0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLD1326ELXUMA1

TLD1326ELXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LSSOP14

  • 描述:

    TLD1326 - 3 CHANNEL HIGH SIDE CU

  • 数据手册
  • 价格&库存
TLD1326ELXUMA1 数据手册
LITIX™ Basic TLD1326EL 3 Channel High-Side Current Source 1 Package PG-SSOP-14 Marking TLD1326 Overview Applications Exterior LED lighting applications such as tail/brake light, turn indicator, position light, side marker,... • Interior LED lighting applications such as ambient lighting, interior illumination and dash board lighting. GND DC/DC controller EN Internal supply Thermal protection IN_SET OUT3 Output control Current adjustment OUT1 PWMI RSET OUT2 N-1 CFB TLD1326EL RFB FB CN-1 DC/DC control GND VBATT VS 10kΩ DC/DC Converter CVS =4.7nF • Application Diagram with TLD1326EL Data Sheet www.infineon.com Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Overview Basic Features • 3 Channel device with integrated output stages (current sources), optimized to drive LEDs with output current up to 120 mA per channel • Low current consumption in sleep mode • PWM-operation supported via VS- and EN-pin • Integrated PWM dimming engine to provide two LED brightness levels without external logic (e.g. µC) • Output current adjustable via external low power resistor and possibility to connect PTC resistor for LED protection during over temperature conditions • Dynamic overhead control • Reverse polarity protection and overload protection • Undervoltage detection • N-1 detection, latched function • Wide temperature range: -40°C < Tj < 150°C • PG-SSOP-14 package with exposed heatslug Description The LITIX™ Basic TLD1326EL is a three channel high side driver IC with integrated output stages. It is designed to control LEDs with a current up to 120 mA. In typical automotive applications the device is capable to drive i.e. 3 red LEDs per chain (total 9 LEDs) with a current up to 60 mA, which is limited by thermal cooling aspects. The output current is controlled practically independent of load and supply voltage changes. Table 1 Product Summary Parameter Symbol Value Operating voltage range VS(nom) 5.5 V ... 40 V Maximum voltage VS(max) VOUTx(max) 40 V Nominal output (load) current IOUTx(nom) 60 mA when using a supply voltage range of 8 V - 18 V (e.g. Automotive car battery). Currents up to IOUT(max) possible in applications with low thermal resistance RthJA Maximum output (load) current IOUTx(max) 120 mA; depending on thermal resistance RthJA Output current accuracy at RSET = 12 kΩ kLT 750 ± 7% Current consumption in sleep mode IS(sleep,typ) 0.1 µA Protective Functions • ESD protection • Under voltage lock out • Over Load protection • Over Temperature protection • Reverse Polarity protection Diagnostic Functions • N-1 detection, latched function • SC to Vs (indicated by N-1 diagnosis) Data Sheet 2 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Block Diagram Block Diagram VS 2 EN Internal supply Thermal protection IN_SET OUT3 Output control Current adjustment OUT2 OUT1 PWMI TLD1326EL Figure 1 Data Sheet FB DC/DC control GND N-1 Basic Block Diagram 3 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Pin Configuration 3 Pin Configuration 3.1 Pin Assignment Figure 2 Data Sheet VS 1 VS 2 EN 3 NC 4 PWMI 14 NC 13 OUT3 12 OUT2 11 OUT1 5 10 FB IN_SET 6 9 GND N-1 7 8 NC TLD1326EL EP Pin Configuration 4 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Pin Configuration 3.2 Pin Definitions and Functions Pin Symbol Input/ Output Function 1, 2 VS – Supply Voltage; battery supply, connect a decoupling capacitor (100 nF - 1 µF) to GND 3 EN I Enable pin 4 NC – Pin not connected 5 PWMI I/O PWM Input 6 IN_SET I/O Input / SET pin; Connect a low power resistor to adjust the output current 7 N-1 I/O N-1 pin 8 NC – Pin not connected – 1) 9 GND Ground 10 FB O Feedback Output 11 OUT1 O Output 1 12 OUT2 O Output 2 13 OUT3 O Output 3 14 NC – Pin not connected – 1) Exposed Pad GND Exposed Pad; connect to GND in application 1) Connect all GND-pins together. Data Sheet 5 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Max. Unit Conditions Voltages 4.1.1 Supply voltage VS -16 40 V – 4.1.2 Input voltage EN VEN -16 40 V – 4.1.3 Input voltage EN related to VS VEN(VS) VS - 40 VS + 16 V – 4.1.4 Input voltage EN related to VOUTx VEN - VOUTx VEN VOUTx -16 40 V – 4.1.5 Output voltage VOUTx -1 40 V – 4.1.6 Power stage voltage VPS = VS - VOUTx VPS -16 40 V – 4.1.7 Input voltage PWMI VPWMI -0.3 6 V – 4.1.8 IN_SET voltage VIN_SET -0.3 6 V – 4.1.9 N-1 voltage VN-1 -0.3 6 V – 4.1.10 Feedback voltage VFB -0.3 40 V – 4.1.11 IN_SET current IIN_SET – – 2 8 mA – Diagnosis output 4.1.12 N-1 current IN-1 -0.5 0.5 mA – 4.1.13 Feedback current IFB – 0.5 mA – 4.1.14 Output current IOUTx – 130 mA – Currents Temperatures 4.1.15 Junction temperature Tj -40 150 °C – 4.1.16 Storage temperature Tstg -55 150 °C – ESD Susceptibility 4.1.17 ESD resistivity to GND VESD -2 2 kV Human Body Model (100 pF via 1.5 kΩ)2) 4.1.18 ESD resistivity all pins to GND VESD -500 500 V CDM3) 4.1.19 ESD resistivity corner pins to GND VESD -750 750 V CDM3) 1) Not subject to production test, specified by design 2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001-2011 3) ESD susceptibility, Charged Device Model “CDM” according to JESD22-C101E Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Data Sheet 6 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL General Product Characteristics Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Functional Range 4.2 Pos. Parameter Symbol Limit Values Min. Max. Unit Conditions 4.2.20 Supply voltage range for normal operation VS(nom) 5.5 40 V – 4.2.21 Power on reset threshold VS(POR) – 5 V VEN = VS RSET = 12 kΩ IOUTx = 80% IOUTx(nom) VOUTx = 2.5 V 4.2.22 Junction temperature Tj -40 150 °C – Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Thermal Resistance 4.3 Pos. Parameter Symbol 4.3.1 Junction to Case RthJC 4.3.2 Junction to Ambient 1s0p board RthJA1 4.3.3 1) 2) 3) 4) Junction to Ambient 2s2p board Limit Values Min. Typ. Max. – 8 10 – – 61 56 Unit Conditions K/W 1) 2) K/W 1) 3) – – Ta = 85 °C Ta = 135 °C K/W RthJA2 1) 4) – 45 – Ta = 85 °C – 43 – Ta = 135 °C Not subject to production test, specified by design. Based on simulation results. Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed Pad are fixed to ambient temperature). Ta = 85°C, Total power dissipation 1.5 W. The RthJA values are according to Jedec JESD51-3 at natural convection on 1s0p FR4 board. The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 70 µm Cu, 300 mm2 cooling area. Total power dissipation 1.5 W distributed statically and homogenously over all power stages. The RthJA values are according to Jedec JESD51-5,-7 at natural convection on 2s2p FR4 board. The product (chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 2 inner copper layers (outside 2 x 70 µm Cu, inner 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacted the first inner copper layer. Total power dissipation 1.5 W distributed statically and homogenously over all power stages. Data Sheet 7 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL EN Pin 5 EN Pin The EN pin is a dual function pin: Internal Supply Output Control EN V EN Figure 3 Block Diagram EN pin Note: The current consumption at the EN-pin IEN needs to be added to the total device current consumption. The total current consumption is the sum of the currents at the VS-pin IS and the EN-pin IEN. 5.1 EN Function If the voltage at the pin EN is below a threshold of VEN(off) the LITIX™ Basic IC will enter Sleep mode. In this state all internal functions are switched off, the current consumption is reduced to IS(sleep). A voltage above VEN(on) at this pin enables the device after the Power on reset time tPOR. VS V EN IOU T t t tPOR 100% 80% t Figure 4 Data Sheet Power on reset 8 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL EN Pin 5.2 Internal Supply Pin The EN pin can be used to supply the internal logic. There are two typical application conditions, where this feature can be used: 1) In “DC/DC control Buck” configurations, where the voltage Vs can be below 5.5V (see Figure 20 for details). 2) In configurations, where a PWM signal is applied at the Vbatt pin of a light module. The buffer capacitor CBUF is used to supply the LITIX™ Basic IC during Vbatt low (Vs low) periods. This feature can be used to minimize the turn-on time to the values specified in Pos. 10.2.13. Otherwise, the power-on reset delay time tPOR (Pos. 6.3.6) has to be considered. The capacitor can be calculated using the following formula: I EN ( LS ) C BUF = tLOW ( max ) ⋅ -------------------------------------------------V S – V D1 – V S ( POR ) (1) See also a typical application drawing in Chapter 11. VBATT VS D1 GND CBUF EN Internal supply Thermal protection Current adjustment OUT2 OUT1 LITIX™ Basic Figure 5 Data Sheet GND R SET IN_SET OUT3 Output control External circuit when applying a fast PWM signal on VBATT 9 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL EN Pin V EN t V BATT IOU T t tON (VS) 100% 80% Switch off behavior depends on V BATT and load characteristics 20% t Figure 6 Typical waveforms when applying a fast PWM signal on VBATT The parameter tON(VS) is defined at Pos. 10.2.13. The parameter tOFF(VS) depends on the load and supply voltage VBATT characteristics. 5.3 EN Unused In case of an unused EN pin, there are two different ways to connect it: 5.3.1 EN - Pull Up to VS The EN pin can be connected with a pull up resistor (e.g. 10 kΩ) to Vs potential. In this configuration the LITIX™ Basic IC is always enabled. 5.3.2 EN - Direct Connection to VS The EN pin can be connected directly to the VS pin (IC always enabled). This configuration has the advantage (compared to the configuration described in Chapter 5.3.1) that no additional external component is required. Data Sheet 10 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL PWMI Pin 6 PWMI Pin The PWMI pin is designed as a dual function pin. IPWMI(L) Output Control PWMI VPWMI Figure 7 Block Diagram PWMI pin The pin can be used for PWM-dimming via a push-pull stage of a micro controller, which is connecting the PWMI-pin to a low or high potential. Note: The micro controller’s push-pull stage has to able to sink currents according to Pos. 6.3.16 to activate the device. Furthermore, the device offers also an internal PWM unit by connecting an external-RC network according to Figure 10. 6.1 PWM Dimming A PWM signal can be applied at the PWMI pin for LED brightness regulation. The dimming frequency can be adjusted in a very wide range (e.g. 400 Hz). The PWMI pin is low active. Turn on/off thresholds VPWMI(L) and VPWMI(H) are specified in parameters Pos. 6.3.13 and Pos. 6.3.14. V PWMI IOU T tON (PWMI ) tOFF(PWMI ) t 100% 80% 20% t Figure 8 Data Sheet Turn on and Turn off time for PWMI pin usage 11 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL PWMI Pin 6.2 Internal PWM Unit Connecting a resistor and a capacitor in parallel on the PWMI pin enables the internal pulse width modulation unit. The following figure shows the charging and discharging defined by the RC-network according to and the internal PWM unit. VPWMI Outputs OFF VPWMI(H) Internal PWM VPWMI(L) Outputs ON t OUTON Figure 9 OUT - OFF OUTON OUT - OFF OUTON OUT - OFF OUTON OUT - OFF PWMI operating voltages The PWM Duty cycle (DC) and the PWM frequency can be adjusted using the formulas below. Please use only typical values of VPWMI(L), VPWMI(H) and IPWMI(on) for the calculation of tPWMI(on) and tPWMI(off) (as described in Pos. 6.3.13 to Pos. 6.3.16). ⎛ V PWMI ( H ) – I PWMI ( on ) ⋅ R PWMI⎞ -⎟ t PWMI ( on ) = –R PWMI ⋅ C PWMI ⋅ LN ⎜ ------------------------------------------------------------------------------⎝ V PWMI ( L ) – I PWMI ( on ) ⋅ R PWMI ⎠ (2) ⎛ V PWMI ( H )⎞ -⎟ t PWMI ( off ) = R PWMI ⋅ C PWMI ⋅ LN ⎜ ------------------------⎝ V PWMI ( L ) ⎠ (3) 1 f PWMI = --------------------------------------------------------t PWMI ( on ) + tPWMI ( off ) (4) DC = tPWMI ( on ) ⋅ f PWMI (5) Out of this equations the required CPWMI and RPWMI can be calculated: t ⎞ tPWMI ( off ) PWMI ( on ) ------------------------ ⎛ V PWMI ( L ) – I PWMI ( on ) ⋅ t PWMI ( off ) ⋅ ⎜ --------------------------⎟ ⎝ V PWMI ( H )⎠ –1 C PWMI = ------------------------------------------------------------------------------------------------------------------------------------------------------------------tPWMI ( on ) -----------------------t ⎛ V PWMI ( L ) ⎞ ⎛ V PWMI ( L ) ⎞ PWMI ( off ) LN ⎜ --------------------------⎟ ⋅ V PWMI ( L ) ⋅ ⎜ --------------------------⎟ – V PWMI ( H ) ⎝ V PWMI ( H )⎠ ⎝ V PWMI ( H )⎠ t PWMI ( off ) RPWMI = --------------------------------------------------------------⎛ V PWMI ( H )⎞ -⎟ C PWMI ⋅ LN ⎜ ------------------------⎝ V PWMI ( L ) ⎠ (6) (7) See Figure 10 for a typical external circuitry. Data Sheet 12 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL PWMI Pin Note: In case of junction temperatures above Tj(CRT) (Pos. 10.2.14) the device provides a temperature dependent current reduction feature as descirbed in Chapter 10.1.1. In case of output current reduction IIN_SET is reduced as well, which leads to increased turn on-times tPWMI(on), because the CPWMI is charged slower. The turn off-time tPWMI(off) remains the same. VBATT VS 10 kΩ GND EN PWMI Internal supply OUT3 Thermal protection Output control OUT2 Current adjustment OUT1 RSET CN-1 IN_SET FB DC/DC control LITIX™ Basic GND CPWM I RPWM I N-1 Figure 10 Typical circuit using internal PWM unit 6.3 Electrical Characteristics Internal Supply / EN / PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol 6.3.1 Current consumption, sleep mode IS(sleep) 6.3.2 Current consumption, active mode IS(on) Limit Values Min. Typ. Max. – 0.1 2 – – – Data Sheet – – – 13 1.7 1.0 1.75 Unit Conditions µA 1) VEN = 0.5 V Tj < 85 °C VS = 18 V VOUTx = 3.6 V mA 2) VPWMI= 0.5 V IIN_SET = 0 µA Tj < 105 °C VS = 18 V VOUTx = 3.6V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. 6.3.3 Current consumption, device disabled via PWMI – – – 6.3.5 – – – mA 2) VS = 18 V Tj < 105 °C VIN_SET = 5 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin mA 2) VS = 18 V Tj < 105 °C VPWMI= 3.4 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin mA 2) VS = 18 V Tj < 105 °C RSET = 12 kΩ VPWMI= 0.5 V VOUTx = 18 V VEN = 5.5 V VEN = 18 V 1) REN = 10 kΩ between VS and EN-pin 1) 1.65 0.9 1.7 IS(dis,PWMI) – – – Conditions Max. Current consumption, IS(dis,IN_SET) device disabled via IN_SET – – – 6.3.4 Typ. Unit 1.9 1.0 2.0 Current consumption, IS(fault) active mode in single fault detection condition – – – – – – 6.0 4.9 5.9 Power-on reset delay time tPOR – – 25 µs VS = VEN = 0 →13.5 V VOUTx(nom) = 3.6 ± 0.3V IOUTx = 80% IOUTx(nom) 6.3.7 Required supply voltage for output activation VS(on) – – 4 V VEN = 5.5 V VOUTx = 3 V IOUTx = 50% IOUTx(nom) 6.3.8 Required supply voltage for current control VS(CC) – – 5.2 V VEN = 5.5 V VOUTx = 3.6 V IOUTx ≥ 90% IOUTx(nom) 6.3.9 EN turn on threshold VEN(on) – – 2.5 V – 6.3.10 EN turn off threshold VEN(off) 0.8 – – V – mA 1) 6.3.6 6.3.11 Data Sheet 3) EN input current during low supply voltage IEN(LS) – – 14 1.8 VS = 4.5 V Tj < 105 °C VEN = 5.5 V Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL PWMI Pin Electrical Characteristics Internal Supply / EN / PWMI pin (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. 6.3.12 EN high input current IEN(H) Typ. Unit Conditions mA Tj < 105 °C VS = 13.5 V, VEN = 5.5 V VS = 18 V, VEN = 5.5 V VS = VEN = 18 V 1) VS = 18 V, REN = 10 kΩ between VS and EN-pin Max. – – – – – – – – 0.1 0.1 1.65 0.45 6.3.13 PWMI (active low) Switching low threshold (outputs on) VPWMI(L) 1.5 1.85 2.3 V 1)4) 6.3.14 PWMI(active low) Switching high threshold (outputs off) VPWMI(H) 2.45 2.85 3.2 V 1)4)5) VS = 8...18 V 6.3.15 PWMI ∆VPWMI Switching threshold difference VPWMI(H) - VPWMI(L) 0.75 1 1.10 V 1)4)5) VS = 8...18 V 6.3.16 PWMI (active low) Low input current with active channels (voltage 1 2 ( V IN_SET(max) ) ⋅ R SET(max) VPWMI ( H, max ) R PWMI(min) = --------------------------------------------------------------------------------VPWMI ( H, max ) + VF I IN_SET(OL,min) – -----------------------------------------------RSET(max) (14) V PWMI ( H, min ) R PWMI(max) = --------------------------------------------------VIN_SET(max) n N – 1 ⋅ 4 ⋅ ------------------------------R SET(min) (15) VF represents the voltage drop across the diode between the IN_SET- and the PWMI-pin. Note: If one channel of the device should not be used, the according output needs to be connected to GND, which leads to a disabling of this output. Note: In case of a double fault, where the loads of two channels are faulty at the same time, the device operates as in normal operation. This feature is implemented to avoid any unwanted switch off during significant supply voltage drops. Please refer to Chapter 9.2. 9.2 Double Fault Conditions The TLD1326EL has an integrated double fault detection feature. This feature is implemented to detect significant supply voltage drops. During such supply voltage drops close to the forward voltage of the LEDs the drivers outputs remain active. In case of load faults on two or more outputs within the time period tN-1 the device disables the diagnosis to avoid any uncorrect open load diagnosis during low supply voltages close to the forward voltages of the connected LED chains. If the faults between two or three channels happen with a delay of longer than tOL the double fault detection feature is not active, i.e. the device is not turned on. 9.3 Electrical Characteristics IN_SET Pin and Load Diagnosis Electrical Characteristics IN_SET pin and Load Diagnosis Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 1) 9.3.1 IN_SET reference voltage VIN_SET(ref) 1.19 1.23 1.27 V VOUTx = 3.6 V Tj = 25...115 °C 9.3.2 IN_SET N_1 voltage VIN_SET(N-1) 4 – 5.5 V 1) Data Sheet 23 VS > 8 V Tj = 25...150 °C VS = VOUTx (OL) x Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Load Diagnosis Electrical Characteristics IN_SET pin and Load Diagnosis (cont’d) Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 1) 9.3.3 IN_SET N_1 voltage VIN_SET(N-1) 3.2 – 5.5 V 9.3.4 IN_SET N_1 current IIN_SET(N-1) 1.5 – 7.4 mA VS > 8 V Tj = 25...150 °C VIN_SET = 4 V VS = VOUTx (OL) 9.3.5 N-1 high threshold VN-1(th) 2.45 2.85 3.2 V VS > 8 V 9.3.6 N-1 output current IN-1 12 20 28 µA VS > 8 V VN-1 = 2 V 9.3.7 N-1 detection voltage VPS(N-1) = VS - VOUTx VPS(N-1) 0.2 – 0.4 V VS > 8 V – 15 µA See Figure 15 2 IN_SET activation IIN_SET(act) current without turn on of output stages 1) Not subject to production test, specified by design 9.3.8 Data Sheet 24 VS = 5.5 V Tj = 25...150 °C VS = VOUTx (OL) x 1) Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Power Stage 10 Power Stage The output stages are realized as high side current sources with a current of 120 mA. During off state the leakage current at the output stage is minimized in order to prevent a slightly glowing LED. The maximum current of each channel is limited by the power dissipation and used PCB cooling areas (which results in the applications RthJA). For an operating current control loop the supply and output voltages according to the following parameters have to be considered: • • • Required supply voltage for current control VS(CC), Pos. 6.3.8 Voltage drop over output stage during current control VPS(CC), Pos. 10.2.6 Required output voltage for current control VOUTx(CC), Pos. 10.2.7 10.1 Protection The device provides embedded protective functions, which are designed to prevent IC destruction under fault conditions described in this data sheet. Fault conditions are considered as “outside” normal operating range. Protective functions are neither designed for continuous nor for repetitive operation. 10.1.1 Over Load Behavior An over load detection circuit is integrated in the LITIX™ Basic IC. It is realized by a temperature monitoring of the output stages (OUTx). As soon as the junction temperature exceeds the current reduction temperature threshold Tj(CRT) the output current will be reduced by the device by reducing the IN_SET reference voltage VIN_SET(ref). This feature avoids LED’s flickering during static output overload conditions. Furthermore, it protects LEDs against over temperature, which are mounted thermally close to the device. If the device temperature still increases, the three output currents decrease close to 0 A. As soon as the device cools down the output currents rise again. IOU T V IN_ SET Tj (C R T) Figure 19 Tj Output current reduction at high temperature Note: This high temperature output current reduction is realized by reducing the IN_SET reference voltage voltage (Pos. 9.3.1). In case of very high power loss applied to the device and very high junction temperature the output current may drop down to IOUTx = 0 mA, after a slight cooling down the current increases again. 10.1.2 Reverse Battery Protection The TLD1326EL has an integrated reverse battery protection feature. This feature protects the driver IC itself, but also connected LEDs. The output reverse current is limited to IOUTx(rev) by the reverse battery protection. Data Sheet 25 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Power Stage Note: Due to the reverse battery protection a reverse protection diode for the light module may be obsolete. In case of high ISO-pulse requirements and only minor protecting components like capacitors a reverse protection diode may be reasonable. The external protection circuit needs to be verified in the application. 10.2 Electrical Characteristics Power Stage Electrical Characteristics Power Stage Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40°C to +150°C, VOUTx = 3.6 V, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. 10.2.1 Output leakage current Typ. Unit Conditions µA VEN = 5.5 V IIN_SET = 0 µA VOUTx = 2.5 V Tj = 150 °C 1) Tj = 85 °C 1) Max. IOUTx(leak) – – – – 7 3 10.2.2 Output leakage current in boost over battery setup – IOUTx(leak,B2B) – 50 µA 10.2.3 Reverse output current -IOUTx(rev) – 1 µA 10.2.4 Output current accuracy kLT limited temperature range – Output current accuracy over temperature 1) VS = -16 V Output load: LED with break down voltage < - 0.6 V 1) 697 645 10.2.5 VEN = 5.5 V IIN_SET = 0 µA VOUTx = VS = 40 V 750 750 Tj = 25...115 °C VS = 8...18 V VPS = 2 V RSET = 6...12 kΩ RSET = 30 kΩ 803 855 1) kALL 697 645 750 750 803 855 Tj = -40...115 °C VS = 8...18 V VPS = 2 V RSET = 6...12 kΩ RSET = 30 kΩ 10.2.6 Voltage drop over power stage during current control VPS(CC) = VS - VOUTx VPS(CC) 0.75 – – V 1) 10.2.7 Required output voltage for current control VOUTx(CC) 2.3 – – V 1) Data Sheet 26 VS = 13.5 V RSET = 12 kΩ IOUTx ≥ 90% of (kLT(typ)/RSET) VS = 13.5 V RSET = 12 kΩ IOUTx ≥ 90% of (kLT(typ)/RSET) Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Power Stage Electrical Characteristics Power Stage (cont’d) Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40°C to +150°C, VOUTx = 3.6 V, all voltages with respect to ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 10.2.8 Maximum output current IOUT(max) 120 – – mA RSET = 4.7 kΩ The maximum output current is limited by the thermal conditions. Please refer to Pos. 4.3.1 - Pos. 4.3.3 10.2.9 PWMI turn on time tON(PWMI) – – 15 µs 2) VS = 13.5 V RSET = 12 kΩ PWMI → L IOUTx = 80% of (kLT(typ)/RSET) 10.2.10 PWMI turn off time tOFF(PWMI) – – 10 µs 2) VS = 13.5 V RSET = 12 kΩ PWMI→ H IOUTx = 20% of (kLT(typ)/RSET) 10.2.11 IN_SET turn on time tON(IN_SET) – – 15 µs VS = 13.5 V IIN_SET = 0 → 100 µA IOUTx = 80% of (kLT(typ)/RSET) 10.2.12 IN_SET turn off time tOFF(IN_SET) – – 10 µs VS = 13.5 V IIN_SET = 100 → 0 µA IOUTx = 20% of (kLT(typ)/RSET) 10.2.13 VS turn on time tON(VS) – – 20 µs 1) 3) 10.2.14 Current reduction temperature threshold Tj(CRT) – 140 – °C 1) IOUTx = 95% of (kLT(typ)/RSET) – A 1) 10.2.15 Output current during IOUT(CRT) 85% of – current reduction at high (kLT(typ) temperature /RSET) 1) Not subject to production test, specified by design 2) see also Figure 8 3) see also Figure 6 Data Sheet 27 VEN = 5.5 V RSET = 12 kΩ VS = 0 → 13.5 V IOUTx = 80% of (kLT(typ)/RSET) RSET = 12 kΩ Tj = 150 °C Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Application Information 11 Application Information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. DBO VBO RFB1 ROV1 L2 CBO CIN CSEPIC CVS = 4.7 nF L1 VBATT EN IN SWO ROV2 SWCS Output control 4 .7 nF ** 4. 7 nF** 4. 7 nF** OUT 3 PWMI OUT 2 N- 1 CN-1 VIVCC Thermal protection RSWCS TLD5097 RSET SGND 1 nF RFB2 OUT 1 IN _ SET Current adjust DC / DC control LITIX™ Basic FB GND RFB(PD) 1 OVFB RSET VS Internal supply EN / PWMI CVS = 4.7 nF ST FBL CIN DPOL RPOL IVCC GND CIVCC CCOMP RCOMP COMP VBO RFB3 2 FBH FREQ / SYNC RFREQ RSET SET VS Internal supply EN Thermal protection Output control 4 . 7 nF ** 4 .7 nF ** 4. 7 nF** OUT 3 PWMI OUT 2 OUT 1 CN-1 N- 1 RSET IN _ SET LITIX™ Basic ** Figure 20 Data Sheet Current adjust DC / DC control FB GND For EMI improvement , if required . System diagram DC/DC control SEPIC + N-1 detection 28 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Application Information DRV LBO VIN VBATT DBO CIN VBO CBO IN SWCS TLD5095 SGND RFB1 CVS =4.7nF TSW SWO EN RCS ROVH CN-1 ROVL COMP CCOMP PWMI OUT2 OUT1 IN_SET Current DC/ DC control FB GND FBH VIN RFB2 FBL VBO RPWMI RFB3 PWMO RCOMP 4.7nF** 4.7nF** 4.7nF** OUT3 N-1 adjust IVCC CVS =4.7nF VS 10kΩ GND RFREQ Output control LITIX™ Basic RSET ST FREQ / SYNC Internal supply Thermal protection OVFB EN / PWMI VS 10kΩ CIVCC EN Internal supply Thermal protection 1nF RFB( PD) CN-1 4.7nF** 4.7nF** 4.7nF** OUT3 PWMI OUT2 N-1 OUT1 IN_SET Current adjust RSET Output control LITIX™ Basic DC/ DC control FB GND VIN * For EMI improvement, if required, ≈10nF Figure 21 System diagram DC/DC control Boost + N-1 detection Note: This is a very simplified example of an application circuit. The function must be verified in the real application. 11.1 • Further Application Information For further information you may contact http://www.infineon.com/ Data Sheet 29 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Package Outlines 12 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion Dimensions in mm PG-SSOP-14-1,-2,-3-PO V02 Figure 22 PG-SSOP-14 Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on alternative packages, please visit our website: http://www.infineon.com/packages. Data Sheet 30 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Revision History 13 Revision History Revision Date Changes 1.0 2013-08-08 Inital revision of data sheet 1.1 2015-03-19 Updated parameters KLT and KALL in the chapter Power Stage 1.2 2018-04-26 Updated to latest template 1.2 2018-04-26 Updated application drawing 1.2 2018-04-26 Updated package marking 1.2 2018-04-26 Updated package figure 1.2 2018-04-26 Updated Chapter 7.1 1.2 2018-04-26 Updated Figure 20 Data Sheet 31 Rev. 1.2 2018-04-26 LITIX™ Basic TLD1326EL Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.3 5.3.1 5.3.2 EN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 EN Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Internal Supply Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 EN Unused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 EN - Pull Up to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 EN - Direct Connection to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 6.1 6.2 6.3 PWMI Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWM Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Internal PWM Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Internal Supply / EN / PWMI Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7.1 7.2 FB Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 DC/DC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics FB Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 8 8.1 8.2 IN_SET Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Output Current Adjustment via RSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Smart Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 9 9.1 9.2 9.3 Load Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N-1 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Double Fault Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics IN_SET Pin and Load Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 21 23 23 10 10.1 10.1.1 10.1.2 10.2 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Over Load Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reverse Battery Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 25 25 26 11 11.1 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 12 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 13 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 6 6 7 7 11 11 12 13 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Data Sheet 32 Rev. 1.2 2018-04-26 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-04-26 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference TLD1326EL IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.