LITIX™ Basic
TLD2326EL
3 Channel High-Side Current Source
1
Package
PG-SSOP-14
Marking
TLD2326
Overview
Applications
Exterior LED lighting applications such as tail/brake light, turn indicator,
position light, side marker,...
•
Interior LED lighting applications such as ambient lighting (e.g. RGB),
interior illumination and dash board lighting.
10kΩ
DC/DC
controller
EN
Internal
supply
Thermal
protection
OUT3
Output
control
IN_SET3
IN_SET2
RSET1
Current
adjustment
OUT1
FB
DC/DC
control
CFB
TLD2326EL
R FB
RSET2
RSET3
IN_SET1
OUT2
GND
GND
VS
DC/DC Converter
VBATT
CVS =4.7nF
•
Application Diagram with TLD2326EL
Data Sheet
www.infineon.com
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Overview
Basic Features
•
3 Channel device with integrated output stages (current sources), optimized to drive LEDs with output
current up to 120 mA per channel
•
Low current consumption in sleep mode
•
PWM-operation supported via VS- and EN-pin
•
Output current adjustable via external low power resistor and possibility to connect PTC resistor for LED
protection during over temperature conditions
•
Dynamic overhead control
•
Reverse polarity protection and overload protection
•
Undervoltage detection
•
Open load and short circuit to GND diagnosis
•
Wide temperature range: -40°C < Tj < 150°C
•
PG-SSOP-14 package with exposed heatslug
Description
The LITIX™ Basic TLD2326EL is a three channel high side driver IC with integrated output stages. It is designed
to control LEDs with a current up to 120 mA. In typical automotive applications the device is capable to drive
i.e. 3 red LEDs per chain (total 9 LEDs) with a current up to 60 mA, which is limited by thermal cooling aspects.
The output current is controlled practically independent of load and supply voltage changes.
Table 1
Product Summary
Parameter
Symbol
Value
Operating voltage range
VS(nom)
5.5 V ... 40 V
Maximum voltage
VS(max)
VOUTx(max)
40 V
Nominal output (load) current
IOUTx(nom)
60 mA when using a supply voltage range of 8 V - 18 V (e.g.
Automotive car battery). Currents up to IOUT(max) possible in
applications with low thermal resistance RthJA
Maximum output (load) current
IOUTx(max)
120 mA; depending on thermal resistance RthJA
Output current accuracy at RSETx = 12 kΩ kLT
750 ± 7%
Current consumption in sleep mode IS(sleep,typ)
0.1 µA
Protective Functions
•
ESD protection
•
Under voltage lock out
•
Over Load protection
•
Over Temperature protection
•
Reverse Polarity protection
Diagnostic Functions
•
OL detection
•
SC to Vs (indicated by OL diagnosis)
•
SC to GND detection
Data Sheet
2
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Block Diagram
Block Diagram
VS
2
Internal
supply
Thermal
protection
OUT3
Output
control
IN_SET3
IN_SET2
IN_SET1
Current
adjustment
OUT1
Figure 1
Data Sheet
FB
DC/DC
control
TLD2326EL
OUT2
GND
EN
Basic Block Diagram
3
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Pin Configuration
3
Pin Configuration
3.1
Pin Assignment
Figure 2
Data Sheet
VS
1
VS
2
EN
3
NC
4
IN_SET3
14
NC
13
OUT3
12
OUT2
11
OUT1
5
10
FB
IN_SET2
6
9
GND
IN_SET1
7
8
NC
TLD2326EL
EP
Pin Configuration
4
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Pin Configuration
3.2
Pin Definitions and Functions
Pin
Symbol
Input/
Output
Function
1, 2
VS
–
Supply Voltage; battery supply, connect a decoupling capacitor (100 nF - 1 µF)
to GND
3
EN
I
Enable pin
4
NC
–
Pin not connected
5
IN_SET3
I/O
Input / SET pin 3; Connect a low power resistor to adjust the output current
6
IN_SET2
I/O
Input / SET pin 2; Connect a low power resistor to adjust the output current
7
IN_SET1
I/O
Input / SET pin 1; Connect a low power resistor to adjust the output current
8
NC
–
Pin not connected
–
1)
9
GND
Ground
10
FB
O
Feedback Output
11
OUT1
O
Output 1
12
OUT2
O
Output 2
13
OUT3
O
Output 3
14
NC
–
Pin not connected
–
1)
Exposed
Pad
GND
Exposed Pad; connect to GND in application
1) Connect all GND-pins together.
Data Sheet
5
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Absolute Maximum Ratings 1)
Tj = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin for input pins (I),
positive currents flowing out of the I/O and output pins (O) (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
Voltages
4.1.1
Supply voltage
VS
-16
40
V
–
4.1.2
Input voltage EN
VEN
-16
40
V
–
4.1.3
Input voltage EN related to VS
VEN(VS)
VS - 40
VS + 16
V
–
4.1.4
Input voltage EN related to VOUTx
VEN - VOUTx
VEN VOUTx
-16
40
V
–
4.1.5
Output voltage
VOUTx
-1
40
V
–
4.1.6
Power stage voltage
VPS = VS - VOUTx
VPS
-16
40
V
–
4.1.7
IN_SETx voltage
VIN_SETx
-0.3
6
V
–
4.1.8
Feedback voltage
VFB
-0.3
40
V
–
4.1.9
IN_SETx current
IIN_SETx
–
–
2
3
mA
–
Diagnosis output
4.1.10
Feedback current
IFB
–
0.5
mA
–
4.1.11
Output current
IOUTx
–
130
mA
–
Currents
Temperatures
4.1.12
Junction temperature
Tj
-40
150
°C
–
4.1.13
Storage temperature
Tstg
-55
150
°C
–
ESD Susceptibility
4.1.14
ESD resistivity to GND
VESD
-2
2
kV
Human Body
Model (100 pF via
1.5 kΩ)2)
4.1.15
ESD resistivity all pins to GND
VESD
-500
500
V
CDM3)
4.1.16
ESD resistivity corner pins to GND
VESD
-750
750
V
CDM3)
1) Not subject to production test, specified by design
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001-2011
3) ESD susceptibility, Charged Device Model “CDM” according to JESD22-C101E
Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in
the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions
are not designed for continuous repetitive operation.
Data Sheet
6
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
General Product Characteristics
Functional Range
4.2
Pos.
Parameter
Symbol
Limit Values
Min.
Max.
Unit
Conditions
4.2.17
Supply voltage range for
normal operation
VS(nom)
5.5
40
V
–
4.2.18
Power on reset threshold
VS(POR)
–
5
V
VEN = VS
RSETx = 12 kΩ
IOUTx = 80% IOUTx(nom)
VOUTx = 2.5 V
4.2.19
Junction temperature
Tj
-40
150
°C
–
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Thermal Resistance
4.3
Pos.
Parameter
Symbol
4.3.1
Junction to Case
RthJC
4.3.2
Junction to Ambient 1s0p board
RthJA1
4.3.3
1)
2)
3)
4)
Junction to Ambient 2s2p board
Limit Values
Min.
Typ.
Max.
–
8
10
–
–
RthJA2
61
56
Unit
Conditions
K/W
1) 2)
K/W
1) 3)
–
–
Ta = 85 °C
Ta = 135 °C
K/W
1) 4)
–
45
–
Ta = 85 °C
–
43
–
Ta = 135 °C
Not subject to production test, specified by design. Based on simulation results.
Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed Pad
are fixed to ambient temperature). Ta = 85°C, Total power dissipation 1.5 W.
The RthJA values are according to Jedec JESD51-3 at natural convection on 1s0p FR4 board. The product
(chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 70 µm Cu, 300 mm2 cooling area.
Total power dissipation 1.5 W distributed statically and homogenously over all power stages.
The RthJA values are according to Jedec JESD51-5,-7 at natural convection on 2s2p FR4 board. The product
(chip + package) was simulated on a 76.2 x 114.3 x 1.5 mm3 board with 2 inner copper layers (outside 2 x
70 µm Cu, inner 2 x 35 µm Cu). Where applicable, a thermal via array under the exposed pad contacted the
first inner copper layer. Total power dissipation 1.5 W distributed statically and homogenously over all
power stages.
Data Sheet
7
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
EN Pin
5
EN Pin
The EN pin is a dual function pin:
Internal Supply
Output Control
EN
V EN
Figure 3
Block Diagram EN pin
Note: The current consumption at the EN-pin IEN needs to be added to the total device current consumption. The
total current consumption is the sum of the currents at the VS-pin IS and the EN-pin IEN.
5.1
EN Function
If the voltage at the pin EN is below a threshold of VEN(off) the LITIX™ Basic IC will enter Sleep mode. In this state
all internal functions are switched off, the current consumption is reduced to IS(sleep). A voltage above VEN(on) at
this pin enables the device after the Power on reset time tPOR.
VS
V EN
IOU T
t
t
tPOR
100%
80%
t
Figure 4
Data Sheet
Power on reset
8
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
EN Pin
5.2
Internal Supply Pin
The EN pin can be used to supply the internal logic. There are two typical application conditions, where this
feature can be used:
1) In “DC/DC control Buck” configurations, where the voltage Vs can be below 5.5V.
2) In configurations, where a PWM signal is applied at the Vbatt pin of a light module. The buffer capacitor CBUF
is used to supply the LITIX™ Basic IC during Vbatt low (Vs low) periods. This feature can be used to minimize
the turn-on time to the values specified in Pos. 9.2.11. Otherwise, the power-on reset delay time tPOR
(Pos. 5.4.6) has to be considered.
The capacitor can be calculated using the following formula:
I EN LS
C BUF = tLOW max -------------------------------------------------V S – V D1 – V S POR
(1)
See also a typical application drawing in Chapter 10.
VBATT
VS
D1
GND
CBUF
EN
Internal
supply
OUT3
Thermal
protection
Output
control
OUT2
IN_SET3
Figure 5
Data Sheet
R SET1
R SET2
R SET3
IN_SET1
Current
adjustment
OUT1
GND
IN_SET2
LITIX™ Basic
External circuit when applying a fast PWM signal on VBATT
9
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
EN Pin
V EN
t
V BATT
IOU T
t
tON (VS)
100%
80%
Switch off behavior depends on
V BATT and load characteristics
20%
t
Figure 6
Typical waveforms when applying a fast PWM signal on VBATT
The parameter tON(VS) is defined at Pos. 9.2.11. The parameter tOFF(VS) depends on the load and supply voltage
VBATT characteristics.
5.3
EN Unused
In case of an unused EN pin, there are two different ways to connect it:
5.3.1
EN - Pull Up to VS
The EN pin can be connected with a pull up resistor (e.g. 10 kΩ) to Vs potential. In this configuration the
LITIX™ Basic IC is always enabled.
5.3.2
EN - Direct Connection to VS
The EN pin can be connected directly to the VS pin (IC always enabled). This configuration has the advantage
(compared to the configuration described in Chapter 5.3.1) that no additional external component is
required.
Data Sheet
10
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
EN Pin
5.4
Electrical Characteristics Internal Supply / EN Pin
Electrical Characteristics Internal Supply / EN pin
Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSETx = 12 kΩ all voltages with respect to
ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output
pins (O) (unless otherwise specified)
Pos.
Parameter
Symbol
5.4.1
Current consumption,
sleep mode
IS(sleep)
5.4.2
Current consumption,
active mode
IS(on)
Limit Values
Min.
Typ.
Max.
–
0.1
2
–
–
–
5.4.3
Current consumption,
device disabled via
IN_SETx
–
–
–
5.4.4
–
–
–
5.4.5
Current consumption,
active mode in double
fault detection condition
and one output disabled
via IN_SETx
–
–
–
Data Sheet
–
–
–
11
1)
VEN = 0.5 V
Tj < 85 °C
VS = 18 V
VOUTx = 3.6 V
mA
2)
IIN_SET = 0 µA
Tj < 105 °C
VS = 18 V
VOUTx = 3.6V
VEN = 5.5 V
VEN = 18 V
1)
REN = 10 kΩ between
VS and EN-pin
mA
2)
VS = 18 V
Tj < 105 °C
VIN_SETx = 5 V
VEN = 5.5 V
VEN = 18 V
1)
REN = 10 kΩ between
VS and EN-pin
mA
2)
VS = 18 V
Tj < 105 °C
RSET1 = 12 kΩ
RSET2,3 = unconnected
VOUTx = 18 V or 0 V
VEN = 5.5 V
VEN = 18 V
1)
REN = 10 kΩ between
VS and EN-pin
mA
2)
6.0
4.9
5.9
IS(dfault)
–
–
–
µA
1.65
0.9
1.7
Current consumption,
IS(fault)
active mode in single fault
detection condition
–
–
–
Conditions
1.7
1.0
1.75
IS(dis,IN_SET)
–
–
–
Unit
9.0
8.4
9.0
VS = 18 V
Tj < 105 °C
RSET1,2 = 12 kΩ
RSET3 = unconnected
VOUTx = 18 V or 0 V
VEN = 5.5 V
VEN = 18 V
1)
REN = 10 kΩ between
VS and EN-pin
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
EN Pin
Electrical Characteristics Internal Supply / EN pin (cont’d)
Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSETx = 12 kΩ all voltages with respect to
ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output
pins (O) (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Unit
Conditions
1)
Min.
Typ.
Max.
Power-on reset delay time tPOR
–
–
25
µs
VS = VEN = 0 →13.5 V
VOUTx(nom) = 3.6 ± 0.3V
IOUTx = 80% IOUTx(nom)
5.4.7
Required supply voltage
for output activation
VS(on)
–
–
4
V
VEN = 5.5 V
VOUTx = 3 V
IOUTx = 50% IOUTx(nom)
5.4.8
Required supply voltage
for current control
VS(CC)
–
–
5.2
V
VEN = 5.5 V
VOUTx = 3.6 V
IOUTx ≥ 90% IOUTx(nom)
5.4.9
EN turn on threshold
VEN(on)
–
–
2.5
V
–
5.4.10
EN turn off threshold
VEN(off)
0.8
–
–
V
–
–
mA
1)
VS = 4.5 V
Tj < 105 °C
VEN = 5.5 V
mA
Tj < 105 °C
VS = 13.5 V, VEN = 5.5 V
VS = 18 V, VEN = 5.5 V
VS = VEN = 18 V
1)
VS = 18 V, REN = 10 kΩ
between VS and EN-pin
5.4.6
3)
5.4.11
EN input current during
low supply voltage
IEN(LS)
5.4.12
EN high input current
IEN(H)
–
–
–
–
–
–
–
–
–
2.4
0.1
0.1
2.05
0.45
1) Not subject to production test, specified by design
2) The total device current consumption is the sum of the currents IS and IEN(H), please refer to Pos. 5.4.12
3) See also Figure 4
Data Sheet
12
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
FB Pin
6
FB Pin
The following block diagram shows the feedback pin functionality.
OUT1
OUT2
OUT3
Output voltage
feedback
IFB(SOC)
FB
Figure 7
Block Diagram FB pin
6.1
DC/DC Control
With the FB pin the LITIX™ Basic IC realizes the dynamic overhead control. The IC provides a voltage feedback
to an external DC/DC converter. Using the circuit shown in Figure 17 it is possible to adjust the DC/DC output
voltage in a way that the voltage drop over the output stages of the LITIX™ Basic IC is minimized - dynamic
overhead control. This leads to a significant reduction of the overall driver’s power dissipation and an
increased system efficiency. Figure 17 gives an application example, how different light functions can be
controlled using a µC, if an open load diagnosis per LED chain is required.
Note: For correct output current control and dynamic overhead control the parameters as specified in Pos. 6.2.1
and Pos. 6.2.2 need to be considered. FB source currents higher than given in Pos. 6.2.1 lead to a drop of
the FB regulation voltage VFB(nom).
The resistor RFB(PD) can be dimensioned by applying equations Equation (2) and Equation (3). The following
parameters are required:
•
•
•
•
VOUT represents the maximum LED loads forward voltage, i.e. number of LEDs multiplied with the
maximum LED forward voltage. Temperature drifts of the LED’s forward voltage needs to be considered!
VBO represents the DC/DC output voltage, which is predefined by the feedback resistors (Figure 17: RFB1,
RFB2, RFB3). Please refer to the according DC/DC device data sheet for the dimensioning of those resistors.
nlen represents the numbers of LITIX™ Basics using the longest LED-chains (e.g. if there are 3 devices
connected to one DC/DC converter and two devices using LED chains with 7 LEDs and one device is used
with LED chain lengths of 6 LEDs the according nlen = 2.)
β represents the DC gain of the external bipolar transistor, which is connected to the DC/DC’s feedback pin.
5
VOUT – 0.5 V 1
VOUT – 1.1 V
10 1.7
------------------------ ---------- , --------------------------------------------------
}
R FB PD ,min = min { --------------------------------–5
n len VBO – V OUT – 1.1 V
n len
4 10 A
V OUT – 1.1 V
R FB PD ,max = -------------------------------------------------V BO – V OUT 1
-------------------------------- ------------R FB1
+1
Data Sheet
(2)
(3)
13
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
FB Pin
6.2
Electrical Characteristics FB Pin
Electrical Characteristics FB pin
Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSET = 12 kΩ, all voltages with respect to ground,
positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless
otherwise specified)
Pos.
6.2.1
Parameter
FB regulation voltage
Symbol
VFB(nom)
Limit Values
Conditions
Min.
Typ.
(VOUT 1)*0.9
VOUT - 1 –
V
IFB(SOC) = 25 µA
–
V
1)
VPS(FB)
–
FB operating voltage at
power stage
VPS(FB) = VS - VOUTx
1) Not subject to production test, specified by design
6.2.2
Data Sheet
Unit
14
Max.
10
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
IN_SETx Pin
7
IN_SETx Pin
The IN_SET pin is a multiple function pin for output current definition, input and diagnostics:
Logic
IN_SET
IIN_SET
VIN_SET
VIN_SET(OL/SC)
GND
Figure 8
Block Diagram IN_SET pin
7.1
Output Current Adjustment via RSET
The output current of each channel can be adjusted independently. The current adjustment can be done by
placing a low power resistor (RSET) at the IN_SETx pin to ground. The dimensioning of the resistor can be done
using the formula below:
kR SET = ---------I OUT
(4)
The gain factor k (RSET * output current) is specified in Pos. 9.2.4 and Pos. 9.2.5. The current through the RSET
is defined by the resistor itself and the reference voltage VIN_SET(ref), which is applied to the IN_SET during
supplied device.
7.2
Smart Input Pin
The IN_SETx pin can be connected via RSET to the open-drain output of a µC or to an external NMOS transistor
as described in Figure 9. This signal can be used to turn off the output stages of the IC. A minimum IN_SET
current of IIN_SET(act) is required to turn on the output stages. This feature is implemented to prevent glimming
of LEDs caused by leakage currents on the IN_SET pin, see Figure 11 for details. In addition, the IN_SET pin
offers the diagnostic feedback information. In case of a fault event the IN_SET voltage is increased to
VIN_SET(OL/SC) Pos. 8.4.2. Therefore, the device has two voltage domains at the IN_SET-pin, which is shown in
Figure 12.
Note: If one output has a present fault (open load or short circuit) and one or both of the other channels are
dimmed via PWM at the IN_SET-pins a short spike to VIN_SET(OL/SC) is possible. Please refer to Chapter 8.3.
Data Sheet
15
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
IN_SETx Pin
Microcontroller
(e.g. XC866)
OUT
RSET/2
RSET/2
IN_SET
Current
adjust
Basic LED Driver
GND
IN
VDDP = 5 V
Figure 9
Schematics IN_SET interface to µC
The resulting switching times are shown in Figure 10:
IIN_ SET
IOU T
tON (IN_ SET )
tOFF(IN _ SET)
t
100%
80%
20%
t
Figure 10
Data Sheet
Switching times via IN_SET
16
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
IN_SETx Pin
IOUT [mA]
k = IOUTx * VIN_SET(ref) / IIN_SETx
IOUTx
IIN_SET(ACT)
Figure 11
IIN_SETx
IIN_SET [µA]
IOUT versus IINSET
V IN_ SET
VIN _SET( OL /SC)m ax
Diagnostic voltage range
V IN_ SET(OL /SC) m in
VIN _SET (ref ) m ax
Normal operation and high temperature current
reduction range
Figure 12
Data Sheet
Voltage domains for IN_SET pin, if ST pin is connected to GND
17
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Load Diagnosis
8
Load Diagnosis
8.1
Open Load
An open load diagnosis feature is integrated in the TLD2326EL driver IC. If there is an open load on one of the
outputs, the respective output is turned off. The potential on the IN_SET pin rises up to VIN_SET(OL/SC). This high
voltage can be used as input signal for an µC as shown in Figure 9. The open load status is not latched, as soon
as the open load condition is no longer present, the output stage will be turned on again. An open load
condition is detected, if the voltage drop over the output stage VPS is below the threshold according Pos. 8.4.6
and a filter time of tOL is passed.
V IN_ SET
VIN _SET( OL /SC)
VIN_ SET( ref )
tOL
tIN _SET (re se t)
VOU T
t
VS
V S – VPS(OL )
VF
open load
occurs
open load
disappears
t
Figure 13
IN_SET behavior during open load condition
8.2
Short Circuit to GND detection
The TLD2326EL has an integrated SC to GND detection. If the output stage is turned on and the voltage at the
output falls below VOUT(SC) the potential on the IN_SET pin is increased up to VIN_SET(OL/SC) after tSC. This
condition is not latched. For detecting a normal condition after a short circuit detection an output current
according to IOUT(SC) is driven by the channel.
Data Sheet
18
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Load Diagnosis
VIN _SET
VIN _SET( OL /SC)
VIN _SET (ref )
VOU T
tSC
tIN_ SET( re se t)
t
VF
VOUT (SC)
t
short circuit
occurs
Figure 14
short circuit
disappears
IN_SET behavior during short circuit to GND condition with ST connected to GND and VDEN >
VDEN(act)
8.3
Double Fault Conditions
The TLD2326EL allows the diagnosis of each channel separately. The diagnosis filter times tOL and tSC
(Pos. 8.4.5 and Pos. 8.4.8) are valid only for the channel, which diagnoses first the fault condition. For the
other channel or channels with a subsequential fault the diagnosis is reported immediately without the
diagnosis filter time, if the filter time tOL has been elapsed for the channel with the first fault. During activation
via IN_SET of a non-faulty output, where one channel has already a fault detected, a short spike to VIN_SET(OL/SC)
could occur on the channel, which should be activated. Therefore, in general a diagnosis should be done
earliest after the diagnosis filter times tOL and tSC to avoid any incorrect diagnosis readout. In the scenario
mentioned above the turn on time tON(IN_SET) could be extended. The following figure shows the example
behavior, if OUT1 has a fault and OUT2 is operated in PWM-mode. OUT3 is disabled.
Data Sheet
19
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Load Diagnosis
IIN_ SET1
V IN_SET (OL /SC) / RSET 1
V IN_SET (ref ) / RSET 1
t
VIN _SET 1
VIN _SET (OL /SC)
VIN _SET( ref )
tOL
t
VOU T1
VS
VS – VPS(OL )
VF
open load
occurs
t
IIN_ SET2
VIN _SET( OL /SC) / RSET2
VIN _SET( ref ) / RSET2
t
VIN _ SET2
turn on command
VIN _SET (OL /SC)
VIN _SET( ref )
t
VOU T2
VF
VOUT ( SC)
t
Figure 15
Data Sheet
Example single channel fault on OUT1 and PWM-operation on OUT2
20
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Load Diagnosis
8.4
Electrical Characteristics IN_SET Pin and Load Diagnosis
Electrical Characteristics IN_SET pin and Load Diagnosis
Unless otherwise specified: VS = 5.5 V to 40 V, Tj = -40°C to +150°C, RSETx = 12 kΩ, all voltages with respect to ground,
positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output pins (O) (unless
otherwise specified)
Pos.
Parameter
Symbol
VIN_SET(ref)
Limit Values
Unit
Conditions
1)
Min.
Typ.
Max.
1.19
1.23
1.27
V
VOUTx = 3.6 V
Tj = 25...115 °C
1)
8.4.1
IN_SET reference
voltage
8.4.2
IN_SET open load/short VIN_SET(OL/SC) 4
circuit voltage
–
5.5
V
VS > 8 V
Tj = 25...150 °C
VS = VOUTx (OL) or VOUTx =
0 V (SC)
8.4.3
IN_SET open load/short VIN_SET(OL/SC) 3.2
circuit voltage
–
5.5
V
1)
8.4.4
IN_SET open load/short IIN_SET(OL/SC)
circuit current
0.5
–
2.5
mA
VS > 8 V
Tj = 25...150 °C
VIN_SET = 4 V
VS = VOUTx (OL) or
VOUTx = 0 V (SC)
8.4.5
OL detection filter time
tOL
10
22
35
µs
1)
8.4.6
OL detection voltage
VPS(OL) = VS - VOUTx
VPS(OL)
0.2
–
0.4
V
VS > 8 V
8.4.7
Short circuit to GND
detection threshold
VOUT(SC)
0.8
–
1.4
V
VS > 8 V
8.4.8
SC detection filter time
tSC
10
22
35
µs
1)
VS = 5.5 V
Tj = 25...150 °C
VS = VOUTx (OL) or
VOUTx = 0 V (SC)
1)
VS > 8 V
VS > 8 V
8.4.9
IN_SET diagnosis reset
time
tIN_SET(reset)
–
5
20
µs
1)
8.4.10
SC detection current
IOUT(SC)
0.1
2
4.75
mA
VS > 8 V
VOUTx = 0 V
–
15
µA
See Figure 11
8.4.11
IN_SET activation
IIN_SET(act)
2
current without turn on
of output stages
1) Not subject to production test, specified by design
Data Sheet
21
VS > 8 V
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Power Stage
9
Power Stage
The output stages are realized as high side current sources with a current of 120 mA. During off state the
leakage current at the output stage is minimized in order to prevent a slightly glowing LED. To increase the
overall output current for high brightness LED applications it is possible to connect two or all three output
stages in parallel.
The maximum current of each channel is limited by the power dissipation and used PCB cooling areas (which
results in the applications RthJA).
For an operating current control loop the supply and output voltages according to the following parameters
have to be considered:
•
•
•
Required supply voltage for current control VS(CC), Pos. 5.4.8
Voltage drop over output stage during current control VPS(CC), Pos. 9.2.6
Required output voltage for current control VOUTx(CC), Pos. 9.2.7
9.1
Protection
The device provides embedded protective functions, which are designed to prevent IC destruction under fault
conditions described in this data sheet. Fault conditions are considered as “outside” normal operating range.
Protective functions are neither designed for continuous nor for repetitive operation.
9.1.1
Over Load Behavior
An over load detection circuit is integrated in the LITIX™ Basic IC. It is realized by a temperature monitoring of
the output stages (OUTx).
As soon as the junction temperature exceeds the current reduction temperature threshold Tj(CRT) the output
current will be reduced by the device by reducing the IN_SET reference voltage VIN_SET(ref). This feature avoids
LED’s flickering during static output overload conditions. Furthermore, it protects LEDs against over
temperature, which are mounted thermally close to the device. If the device temperature still increases, the
three output currents decrease close to 0 A. As soon as the device cools down the output currents rise again.
IOU T
V IN_ SET
Tj (C R T)
Figure 16
Tj
Output current reduction at high temperature
Note: This high temperature output current reduction is realized by reducing the IN_SET reference voltage
voltage (Pos. 8.4.1). In case of very high power loss applied to the device and very high junction
temperature the output current may drop down to IOUTx = 0 mA, after a slight cooling down the current
increases again.
Data Sheet
22
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Power Stage
9.1.2
Reverse Battery Protection
The TLD2326EL has an integrated reverse battery protection feature. This feature protects the driver IC itself,
but also connected LEDs. The output reverse current is limited to IOUTx(rev) by the reverse battery protection.
Note: Due to the reverse battery protection a reverse protection diode for the light module may be obsolete. In
case of high ISO-pulse requirements and only minor protecting components like capacitors a reverse
protection diode may be reasonable. The external protection circuit needs to be verified in the application.
9.2
Electrical Characteristics Power Stage
Electrical Characteristics Power Stage
Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40°C to +150°C, VOUTx = 3.6 V, all voltages with respect to
ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output
pins (O) (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
9.2.1
Output leakage current
Typ.
Unit
Conditions
µA
VEN = 5.5 V
IIN_SET = 0 µA
VOUTx = 2.5 V
Tj = 150 °C
1)
Tj = 85 °C
1)
Max.
IOUTx(leak)
–
–
–
–
7
3
9.2.2
Output leakage current in
boost over battery setup
–
IOUTx(leak,B2B)
–
50
µA
VEN = 5.5 V
IIN_SET = 0 µA
VOUTx = VS = 40 V
9.2.3
Reverse output current
-IOUTx(rev)
–
1
µA
1)
9.2.4
Output current accuracy
kLT
limited temperature range
–
1)
697
645
9.2.5
Output current accuracy
over temperature
VS = -16 V
Output load: LED with
break down voltage
< - 0.6 V
750
750
Tj = 25...115 °C
VS = 8...18 V
VPS = 2 V
RSETx = 6...12 kΩ
RSETx = 30 kΩ
803
855
1)
Tj = -40...115 °C
VS = 8...18 V
VPS = 2 V
RSETx = 6...12 kΩ
RSETx = 30 kΩ
kALL
697
645
750
750
803
855
9.2.6
Voltage drop over power
stage during current
control VPS(CC) = VS - VOUTx
VPS(CC)
0.75
–
–
V
1)
9.2.7
Required output voltage
for current control
VOUTx(CC)
2.3
–
–
V
1)
Data Sheet
23
VS = 13.5 V
RSETx = 12 kΩ
IOUTx ≥ 90% of
(kLT(typ)/RSETx)
VS = 13.5 V
RSETx = 12 kΩ
IOUTx ≥ 90% of
(kLT(typ)/RSETx)
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Power Stage
Electrical Characteristics Power Stage (cont’d)
Unless otherwise specified: VS = 5.5 V to 18 V, Tj = -40°C to +150°C, VOUTx = 3.6 V, all voltages with respect to
ground, positive current flowing into pin for input pins (I), positive currents flowing out of the I/O and output
pins (O) (unless otherwise specified)
Pos.
Parameter
Symbol
Limit Values
Min.
Typ.
Max.
Unit
Conditions
9.2.8
Maximum output current
IOUT(max)
120
–
–
mA
RSETx = 4.7 kΩ
The maximum output
current is limited by the
thermal conditions.
Please refer to
Pos. 4.3.1 - Pos. 4.3.3
9.2.9
IN_SET turn on time
tON(IN_SET)
–
–
15
µs
VS = 13.5 V
IIN_SET = 0 → 100 µA
IOUTx = 80% of
(kLT(typ)/RSETx)
No OL or SC at other
channels
9.2.10
IN_SET turn off time
tOFF(IN_SET)
–
–
10
µs
VS = 13.5 V
IIN_SET = 100 → 0 µA
IOUTx = 20% of
(kLT(typ)/RSETx)
9.2.11
VS turn on time
tON(VS)
–
–
20
µs
1) 2)
9.2.12
Current reduction
temperature threshold
Tj(CRT)
–
140
–
°C
IOUTx = 95% of
(kLT(typ)/RSETx)
–
A
1)
9.2.13
Output current during
IOUT(CRT)
85% of –
current reduction at high
(kLT(typ)
temperature
/RSETx)
1) Not subject to production test, specified by design
2) see also Figure 6
Data Sheet
24
VEN = 5.5 V
RSETx = 12 kΩ
VS = 0 → 13.5 V
IOUTx = 80% of
(kLT(typ)/RSETx)
1)
RSETx = 12 kΩ
Tj = 150 °C
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Application Information
10
Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
DRV
LBO
VIN
VBATT
DBO
CIN
VBO
CBO
IN
RFB1
CVS =4.7nF
VS
TSW
SWO
Internal
supply
EN
SWCS
TLD5095
SGND
RCS
Thermal
protection
Output
control
ROVH
OUT2
OUT1
IN_ SET3
OVFB
IN_ SET2 Current
ROVL
IN_ SET1
adjust
DC/ DC
control
FB
LITIX™ Basic
ST
EN / PWMI
FREQ / SYNC
COMP
CCOMP
RSET3
CIVCC
GND
RSET1
VIN
FBL
RFB2
PWMO
RFB3
VBO
1nF
CVS =4.7nF
VS
RFB(PD)
GND
RFREQ
RSET2
FBH
IVCC
R COMP
4.7nF** 4.7nF** 4.7nF**
OUT3
EN
DIAG function A
OUT function A
Internal
supply
Thermal
protection
Output
control
4.7nF** 4.7nF** 4.7nF**
OUT 3
OUT 2
EN
OUT 1
IN_ SET3
Microcontroller
(e.g . XC866)
IN_ SET2 Current
IN_ SET1
adjust
LITIX™ Basic
DIAG function B
OUT function B
R SET3
R SET2
DC / DC
control
FB
GND
RSET1
VIN
** For EMI improvement
, if required.
Figure 17
System diagram DC/DC control Boost using 3 IN_SET pins
Note: This is a very simplified example of an application circuit. The function must be verified in the real
application.
10.1
•
Further Application Information
For further information you may contact http://www.infineon.com/
Data Sheet
25
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Package Outlines
11
Package Outlines
0.19 +0.06
0.08 C
0.15 M C A-B D 14x
0.64 ±0.25
1
8
1
7
0.2
M
D 8x
Bottom View
3 ±0.2
A
14
6 ±0.2
D
Exposed
Diepad
B
0.1 C A-B 2x
14
7
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 C D
8˚ MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
Stand Off
(1.45)
0 ... 0.1
0.35 x 45˚
4.9 ±0.11)
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Does not include dambar protrusion
Dimensions in mm
PG-SSOP-14-1,-2,-3-PO V02
Figure 18
PG-SSOP-14
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
26
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Revision History
12
Revision History
Revision
Date
Changes
1.0
2013-08-08
Inital revision of data sheet
1.1
2015-03-19
Updated parameters KLT and KALL in the chapter Power Stage
1.2
2018-04-26
Updated to latest template
1.2
2018-04-26
Updated application drawing
1.2
2018-04-26
Updated package marking
1.2
2018-04-26
Updated package figure
Data Sheet
27
Rev. 1.2
2018-04-26
LITIX™ Basic
TLD2326EL
Table of Contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
5.3
5.3.1
5.3.2
5.4
EN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
EN Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Internal Supply Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
EN Unused . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
EN - Pull Up to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
EN - Direct Connection to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical Characteristics Internal Supply / EN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
FB Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
DC/DC Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Electrical Characteristics FB Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7
7.1
7.2
IN_SETx Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output Current Adjustment via RSET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Smart Input Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
8
8.1
8.2
8.3
8.4
Load Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Short Circuit to GND detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Double Fault Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics IN_SET Pin and Load Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
19
21
9
9.1
9.1.1
9.1.2
9.2
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Over Load Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Reverse Battery Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22
22
22
23
23
10
10.1
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
11
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
12
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6
6
7
7
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Data Sheet
28
Rev. 1.2
2018-04-26
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-04-26
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
TLD2326EL
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.