LITIX™ Power
TLD5097EL - Multitopology LITIX™ Power DC/DC Controller IC
1
Overview
Description
The TLD5097EL is a flexibly usable DC/DC boost controller with built in
diagnosis and protection features especially designed to drive LEDs.
It is designed to support fixed current and fixed voltage configurations in
multiple topologies such as Boost, Buck, Buck-Boost, SEPIC and Flyback by simply adjusting the external
components. The TLD5097EL drives a low side n-channel power MOSFET from an internal 5 V linear regulator.
The switching frequency is adjustable in the range of 100 kHz to 500 kHz and can also be synchronized to an
external clock source.
The TLD5097EL can be flexibly dimmed by means of analog and PWM dimming; an enable function reduces
the shut-down current consumption to IQ_OFF < 10 µA.
The current mode control scheme of this device provides a stable regulation loop maintained by small
external compensation components. Additionally an integrated soft start feature limits the current peak as
well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments.
LBO
DBO
VIN
VIN = 4.5V to 45V
CIN
CBO
ILED
TSW
14
VCC or VIVCC
IN
SWO
2
SWCS
4
RFB
VCC or VIVCC
VREF
RCS
RA
SGND
3
OVFB
9
ROVH
10
RB
IC2
Microcontroller
(e.g. XC866)
Diagnosis
SET
5
ST
PWMI
Digital Dimming
Clock / Spread Spectrum
EN / PWMI
11
FREQ / SYNC
8
COMP
D2
ROVL
D3
FBH
13
D1
IC1
TLD5097
IVCC
D4
6
D5
1
CIVCC
RPOL
DPOL
D6
D7
CCOMP
FBL
7
D8
D9
RFREQ
RCOMP
GND
D10
12
LED load seperated
via wire harness
Figure 1
Typical application: Boost LED driver
Type
Package
Marking
TLD5097EL
PG-SSOP-14-3
TLD5097
Datasheet
www.infineon.com
1
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Potential applications
Potential applications
•
Automotive exterior and interior lighting
•
General illumination
•
General purpose current/voltage controlled DC/DC driver
Features
•
Fixed current or fixed voltage configuration in Boost, Buck, Buck-Boost, SEPIC and Flyback Topology
•
Drives low side external n-channel switching MOSFET from internal 5 V voltage regulator
•
Flexible switching frequency range from 100 kHz to 500 kHz, synchronization with external clock source
•
Wide input voltage range from 4.5 V to 45 V
•
Enable & PWM function with very low shutdown current: IQ_OFF < 10 µA
•
Analog dimming and PWM dimming feature to adjust average LED current
•
Low active status output for fault communication
•
Integrated protection and diagnostic functions
•
Internal soft start
•
300 mV high-side current sense
•
Available in a small thermally enhanced 14-pin PG-SSOP-14-3 package, green product (RoHS) compliant
Table 1
Product summary
Feature
Symbol
Range
Nominal supply voltage range
VIN
8 V ... 34 V
Extended supply voltage range
VIN
4.5 V ... 45 V
VIVCC > VIVCC,RTH,d ; parameter deviations possible
Switching frequency range
fFREQ
100 kHz ... 500 kHz oscillator frequency adjustment
range
250 kHz ... 500 kHz synchronization frequency
capture range
Maximum duty cycle
Dmax,fixed
91% ...95% fixed frequency mode
Dmax,synced
88% synchronization mode
Typical gate driver peak sourcing current ISWO,SRC
380 mA
Typical gate driver peak sinking current ISWO,SNK
550 mA
Protection and diagnostic functions
•
Open circuit detection
•
Output overvoltage protection
•
Overtemperature shutdown
•
Electrostatic discharge (ESD) protection
Product validation
Qualified for automotive applications. Product validation according to AEC-Q100/101.
Datasheet
2
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Table of contents
Table of contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Protection and diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
6.3
Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical performance characteristics of oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
7.1
7.2
Enable and dimming function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8
8.1
8.2
Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9
9.1
9.2
Protection and diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10
10.1
10.2
10.3
Analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Purpose of analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
11.1
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
12
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
13
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Datasheet
3
7
7
9
9
13
13
14
15
26
26
26
30
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Block diagram
2
Block diagram
IN
LDO
14
13
IVCC
2
SWO
4
SWCS
3
SGND
9
OVFB
6
FBH
7
FBL
Power on
reset
Internal
supply
EN / PWMI
1
EN_INT/
PWM_INT
On/Off
logic
Power switch
gate driver
Soft
Start
Oscillator
FREQ/SYNC
11
PWM
Generator
Slope
Comp.
Thermal
protection
ST
5
Switch current error
amplifier
Leading edge
blanking
Overvoltage
protection
Diagnostic
logic
Open load
SET
COMP
10
Reference current
generator
Feedback voltage error
amplifier
8
12
GND
Figure 2
Datasheet
Block diagram TLD5097EL
4
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Pin configuration
3
Pin configuration
3.1
Pin assignment
IVCC
1
14
IN
SWO
2
13
EN/PWMI
SGND
3
12
GND
SWCS
4
11
FREQ/SYNC
ST
5
10
SET
FBH
6
FBL
7
EP
Figure 3
Pin configuration TLD5097EL
3.2
Pin definitions and functions
Table 2
Pin definition and function
9
OVFB
8
COMP
#
Symbol
Direction
Function
1
IVCC
Output
Internal LDO
Used for internal biasing and gate drive. Bypass with external
capacitor. Pin must not be left open
2
SWO
Output
Switch gate driver
Connect to gate of external switching MOSFET
3
SGND
–
Current Sense Ground
Ground return for switch current sense
4
SWCS
Input
Current Sense
Detects the peak current through switch
5
ST
Output
Status
to indicate fault conditions
6
FBH
Input
Voltage Feedback Positive
Non inverting Input (+)
7
FBL
Input
Voltage Feedback Negative
Inverting Input (-)
8
COMP
Input
Compensation
Connect R and C network to pin for stability
Datasheet
5
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Pin configuration
Table 2
Pin definition and function
#
Symbol
Direction
Function
9
OVFB
Input
Overvoltage Protection Feedback
Connect to resistive voltage divider to set overvoltage threshold
10
SET
Input
Analog dimming
Load current adjustment Pin. Pin must not be left open. If analog
dimming feature is not used connect to IVCC pin
11
FREQ / SYNC
Input
Frequency Select or Synchronization
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within frequency
capture range
12
GND
–
Ground
Connect to system ground
13
EN / PWMI
Input
Enable or PWM
Apply logic HIGH signal to enable device or PWM signal for dimming
LED
14
IN
Input
Supply Input
Supply for internal biasing
EP
–
Exposed Pad
Connect to external heat spreading GND Cu area (e.g. inner GND layer
of multilayer PCB with thermal vias)
Datasheet
6
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
General product characteristics
4
General product characteristics
4.1
Absolute maximum ratings
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise
specified)
Table 3
Absolute maximum ratings1)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Voltage
IN
Supply input
VIN
-0.3
–
45
V
–
P_4.1.1
EN / PWMI
Enable or PWM Input
VEN
-40
–
45
V
–
P_4.1.2
FBH-FBL;
Feedback error amplifier
differential
VFBH- VFBL
-40
–
61
V
The maximum delta P_4.1.3
must not exceed
61 V
Differential signal
(not referred to
GND)
FBH;
Feedback error amplifier
positive input
VFBH
-40
–
61
V
The difference
P_4.1.4
between VFBH and
VFBL must not
exceed 61 V, refer to
P_4.1.3
FBL
Feedback error amplifier
negative input
VFBL
-40
–
61
V
The difference
P_4.1.5
between VFBH and
VFBL must not
exceed 61 V, refer to
P_4.1.3
FBH and FBL current
IFBH, IFBL
mA
t < 100 ms;
VFBH - VFBL = 0.3 V
P_4.1.6
OVFB
Overvoltage feedback
input
VOVP
-0.3
–
5.5
V
–
P_4.1.7
OVFB
Overvoltage feedback
input
VOVP
-0.3
–
6.2
V
t < 10 s
P_4.1.8
SWCS
VSWCS
Switch current sense input
-0.3
–
5.5
V
–
P_4.1.9
SWCS
VSWCS
Switch current sense input
-0.3
–
6.2
V
t < 10 s
P_4.1.10
SWO
Switch gate drive output
-0.3
–
5.5
V
–
P_4.1.11
Datasheet
VSWO
1
7
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
General product characteristics
Table 3
Absolute maximum ratings1)
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
VSWO
-0.3
–
6.2
V
t < 10 s
P_4.1.12
SGND
VSGND
Current sense switch GND
-0.3
–
0.3
V
–
P_4.1.13
COMP
Compensation input
VCOMP
-0.3
–
5.5
V
–
P_4.1.14
COMP
Compensation input
VCOMP
-0.3
–
6.2
V
t < 10 s
P_4.1.15
FREQ / SYNC; Frequency
VFREQ/SYNC
and synchronization input
-0.3
–
5.5
V
–
P_4.1.16
FREQ / SYNC; Frequency
VFREQ/SYNC
and synchronization input
-0.3
–
6.2
V
t < 10 s
P_4.1.17
ST
Status output
VST
-0.3
–
5.5
V
–
P_4.1.20
ST
Status output
VST
-0.3
–
6.2
V
t < 10 s
P_4.1.21
ST
Status output
IST
-2
–
2
mA
–
P_4.1.22
SET
Analog dimming input
VSET
-0.3
–
45
V
–
P_4.1.23
IVCC
Internal linear voltage
regulator output
VIVCC
-0.3
–
5.5
V
–
P_4.1.24
IVCC
Internal linear voltage
regulator output
VIVCC
-0.3
–
6.2
V
t < 10 s
P_4.1.25
Junction temperature
TJ
-40
–
150
°C
–
P_4.1.26
Storage temperature
Tstg
-55
–
150
°C
–
P_4.1.27
ESD resistivity of all pins
VESD,HBM
-2
–
2
kV
HBM2)
P_4.1.28
ESD resistivity of IN,
EN/PWMI, FBH, FBL and
SET pin to GND
VESD,HBM
-4
–
4
kV
HBM2)
P_4.1.29
SWO
Switch gate drive output
Temperature
ESD Susceptibility
1) Not subject to production test, specified by design
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100pF)
Note:
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
Datasheet
8
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
General product characteristics
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
4.2
Functional range
Table 4
Functional range
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Extended supply
voltage range
VIN
4.5
–
45
V
1)
Nominal supply
voltage range
VIN
8
–
34
V
–
P_4.2.2
Feedback voltage
input
VFBH, VFBL
3
–
60
V
–
P_4.2.3
Junction
temperature
TJ
-40
–
150
°C
–
P_4.2.4
VIVCC > VIVCCT,RTH,d;
P_4.2.1
parameter deviations
possible
1) Not subject to production test, specified by design
Note:
Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics
table.
4.3
Thermal resistance
Note:
This thermal data was generated in accordance with JEDEC JESD51 standards. For further
information visit https://www.jedec.org
Table 5
Thermal resistance
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
P_4.3.1
Min.
Typ.
Max.
RthJC
–
10
–
K/W
1)2)
Junction to Ambient RthJA
–
47
–
K/W
1)3)
2
1s0p + 600mm
P_4.3.3
1s0p + 300mm2
P_4.3.4
Junction to Case
Junction to Ambient RthJA
–
54
–
K/W
1)3)
Junction to Ambient RthJA
–
64
–
K/W
1)3)
2s2p
P_4.3.2
1) Not subject to production test, specified by design
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed
to ambient temperature). TA = 25°C dissipates 1 W
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area
at natural convection on FR4 board;The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has
2 outer copper layers (2 x 70 µm Cu) and 2 inner copper layers (2 x 35 µm Cu), A thermal via (diameter = 0.3 mm and
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner
layer and second outer layer (bottom) of the JEDEC PCB. TA=25°C, IC dissipates 1 W
Datasheet
9
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Switching regulator
5
Switching regulator
5.1
Description
The TLD5097EL regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The
constant output current is especially useful for light emitting diode (LED) applications. The switching
regulator function is implemented by a pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the
output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The
current mode controller provides a PWM signal to an internal gate driver which then outputs to an external
n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which
is a characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and
external power switch during initialization. The soft start function gradually increases the inductor and switch
current over tSS (P_5.2.9) to minimize potential overvoltage at the output.
OV FB
OVFB 9
H when
OVFB >1.25V
Vref =1.25V
FBH 6
FBL 7
SET
UV IVCC
High when
IVCC < 4.0V
COMP 8
x1
EA
Current
Comp
gmEA
High when
lEA - ISLOPE - ICS > 0
OFF
when H
IEA
0 if SET < 1.6V
0
10
Low when
Tj > 175 °C
1
− 0.1
5
Vref =0.3V
Soft start
Vref =4.0V
NOR
R
&
>
1
Output Stage
OFF when Low
Gate Driver
Supply
R
Oscillator
FREQ/
SYNC
11
Figure 4
Datasheet
I
Slope Comp
S
t
Clock
&
Error-FF
Q
Q
&
Q
2 SWO
Current
Sense
PWM-FF
Q
1 IVCC
Gate
Driver
S
ISLOPE
&
INV
1
NAND 2
&
ICS
4 SWCS
3 SGND
Switching regulator block diagram
10
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Switching regulator
5.2
Electrical characteristics
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 6
Electrical characteristics: Switching regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Regulator
Feedback reference
voltage
VREF
0.29
0.30
0.31
V
refer to Figure 29
VREF = VFBH - VFBL
VSET = 5 V
ILED =350 mA
P_5.2.1
Feedback reference
voltage
VREF
0.057
0.06
0.063
V
refer to Figure 29
VREF= VFBH - VFBL
VSET= 0.4 V
ILED=70 mA
P_5.2.2
Feedback reference
voltage offset
VREF_offset
–
–
5
mV
refer to Figure 17
and Figure 29
VREF= VFBH - VFBL
VSET= 0.1 V
VOUT > VIN
P_5.2.3
Voltage line regulation
–
(∆VREF /
VREF) / ∆VIN
–
0.15
%/V
refer to Figure 29
VIN = 8 V to 19 V;
VSET = 5 V;
ILED = 350 mA
P_5.2.4
–
Voltage load regulation (∆VREF /
VREF) / ∆IBO
–
5
%/A
refer to Figure 29
VSET = 5 V;
ILED = 100 to
500 mA
P_5.2.5
Switch peak
overcurrent threshold
VSWCS
130
150
170
mV
VFBH= VFBL = 5 V
VCOMP = 3.5 V
P_5.2.6
Maximum duty cycle
DMAX,fixed
91
93
95
%
Fixed frequency
mode
P_5.2.7
Maximum duty cycle
DMAX,sync
88
–
–
%
Synchronization
mode
P_5.2.8
Soft start ramp
tSS
350
1000
1500
µs
VFB rising from 5% P_5.2.9
to 95% of VFB , typ.
IFBH
Feedback high input
current
IFBH
38
46
54
µA
VFBH - VFBL = 0.3 V
P_5.2.10
IFBL
Feedback low input
current
IFBL
15
21
27
µA
VFBH - VFBL = 0.3 V
P_5.2.11
Switch current sense
input current
ISWCS
10
50
100
µA
VSWCS = 150 mV
P_5.2.12
Datasheet
11
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Switching regulator
Table 6
Electrical characteristics: Switching regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Input undervoltage
shutdown
VIN,off
3.5
–
4.5
V
VIN decreasing
P_5.2.13
Input voltage startup
VIN,on
–
–
4.85
V
VIN increasing
P_5.2.14
ISWO,SRC
–
380
–
mA
1)
VSWO = 1 V to 4 V
P_5.2.15
Gate driver peak sinking ISWO,SNK
current
–
550
–
mA
1)
VSWO = 4 V to 1 V
P_5.2.16
Gate driver output rise
time
tR,SWO
–
30
60
ns
1)
CL,SWO = 3.3 nF;
VSWO = 1 V to 4 V
P_5.2.17
Gate driver output fall
time
tF,SWO
–
20
40
ns
1)
CL,SWO = 3.3 nF;
VSWO = 4 V to 1 V
P_5.2.18
Gate driver output
voltage
VSWO
4.5
–
5.5
V
1)
P_5.2.19
Gate driver for external switch
Gate driver peak
sourcing current
CL,SWO = 3.3 nF
1) Not subject to production test, specified by design
Datasheet
12
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Oscillator and synchronization
6
Oscillator and synchronization
6.1
Description
Rfreq vs. switching frequency
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching
frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching
frequency with an external resistor the following formula can be applied.
(6.1)
1
R FREQ =
(141 ⋅ 10
− 12
⎡ s
⎢⎣ Ω
⎤ ⎛
⎡1 ⎤ ⎞
⎥⎦ ) ⋅ ⎜ f FREQ ⎢⎣ s ⎥⎦ ⎟
⎝
⎠
(
− 3 . 5 ⋅ 10
3
[Ω ])[Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a
synchronized frequency from an external clock source. If an external clock source is provided on the pin
FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator
switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
TLD5097
FREQ
/ SYNC
Oscillator
Multiplexer
Clock Frequency
Detector
VCLK
PWM
Logic
Gate
Driver
SWO
RFREQ
Figure 5
Oscillator and synchronization block diagram and simplified application circuit
TSYNC = 1 / fSYNC
VSYNC
tSYNC,PWH
VSYNC,H
VSYNC,L
t
Figure 6
Datasheet
Synchronization timing diagram
13
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Oscillator and synchronization
6.2
Electrical characteristics
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 7
Electrical characteristics: Oscillator and synchronization
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Number
Test Condition
Oscillator
Oscillator frequency
fFREQ
250
300
350
kHz
RFREQ = 20 kΩ
P_6.2.1
Oscillator frequency
adjustment range
fFREQ
100
–
500
kHz
–
P_6.2.2
FREQ / SYNC supply
current
IFREQ
–
–
-700
µA
VFREQ = 0 V
P_6.2.3
Frequency voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
P_6.2.4
Synchronization
fSYNC
frequency capture range
250
–
500
kHz
–
P_6.2.5
Synchronization signal
high logic level valid
VSYNC,H
3.0
–
–
V
1)2)
P_6.2.6
Synchronization signal
low logic level valid
VSYNC,L
–
–
0.8
V
1)2)
P_6.2.7
Synchronization signal
logic high pulse width
tSYNC,PWH
200
–
–
ns
1)2)
P_6.2.8
Synchronization
1) Synchronization of external PWM ON signal to falling edge
2) Not subject to production test, specified by design
Datasheet
14
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Oscillator and synchronization
6.3
Typical performance characteristics of oscillator
600
500
fFREQ [kHz]
400
TJ = 25°C
300
200
100
0
0
10
20
30
40
50
60
70
80
RFREQ[kΩ ]
Figure 7
Datasheet
Switching frequency fSW versus frequency select resistor to GND RFREQ
15
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Enable and dimming function
7
Enable and dimming function
7.1
Description
The enable function powers the device on or off. A valid logic “low”signal on enable pin EN/PWMI powers “off”
the device and current consumption is less than IQ_OFF (P_7.1.8). A valid logic “high” enable signal on enable
pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which
ensures that the IC is shut down and the power switch is off in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM)
input signal that is fed through to the internal gate driver. The EN/PWMI enables and disables the gate driver
for the main switch during PWM operation. PWM dimming an LED is a commonly practiced dimming method
and can prevent color shift in an LED light source.
The enable and PWM input function share the same pin. Therefore a valid logic “low” signal at the EN/PWMI
pin needs to differentiate between an enable power “off” or a PWM dimming “low” signal. The device
differentiates between enable off and PWM dimming signal by requiring the enable off at the EN/PWMI pin to
stay “low” for the “Enable turn off delay time” (tEN,OFF,DEL P_7.1.6).
LBO
DBO
CBO
IN
14
Enable
Microcontroller
EN / PWMI
RFB
13
Enable / PWMI
Logic
LDO
Enable
1
Gate
driver
2
IVCC
SWO
TSW
RSWCS
Figure 8
Datasheet
Block diagram and simplified application circuit enable and LED dimming
16
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Enable and dimming function
tEN,START
TPWMI
tPWMI,H
tEN,OFF,DEL
VEN/PWMI
VEN/PWMI,ON
VEN/PWMI,OFF
t
VIVCC
VIVCC,ON
VIVCC,RTH
t
VST
TFREQ =
VSWO
t
1
fFREQ
t
Power On
Normal
Dim
Normal
Dim
Normal
SWO On
ST Off
SWO On
ST Off
SWO On
ST On
SWO Off
ST On
SWO Off
ST On
Figure 9
Timing diagram enable and LED dimming
Note:
The ST signal is “low” during soft-start.
Datasheet
17
Power Off Delay Time
Power Off
IQ_OFF < 10 μA
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Enable and dimming function
7.2
Electrical characteristics
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 8
Electrical characteristics: Enable and dimming
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or
Test Condition
Number
V
–
P_7.1.1
Max.
Enable / PWM Input
Enable/PWMI
turn on threshold
VEN/PWMI,ON
3.0
–
Enable/PWMI
turn off threshold
VEN/PWMI,OFF
–
–
0.8
V
–
P_7.1.2
Enable/PWMI
hysteresis
VEN/PWMI,HYS
50
200
400
mV
1)
P_7.1.3
Enable/PWMI
high input current
IEN/PWMI,H
–
–
30
µA
VEN/PWMI = 16.0 V
P_7.1.4
Enable/PWMI
low input current
IEN/PWMI,L
–
0.1
1
µA
VEN/PWMI = 0.5 V
P_7.1.5
Enable turn off
delay time
tEN,OFF,DEL
8
10
12
ms
–
P_7.1.6
100
–
–
µs
1)
P_7.1.7
P_7.1.8
Enable startup time tEN,START
Current consumption
Current
consumption,
shutdown mode
IQ_OFF
–
–
10
µA
VEN/PWMI = 0.8 V;
TJ ≤ 105°C;
VIN = 16V
Current
consumption,
active mode
IQ_ON
–
–
7
mA
2)
VEN/PWMI ≥ 4.75 V; P_7.1.9
IBO = 0 mA;
VSWO = 0% duty
cycle
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of external switches
Datasheet
18
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Linear regulator
8
Linear regulator
8.1
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current
up to ILIM,min (P_8.1.2). An external output capacitor with ESR lower than RIVCC,ESR (P_8.1.5) is required on pin
IVCC for stability and buffering transient load currents. During normal operation the external MOSFET
switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the
output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET
switches.
Integrated undervoltage protection for the external switching MOSFET
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and
resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold
(VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external
logic level n-channel MOSFET.
IN
14
1
IVCC
Linear Regulator
EN / PWMI
Figure 10
Datasheet
13
Gate
Drivers
Voltage regulator block diagram and simplified application circuit
19
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Linear regulator
8.2
Electrical characteristics
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 9
Electrical characteristics: Line regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Output voltage
VIVCC
4.85
5
5.15
V
6 V ≤ VIN≤ 45 V
P_8.1.1
0.1 mA ≤ IIVCC ≤ 40 mA
Output current
limitation
ILIM
51
–
90
mA
VIN = 13.5 V
VIVCC = 4.5 V
Current flows out of
pin
P_8.1.2
Drop out voltage
VDR
–
0.5
V
VIN = 4.5 V
IIVCC = 25 mA
P_8.1.3
IVCC buffer
capacitor
CIVCC
0.47
1
100
µF
1)2)
P_8.1.4
IVCC buffer
capacitor ESR
RIVCC, ESR
–
–
0.5
Ω
1)
P_8.1.5
Undervoltage reset
headroom
VIVCC,HDRM
100
–
–
mV
VIVCC decreasing
VIVCC - VIVCC,RTH,d
P_8.1.6
IVCC undervoltage
reset switch-off
threshold
VIVCC,RTH,d
3.6
–
4.0
V
3)
P_8.1.7
IVCC undervoltage
reset switch-on
threshold
VIVCC,RTH,i
–
–
4.5
V
VIVCC increasing
VIVCC decreasing
P_8.1.8
1) Not subject to production test, specified by design
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case the threshold voltage of the.
MOSFET must be considered.
Datasheet
20
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Protection and diagnostic functions
9
Protection and diagnostic functions
9.1
Description
The TLD5097EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. In case of a fault condition, the SWO signal stops operation. The ST
signal will change to an active logic “low” signal to communicate that a fault has occurred (detailed overview
in Figure 11 and Table 10 below). Figure 12 illustrates the various open load and open feedback conditions.
In case of an overtemperature condition the integrated thermal shutdown function turns off the gate driver
and internal linear voltage regulator. The typical junction shutdown temperature is 175°C (TJ,SD P_9.2.3). After
cooling down the IC will automatically restart. Thermal shutdown is an integrated protection function
designed to prevent IC destruction and is not intended for continuous use in normal operation (Figure 14). To
calculate the proper overvoltage protection resistor values an example is given in Figure 15.
Input
Protection and
diagnostic circuit
Output
Output
overvoltage
Open load
OR
Open feedback
SWO gate driver off
ST pin low
Overtemperature
OR
Linear regulator off
Input undervoltage
Figure 11
Datasheet
Protection and diagnostic function block diagram
21
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Protection and diagnostic functions
Table 10
Diagnosis truth table1)
Input
Output
Condition
Level
ST
SWO
IVCC
High or Sw
Sw
Active
True
Low
Low
Active
False
High or Sw
Sw
Active
True
Low
Low
Active
False
High or Sw
Sw
Active
True
Low
Low
Active
False
High or Sw
Sw
Active
True
Low
Low
Shutdown
High or Sw
Sw
Active
Low
Low
Shutdown
Overvoltage at output False
Open load
Open feedback
Overtemperature
Undervoltage at input False
True
1) Sw = Switching; False = Condition does NOT exist; True = Condition does exist
VBO
Open Circuit 3
TLD5097
Open Circuit 1
ROVH
Fault threshold voltage
VREF
1
Open FBH
-20 to -100 mV
2
Open FBL
0.5 to 1.0 V
3
Open VBO
-20 to -100 mV
4
Open LED-GND
Detected by overvoltage
Open Circuit 2
9
D1
ROVL
VOVFB,TH
Fault condition
D2
D3
Feedback voltage
error amplifier
FBH
FBL
VREF
D4
6
7
+
VREF
-
D5
D6
Max Threshold = 1.0 V
D7
D8
Min Threshold = 0.5 V
D9
D10
Typical VREF = 0.3 V
Open Circuit 4
Max Threshold = -20 mV
Min Threshold = -100 mV
Figure 12
Datasheet
Open FBL
OVFB
Open circuit
condition
Open FBH
Open VBO
Overvoltage
comparator
RFB
Output open circuit conditions
Open load and open feedback conditions
22
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Protection and diagnostic functions
Startup
Normal
VIVCC
Thermal
Shutdown
Overvoltage
Open Load /
Feedback
1
2
3
Shutdown
VIVCC,RTH,i
VIVCC,RTH,d
TJ
t
TJ,SD,HYST
1
TJ,SD
VBO
VOVFB,HYS
t
2
VOVFB ≥ VOVFB,TH
VIN
3
VFBH-VFBL
t
VREF,2
tSS
tSS
0.3 V Typ
t
VREF,1
VST
t
Figure 13
Datasheet
Open load, overvoltage and overtemperature timing diagram
23
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Protection and diagnostic functions
VEN/PWMI
H
L
t
TJ
TJSD
ΔΤ
TJSO
t
TA
VSWO
t
ILED
Ipeak
t
VST and
VIVCC
5V
t
Device
off
Figure 14
Normal operation
Overtemp
fault
on
Overtemp
fault
on
Overtemp
fault
on
Overtemp
fault
Device overtemperature protection behavior
VOVFB
example: VOUT,max=40V
VOVP,max
1.25mA
ROVH
TLD5097
OVFB
VOVFB,TH
9
ROVL
GND
Overvoltage protection
active
40V
≅ 33.2kΩ
1.25mA
1kΩ 1.25V
1.25V
Overvoltage protection
disabled
12
t
Figure 15
Datasheet
Overvoltage protection description
24
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Protection and diagnostic functions
9.2
Electrical characteristics
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 11
Electrical characteristics: Protection and diagnosis
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Status output
Status output voltage
low
VST,LOW
–
–
0.4
V
1)
IST= 1mA
P_9.2.1
Status output voltage
high
VST,HIGH
VIVCC -0.4
–
VIVCC
V
1)
IST = -1mA
P_9.2.2
Temperature protection
Overtemperature
shutdown
TJ,SD
160
175
190
°C
1)
refer to Figure 14 P_9.2.3
Overtemperature
shutdown hystereses
TJ,SD,HYST
–
15
–
°C
1)
P_9.2.4
Overvoltage protection
Output overvoltage
feedback threshold
increasing
VOVFB,TH
1.21
1.25
1.29
V
refer to Figure 15
P_9.2.5
Output overvoltage
feedback hysteresis
VOVFB,HYS
50
–
150
mV
1)
Output voltage
decreasing
P_9.2.6
Overvoltage reaction
time
tOVPRR
2
–
10
µs
1)
Output voltage
decreasing
P_9.2.7
Overvoltage feedback
input current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
P_9.2.8
Open load and open feedback diagnostics
Open load/feedback
Threshold
VREF,1,3
-100
–
-20
mV
refer to Figure 12
VREF = VFBH - VFBL
Open circuit 1 or 3
P_9.2.9
Open feedback
threshold
VREF,2
0.5
–
1
V
refer to Figure 12
VREF = VFBH - VFBL
Open circuit 2
P_9.2.10
1) Specified by design; not subject to production test.
Note:
Datasheet
Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as “outside” normal operating range.
Protection functions are not designed for continuous repetitive operation.
25
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Analog dimming
10
Analog dimming
This pin influences the “feedback voltage error amplifier” by generating an internal current accordingly to an
external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to
IVCC or external > 1.6 V supply. Different application scenarios are described in Figure 18. This pin can also go
outside of the ECU for instance if a thermistor is connected on a separated LED module and the “Analog
dimming input” is used to thermally protect the LEDs. For reverse battery protection of this pin an external
series resistor should be placed to limit the current.
10.1
Purpose of analog dimming
1. It is difficult for LED manufacturers to deliver LEDs which have the same brightness, colorpoint and
forward voltage class. Due to this relatively wide spread of the crucial LED parameters automotive
customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must
preselect the LEDs to deliver the requested colorpoint class. These preselected LEDs are matched in terms
of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog
dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET at
the SET pin.
2. If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one
hardware which should be able to handle different load current conditions (e.g. 80 mA to 400 mA) to cover
different applications. To achieve this average LED current adjustment the analog dimming is a crucial
feature.
10.2
Description
Application example
Desired LED current = 400 mA. For the calculation of the correct feedback resistor RFB the following equation
can be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6 V.
(10.1)
I LED =
VREF
V
0.3V
→ RFB = REF → RFB =
= 750mΩ
RFB
I LED
400mA
Related electrical parameter is guaranteed with VSET = 5 V (P_5.2.1) A decrease of the average LED current can
be achieved by controlling the voltage at the SET pin (VSET) between 0.1 V and 1.6 V. The mathematical relation
is given in the formula below:
(10.2)
I LED =
VSET − 0.1V
5 ⋅ RFB
Refer to the concept drawing in Figure 17.
Datasheet
26
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
VFBH-FBL [mV]
Analog dimming
300
Analog dimming
disabled
Analog dimming enabled
Figure 16
VSET [V]
1.6
0.1
0
0
Basic relationship between VREF and VSET voltage
VREF
VOUT
RFB
ILED
FBL
FBH
6
7
IFBL
IFBH
R2
R1
Vint
VBandgap = 1.6V
VREF_offset
+
+
+
-
-
Feedback voltage
error amplifier
ISET
SET
10
VSET
ISET
n*ISET
R3
100mV
COMP
GND
8
12
CCOMP
RCOMP
Figure 17
Datasheet
Concept drawing analog dimming
27
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Analog dimming
Multi-purpose usage of the analog dimming feature
1. A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET
pin of the TLD5097EL. The integrated voltage regulator (VIVCC) can be used to supply the µC or external
components if the current consumption does not exceed 20 mA.
2. The analog dimming feature is directly connected to the input voltage of the system. In this configuration
the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing
(increasing) the switching duty cycle if VIN drops to a lower potential. This causes an increase of the input
current consumption. If applications require a decrease of the LED current in respect to VIN variations this
setup can be chosen.
3. The usage of an external resistor divider connected between IVCC (integrated 5 V regulator output and gate
buffer pin) SET and GND can be chosen for systems without µC on board. The concept allows to control the
LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor
(Thermistor) to protect the LED loads from thermal destruction can be connected additionally.
4. If the analog dimming feature is not needed the SET pin must be connected directly to > 1.6 V potential
(e.g. IVCC potential)
5. Instead of a DAC the µC can provide a PWM signal and an external R-C filter produces a constant voltage for
the analog dimming. The voltage level depends on the PWM frequency (fPWM) and duty cycle (DC) which can
be controlled by the µc software after reading the coding resistor placed at the LED module.
Datasheet
28
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Analog dimming
+5V
1
2
CIVCC
Vbb
1
14
IVCC
D/A-Output
μC
10
IN
RSET2
SET
10
SET
VSET
VSET RSET1
GND
Cfilter
GND
12
12
3
4
VIVCC = +5V
1
RSET2
Rfilter
CIVCC
10
VSET RSET1
VIVCC = +5V
IVCC
1
CIVCC
SET
Cfilter
10
GND
VSET ~ VIVCC
12
IVCC
Cfilter
SET
GND
12
5
+5V
1
IVCC
10
SET
CIVCC
PWM
PWM output
Rfilter
μC
(e.g. XC866)
Cfilter
VSET
GND
12
Figure 18
Datasheet
Analog dimming in various applications
29
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Analog dimming
10.3
Electrical characteristics
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 12
Electrical characteristics: Protection and diagnosis
Parameter
SET programming
range
Symbol
VSET
Values
Min.
Typ.
Max.
0
–
1.6
Unit
Note or
Test Condition
Number
V
1)
P_10.3.1
refer to
Figure 16
1) Specified by design; not subject to production test.
Datasheet
30
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Application information
11
Application information
Note:
The following information is given as a hint for the implementation of the device only and shall not
be regarded as a description or warranty of a certain functionality, condition or quality of the device.
LBO
Vbattery
DBO
VIN
CIN
CBO
ILED
TSW
14
IN
SWO
2
SWCS
4
RFB
VREF
RCS
VCC or VIVCC
PWM
VSET
Analog Dimming
10
Rfilter
IC2
Microcontroller
(e.g. XC866)
SET
IC1
TLD5097
Cfilter
PWMI
Digital Dimming
13
EN / PWMI
Spread
Spectrum
11
FREQ / SYNC
8
COMP
STATUS
RCOMP
3
OVFB
9
ROVH
D1
D2
ROVL
D3
FBH
IVCC
D4
6
D5
1
CIVCC
DPOL
RPOL
D6
D7
CCOMP
RFREQ
SGND
FBL
7
ST
5
D8
D9
GND
D10
12
Figure 19
Boost to Ground application circuit - B2G (Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LUW H9GP
LED
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CBO
10 uF, 50V
Panasonic
Electrolytic or Ceramic Bank
Capacitor
1
CCOMP
100 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML
Inductor
1
RCOMP
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 20
Datasheet
Bill of Materials for B2G application circuit
31
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Application information
L1
DBO
CSEPIC
VIN
VIN = 4.5V to 45V
CIN
ISW
RFB
L2
VREF
CBO
TSW
IN
SWO
2
SWCS
4
ILED
D1
RCS
VCC or VIVCC
PWM
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
10
SET
OVFB
9
D2
D4
ROVL
IC1
TLD5097
Cfilter
PWMI
D5
D6
D7
Digital Dimming
STATUS
3
D3
VSET
Rfilter
SGND
ROVH
13
Spread
Spectrum
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
CCOMP
DPOL
IVCC
Number of LEDs could be variable
independent from VIN:
→ BUCK-BOOST configuration
14
Dn
RPOL
1
CIVCC
RFREQ
RCOMP
ST
5
GND
12
Figure 21
SEPIC application circuit (Buck - Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CSEPIC
3.3 uF, 20V
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CBO
10 uF, 50V
Panasonic
EEEFK 1H100P
Capacitor
1
CCOMP
100 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
Figure 22
Datasheet
47 uH
Coilcraft
MSS1278T-473ML
Inductor
2
alternativ: 22uH coupled
inductor
Coilcraft
MSD1278-223MLD
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Bill of Materials for SEPIC application circuit
32
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Application information
DBO
VIN
VIN = 4.5V to 45V
L1
CIN
ISW
RFB
L2
VREF
CBO
TSW
14
SWO
2
SWCS
4
IN
ILED
RCS
VCC or VIVCC
10
Rfilter
SET
OVFB
9
ROVH
D1
D3
ROVL
IC1
TLD5097
Cfilter
PWMI
D4
D5
D6
Digital Dimming
STATUS
3
D2
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
SGND
VSET
13
Output
EN / PWMI
11
FREQ / SYNC
8
COMP
FBH
6
FBL
7
D7
CCOMP
DPOL
IVCC
Number of LEDs could be variable
independent from VIN:
→ BUCK-BOOST configuration
PWM
RPOL
Dn
1
CIVCC
RFREQ
RCOMP
ST
5
GND
12
Figure 23
Flyback application circuit (Buck - Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
3.3 uF, 50V (100V)
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
1 µH / 9 uH
EPCOS
Transformer EHP 16
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80 V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
ROVH
56.2 kΩ, 1%
Panasonic
ERJ3EKF5622V
Resistor
1
ROVL
1.24 kΩ, 1%
Panasonic
ERJ3EKF1241V
Resistor
1
RCS
5 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 24
Datasheet
Bill of Materials for Flyback application circuit
33
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Application information
CBO
RFB
VIN = 4.5V to 45V
CIN
D1
Dn
Number of LEDs could be variable
independent from VIN:
→ BUCK-BOOST configuration
DBO
LBO
ILED
ISW
VOUT
VCC or VIVCC
PWM
FBH
7
FBL
14
IN
10
SET
2
SWCS
4
SGND
3
OVFB
9
RCS
ROVH
VSET
Analog Dimming
Rfilter
IC2
Microcontroller
(e.g. XC866)
Diagnosis
STATUS
6
TSW
SWO
Cfilter
ST
5
PWMI
IC1
TLD5097
Digital Dimming
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
ROVL
COMP
8
IVCC
1
CCOMP
CIVCC
GND
RFREQ
RCOMP
12
Figure 25
Boost to Battery application circuit - B2B (Buck - Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
3.3 uF, 50V (100V)
EPCOS
X7R, Low ESR
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
1 µH / 9 uH
EPCOS
Transformer EHP 16
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80 V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
ROVH
56.2 kΩ, 1%
Panasonic
ERJ3EKF5622V
Resistor
1
ROVL
1.24 kΩ, 1%
Panasonic
ERJ3EKF1241V
Resistor
1
RCS
5 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
TSW
Figure 26
Datasheet
Bill of Materials for B2B application circuit
34
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Application information
DBO
D1
CBO
Vbattery
D2
VREF
LBO
ILED
CIN
RFB
BUCK Setup:
VIN > VOUT
14
IN
IC1
TLD5097
VCC or VIVCC
PWM
FBH
VSET
Analog Dimming
10
Rfilter
IC2
Microcontroller
(e.g. XC866)
6
SET
FBL
Cfilter
7
IVCC
1
CIVCC
Diagnosis
5
ST
13
EN / PWMI
PWMI
RPOL
RPOL
TSW
Digital Dimming
Spread Spectrum
11
FREQ / SYNC
8
COMP
SWO
SWCS
2
SGND
3
OVFB
9
4
RCS
CCOMP
RFREQ
RCOMP
GND
12
Figure 27
Buck application circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 -2
White
Osram
LE UW Q9WP
LED
2
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CBO
4.7 uF, 50V
EPCOS
X7R
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
L1
22 µH
Coilcraft
MSS1278T
Inductor
1
RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
RCS
50 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
Figure 28
Datasheet
Bill of Materials for Buck application circuit
35
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Application information
IBO
L1
DRV
LBO
VIN
VBATT
DBO
ILoad
CBO
ISW
CIN
VBO
C2
C1
constant
VOUT
RL
SWO
14
VCC or VIVCC
1
TSW
2
IN
SWCS
IVCC
3
RCS
CIVCC
Diagnosis
RST
Dimming
5
ST
10
SET
SGND
4
OVFB
9
ROVH
ROVL
IC1
TLD5097
IC2
Microcontroller
(e.g. XC866)
PWM
13
EN / PWMI
CLK/Spread
Spectrum
11
FREQ / SYNC
8
COMP
RFB1
FBH
6
RFB2
VREF
CCOMP
FBL
7
RFB3
RFREQ
GND
RCOMP
12
Figure 29
Boost voltage application circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF, 16V
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
Panasonic
X7R
Capacitor
1
IC1
--
Infineon
TLD5097
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kohms, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB1,RFB3
51 kohms, 1%
Panasonic
ERJ3EKF5102V
Resistor
1
RFB2
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ
20 kohms, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kohms, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mohms, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V
Infineon
IPG20N10S4L-22
Transistor
1
Figure 30
Bill of Materials for Boost voltage application circuit
Note:
The application drawings and corresponding bill of materials are simplified examples. Optimization
of the external components must be done accordingly to specific application requirements.
Datasheet
36
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Application information
11.1
Further Application Information
•
For further information you may contact http://www.infineon.com/
•
Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice”
Datasheet
37
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Package outlines
Package outlines
0.35 x 45°
6 x 0.65 = 3.9
0.15
M
0.08 C
SEATING
PLANE
0.64 ±0.25
D
Bottom View
3 ±0.2
1
8
1
7
Index
Marking 4.9 ±0.11)
0.2 C 14x
6 ±0.2
C A-B D 14x
A
14
0.19 +0.06
H
Exposed
Diepad
B
0.1 H A-B 2x
7
14
8
2.65 ±0.2
0.25 ±0.05 2)
0.1 H D 2x
8° MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
0.05 ±0.05
STAND OFF
(1.45)
12
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
PG-SSOP-14-1,-2,-3, -5-PO V05
Figure 31
Outline PG-SSOP-14-31)
Green product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Further information on packages
https://www.infineon.com/packages
1) Dimensions in mm
Datasheet
38
Rev. 1.30
2018-10-17
LITIX™ Power
TLD5097EL
Revision history
13
Revision history
Revision
Date
Changes
1.3
2018-10-17
P_4.1.3 → Note and test condition changed
P_4.1.18 and P_4.1.19 → removed
P_4.3.1 to P_4.3.4 → Note and test condition changed
P_8.1.2 → Note and test condition changed
Table 9 → added footnote 1) “Not subject to production test, specified by
design”
Template update
1.0 to 1.2
2016-06-30
Initial datasheet and updates
Brand name change to LITIX™ Power
Datasheet
39
Rev. 1.30
2018-10-17
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-10-17
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
LITIX™ Power TLD5097EL v1.30
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.