLL Synthesizer The Phase Locked Loop synthesizer consists of two VCOs (i.e. transmit and receive VCO), a divider by 4, an asynchronous divider chain with selectable overall division ratio, a phase detector with charge pump and a loop filter and is fully implemented on-chip. The VCOs are including spiral inductors and varactor diodes. The center frequency of the transmit VCO is 868 MHz, the center frequency of the receive VCO is 1156 MHz. Generally in receive mode the relationship between local oscillator frequency fosc, the receive RF frequency f fRF and the IF frequency f fIF and thus the frequency that is applied to the I/Q Mixers is given in the following formula: f osc = 4/3 f RF = 4 f IF 2 (1) The VCO signal is applied to a divider by 2 and afterwards by 4 which is producing approximately 144 MHz signals in quadrature. The overall division ratio of the divider chain following the divider by 2 and 4 is 6 in transmit mode and 8 in receive mode as the nominal crystal oscillator frequency is 18.083 MHz. The division ratio is controlled by the RxTx pin (pin 2) and the D10 bit in the CONFIG register. 2.4.6 I/Q Filters The I/Q IF to zero-IF mixers are followed by baseband 6th order low pass filters that are used for RF-channel filtering. OP INTERNAL BUS Figure 5 One I/Q Filter Stage The bandwidth of the filters is controlled by the values set in the filter-register. It can be adjusted between 50 and 350 kHz in 50 kHz steps via the bits D1 to D3 of the LPF register (sub-address 03H). 2.4.7 I/Q Limiters The I/Q Limiters are DC coupled multistage amplifiers with offset-compensating feedback circuit and an overall gain of approximately 80 dB each in the frequency range of 100 Hz up to 350 kHz. Receive Signal Strength Indicator (RSSI) generators are included in both limiters which produce DC voltages that are directly proportional to the input signal level in the respective channels. The resulting I- and Q-channel RSSI-signals are summed to the nominal RSSI signal. Data Sheet 18 Revision 1.1, 2010-11-10 TDA7255V Functional Description 2.4.8 FSK Demodulator The output differential signals of the I/Q limiters are fed to a quadrature correlator circuit that is used to demodulate frequency shift keyed (FSK) signals. The demodulator gain is 2.4 mV/kHz, the maximum frequency deviation is ±300 kHz as shown in Figure 6 below. The demodulated signal is applied to the ASK/FSK mode switch which is connected to the input of the data filter. The switch can be controlled by the ASKFSK pin (pin 1) and via the D11 bit in the CONFIG register. The modulation index m must be significantly larger than 2 and the deviation at least larger than 25 kHz for correct demodulation of the signal. 1.5 1.4 1.3 U /V 1.2 1.1 1 0.9 0.8 0.7 0.6 -500 -400 -300 -200 -100 0 100 200 300 400 500 f /kHz Figure 6 Data Sheet Quadricorrelator Demodulation Characteristic 19 Revision 1.1, 2010-11-10 TDA7255V Functional Description 2.4.9 Data Filter The 2-pole data filter has a Sallen-Key architecture and is implemented fully on-chip. The bandwidth can be adjusted between approximately 5 kHz and 102 kHz via the bits D4 to D7 of the LPF register as shown in Table 29. ASK / FSK OTA INTERNAL BUS Figure 7 Data Filter Architecture 2.4.10 Data Slicer The data slicer is a fast comparator with a bandwidth of 100 kHz. The self-adjusting threshold is generated by a RC-network (LPF) or by use of one or both peak detectors depending on the baseband coding scheme as described in Chapter 3.6. This can be controlled by the D15 bit of the CONFIG register as shown in the following table. Table 4 Sub Address 00H: CONFIG Bit Function Description Default D15 SLICER 0 = Lowpass Filter, 1 = Peak Detector 0 2.4.11 Peak Detectors Two separate Peak Detectors are available. They are generating DC voltages in a fast-attack and slow-release manner that are proportional to the positive and negative peak voltages appearing in the data signal. These voltages may be used to generate a threshold voltage for non-Manchester encoded signals, for example. The time-constant of the fast-attack/slow-release action is determined by the RC network with external capacitor. 2.4.12 Crystal Oscillator The reference oscillator is an NIC oscillator type (Negative Impedance Converter) with a crystal operating in serial resonance. The nominal operating frequency of 18.089583 MHz and the frequencies for FSK modulation can be adjusted via 3 external capacitors. Via microcontroller and bus interface the chip-internal capacitors can be used for fine-tuning of the nominal and the FSK modulation frequencies. This fine-tuning of the crystal oscillator allows to eliminate frequency errors due to crystal or component tolerances. Data Sheet 20 Revision 1.1, 2010-11-10 TDA7255V Functional Description 2.4.13 Bandgap Reference Circuitry and Powerdown A Bandgap Reference Circuit provides a temperature stable 1.2 V reference voltage for the device. A power down mode is available to switch off all subcircuits that are controlled by the bidirectional Powerdown & DataDetect PWDDD pin (pin 24) as shown in the following table. Power down mode can either be activated by pin 24 or bit D14 in Register 00h. In power down mode also pin 25 (DATA) is affected (see Chapter 2.4.18). Table 5 PWDDD Pin Operating States PWDDD Operating State VDD Powerdown Mode Ground/VSS Device On Data Sheet 21 Revision 1.1, 2010-11-10 TDA7255V Functional Description 2.4.14 Timing and Data Control Unit BUSMODE EN BUSCLK BUSDTA The timing and data control unit contains a wake-up logic unit, an I2C/3-wire microcontroller interface, a “data valid” detection unit and a set of configuration registers as shown in the subsequent figure. REGISTERS I2C / 3Wire INTERFACE INTERNAL BUS DATA VALID DETECTOR 6 Bit ADC FSK DATA ASK DATA BLOCK ENABLE CONTROL LOGIC CLKDiv PWDDD DATA ASK / FSK RX / TX 32kHz RC-Osc. DATA VALID FREQUENCY window TH1 < C0 > < < - Frequency of quartz > >>> > >> > - CL > > < - The crystal oscillator in the TDA7255V is a NIC (negative impedance converter) oscillator type. The input impedance of this oscillator is a negative impedance in series to an inductance. Therefore the load capacitance of the crystal CL (specified by the crystal supplier) is transformed to the capacitance CV as shown in Equation (18). -R LOSC f, CL CV TDA7255V Figure 33 CL = Crystal Oscillator 1 1 − ω 2 LOSC CV ↔ CV = 1 1 + ω 2 LOSC CL (18) CL Crystal load capacitance for nominal frequency ω Angular frequency LOSC Inductivity of the crystal oscillator - typ: 2.7 mH with pad of board, 2.45 μH without pad Data Sheet 68 Revision 1.1, 2010-11-10 TDA7255V Application With the aid of this formula it becomes obvious that the higher the serial capacitance Cv is, the higher is the influence of LOSC. The tolerance of the internal oscillator inductivity is much higher, so the inductivity is the dominating value for the tolerance. FSK modulation and tuning are achieved by a variation of Cv. In case of small frequency deviations (up to +/- 1000 ppm), the desired load capacitances for FSK modulation are frequency depending and can be calculated with the formula below. CL ± = ⎛ 2 ⋅ (C0 + C L ) ⎞ ⎟⎟ ⋅ ⎜⎜1 + C1 ⎠ ⎝ Δf ⎛ 2 ⋅ (C0 + C L ) ⎞ ⎟⎟ ⎜1 + 1± N ⋅ f ⎜⎝ C1 ⎠ C L m C0 ⋅ Δf N⋅ f (19) CL Crystal load capacitance for nominal frequency C0 Shunt capacitance of the crystal C1 Motional capacitance of the crystal f Crystal oscillator frequency N Division ratio of the PLL Δf Peak frequency deviation With CL+ and CL- the necessary Cv+ for FSK HIGH and Cv- for FSK LOW can be calculated. Alternatively, an external AC coupled (10 nF in series to 1 kΩ) signal can be applied at pin 16 (XOUT). The drive level should be approximately 100 mVpp. Data Sheet 69 Revision 1.1, 2010-11-10 TDA7255V Application 3.2.1 Synthesizer Frequency Setting Generating ASK and FSK modulation 3 settable frequencies are necessary. 3.2.1.1 Possible Crystal Oscillator Frequencies The resulting possible crystal oscillator frequencies are shown in the following Figure 34 RX: TX: FSK- FSK ASK Deviation f1 ASK FSK+ Deviation f0 f2 Nominal Frequency Figure 34 Possible Crystal Oscillator Frequencies In ASK receive mode the crystal oscillator is set to frequency f2 to realize the necessary frequency offset to receive the ASK signal at f0*N (N: division ratio of the PLL). To set the 3 different frequencies 3 different Cv are necessary. Via internal switches 3 external capacitors can be combined to generate the necessary Cv in case of ASK- or FSK-modulation. Internal banks of switchable capacitors allow the fine-tuning of these frequencies. 3.2.2 Transmit/Receive ASK/FSK Frequency Assignment Depending on whether the device operates in transmit or receive mode or whether it operates in ASK or FSK the following cases can be distinguished: 3.2.2.1 FSK-Mode In transmit mode the two frequencies representing logical HIGH and LOW data states have to be adjusted depending on the intended frequency deviation and separately according to the following formulas: fCOSC HI = ( fRF + fDEV) / 24 (20) fCOSC LOW = ( fRF - fDEV) / 24 (21) e.g. fCOSC HI = (434,16E6 + 35E3) / 24 = 18.09146 MHz fCOSC LOW = (434,16E6 - 35E3) / 24 = 18.08854 MHz with a frequency deviation of 35 kHz. Data Sheet 70 Revision 1.1, 2010-11-10 TDA7255V Application Figure 35 shows the configuration of the switches and the capacitors to achieve the 2 desired frequencies. Gray parts of the schematics indicate inactive parts. For FSK modulation the ASK-switch is always open. For FSK LOW the FSK-switch is closed and Cv2 and Ctune2 are bypassed. The effective Cv- is given by: CV − = Cv1 + Ctune1 (22) For fine-tuning Ctune1 can be varied over a range of 8 pF in steps of 125 fF. The switches of this C-bank are controlled by the bits D0 to D5 in the FSK register (sub-address 01H, see Table 25). For FSK HIGH the FSK-switch is open. So the effective Cv+ is given by: CV + = (CV 1 + Ctune1 ) ⋅ (CV 2 + Ctune 2 ) CV 1 + Ctune1 + CV 2 + Ctune 2 (23) The C-bank Ctune2 can be varied over a range of 16 pF in steps of 250 fF for fine-tuning of the FSK HIGH frequency. The switches of this C-bank are controlled by the bits D8 to D13 in the FSK register (subaddress 01H, see Table 25). XOUT 16 X IN 18 L -R f, C L 16 X IN 18 XSW F 17 -R f, C L C V1 C V1 17 C tu ne 1 X S W A 19 XSW A 19 C V3 C V2 C tu n e2 C tu n e2 20 ASKswitch FSK LO W Figure 35 C V3 XGND FSKswitch 20 ASKswitch XGND C tu ne 1 FSKswitch XSW F C V2 L XOUT F S K H IG H FSK Modulation In receive mode the crystal oscillator frequency is set to yield a direct-to-zero conversion of the receive data. Thus the frequency may be calculated as fCOSC = fRF / 24, (24) e.g. fCOSC = 434,15E6 / 24= 18.089583 MHz which is identical to the ASK transmit case. Data Sheet 71 Revision 1.1, 2010-11-10 TDA7255V Application XOUT 16 X IN 18 L -R f, C L C V1 XSW F C tu n e 1 17 XSW A 19 C V3 Figure 36 switch FSK- C tu n e 2 20 ASK- XGND switch C V2 FSK Receive In this case the ASK-switch is closed. The necessary Cvm is given by: CV + = (CV 1 + Ctune1 ) ⋅ (CV 2 + CV 3 + Ctune 2 ) CV 1 + Ctune1 + CV 2 + CV 3 + Ctune 2 (25) The C-bank Ctune2 can be varied over a range of 16 pF in steps of 250 fF for fine-tuning of the FSK receive frequency. In this case the switches of the C-bank are controlled by the bits D0 to D5 of the XTAL_TUNING register (sub-address 02H, see Table 24). 3.2.2.2 ASK-Mode In transmit mode the crystal oscillator frequency is the same as in the FSK receive case, Figure 36. In receive mode a receive frequency offset is necessary as the limiters feedback is AC-coupled. This offset is achieved by setting the oscillator frequency to the FSK HIGH transmit frequency, Figure 35. Data Sheet 72 Revision 1.1, 2010-11-10 TDA7255V Application 3.2.3 Parasitics For the correct calculation of the external capacitors the parasitic capacitances of the pins and the switches (C20, C21, C22) have to be taken into account. XOUT L 16 -R f, CL XIN 18 CV1 C21 XSWF Ctune1 17 XSWA 19 CV2 CV3 C22 XGND 20 Figure 37 Parasitics of the Switching Network Table 22 Typical Values of Parasitic Capacitances C20 Ctune2 Name Value C20 4,6 pF C21 FSK_Low: 2,8 pF / FSK_High & ASK: 2.2 pF C22 1 pF With the given parasitics the actual Cv can be calculated: CV − = CV 1 + Ctune1 + C21 CV + = Cvm = (CV 1 + Ctune1 )⋅ (CV 2 + C20 + Ctune2 ) + C CV 1 + Ctune1 + CV 2 + C20 + Ctune 2 (26) 21 (CV 1 + Ctune1 )⋅ (CV 2 + C20 + CV 3 + C22 + Ctune2 ) + C CV 1 + Ctune1 + CV 2 + C20 + CV 3 + C22 + Ctune2 (27) 21 (28) Note: Please keep in mind also to include the Pad parasitics of the circuit board. Data Sheet 73 Revision 1.1, 2010-11-10 TDA7255V Application 3.2.4 • Calculation of the External Capacitors Determination of necessary crystal frequency using Equation (20) e.g. fFSK- = fCOSC LOW Determine corresponding CLoad applying Equation (19) e.g. CL FSK- = CL ± Necessary Cv using Equation (18) e.g. • • CV − = 1 1 2 + (2πf FSK − ) ⋅ LOSC C L , FSK − (29) When the necessary Cv for the 3 frequencies (Cv for FSK LOW, Cv+ for FSK HIGH and Cvm for FSK-receive) are known the external capacitors and the internal tuning caps can be calculated using the following formulas: • -FSK: C v1 + C t une1 = C v- – C21 (30) -FSK: CV 2 + Ctune2 = (CV 1 + Ctune1 ) ⋅ (CV + − C21 ) − C (CV 1 + Ctune1 ) − (CV + − C21 ) 20 (31) FSK_RX: CV 3 + Ctune2 = (CV 1 + Ctune1 ) ⋅ (CVm − C21 ) − C − C − C 20 V2 22 (CV 1 + Ctune1 ) − (CVm − C21 ) (32) To compensate frequency errors due to crystal and component tolerance Cv1, Cv2 and Cv3 have to be varied. To enable this correction, half of the necessary capacitance variation has to be realized with the internal C-banks. If no fine-tuning is intended it is recommended to leave XIN (Pin 18) open. So the parasitic capacitance of Pin 18 has no effect. Please keep in mind also to include the Pad parasitics of the circuit board. In the suitable range for the serial capacitor, either capacitors with a tolerance of 0.1 pF or 1% are available. A spreadsheet, which can be used to predict the total frequency error by simply entering the crystal specification, may be obtained from Infineon. Data Sheet 74 Revision 1.1, 2010-11-10 TDA7255V Application 3.2.5 FSK-Switch Modes The FSK-switch can be used either in a bipolar or in a FET mode. The mode of this switch is controlled by bit D0 of the XTAL_CONFIG register (sub-address 0EH). In the bipolar mode the FSK-switch can be controlled by a ramp function. This ramp function is set by the bits D1 and D2 of the XTAL_CONFIG register (sub-address 0EH). With these modes of the FSK-switch the bandwidth of the FSK spectrum can be influenced. When working in the FET mode the power consumption can be reduced by about 200 μA. The default mode is bipolar switch with no ramp function (D0 = 1, D1 = D2 = 0), which is suitable for all bitrates. Sub Address 0EH: XTAL_CONFIG Table 23 D0 D1 D2 Switch mode Ramp time Max. Bitrate 0 N.a. N.a. FET < 0.2 μs > 32 kBit/s NRZ 1 0 0 Bipolar (default) < 0.2 μs > 32 kBit/s NRZ 1 1 0 Bipolar 4 μs 32 kBit/s NRZ 1 0 1 Bipolar 8 μs 16 kBit/s NRZ 1 1 1 Bipolar 12 μs 12 kBit/s NRZ 3.2.6 Fine-tuning and FSK Modulation Relevant Registers Case FSK-RX or ASK-TX (Ctune2): Table 24 Sub Address 02H: XTAL_TUNING Bit Function Value Description Default D5 Nominal_Frequ_5 8 pF 0 D4 Nominal_Frequ_4 4 pF D3 Nominal_Frequ_3 2 pF Setting for nominal frequency ASK-TX FSK-RX (Ctune2) D2 Nominal_Frequ_2 1 pF 0 D1 Nominal_Frequ_1 500 fF 1 D0 Nominal_Frequ_0 250 fF 0 1 0 Case FSK-TX or ASK-RX (Ctune1 and Ctune2) Table 25 Sub Address 01H: FSK Bit Function Value Description Default D13 FSK_High_5 8 pF 0 D12 FSK_High_4 4 pF D11 FSK_High_3 2 pF Setting for positive frequency shift: ASK-RX or FSK_High (Ctune2) D10 FSK_High_2 1 pF 0 D9 FSK_High_1 500 fF 1 D8 FSK_High_0 250 fF 0 Data Sheet 75 0 1 Revision 1.1, 2010-11-10 TDA7255V Application Table 25 Sub Address 01H: FSK (cont’d) Bit Function Value Description Default D5 FSK_Low_5 4 pF 0 D4 FSK_Low_4 2 pF D3 FSK_Low_3 1 pF Setting for negative frequency shift: FSK_Low (Ctune2) D2 FSK_Low_2 500 fF 1 D1 FSK_Low_1 250 fF 0 D0 FSK_Low_0 125 fF 0 0 1 Default Values In case of using the evaluation board, the crystal with its typical parameters (fp’ = fs’ = 18.089583 MHz, C1 = 8 fF, C0 = 2,1 pF, CL = 20 pF) and external capacitors with Cv1 = 12 pF, Cv2 = 3.3 pF, Cv3 = 15 pF each are used the following default states are set in the device. Table 26 Default Oscillator Settings Operating State Frequency ASK-TX / FSK-RX 434.15 MHz FSK_High-TX / ASK-RX +35 kHz FSK_Low-TX -35 kHz 3.2.7 Chip and System Tolerances Quartz: fp’ = fs’ = 18.089583 MHz; C1 = 8 fF; C0 = 2,1 pF; CL = 20 pF (typical values) Cv1 = 12 pF, Cv2 = 3.3 pF, Cv3 = 15 pF Table 27 Internal Tuning Part Frequency Tlerance @ 434 MHz Rel. Tolerance Frequency set accuracy +/- 1.3 kHz +/- 3 ppm Temperature (-40...+85 C) +/- 3.5 kHz +/- 8 ppm Supply Voltage(2.1...5.5 V) +/- 0.9 kHz +/- 2 ppm Total +/- 5.7 kHz +/- 13 ppm Table 28 Default Setup (without Internal Tuning & without Pin21 Usage) Part Frequency Tolerance @ 434 MHz Rel. Tolerance Internal capacitors (+/- 10%) +/- 3.5 kHz +/- 8 ppm Inductivity of the crystal oscillator +/- 11.4 kHz +/- 26 ppm Temperature (-40...+85°C) +/- 3.5 kHz +/- 8 ppm Supply Voltage (2.1...5.5 V) +/- 0.9 kHz +/- 2 ppm Total +/- 19.3 kHz +/- 44 ppm Tolerance values in Table 27 are valid, if pin 21 is not connected. Establishing the connection to pin 21 the tolerances increase by +/- 27 ppm (internal capacitors), if internal tuning is not used. Concerning the frequency tolerances of the whole system also crystal tolerances (tuning tolerances, temperature stability, tolerance of CL) have to be considered. Data Sheet 76 Revision 1.1, 2010-11-10 TDA7255V Application In addition to the chip tolerances also the crystal and external component tolerances have to be considered in the tuning and non-tuning case. In case of internal tuning: The crystal on the evaluation board has a temperature stability of +/- 20 ppm (or +/8.7 kHz), which must be added to the total tolerances in worst case. It’s possible to choose a crystal compensating the oscillators temperature drift in a certain range and thus the overall temperature tolerances are minimized. In case of default setup (without internal tuning and without usage of pin 18) the temperature stability and tuning tolerance of the crystal as well as the tolerance of the external capacitors (+/- 0.1 pF) have to be added. The crystal on the evaluation board has a temperature stability of +/- 20 ppm (or +/- 8.7 kHz) and a tuning tolerance of +/- 10 ppm (or +/- 4.4 kHz). The external capacitors add a tolerance of +/- 3.5 ppm (or +/- 1.5 kHz). Here also the overall temperature tolerances can be reduced when applying an appropriate temperature drift of the crystal. The frequency stabilities of both the receiver and the transmitter and the modulation bandwidth set the limit for the bandwidth of the IQ filter. To achieve a high receiver sensitivity and efficient suppression of adjacent interference signals, the narrowest possible IQ bandwidth should be realized (see Chapter 3.3). 3.3 IQ-Filter The IQ-Filter should be set to values corresponding to the RF-bandwidth of the received RF signal via the D1 to D3 bits of the LPF register (sub-address 03H). Table 29 3dB Cutoff Frequencies I/Q Filter D3 D2 D1 Nominal f-3dB in kHz (programmable) 0 0 0 Not used 0 0 1 350 700 0 1 0 250 500 0 1 1 200 400 1 0 0 150 (default) 300 1 0 1 100 200 1 1 0 50 100 1 1 1 Not used Data Sheet 77 Resulting effective channel bandwidth in kHz Revision 1.1, 2010-11-10 TDA7255V Application 10 50kHz 100kHz 0 150kHz - 10 200kHz 250kHz -20 350kHz -30 -40 -50 -60 -70 -80 10 10 0 10 0 0 10 0 0 0 f [ kHz] Figure 38 I/Q Filter Characteristics effective channel bandwidth -f Figure 39 Data Sheet -f f 3dB IQ Filter 3dB IQ Filter f IQ Filter and Frequency Characteristics of the Receive System 78 Revision 1.1, 2010-11-10 TDA7255V Application 3.4 Data Filter The Data-Filter should be set to values corresponding to the bandwidth of the transmitted Data signal via the D4 to D7 bits of the LPF register (sub-address 03H). Table 30 3 dB Cutoff Frequencies Data Filter D7 D6 D5 D4 Nominal f-3dB in kHz 0 0 0 0 5 0 0 0 1 7 (default) 0 0 1 0 9 0 0 1 1 11 0 1 0 0 14 0 1 0 1 18 0 1 1 0 23 0 1 1 1 28 1 0 0 0 32 1 0 0 1 39 1 0 1 0 49 1 0 1 1 55 1 1 0 0 64 1 1 0 1 73 1 1 1 0 86 1 1 1 1 102 Data Sheet 79 Revision 1.1, 2010-11-10 TDA7255V Application 3.5 Limiter and RSSI The I/Q Limiters are DC coupled multistage amplifiers with offset-compensating feedback circuit and an overall gain of approximately 80 dB each in the frequency range of 100 Hz up to 350 kHz. Receive Signal Strength Indicator (RSSI) generators are included in both limiters which produce DC voltages that are directly proportional to the input signal level in the respective channels. The resulting I- and Q-channel RSSI-signals are summed to the nominal RSSI signal. I- Filter fg Q- Filter fg Figure 40 31 C RSSI 30 CQ2x 32 CQ2 33 CI2x 34 CQ1x 35 CQ1 CI1x 36 Cc CI2 Cc Cc CI1 Cc I Limiter 27 RSSI 29 Quadr. Corr. 37k Σ Q Limiter Quadr. Corr. Limiter and Pinning The DC offset compensation needs 2.2 ms after Power On or Tx/Rx switch. This time is hard wired and independent from external capacitors CC on pins 29 to 36. The maximum value for this capacitors is 47 nF. RSSI accuracy settling time = 2.2 ms + 5*RC = 2.2 ms + 5*37k*2.2 nF = 2.6 ms R - Internal resistor C - External capacitor at Pin 27 Table 31 Limiter Bandwidth Cc [nF] f3dB Lower Limit [Hz] f3dB Upper Limit Comment 220 100 IQ Filter Setup time not guaranteed 100 220 - ll - Setup time not guaranteed 47 470 - ll - Eval Board 22 1000 - ll - 10 2200 - ll - Data Sheet 80 Revision 1.1, 2010-11-10 TDA7255V Application v [dB] 80 0 f3dB lower limit Figure 41 Data Sheet f3dB f3dB IQ Filter Limiter f Limiter Frequency Characteristics 81 Revision 1.1, 2010-11-10 TDA7255V Application ADC 1300 1200 1100 1000 900 RSSI /mV 800 700 600 500 high gain 400 low gain 300 200 100 0 -120 -110 -100 -90 -80 -70 -60 -50 -40 -30 -20 RF /dBm Figure 42 Typ. RSSI Level (Eval Board) @ 3 V 3.6 Data Slicer - Slicing Level The data slicer is an analog-to-digital converter. It is necessary to generate a threshold value for the negative comparator input (data slicer). The TDA7255V offers an RC integrator and a peak detector which can be selected via logic. Independent of the choice, the peak detector outputs are always active. 3.6.1 RC Integrator Table 32 Sub Address 00H: CONFIG Bit Function Description Default SET D15 SLICER 0 = LP, 1 = Peak Detector 0 0 Necessary External Component (Pin10): CSLC This integrator generates the mean value of the data filter output. For a stable threshold value, the cut-off frequency has to be lower than the lowest signal frequency. The cutoff frequency results from the internal resistance R = 100 kΩ and the external capacitor CSLC on Pin10. Data Sheet 82 Revision 1.1, 2010-11-10 TDA7255V Application Cut-off frequency: f cut − off = 1 < Min {f 2 π ⋅100 kΩ ⋅ C SLC Signal } (33) Component calculation: (rule of thumb) TL – longest period of no signal change C SLC ≥ 3 ⋅TL 100 kΩ (34) DataSlicer + Contr . Logic - DATA 25 Slicer Threshold + Peak Detector PDP 9 100 k Data Filter Signal 100k SLC 10 R CSLC 100 k - Peak Detector PDN 8 VDD Figure 43 Data Sheet Slicer Level using RC Integrator 83 Revision 1.1, 2010-11-10 TDA7255V Application 3.6.2 Peak Detectors Table 33 Sub Address 00H: CONFIG Bit Function Description Default SET D15 SLICER 0 = LP, 1 = Peak Detector 0 1 The TDA7255V has two peak detectors built in, one for positive peaks in the data stream and the other for the negative ones. Necessary External Components Pin 8: CN Pin 9: CP DataSlicer + Contr. Logic DATA 25 Slicer Threshold + Peak Detector PDP 9 Data Filter Signal CP R1 100k 100 k SLC R R2 100k 10 VDD CN - Peak Detector PDN 8 VDD Figure 44 Slicer Level using Peak Detector For applications requiring fast attack and slow release from the threshold value it is reasonable to use the peak detectors. The threshold value is generated by an internal voltage divider. The release time is defined by the internal resistance values and the external capacitors τ posPkD =100 k Ω ⋅ C p τ negPkD =100 k Ω ⋅ C Data Sheet (35) n (36) 84 Revision 1.1, 2010-11-10 TDA7255V Application Signal τ posPkD Signal Pos. Peak Detector (pin13) Threshold SLC(pin14) Neg. Peak Detector (pin12) τ negPkD t Figure 45 Peak Detector Timing Component calculation: (rule of thumb) Cp ≥ 2 ⋅ TL1 100kΩ (37) TL1 – longest period of no signal change (LOW signal) Cn ≥ 2 ⋅ TL 2 100kΩ (38) TL2 – longest period of no signal change (HIGH signal) Data Sheet 85 Revision 1.1, 2010-11-10 TDA7255V Application 3.6.3 Peak Detector - Analog Output Signal The TDA7255V data output can be digital (pin 25) or in analog form by using the peak detector output and changing some settings. To get an analog data output the slicer must be set to lowpass mode (Reg. 0, D15 = LP = 0) and the peak detector capacitor at pin 8 or 9 has to be changed to a resistor of about 47 kΩ. DataSlicer + Contr . Logic - DATA 25 Slicer Threshold + Peak Detector PDP 9 47k 100 k Data Filter Signal 100k SLC 10 R CSLC 100 k - Peak Detector PDN 8 VDD Figure 46 Data Sheet Peak Detector as analog Buffer (v = 1) 86 Revision 1.1, 2010-11-10 TDA7255V Application 3.6.4 Peak Detector – Power Down Mode For a safe and fast threshold value generation the peak detector is turned on by the sequencer circuit (Chapter 2.4.18) only after the entire receiving path is active. In the off state the output of the positive peak detector is tied down to GND and the output of the negative peak detector is pulled up to VCC. Logic Power Down Mode 0V + Peak Detector PDP 9 off CP Data Filter R1 100 k R2 100 k SLC 10 CN - Peak Detector PDN 8 off VDD Figure 47 VDD VDD Peak Detector - Power Down Mode Signal Data Signal Vcc Neg. Peak Detector (pin 8) Threshold (pin 10) Power ON Figure 48 Data Sheet 2,2ms Pos. Peak Detector (pin 9) 0 Power Down Power ON Peak Detector Power ON t Power Down Mode 87 Revision 1.1, 2010-11-10 TDA7255V Application 3.7 Data Valid Detection In order to detect valid data two criteria must be fulfilled. One criteria is the data rate, which can be set in register 06h and 07h. The other one is the received RF power level, which can be set in register 08h in form of the RSSI threshold voltage. Thus for using the data valid detection FSK modulation is recommended. Timing for data detection looks like the following. Two settings are possible: „Continuous“ and „Single Shot“, which can be set by D5 and D6 in register 00H. Data t Sequencer enables data detection t Counter Reset reset reset t Gate time Compare with single TH and latch result count count t comp. comp. t Compare with double TH and latch result comp. t (Frequency) Window Count Complete start of conversion Figure 49 ready* t possible start of next conversion Frequency Detection Timing in Continuous Mode Note: 1. Chip internal signal „Sequencer enables data detection“ has a LOW to HIGH transition about 2.6 ms after RX is activated (see Figure 17). 2. The positive edge of the „Window Count Complete“ signal latches the result of comparison of the analog to digital converted RSSI voltage with TH3 (register 08H). A logic combination of this output and the result of the comparison with single/double THx defines the internal signal „data_valid“. Figure 49 shows that the logic is ready for the next conversion after 3 periods of the data signal. Timing in Single Shot mode can be seen in the subsequent figure: Data Sheet 88 Revision 1.1, 2010-11-10 TDA7255V Application Data t Sequencer enables data detection t Counter Reset reset t Gate time count t Compare with single TH and latch result comp. t Compare with double TH and latch result comp. t (Frequency) Window Count Complete ready* t no possible start of next conversion because of Single Shot Mode start of conversion Figure 50 Frequency Detection Timing in Single Shot Mode 3.7.1 Frequency Window for Data Rate Detection The high time of data is used to measure the frequency of the data signal. For Manchester coding either the data frequency or half of the data frequency have to be detected corresponding to one high time or twice the high time of data signal. A time period of 3*2*T is necessary to decide about valid or invalid data. T 2*T DATA t 0 0 1 0 T2 T1 possible GATE 1 t 0 2*T2 2*T1 possible GATE 2 t 0 Figure 51 Data Sheet 1 Window Counter Timing 89 Revision 1.1, 2010-11-10 TDA7255V Application Example to calculate the Thresholds for a given Data Rate • • • Data signal Manchester coded Data Rate: 2 kbit/s fclk = 18,089583 MHz Then the period equals to 2⋅T = 1 = 0,5ms 2kbit/s (39) respectively the high time is 0,25 ms. We set the thresholds to +-10% and get: T1 = 0,225 ms and T2 = 0,275 ms The thresholds TH1 and TH2 are calculated with following formulas TH1 = T1 ⋅ f clk 4 TH2 = T2 ⋅ (40) f clk 4 (41) This Yields the following Results TH1~ 1017 = 001111111001b TH2~ 1243 = 010011011011b which have to be programmed into the D0 to D11 bits of the COUNT_TH1 and COUNT_TH2 registers (sub-addresses 06H and 07H), respectively. Default Values (window counter inactive) TH1 = 000000000000b TH2 = 000000000001b Note: The timing window of +/-10% of a given high time T in general does not correspond to a frequency window +/-10% of the calculated data frequency. 3.7.2 RSSI Threshold Voltage - RF Input Power The RF input power level is corresponding to a certain RSSI voltage, which can be seen in Chapter 3.5. The threshold TH3 of this RSSI voltage can be calculated with the following formula: TH 3 = desired RSSI threshold voltage ⋅ (2 6 − 1) 1.2V (42) As an example a desired RSSI threshold voltage of 500 mV results in TH3~26 = 011010b, which has to be written into D0 to D5 of the RSSI_TH3 register (sub address 08H). Default Value (RSSI detection inactive) TH3 = 111111b Data Sheet 90 Revision 1.1, 2010-11-10 TDA7255V Application 3.8 Calculation of ON_TIME and OFF_TIME ON = (216-1) - (fRC*tON) (43) OFF = (216-1) - (fRC*tOFF) (44) fRC = Frequency of internal RC-Oscillator Example: tON = 0,005 s, tOFF = 0,055s, fRC = 32300 Hz ON = 65535-(32300*0,005) ~ 65373 = 1111111101011101b OFF = 65535-(32300*0,055) ~ 63758 = 1111100100001110b The values have to be written into the D0 to D15 bits of the ON_TIME and OFF_TIME registers (sub-addresses 04H and 05H). Default Values ON = 65215 = 1111111011000000b OFF = 62335 = 1111001110000000b tON ~10 ms @ fRC = 32 kHz tOFF ~100 ms @ fRC = 32 kHz Data Sheet 91 Revision 1.1, 2010-11-10 TDA7255V Application 3.9 Example for Self Polling Mode The settings for Self Polling Mode depend very much on the timing of the transmitted Signal. To create an example we consider following data structure transmitted in FSK. 4 Frames Data Data Data Data t [ms] 50ms 50ms 400ms Framedetails t [ms] Preamble Data Sync t [ms] Synchronisation Preamble Figure 52 Example for transmitted Data-Structure According to existing synchronization techniques there are some synchronization bursts in front of the data added (code violation!). A minimum of 4 Frames is transmitted. Data are preferably Manchester encoded to get fastest respond out of the Data Rate Detection. Target Application • • • Received Signal has code violation as described before Total mean current consumption below 1 mA Data reception within max. 400 ms after first transmitted frame One possible Solution tON = 15 ms, tOFF = 135 ms This gives 15 ms ON time of a total period of 150 ms which results in max. 0.9 mA mean current consumption in Self Polling Mode. The resulting worst case timing is shown in the following figure: Data Sheet 92 Revision 1.1, 2010-11-10 TDA7255V Application Case A: Data Data 50ms 15ms Data 135ms Data t [ms] µP enables Receiver until Data completed Interrupt due PWDDD Case B: Data 50ms Data 15ms Data 135ms Data t [ms] µP enables Receiver until Data completed Interrupt due PWDDD Case C: Data 50ms Data 15ms Data 135ms t [ms] µP enables Receiver until Data completed Interrupt due PWDDD ... Receiver enabled Figure 53 Data 3 Possible Timings Description Assumption: the ON time comes right after the first frame (Case A). If OFF time is 135 ms the receiver turns on during Sync-pulses and the PWDDD- pulse wakes up the μP. If the ON time is in the center of the 50 ms gap of transmission (Case B), the Data Detect Logic will wake up the μP 135 ms later. If ON time is over just before Sync-pulses (Case C), next ON time is during Data transmission and Data Detect Logic will trigger a PWDDD- pulse to wake up the μP. Note: In this example it is recommended to use the Peak Detector for slicer threshold generation, because of its fast attack and slow release characteristic. To overcome the data zero gap of 50 ms larger external capacitors than noted in Chapter 4.4 at pin12 and 13 are recommended. Further information on calculating these components can be taken from Chapter 3.6.2. Data Sheet 93 Revision 1.1, 2010-11-10 TDA7255V Application 3.10 Default Setup Default setup is hard wired on chip and effective after a reset or return of power supply. Table 34 Default Setup Parameter Value IQ-Filter Bandwidth 150 kHz Data Filter Bandwidth 7 kHz Limiter lower fg 470 Hz 47 nF Slicing Level Generation RC 10 nF Nom. Frequency Capacity intern (ASK TX, FSK RX) 4.5 pF 434.16 MHz FSK_High Frequency Capacity intern (FSK_High, ASK RX) 2.5 pF +35 kHz FSK_Low Frequency Capacity intern (FSK_Low) 1.5 pF -35 kHz LNA Gain HIGH Power Amplifier HIGH +10 dBm RSSI accuracy settling time 2.6 ms 2.2 nF ADC measurement RSSI ON-Time 10 ms OFF-Time 100 ms Clock out RX PowerON 1 MHz Clock out TX PowerON 1 MHz Clock out RX PowerDOWN - Clock out TX PowerDOWN - XTAL modulation switch Bipolar XTAL modulation shaping Off RX/TX - Jumper ASK/FSK - Jumper PWDDD PWDN Jumper removed Operating Mode Slave Data Sheet 94 IFX-Board Comment Revision 1.1, 2010-11-10 TDA7255V Reference Data 4 Reference Data 4.1 Electrical Data 4.1.1 Absolute Maximum Ratings Table 35 WARNING TDA7255V is intended for use in general electronic equipment (AV equipment, telecommunication equipment, home appliances, amusement equipment, computer equipment, personal equipment, office equipment, measurement equipment) under a normal operation and use condition. Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Table 36 Absolute Maximum Ratings Parameter Symbol Values Min. Typ. Unit Max. Note / Test Condition Test Number Supply Voltage VCC/VDD -0.3 5.8 V ■ 1.1 Junction Temperature Tj -40 +125 °C ■ 1.2 Storage Temperature Ts -40 +125 °C ■ 1.3 Thermal Resistance RthJA ■ die pad not soldered, no vias 1.4 50 K/W die pad soldered, and vias 30 ESD HBM integrity (all pins) 4.1.2 VESD-HBM -1.0 +1.0 kV AEC Q100-002 EIA/JESD22A114 ■ 1.5 Operating Range Within the operational range the IC operates as explained in the circuit description. Table 37 Operating Range Parameter Symbol Values Min. Typ. Unit Max. Note / Test Condition Test Number Supply voltage VCC/VDD 2.1 5.5 V ■ 2.1 Ambient temperature TA -40 +85 °C ■ 2.2 Data Sheet 95 Revision 1.1, 2010-11-10 TDA7255V Reference Data Table 37 Operating Range (cont’d) Parameter Symbol Values Min. Receive frequency Typ. Unit Max. Note / Test Condition Test Number fRX 433 435 MHz ■ 2.3 Transmit frequency fTX 433 435 MHz ■ 2.4 Data Sheet 96 Revision 1.1, 2010-11-10 TDA7255V Reference Data 4.1.3 AC/DC Characteristics AC/DC characteristics involve the spread of values guaranteed within the specified voltage and ambient temperature range. Typical characteristics are the median of the production. Table 38 AC/DC Characteristics with TAMB = 25 °C, VCC = 2.1 ... 5.5 V Parameter Symbol Values Min. Typ. Unit Note / Test Condition Test Number Max. RECEIVER Characteristics Supply current RX FSK IRX_FSK 9 mA 3 V, FSK, Default 3.1 Supply current RX FSK IRX_FSK 9.5 mA 5 V, FSK, Default 3.2 Supply current RX ASK IRX_ASK 8.6 mA 3 V, ASK, Default 3.3 Supply current RX ASK IRX_ASK 9.1 mA 5 V, ASK, Default 3.4 Sensitivity FSK 10-3 BER RFsens -115 dBm ■ FSK @ 35 kHz, 4 kBit/s Manch. Data, Default 5 kHz datafilter, 50 kHz IQ filter 3.5 Sensitivity ASK 10-3 BER RFsens -112 dBm ASK, 4 kBit/s Manch. data, Default setup 5 kHz datafilter, 50 kHz IQ filter 3.6 Input reflection coefficient (S11) fRF = 868 MHz S11 0.958 / -20 deg Power down current IPWDN_RX 5 System setup time (1st power on or reset) tSYSSU Clock Out setup time tCLKSU Receiver setup time tRXSU 1.54 2.2 Data detection setup time tDDSU 1.82 RSSI stable time tRSSI 1.82 Data valid time tData_Valid Input P1dB, high gain 4 3.7 nA 8 ■ 12 0.5 5.5 V, all power down 3.8 ms 3.9 ms Stable CLKDIV output signal 3.10 2.86 ms DATA out (valid or invalid) 3.11 2.6 3.38 ms Begin of Data detection 3.12 2.6 3.38 ms RFin -100 dBm see Chapter 4.5 3.13 3.35 ms 4 kBit/s Manch. detected (valid) 3.14 P1dB -63dBm dBm 3 V, Default, high gain ■ 3.15 Input P1dB, low gain P1dB_low -42dBm dBm 3 V, Default, low gain ■ 3.16 Selectivity VBL_1MHz -55 dB tRF+/-1 MHz, Default, ■ 3.17 ■ 3.18 RFsens+3 dB LO leakage PLO -108 dBm 578,9 MHz 10,7 mA 2.1 V, high power TRANSMITTER Characteristics Supply current TX, FSK ITX Data Sheet 97 3.19 Revision 1.1, 2010-11-10 TDA7255V Reference Data Table 38 AC/DC Characteristics with TAMB = 25 °C, VCC = 2.1 ... 5.5 V (cont’d) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Test Number Max. Supply current TX, FSK ITX 13,5 mA 3 V, high power 3.20 Supply current TX, FSK ITX 18,3 mA 5 V, high power 3.21 Output power Pout +6 dBm 2.1 V, high power ■ 3.22 Output power Pout 9 dBm 3 V, high power ■ 3.23 Output power Pout 13 dBm 5 V, high power ■ 3.24 Supply current TX, FSK ITX 5 mA 2.1 V, low power 3.25 Supply current TX, FSK ITX 7.5 mA 3 V, low power 3.26 Supply current TX, FSK ITX 15 mA 5 V, low power 3.27 Output power Pout_low -32 dBm 2.1 V, low power ■ 3.28 Output power Pout_low -1 dBm 3 V, low power ■ 3.29 Output power Pout_low 11 dBm 5 V, low power ■ 3.30 Power down current IPWDN_TX 5 nA 5.5 V, all power down 3.31 Clock-Out setup time tCLKSU 0.5 ms Stable CLKDIV output signal 3.32 Transmitter setup time tTXSU ms PWDN-->PON or RX-->TX ■ 3.33 Spurious fRF+/-fclock Pclock -59 dBm 3 V, 50 Ω Board, Default (1 MHz) ■ 3.34 Spurious fRF+/-fXTAL P1st -74 dBm 3 V, 50 Ω Board ■ 3.35 harmonic P2nd -43 dBm 3 V, 50 Ω Board ■ 3.36 Spurious 3rd harmonic P3rd -43 dBm 3 V, 50 Ω Board ■ 3.37 Spurious 2 nd 0.77 1.1 1.43 1: including pin diode current (RX/TX-switch) 130 uA @ 2.1 V; 310 uA @ 3 V; 720 uA @ 5 V Attention: Test ■ means that the parameter is not subject to production test. It was verified by design/characterization. Data Sheet 98 Revision 1.1, 2010-11-10 TDA7255V Reference Data Table 39 AC/DC Characteristics with TAMB = 25 °C, VCC = 2.1 ... 5.5 V Parameter Symbol Values Min. Typ. Unit Note / Test Condition Max. Test Num ber GENERAL Characteristics Power down current timer mode (standby) IPWDN_32k 9 uA 3 V, 32 kHz clock on 4.1 Power down current timer mode (standby) IPWDN_32k 11 uA 5 V, 32 kHz clock on 4.2 Power down current with XTAL ON IPWDN_Xtl 750 uA 3 V, CONFIG9 = 1 4.3 Power down current with XTAL ON IPWDN_Xtl 860 uA 5 V, CONFIG9 = 1 4.4 32 kHz oscillator freq. f32 kHz 24 32 40 kHz XTAL startup time tXTAL 0.3 ms Load capacitance CC0max 5 Serial resistance of the Rmax crystal 100 4.5 ■ 4.6 pF ■ 4.7 Ω ■ 4.8 IFX Board with Crystal Q1 as specified in Chapter 4.4 Input inductance XOUT LOSC 2.7 uH With pad on evaluation board ■ 4.9 Input inductance XOUT LOSC 2.45 uH Without pad on evaluation board ■ 4.10 FSK demodulator gain GFSK 2.4 mV/k Hz RSSI @ -120 dBm U-120 dBm 0.4 V Default setup ■ 4.12 RSS I@ -100 dBm U-100 dBm 0.6 V Default setup ■ 4.13 RSSI @ -70 dBm U-70 dBm 0.96 V Default setup ■ 4.14 RSSI @ -50 dBm U-50 dBm 1.1 V Default setup ■ 4.15 RSSI Gradient GRSSI 12 mV/d B Default setup ■ 4.16 IQ-Filter bandwidth f3dB_IQ 115 150 185 kHz Default setup ■ 4.17 Data-Filter bandwidth f3dB_LP 5.3 7 8.7 kHz Default setup ■ 4.18 VCC-Vtune RX, Pin3 Vcc-tune,RX 0.5 1 1.6 V fRef = 18.08956 MHz 4.19 VCC-Vtune TX, Pin3 Vcc-tune,TX 0.5 1.1 1.6 V fRef = 18.08956 MHz 4.20 4.11 Attention: Test ■ means that the parameter is not subject to production test. It was verified by design/characterization. Data Sheet 99 Revision 1.1, 2010-11-10 TDA7255V Reference Data 4.1.4 Digital Characteristics BusMode = LOW t BUF BusData tR tLOW tHD.ST BusCLK tHD.DA A tHD.ST tF tHIGH T t SU.DA tSU.ST T A tSP tSU.ST O A tHIGH EN pulsed or mandatory low tSU.ENASDA tSU.ENASDA t SU.ENASDA Figure 54 I2C Bus Timing BUS_MODE = HIGH SDA tLOW SCL tSU.ST tR A t SP tF tHD.DA T tHIGH tSU.DA T tSU.ST O BUS_ENA t WHEN Figure 55 Data Sheet 3-Wire Bus Timing 100 Revision 1.1, 2010-11-10 TDA7255V Reference Data Table 40 Digital Characteristics with TAMB = 25 °C, VDD = 2.1 ... 5.5 V Parameter Symbol Values Min. Unit Note / Test Condition Test Number Typ. Max. fTX.ASK 10 100 kBaud PRBS9, Manch. @+9 dBm ■ 5.1 Data rate TX FSK1) fTX.FSK 10 32 kBaud PRBS9, Manch. @+9 dBm @35 kHz dev. ■ 5.2 Data rate RX ASK fRX.ASK 10 50 kBaud PRBS9, Manch. ■ 5.3 Data rate RX FSK fRX.FSK 10 64 kBaud PRBS9, Manch. @100 kHz dev. ■ 5.4 Data rate RX FSK fRX.FSK 10 28.8 kBaud PRBS9, Manch. @35 kHz dev. ■ 5.5 Digital inputs High-level input voltage Low-level input voltage ■ 5.6 VIH VIL VDD-0.2 VDD 0 0.2 V V @VDD = 3 V Isink = 800 uA Isink = 3 mA ■ 5.7 ■ 5.8 Data rate TX ASK 1) RXTX Pin 5 TX operation int. controlled VOL 0.4 1.15 V V 35 30 ns ns VDD-0.4 V V @VDD = 3 V Load 10 pF Load 10 pF Isource = 350 uA Isink = 400 uA 50 ns VDD = 5 V ■ 5.9 0.4 V 3 mA sink current VDD = 5V ■ 5.11 400 kHz VDD=5 V ■ 5.12 ■ 5.13 CLKDIV Pin 26 trise (0.1*VDDto 0.9*VDD) tr tfall (0.9*VDD to 0.1*VDD) tf Output High Voltage VOH Output Low Voltage VOL 0.4 Bus Interface Characteristics Pulse width of spikes tSP which must be suppressed by the input filter LOW level output voltage at BusData VOL SLC clock frequency fSLC 0 0 2 Bus free time between STOP and START condition fBUF 1.3 Hold time (repeated) START condition. tHO.STA 0.6 μs ■ After this period, the first clock pulse is generated, only I2C 5.14 LOW period of BusCLK clock tLOW 1.3 μs VDD = 5 V ■ 5.15 HIGH period of BusCLK tHIGH clock 0.6 μs VDD = 5 V ■ 5.16 Data Sheet μs Only I C mode VDD = 5 V 101 Revision 1.1, 2010-11-10 TDA7255V Reference Data Table 40 Digital Characteristics with TAMB = 25 °C, VDD = 2.1 ... 5.5 V (cont’d) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Test Number Max. Setup time for a repeated START condition tSU.STA 0.6 μs Only I2C mode ■ 5.17 Data hold time tHD.DAT 0 ns VDD = 5 V ■ 5.18 Data setup time tSU.DAT 100 ns VDD = 5 V ■ 5.19 Rise, fall time of both BusData and BusCLK signals2) tR, tF 20+ 0.1Cb ns VDD = 5 V ■ 5.20 Setup time for STOP condition tSU.STO 0.6 μs Only I2C mode VDD = 5 V ■ 5.21 pF VDD = 5 V ■ 5.22 Capacitive load for each Cb bus line 300 400 Setup time for BusCLK to EN tSU.SCLEN 0.6 μs Only 3-wire mode VDD = 5 V ■ 5.23 H-pulsewidth (EN) tWHEN 0.6 μs VDD = 5 V ■ 5.24 1) Limited by transmission channel bandwidth and depending on transmit power level; ETSI regulation EN 300 220 fulfilled, see Chapter 3.1 2) Cb = capacitance of one bus line Attention: Test ■ means that the parameter is not subject to production test. It was verified by design/characterization. Data Sheet 102 Revision 1.1, 2010-11-10 X8 3 2 1 C4 R22 C5 L1 R2 X1 C8 C3 C26 C2 L3 C7 R1 1 X7 2 3 C10 R23 C24 R3 C12 C29 C14 C13 C27 ASKFSK RXTX LIN LINX GND_RF PA VCC1 PDN PDP SLC VDD BUSDATA C16 D1 L2 1 2 3 4 5 6 7 8 9 10 11 12 CI2 CI2X CQ2 CQ2X GND RSSI GND2 DATA PWDDD CLKDIV RESET EN TDA7255V C15 C11 C28 40 39 38 37 36 35 34 33 GND3 LF BUSMODE VCC CI1 CI1X CQ1 CQ1X GND1 BUSCLK VSS XOUT XSWF XIN XSWA XGND Q1 13 14 15 16 17 18 19 20 C6 C1 C9 32 31 30 29 28 27 26 25 24 23 22 21 R18 D2 C17 C21 C22 C19 C20 R7 1 X2 2 R20 C23 C31 R21 EN BUSCLK BUSDATA R19 1 X16 2 RSSI JP2 C18 BUSMODE R24 JP5 2 1 JP1 X14 1 X15 2 1 X3 2 DATA-MC JP3 RESET S1 PWDDD 5 3 1 2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20 2 4 6 8 BUSMODE 10 12 SCK 14 SDI 16 SDO 18 DATA-MC PWDDDNACHJUMPER 20 EN CS_E CS_E SDI SCK P$1 P$20 P$2 P$19 P$3 P$18 P$4 P$17 P$5 P$16 P$6 P$15 P$7 P$14 P$8 P$13 P$9 P$12 P$10 P$11 U$1 CS SI SCK IC2 P$21 P$1 P$20 P$2 P$19 P$3 P$18 P$4 P$17 P$5 P$16 P$6 P$15 P$7 P$14 P$8 P$13 P$9 P$12 P$10 P$11 U$2 G1 P$21 P$1 P$20 P$2 P$19 P$3 P$18 P$4 P$17 P$5 P$16 P$6 P$15 P$7 P$14 P$8 P$13 P$9 P$12 P$10 P$11 U$3 G1 P$21 103 G1 GND SO VCC 6 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19 2 EEPROM Array P$22 G2 P$22 Data Sheet G2 Figure 56 P$22 4 RESET BUSCLK BUSDATA RSSI SDO 4.2 G2 JP4 TDA7255V Reference Data Test Circuit The device performance parameters marked with X in Chapter 4.1.3 were measured on an Infineon evaluation board (IFX board). Schematic of the Evaluation Board Revision 1.1, 2010-11-10 C25 C30 TDA7255V Reference Data 4.3 Test Board Layout Gerber-files for this Testboard are available on request. 1 3 1 2 2 1 3 Figure 57 Top Layer of the Customer Board TDA7255V Figure 58 Bottom Layer of the Customer Board TDA7255V Data Sheet 104 Revision 1.1, 2010-11-10 TDA7255V Reference Data Notes 1. The LNA and PA matching network was designed for minimum required space and maximum performance and thus via holes were deliberately placed into solder pads. In case of reproduction please bear in mind that this may not be suitable for all automatic soldering processes. 2. Please keep in mind not to layout the CLKDIV line directly in the neighborhood of the crystal and the associated components. 3. Difference in supply voltage especially between pin 1 and pin 15 is recommended to be lower than 30 mV, therefore a serial resistor in the VDD supply line, as mentioned on page 15 and in Chapter 4.4, is strongly recommended. Figure 59 Data Sheet Placement of connectors and jumpers (axial) 105 Revision 1.1, 2010-11-10 TDA7255V Reference Data Figure 60 Placement of connectors and jumpers (SMD) Initially JP2 (Data to UWLink), JP3 (RESET via UWLink), JP4 (Supply via UWLink) and JP5 (PWDDD via UWLink) are open. Closing JP2 enables to apply a PRBS9 data sequence from 200 bit/s up to 80kbit/s to the data input (DATA) in case of transmit mode by the TDA7255V Explorer. Closing JP5 enables to control the PDWDDD-pin via the TDA7255V Explorer. A supply voltage of ~3.3 V for the TDA7255V Extension Board can be provided from the UWLink board when closing JP4. But don’t forget to remove the external supply in that case. Opening JP1 and closing JP3 enables the facility to RESET the TDA7255V by clicking the reset button at the TDA7255V Explorer. Data Sheet 106 Revision 1.1, 2010-11-10 TDA7255V Reference Data 4.4 Bill of Materials Table 41 Bill of Materials Reference Value Specification Tolerance R1 4 k7 0402 +/-5% R2 0 0402 +/-5% R3 --- 0402 +/-5% R6 --- 0402 +/-5% R7 4 k7 0402 +/-5% R18 1M 0402 +/-5% R19 560 0402 +/-5% R20 1k 0402 +/-5% R21 0 0402 +/-5% R22 0 0402 +/-5% R23 10 0402 +/-5% R24 180 0402 +/-5% C1 33 pF 0402 +/-5% C2 1,8 pF 0402 +/-0,1 pF C3 27 pF 0402 +/-1% C4 12 pF 0402 +/-0,1 pF C5 1 nF 0402 +/-5% C6 1 nF 0402 +/-5% C7 10 pF 0402 +/-0,1 pF C8 --- 0402 +/-0,1 pF C9 27 pF 0402 +/-1% C10 100 pF 0402 +/-5% C11 --- 0402 +/-5% C12 10 nF 0402 +/-10% C13 10 nF 0402 +/-10% C14 10 nF 0402 +/-10% C15 12 pF 0402 +/-0,1 pF C16 3.3 pF 0402 +/-0,1 pF C17 15 pF 0402 +/-1% C18 10 nF 0402 +/-10% C19 2,2 nF 0402 +/-10% C20 47 nF 0402 +/-10% C21 47 nF 0402 +/-10% C22 47nF 0402 +/-10% C23 47 nF 0402 +/-10% C24 100 nF 0402 +/-10% Data Sheet 107 Revision 1.1, 2010-11-10 TDA7255V Reference Data Table 41 Bill of Materials (cont’d) Reference Value Specification Tolerance C25 100 nF 0402 +/-10% C26 100 nF 0402 +/-10% C27 100 nF 0402 +/-10% C28 100 nF 0402 +/-10% C29 100 nF 0402 +/-10% C30 100 nF 0402 +/-10% C31 100 nF 0402 +/-10% L1 100 nH Coilcraft SIMID 0402HP, + 2% +/-2% L2 12 nH Coilcraft SIMID 0402HP, + 2% +/-2% L3 36 nH Coilcraft SIMID 0402HP, + 2% +/-2% IC1 TDA7255V PG-VQFN-40 IC2 25AA040AT EEPROM 4KB (MICROCHIP) Q1 18.089583 MHz Hertz: TSS-6035 Spec.-Nr.: 1053-935 S1 1-pol. push-button MULTICOMP MCTAEF-25N-V D1, D2 BAR63-02W SCD-80 (Infineon) X1 SMA-socket X2, X3, X14, X15, X16 2-pol. 2-pole pin connector 2,54 mm X7, X8 3-pol. 3-pole pin connector 2,54 mm JP1 Solder bridge Solder bridge closed JP2, JP3, JP4, JP5 Solder bridge Solder bridge open U$1, U$2, U$3 20-pol. connector Hirose: DF12(3.5)-20DS-0.5 V C1 = 8 fF, C0 = 2.1 pF, CL = 20 pF Note: Serial resistors in supply lines (R21, R22, R23) should be equipped as shown in the table above. Data Sheet 108 Revision 1.1, 2010-11-10 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
TDA7255V 价格&库存

很抱歉,暂时无法提供与“TDA7255V”相匹配的价格&库存,您可以联系我们找货

免费人工找货