LITIX™ Power
TLD5098EL - Multitopology LITIX™ Power DC/DC Controller IC
1
Overview
Description
The TLD5098EL is a flexibly usable DC/DC boost controller with built in
diagnosis and protection features especially designed to drive LEDs.
It is designed to support fixed current and fixed voltage configurations in
multiple topologies such as Boost, Buck, Buck-Boost, SEPIC and Flyback by simply adjusting the external
components. The TLD5098EL drives a low side n-channel power MOSFET from an internal 5 V linear regulator.
The switching frequency is adjustable in the range from 100 kHz to 500 kHz and can also be synchronized to
an external clock source.
The TLD5098EL can be flexibly dimmed by means of analog and PWM dimming; an enable function reduces
the shut-down current consumption to IQ_OFF < 10 µA.
The current mode control scheme of this device provides a stable regulation loop maintained by small
external compensation components. Additionally an integrated soft start feature limits the current peak as
well as voltage overshoot at start-up. This IC is suited for use in the harsh automotive environments.
LBO
DBO
VIN
VIN = 4.5V to 45V
CIN
TDIM2
S
CBO
D
DZ
ILED
G
RDIM2
TSW
14
IN
VIVCC
SWO
2
SWCS
4
RFB
VREF
RCS
RDIM1
VIVCC
RA
10
SET
PWMI
Digital Dimming
13
Clock / Spread Spectrum
3
OVFB
9
ROVH
IC1
TLD5098
RB
IC2
Microcontroller
(e.g. XC866)
SGND
11
FREQ / SYNC
8
COMP
VIVCC
1
D5
RPOL
DPOL
D6
D7
FBL
7
D8
PWMO
PWMO
RCOMP
D2
D4
6
CIVCC
CCOMP
RFREQ
D1
D3
FBH
IVCC
EN / PWMI
Short
to
GND
ROVL
TDIM1
5
D9
GND
D10
12
LED load seperated
via wire harness
Figure 1
Typical application: Boost LED driver with short circuit protection circuitry
Type
Package
Marking
TLD5098EL
PG-SSOP-14-3
TLD5098
Datasheet
www.infineon.com
1
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Potential applications
Potential applications
•
Automotive exterior and interior lighting
•
General illumination
•
General purpose current/voltage controlled DC/DC driver
Features
•
Fixed current or fixed voltage configuration in Boost, Buck, Buck-Boost, SEPIC and Flyback topology
•
Drives low-side external n-Channel switching MOSFET from internal 5 V voltage regulator
•
Flexible switching frequency range, 100 kHz to 500 kHz or synchronization with external clock source
•
Wide input voltage range from 4.5 V to 45 V
•
Enable & PWM function with very low shutdown current: IQ_OFF < 10 µA and internal start-up
•
Analog dimming and PWM dimming feature to adjust average LED current
•
PWMO Gate driver for PWM dimming and output disconnection
•
Integrated protection and diagnostic functions
•
300 mV high-side current sense
•
Available in a small thermally enhanced 14-pin PG-SSOP-14-3 package (RoHS compliant)
Table 1
Product summary
Feature
Symbol
Range
Nominal supply voltage range
VIN
8 V ... 34 V
Extended supply voltage range
VIN
4.5 V ... 45 V
VIVCC > VIVCC,RTH,d ; parameter deviations possible
Switching frequency range
fFREQ
100 kHz ... 500 kHz oscillator frequency adjustment
range
250 kHz ... 500 kHz synchronization frequency
capture range
Maximum duty cycle
Dmax,fixed
91% ...95% fixed frequency mode
Dmax,synced
88% synchronization mode
Typical gate driver peak sourcing current ISWO,SRC
380 mA
Typical gate driver peak sinking current ISWO,SNK
550 mA
Protection and diagnostic functions
•
Open circuit detection
•
Output overvoltage protection
•
Short to GND protection
•
Overtemperature shutdown
•
Electrostatic discharge (ESD) protection
Product validation
Qualified for automotive applications. Product validation according to AEC-Q100/101.
Datasheet
2
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Table of contents
Table of contents
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
Switching regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
6
6.1
6.2
6.3
Oscillator and synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Typical performance characteristics of oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
7.1
7.2
Enable and dimming function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8
8.1
8.2
Linear regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9
9.1
9.2
Protection and diagnostic functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
10
10.1
10.2
10.3
Analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Purpose of analog dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
11.1
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Further application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
12
Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
13
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Datasheet
3
7
7
9
9
13
13
14
15
27
27
27
31
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Block diagram
2
Block diagram
IN
LDO
14
13
IVCC
2
SWO
4
SWCS
3
SGND
9
OVFB
6
FBH
7
FBL
5
PWMO
Power on
reset
Internal
supply
EN / PWMI
1
EN_INT/
PWM_INT
On/Off
logic
Power switch
gate driver
Soft
start
Oscillator
FREQ/SYNC
11
Slope
comp.
PWM
generator
Thermal
protection
SET
10
Switch current error
amplifier
Leading edge
blanking
Overvoltage
protection
Reference current
generator
Open load + Short to
GND detection
COMP
Feedback voltage error
amplifier
8
EN_INT/
PWM_INT
Dimming switch
gate driver
12
GND
Figure 2
Datasheet
Block diagram TLD5098EL
4
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Pin configuration
3
Pin configuration
3.1
Pin assignment
IVCC
1
14
IN
SWO
2
13
EN/PWMI
SGND
3
12
GND
SWCS
4
11
FREQ/SYNC
PWMO
5
10
SET
FBH
6
FBL
7
EP
Figure 3
Pin configuration TLD5098EL
3.2
Pin definitions and functions
Table 2
Pin definition and function
9
OVFB
8
COMP
#
Symbol
Direction
Function
1
IVCC
Output
Internal LDO
Used for internal biasing and gate drive. Bypass with external
capacitor. Pin must not be left open
2
SWO
Output
Switch gate driver
Connect to gate of external switching MOSFET
3
SGND
–
Current Sense Ground
Ground return for switch current sense
4
SWCS
Input
Current Sense
Detects the peak current through switch
5
PWMO
Output
PWM Dimming
Connect to gate of external MOSFET
6
FBH
Input
Voltage Feedback Positive
Non inverting Input (+)
7
FBL
Input
Voltage Feedback Negative
Inverting Input (-)
8
COMP
Input
Compensation
Connect R and C network to pin for stability
Datasheet
5
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Pin configuration
Table 2
Pin definition and function
#
Symbol
Direction
Function
9
OVFB
Input
Overvoltage Protection Feedback
Connect to resistive voltage divider to set overvoltage threshold
10
SET
Input
Analog Dimming
Load current adjustment Pin. Pin must not be left open. If analog
dimming feature is not used connect to IVCC pin
11
FREQ / SYNC
Input
Frequency Select or Synchronization
Connect external resistor to GND to set frequency.
Or apply external clock signal for synchronization within frequency
capture range
12
GND
–
Ground
Connect to system ground
13
EN / PWMI
Input
Enable or PWM
Apply logic HIGH signal to enable device or PWM signal for dimming
LED
14
IN
Input
Supply Input
Supply for internal biasing
EP
–
Exposed Pad
Connect to external heat spreading GND Cu area (e.g. inner GND layer
of multilayer PCB with thermal vias)
Datasheet
6
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
General product characteristics
4
General product characteristics
4.1
Absolute maximum ratings
TJ = -40°C to +150°C; all voltages with respect to ground, positive current flowing into pin (unless otherwise
specified)
Table 3
Absolute maximum ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note or
Test Condition
Number
Voltage
IN
Supply input
VIN
-0.3
45
V
P_4.1.1
EN / PWMI
Enable or PWM input
VEN
-40
45
V
P_4.1.2
FBH-FBL;
Feedback Error
Amplifier Differential
VFBH-VFBL
-40
61
V
The maximum delta
P_4.1.3
must not exceed 61 V.
Differential signal (not
referred to GND)
FBH;
VFBH
Feedback error
amplifier positive input
-40
61
V
The difference
between VFBH and VFBL
must not exceed 61 V,
refer to P_4.1.3
P_4.1.4
FBL
VFBL
Feedback error
amplifier negative input
-40
61
V
The difference
between VFBH and VFBL
must not exceed 61 V,
refer to P_4.1.3
P_4.1.5
mA
t < 100 ms,
VFBH-VFBL = 0.3 V
P_4.1.6
FBH and FBL current
IFBL, IFBH
OVFB
Overvoltage feedback
input
VOVP
-0.3
5.5
V
OVFB
Overvoltage feedback
input
VOVP
-0.3
6.2
V
SWCS
Switch current sense
input
VSWCS
-0.3
5.5
V
SWCS
Switch current sense
input
VSWCS
-0.3
6.2
V
SWO
Switch gate drive
output
VSWO
-0.3
5.5
V
Datasheet
1
7
P_4.1.7
t < 10 s
P_4.1.8
P_4.1.9
t < 10 s
P_4.1.10
P_4.1.11
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
General product characteristics
Table 3
Absolute maximum ratings1)
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or
Test Condition
Number
t < 10 s
P_4.1.12
Max.
SWO
Switch gate drive
output
VSWO
-0.3
6.2
V
SGND
Current sense switch
GND
VSGND
-0.3
0.3
V
P_4.1.13
COMP
Compensation input
VCOMP
-0.3
5.5
V
P_4.1.14
COMP
Compensation input
VCOMP
-0.3
6.2
V
FREQ / SYNC;
Frequency and
synchronization input
VFREQ /
VSYNC
-0.3
5.5
V
FREQ / SYNC;
Frequency and
synchronization input
VFREQ /
VSYNC
-0.3
6.2
V
PWMO
PWM dimming output
VPWMO
-0.3
5.5
V
PWMO
PWM dimming output
VPWMO
-0.3
6.2
V
SET
VSET
-0.3
45
V
P_4.1.20
IVCC
Internal linear voltage
regulator output
VIVCC
-0.3
5.5
V
P_4.1.21
IVCC
Internal linear voltage
regulator output
VIVCC
-0.3
6.2
V
Junction temperature
TJ
-40
150
°C
P_4.1.23
Storage temperature
Tstg
-55
150
°C
P_4.1.24
-2
2
kV
t < 10 s
P_4.1.15
P_4.1.16
t < 10 s
P_4.1.17
P_4.1.18
t < 10 s
t < 10 s
P_4.1.19
P_4.1.22
Temperature
ESD Susceptibility
ESD resistivity of all pins VESD,HBM
ESD resistivity of IN,
VESD,HBM
EN/PWMI, FBH, FBL and
SET pin to GND
-4
4
kV
HBM2)
2)3)
HBM
P_4.1.25
P_4.1.26
1) Not subject to production test, specified by design.
2) ESD susceptibility, Human Body Model “HBM” according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF)
3) ESD susceptibility, Charged Device Model “CDM” EIA/JESD22-C101 or ESDA STM5.3.1
Note:
Datasheet
Stresses above the ones listed here may cause permanent damage to the device. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
8
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
General product characteristics
1. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are
not designed for continuous repetitive operation.
4.2
Functional range
Table 4
Functional range
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Extended supply
voltage range
VIN
4.5
–
45
V
1)
VIVCC > VIVCC,RTH,d;
parameter
deviations possible
P_4.2.1
Nominal supply
voltage range
VIN
8
–
34
V
–
P_4.2.2
Feedback voltage
input
VFBH;VFBL
3
–
60
V
–
P_4.2.3
Junction
temperature
TJ
-40
–
150
°C
–
P_4.2.4
1) Not subject to production test, specified by design
Note:
Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics
table.
4.3
Thermal resistance
Note:
This thermal data was generated in accordance with JEDEC JESD51 standards. For further
information visit https://www.jedec.org
Table 5
Thermal resistance
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
P_4.3.1
Min.
Typ.
Max.
RthJC
–
10
–
K/W
1)2)
Junction to Ambient RthJA
–
47
–
K/W
1)3)
2s2p
P_4.3.2
1s0p + 600 mm2
P_4.3.3
1s0p + 300 mm2
P_4.3.4
Junction to Case
Junction to Ambient RthJA
–
54
–
K/W
1)3)
Junction to Ambient RthJA
–
64
–
K/W
1)3)
1) Not subject to production test, specified by design
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins and the exposed pad are fixed
to ambient temperature). TA = 25°C dissipates 1 W
3) Specified RthJA value is according to JEDEC 2s2p (JESD 51-7) + (JESD 51-5) and JEDEC 1s0p (JESD 51-3) + heatsink area
at natural convection on FR4 board;The device was simulated on a 76.2 x 114.3 x 1.5 mm board. The 2s2p board has
2 outer copper layers (2 x 70 µm Cu) and 2 inner copper layers (2 x 35 µm Cu), A thermal via (diameter = 0.3 mm and
25 µm plating) array was applied under the exposed pad and connected the first outer layer (top) to the first inner
layer and second outer layer (bottom) of the JEDEC PCB. TA=25°C, IC dissipates 1W
Datasheet
9
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Switching regulator
5
Switching regulator
5.1
Description
The TLD5098EL regulator is suitable for Boost, Buck, Buck-Boost, SEPIC and Flyback configurations. The
constant output current is especially useful for light emitting diode (LED) applications. The switching
regulator function is implemented by a pulse width modulated (PWM) current mode controller.
The PWM current mode controller uses the peak current through the external power switch and error in the
output current to determine the appropriate pulse width duty cycle (on time) for constant output current. The
current mode controller provides a PWM signal to an internal gate driver which then outputs to an external
n-channel enhancement mode metal oxide field effect transistor (MOSFET) power switch.
The current mode controller also has built-in slope compensation to prevent sub-harmonic oscillations which
is a characteristic of current mode controllers operating at high duty cycles (>50% duty).
An additional built-in feature is an integrated soft start that limits the current through the inductor and
external power switch during initialization. The soft start function gradually increases the inductor and switch
current over tSS (P_5.2.9) to minimize potential overvoltage at the output.
OV FB
OVFB 9
H when
OVFB >1.25V
Vref =1.25V
FBH 6
FBL 7
SET
UV IVCC
High when
IVCC < 4.0V
COMP 8
x1
EA
Current
Comp
gmEA
High when
lEA - ISLOPE - ICS > 0
OFF
when H
IEA
0 if SET < 1.6V
0
10
Low when
TJ > 175 °C
1
− 0.1
5
Vref =0.3V
Soft start
Vref =4.0V
NOR
R
&
>
1
Output Stage
OFF when Low
Gate Driver
Supply
R
FREQ/
SYNC
Figure 4
Datasheet
11
I
ISLOPE
Slope Comp
S
t
Clock
&
Error-FF
Q
Q
&
Q
2 SWO
Current
Sense
PWM-FF
Q
1 IVCC
Gate
Driver
S
Oscillator
&
INV
1
NAND 2
&
ICS
4 SWCS
3 SGND
Switching regulator block diagram
10
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Switching regulator
5.2
Electrical characteristics
VIN = 8 V to 34 V; TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 6
Electrical characteristics: Switching regulator
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
Feedback reference VREF
voltage
0.29
0.30
0.31
V
refer to Figure 30
VREF = VFBH - VFBL
VSET = 5 V
ILED = 350 mA
P_5.2.1
Feedback reference VREF
voltage
0.057
0.06
0.063
V
refer to Figure 30
VREF = VFBH - VFBL
VSET = 0.4 V
ILED = 70 mA
P_5.2.2
Feedback reference VREF_offset
voltage offset
–
–
5
mV
refer to Figure 18
and Figure 30
VREF = VFBH - VFBL
VSET = 0.1 V
VOUT > VIN
P_5.2.3
Voltage line
regulation
(∆VREF/ VREF) –
/ ∆VIN
–
0.15
%/V
refer to Figure 30
VIN = 8 V to 19 V;
VSET = 5 V;
ILED = 350 mA
P_5.2.4
Voltage load
regulation
(∆VREF/VREF) –
/ ∆IBO
–
5
%/A
refer to Figure 30
VSET = 5 V;
ILED = 100 to 500 mA
P_5.2.5
Switch peak overcurrent threshold
VSWCS
130
150
170
mV
VFB = VFBL = 5 V
VCOMP = 3.5 V
P_5.2.6
Maximum duty cycle DMAX,fixed
91
93
95
%
Fixed frequency
mode
P_5.2.7
Maximum duty cycle DMAX,sync
88
–
–
%
Synchronization
mode
P_5.2.8
Soft start ramp
350
1000
1500
µs
VFBH rising from 5%
to 95% of VFB, typ.
P_5.2.9
IFBH
IFBH
Feedback high input
current
38
46
54
µA
VFBH -VFBL= 0.3 V
P_5.2.10
IFBL
Feedback low input
current
15
21
27
µA
VFBH -VFBL = 0.3 V
P_5.2.11
10
50
100
µA
VSWCS= 150 mV
P_5.2.12
Regulator
tSS
IFBL
Switch current sense ISWCS
input current
Datasheet
11
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Switching regulator
Table 6
Electrical characteristics: Switching regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Input undervoltage
shutdown
VIN,off
3.5
–
4.5
V
VIN decreasing
P_5.2.13
Input voltage
startup
VIN,on
–
–
4.85
V
VIN increasing
P_5.2.14
Gate driver for external switch
Gate driver peak
sourcing current
ISWO,SRC
–
380
–
mA
1)
VSWO = 1 V to 4 V
P_5.2.15
Gate driver peak
sinking current
ISWO,SNK
–
550
–
mA
1)
VSWO = 4 V to 1 V
P_5.2.16
Gate driver output
rise time
tR,SWO
–
30
60
ns
1)
CGATE = 3.3 nF;
VSWO = 1 V to 4 V
P_5.2.17
Gate driver output
fall time
tF,SWO
–
20
40
ns
1)
CGATE = 3.3 nF;
VSWO = 4 V to 1 V
P_5.2.18
Gate driver output
voltage
VSWO
4.5
–
5.5
V
1)
P_5.2.19
CGATE = 3.3 nF
1) Not subject to production test, specified by design
Datasheet
12
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Oscillator and synchronization
6
Oscillator and synchronization
6.1
Description
Rfreq vs. switching frequency
The internal oscillator is used to determine the switching frequency of the boost regulator. The switching
frequency can be selected from 100 kHz to 500 kHz with an external resistor to GND. To set the switching
frequency with an external resistor the following formula can be applied.
(6.1)
1
R FREQ =
(141 ⋅ 10
− 12
⎡ s
⎢⎣ Ω
⎤ ⎛
⎡1 ⎤ ⎞
⎥⎦ ) ⋅ ⎜ f FREQ ⎢⎣ s ⎥⎦ ⎟
⎝
⎠
(
− 3 . 5 ⋅ 10
3
[Ω ])[Ω ]
In addition, the oscillator is capable of changing from the frequency set by the external resistor to a
synchronized frequency from an external clock source. If an external clock source is provided on the pin
FREQ/SYNC, then the internal oscillator synchronizes to this external clock frequency and the boost regulator
switches at the synchronized frequency. The synchronization frequency capture range is 250 kHz to 500 kHz.
TLD5098
FREQ /SYNC
Oscillator
Multiplexer
11
Clock Frequency
Detector
VCLK
PWM
Logic
Gate
driver
2
SWO
RFREQ
Figure 5
Oscillator and synchronization block diagram and simplified application circuit
TSYNC = 1 / fSYNC
VSYNC
tSYNC,PWH
VSYNC,H
VSYNC,L
t
Figure 6
Datasheet
Synchronization timing diagram
13
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Oscillator and synchronization
6.2
Electrical characteristics
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 7
Electrical characteristics: Oscillator and synchronization
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Number
Test Condition
RFREQ = 20 kΩ
Oscillator
Oscillator frequency
fFREQ
250
300
350
kHz
Oscillator frequency
adjustment range
fFREQ
100
–
500
kHz
FREQ / SYNC supply
current
IFREQ
–
–
-700
µA
VFREQ = 0 V
P_6.2.3
Frequency voltage
VFREQ
1.16
1.24
1.32
V
fFREQ = 100 kHz
P_6.2.4
Synchronization
fSYNC
frequency capture range
250
–
500
kHz
Synchronization signal
high logic level valid
VSYNC,H
3.0
–
–
V
1)2)
P_6.2.6
Synchronization signal
low logic level valid
VSYNC,L
–
–
0.8
V
1)2)
P_6.2.7
Synchronization signal
logic high pulse width
tSYNC,PWH
200
–
–
ns
1)2)
P_6.2.8
P_6.2.1
P_6.2.2
Synchronization
P_6.2.5
1) Synchronization of external PWM ON signal to falling edge
2) Not subject to production test, specified by design
Datasheet
14
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Oscillator and synchronization
6.3
Typical performance characteristics of oscillator
600
500
fFREQ [kHz]
400
TJ = 25°C
300
200
100
0
0
10
20
30
40
50
60
70
80
RFREQ [kΩ ]
Figure 7
Datasheet
Switching frequency fSW versus frequency select resistor to GND RFREQ
15
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Enable and dimming function
7
Enable and dimming function
7.1
Description
The enable function powers the device on or off. A valid logic “low”signal on enable pin EN/PWMI powers “off”
the device and current consumption is less than IQ_OFF (P_7.1.14). A valid logic “high” enable signal on enable
pin EN/PWMI powers on the device. The enable function features an integrated pull down resistor which
ensures that the IC is shut down and the power switch is off in case the enable pin EN is left open.
In addition to the enable function described above, the EN/PWMI pin detects a pulse width modulated (PWM)
input signal that is fed through to the internal gate driver. The EN/PWMI enables and disables the gate driver
for the main switch during PWM operation. PWM dimming an LED is a commonly practiced dimming method
and can prevent color shift in an LED light source.
The enable and PWM input function share the same pin. Therefore a valid logic “low” signal at the EN/PWMI
pin needs to differentiate between an enable power “off” or a PWM dimming “low” signal. The device
differentiates between enable off and PWM dimming signal by requiring the enable off at the EN/PWMI pin to
stay “low” for the “Enable turn off delay time” (tEN,OFF,DEL P_7.1.6).
LBO
DBO
CBO
IN
14
Enable
Microcontroller
EN / PWMI
RFB
13
Enable / PWMI
Logic
LDO
Enable
1
Gate
Driver
2
IVCC
SWO
TSW
RSWCS
PWMI
Figure 8
Datasheet
Gate
Driver
5
PWMO
TDIM
Block diagram and simplified application circuit enable and LED dimming
16
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Enable and dimming function
tEN,START
TPWMI
tPWMI,H
tEN,OFF,DEL
VEN/PWMI
VEN/PWMI,ON
VEN/PWMI,OFF
t
VIVCC
VIVCC,ON
VIVCC,RTH
t
VPWMO
TFREQ =
VSWO
t
1
fFREQ
t
Power On
Normal
Dim
Normal
Dim
Normal
SWO On
PWMO Off
SWO On
PWMO Off
SWO On
PWMO On
SWO Off
PWMO On
SWO Off
PWMO On
Figure 9
Timing diagram enable and LED dimming
7.2
Electrical characteristics
Power Off Delay Time
Power Off
IQ < 10 μA
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 8
Electrical characteristics: Enable and dimming
Parameter
Symbol
Values
Min.
Typ.
3.0
–
Unit
Note or
Test Condition
Number
V
–
P_7.1.1
Max.
Enable / PWM Input
Enable/PWMI
turn on threshold
VEN/PWMI,ON
Enable/PWMI
turn off threshold
VEN/PWMI,OFF –
Enable/PWMI hysteresis VEN/PWMI,HYS 50
–
0.8
V
–
P_7.1.2
200
400
mV
1)
P_7.1.3
Enable/PWMI
high input current
IEN/PWMI,H
–
–
30
µA
VEN/PWMI = 16.0 V
P_7.1.4
Enable/PWMI
low input current
IEN/PWMI,L
–
0.1
1
µA
VEN/PWMI = 0.5 V
P_7.1.5
Enable turn off
delay time
tEN,OFF,DEL
8
10
12
ms
–
P_7.1.6
PWMI min duty time
tPWMI,H
4
–
–
µs
–
P_7.1.7
Enable startup time
tEN,START
100
–
–
µs
1)
P_7.1.8
Datasheet
17
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Enable and dimming function
Table 8
Electrical characteristics: Enable and dimming
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min.
Typ.
Max.
PWMO gate driver peak IPWMO,SRC
sourcing current
–
230
–
mA
1)
PWMO gate driver peak IPWMO,SNK
sinking current
–
370
–
mA
1)
VPWMO = 4 V to 1 V P_7.1.10
PWMO gate driver
output rise time
tR,PWMO
–
50
100
ns
1)
CGATE = 3.3 nF;
VPWMO = 1 V to 4 V
P_7.1.11
PWMO gate driver
output fall time
tF,PWMO
–
30
60
ns
1)
CGATE = 3.3 nF;
VPWMO = 4 V to 1 V
P_7.1.12
PWMO gate driver
output voltage
VPWMO
4.5
–
5.5
V
1)
CGATE = 3.3 nF
P_7.1.13
Current consumption,
shutdown mode
IQ_OFF
–
–
10
µA
VEN/PWMI = 0.8 V;
TJ ≤ 105°C;
VIN = 16 V
P_7.1.14
Current consumption,
active mode
IQ_ON
–
–
7
mA
2)
Gate driver for dimming Switch
VPWMO = 1 V to 4 V P_7.1.9
Current consumption
VEN/PWMI ≥ 4.75 V; P_7.1.15
IBO = 0 mA;
VSWO = 0% duty
cycle
1) Not subject to production test, specified by design
2) Dependency on switching frequency and gate charge of external switches
Datasheet
18
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Linear regulator
8
Linear regulator
8.1
Description
The internal linear voltage regulator supplies the internal gate drivers with a typical voltage of 5 V and current
up to ILIM,min (P_8.1.2). An external output capacitor with ESR lower than RIVCC,ESR (P_8.1.5) is required on pin
IVCC for stability and buffering transient load currents. During normal operation the external MOSFET
switches will draw transient currents from the linear regulator and its output capacitor. Proper sizing of the
output capacitor must be considered to supply sufficient peak current to the gate of the external MOSFET
switches.
Integrated undervoltage protection for the external switching MOSFET
An integrated undervoltage reset threshold circuit monitors the linear regulator output voltage (VIVCC) and
resets the device in case the output voltage falls below the IVCC undervoltage reset switch OFF threshold
(VIVCC,RTH,d). The undervoltage reset threshold for the IVCC pin helps to protect the external switches from
excessive power dissipation by ensuring the gate drive voltage is sufficient to enhance the gate of an external
logic level n-channel MOSFET.
IN
14
1
IVCC
Linear regulator
EN / PWMI
Figure 10
Datasheet
13
Gate
drivers
Voltage regulator block diagram and simplified application circuit
19
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Linear regulator
8.2
Electrical characteristics
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 9
Electrical characteristics: Line regulator
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Output voltage
VIVCC
4.85
5
5.15
V
6 V ≤ VIN≤ 45 V
P_8.1.1
0.1 mA ≤ IIVCC ≤ 40 mA
Output current
limitation
ILIM
51
–
90
mA
VIN = 13.5 V
VIVCC = 4.5 V
P_8.1.2
Drop out voltage
VDR
–
–
0.5
V
VIN = 4.5 V
IIVCC = 25 mA
P_8.1.3
IVCC buffer
capacitor
CIVCC
0.47
1
100
µF
1)2)
P_8.1.4
IVCC buffer
capacitor ESR
RIVCC, ESR
–
–
0.5
Ω
1)
P_8.1.5
Undervoltage reset
headroom
VIVCC,HDRM
100
–
–
mV
VIVCC decreasing
VIVCC - VIVCC,RTH,d
P_8.1.6
IVCC undervoltage
reset switch-off
threshold
VIVCC,RTH,d
3.6
–
4.0
V
3)
P_8.1.7
IVCC undervoltage
reset switch-on
threshold
VIVCC,RTH,i
–
–
4.5
V
VIVCC increasing
VIVCC decreasing
P_8.1.8
1) Not subject to production test, specified by design
2) Minimum value given is needed for regulator stability; application might need higher capacitance than the minimum.
3) Selection of external switching MOSFET is crucial and the VIVCC,RTH,d min. as worst case the threshold voltage of MOSFET
must be considered.
Datasheet
20
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Protection and diagnostic functions
9
Protection and diagnostic functions
9.1
Description
The TLD5098EL has integrated circuits to diagnose and protect against output overvoltage, open load, open
feedback and overtemperature faults. Additionally the FBH and FBL potential is monitored and in case the LED
load short circuits to GND (see description Figure 16) the regulator stops the operation and protects the
system. In case any of the six fault conditions occur the PWMO and IVCC signal will change to an active logic
“low” signal to communicate that a fault has occurred (detailed overview in Figure 11 and Figure 12 below).
Figure 12 illustrates the various open load and open feedback conditions. In case of an overtemperature
condition the integrated thermal shutdown function turns off the gate drivers and internal linear voltage
regulator. The typical junction shutdown temperature is 175°C (TJ,SD P_9.2.2). After cooling down the IC will
automatically restart. Thermal shutdown is an integrated protection function designed to prevent IC
destruction and is not intended for continuous use in normal operation (Figure 14). To calculate the proper
overvoltage protection resistor values an example is given in Figure 15.
Input
Protection and
diagnostic circuit
Output
Output
overvoltage
Open load
OR
Open feedback
SWO and PWMO
gate driver off
Short to GND
Overtemperature
OR
Linear regulator off
Input undervoltage
Figure 11
Datasheet
Protection and diagnostic function block diagram
21
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Protection and diagnostic functions
Table 10
Diagnosis truth table1)
Input
Output
Condition
Level
SWO
PWMO
IVCC
Sw
High or Sw
Active
True
Low
Low
Active
False
Sw
High or Sw
Active
True
Low
Low
Active
False
Sw
High or Sw
Active
True
Low
Low
Active
Overvoltage at output False
Open load
Open feedback
Short to GND at LED
chain
False
Sw
High or Sw
Active
True
Low
Low
Active
Overtemperature
False
Sw
High or Sw
Active
True
Low
Low
Shutdown
Sw
High or Sw
Active
Low
Low
Shutdown
Undervoltage at input False
True
1) Sw = Switching; False = Condition does NOT exist; True = Condition does exist
VBO
Open circuit 3
TLD5098
Open circuit 1
ROVH
Fault threshold voltage
VREF
1
Open FBH
-20 to -100 mV
2
Open FBL
0.5 to 1.0 V
3
Open VBO
-20 to -100 mV
4
Open PWMO
Detected by overvoltage
Open circuit 2
9
D1
ROVL
VOVFB,TH
Fault condition
D2
D3
Feedback voltage
error amplifier
FBH
FBL
VREF
D4
6
7
D5
+
VREF
-
D6
Max Threshold = 1.0 V
D7
D8
Min Threshold = 0.5 V
D9
D10
Typical VREF = 0.3 V
Open circuit 4
TDIM
Max Threshold = -20 mV
Min Threshold = -100 mV
PWMO
5
Figure 12
Datasheet
Open FBL
OVFB
Open circuit
condition
Open FBH
Open VBO
Overvoltage
comparator
RFB
Output open circuit conditions
Open load and open feedback conditions
22
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Protection and diagnostic functions
Startup
Normal
VIVCC
Thermal
shutdown
Overvoltage
Open load /
feedback
1
2
3
Shutdown
VIVCC,RTH,i
VIVCC,RTH,d
TJ
t
Tj,SD,HYST
1
TJ,SD
VBO
VOVFB,HYS
t
2
VOVFB ≥ VOVFB,TH
VIN
3
VFBH-VFBL
t
VREF,2
tSS
tSS
0.3 V Typ
t
VREF,1
VPWMO
t
Figure 13
Datasheet
Open load, overvoltage and overtemperature timing diagram
23
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Protection and diagnostic functions
VEN/PWMI
H
L
t
TJ
TJSD
ΔT
TJSO
t
TA
VSWO
t
ILED
Ipeak
t
VPWMO
t
Device
OFF
Figure 14
Normal operation
Overtemp
fault
ON
Overtemp
ON
fault
Overtemp
ON
fault
Overtemp
fault
Device overtemperature protection behavior
VOVFB
example: VOUT,max = 40V
VOVP,max
1.25mA
ROVH
TLD5098
OVFB
VOVFB,TH
9
ROVL
GND
Overvoltage protection
active
40V
≅ 33.2kΩ
1.25mA
1kΩ
1.25V
1.25V
Overvoltage protection
disabled
12
t
Figure 15
Datasheet
Overvoltage protection description
24
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Protection and diagnostic functions
Short to GND protection for high-side return applications (B2B) from Figure 26
The FBH and FBL pins features a short to GND detection threshold (VFBL, FBH_S2G). If the potential on these pins
is below this threshold the device stops its operation. This means that the PWMO signal changes to inactive
state (low potential) and the corresponding p-channel (TDIM2) is switched off accordingly and protects the LED
chain. For the B2B application some external components are needed to ensure a low potential during a short
circuit event. D1 and D2 are low power diodes (eg. BAS16-03W) and the resistor Rlim ( eg. 10 kΩ) is needed to
limit the current through this path. The diode D3 should be a high power diode and is needed to protect the
RFB and the FBH and FBL pins in case of an short circuit to GND event. This short circuit detection and
protection concept considers potential faults for LED chains (LED modules) which are separated from the ECU
via two wires (at the beginning and at the end of the LED chain). If the short circuit condition disappears, the
device will re-start with a soft start.
CBO
D1
Vbat
Rlim
wire
harness
RFB
CIN
VFBL,FBH
D2
wire
harness
LED module
Dn
D3
60 V
Short to GND
TDIM2
D1
Normal operation
Short to GND
LBO
TDIM1
DBO
ISW
PWMO
TSW
SWO
FBH
FBL
SGND
TLD5098
Figure 16
Datasheet
VOUT
3V
VFBL,FBH_S2G
SWCS
IN
ILED
Device working with parameter
deviations
Short circuit detected on
FBH/FBL
t
Short circuit to GND protection
25
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Protection and diagnostic functions
9.2
Electrical characteristics
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 11
Electrical characteristics: Protection and diagnosis
Parameter
Symbol
Values
Min.
Unit
Note or
Test Condition
Number
P_9.2.1
Typ.
Max.
–
2
V
refer to Figure 16
VFBH = VFBL
decreasing
Short circuit protection
FBH and FBL shortcircuit fault sensing
common mode range
VFBL,FBH_S2G 1.5
Temperature protection
Overtemperature
shutdown
TJ,SD
160
175
190
°C
1)
refer to Figure 14 P_9.2.2
Overtemperature
shutdown hystereses
TJ,SD,HYST
–
15
–
°C
1)
P_9.2.3
Overvoltage protection
Output overvoltage
feedback threshold
increasing
VOVFB,TH
1.21
1.25
1.29
V
refer to Figure 15
P_9.2.4
Output overvoltage
feedback hysteresis
VOVFB,HYS
50
–
150
mV
1)
Output Voltage
decreasing
P_9.2.5
Overvoltage reaction
time
tOVPRR
2
–
10
µs
Output Voltage
increasing
P_9.2.6
Overvoltage feedback
input current
IOVFB
-1
0.1
1
µA
VOVFB = 1.25 V
P_9.2.7
Open load and open feedback diagnostics
Open load/feedback
threshold
VREF,1,3
-100
–
-20
mV
refer to Figure 12 P_9.2.8
VREF = VFBH-VFBL
Open circuit 1 or 3
Open feedback
threshold
VREF,2
0.5
–
1
V
VREF = VFBH-VFBL
Open circuit 2
P_9.2.9
1) Specified by design; not subject to production test
Note:
Datasheet
Integrated protection functions are designed to prevent IC destruction under fault conditions
described in the data sheet. Fault conditions are considered as “outside” normal operating range.
Protection functions are not designed for continuous repetitive operation.
26
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Analog dimming
10
Analog dimming
This pin influences the “feedback voltage error amplifier” by generating an internal current accordingly to an
external reference voltage (VSET). If the analog dimming feature is not needed this pin must be connected to
IVCC or external > 1.6 V supply. Different application scenarios are described in Figure 19. This pin can also go
outside of the ECU for instance if a thermistor is connected on a separated LED module and the “Analog
dimming input” is used to thermally protect the LEDs. For reverse battery protection of this pin an external
series resistor should be placed to limit the current.
10.1
Purpose of analog dimming
1. It is difficult for LED manufacturers to deliver LEDs which have the same brightness, colorpoint and
forward voltage class. Due to this relatively wide spread of the crucial LED parameters automotive
customers order LEDs from one or maximum two different colorpoint classes. The LED manufacturer must
preselect the LEDs to deliver the requested colorpoint class. These preselected LEDs are matched in terms
of the colorpoint but a variation of the brightness remains. To correct the brightness deviation an analog
dimming feature is needed. The mean LED current can be adjusted by applying an external voltage VSET at
the SET pin.
2. If the DC/DC application is separated from the LED loads the ECU manufacturers aim is to develop one
hardware which should be able to handle different load current conditions (e.g. 80 mA to 400 mA) to cover
different applications. To achieve this average LED current adjustment the analog dimming is a crucial
feature.
10.2
Description
Application example
Desired LED current = 400 mA. For the calculation of the correct feedback resistor RFB the following equation
can be used: This formula is valid if the analog dimming feature is disabled and VSET > 1.6 V.
(10.1)
I LED =
VREF
V
0.3V
→ RFB = REF → RFB =
= 750mΩ
RFB
I LED
400mA
Related electrical parameter is guaranteed with VSET = 5 V (P_5.2.1) A decrease of the average LED current can
be achieved by controlling the voltage at the SET pin (VSET) between 0.1 V and 1.6 V. The mathematical relation
is given in the formula below:
(10.2)
I LED =
VSET − 0.1V
5 ⋅ RFB
Refer to the concept drawing in Figure 18.
Datasheet
27
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Analog dimming
VFBH-FBL [mV]
Typ. 300
0
0.1
Analog enabled
Analog dimming enabled
=
Figure 17
VSET [V]
1.6
− 0.1
5∙
=
Basic relationship between VREF and VSET voltage
VREF
VOUT
RFB
ILED
FBL
FBH
6
7
IFBL
IFBH
R2
R1
VINT
VBANDGAP = 1.6V
VREF_OFFSET
+
+
+
-
-
Feedback voltage
error amplifier
ISET
SET
10
VSET
ISET
n*ISET
R3
100mV
COMP
GND
8
12
CCOMP
RCOMP
Figure 18
Datasheet
Concept drawing analog dimming
28
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Analog dimming
Multi-purpose usage of the analog dimming feature
1. A µC integrated digital analog converter (DAC) output or a stand alone DAC can be used to supply the SET
pin of the TLD5098EL. The integrated voltage regulator (VIVCC) can be used to supply the µC or external
components if the current consumption does not exceed 20 mA.
2. The analog dimming feature is directly connected to the input voltage of the system. In this configuration
the LED current is reduced if the input voltage VIN is decreasing. The DC/DC boost converter is changing
(increasing) the switching duty cycle if VIN drops to a lower potential. This causes an increase of the input
current consumption. If applications require a decrease of the LED current in respect to VIN variations this
setup can be chosen.
3. The usage of an external resistor divider connected between IVCC (integrated 5 V regulator output and gate
buffer pin) SET and GND can be chosen for systems without µC on board. The concept allows to control the
LED current via placing cheap low power resistors. Furthermore a temperature sensitive resistor
(Thermistor) to protect the LED loads from thermal destruction can be connected additionally.
4. If the analog dimming feature is not needed the SET pin must be connected directly to > 1.6 V potential
(e.g. IVCC potential)
5. Instead of a DAC the µC can provide a PWM signal and an external R-C filter produces a constant voltage for
the analog dimming. The voltage level depends on the PWM frequency (fPWM) and duty cycle (DC) which can
be controlled by the µc software after reading the coding resistor placed at the LED module.
Datasheet
29
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Analog dimming
+5V
1
2
CIVCC
Vbb
1
14
IVCC
D/A-Output
10
IN
RSET2
SET
10
μC
SET
VSET
VSET RSET1
GND
Cfilter
GND
12
12
3
4
VIVCC = +5V
1
RSET2
Rfilter
CIVCC
10
VSET RSET1
VIVCC = +5V
IVCC
1
CIVCC
10
SET
Cfilter
GND
VSET ~ VIVCC
12
IVCC
Cfilter
SET
GND
12
5
+5V
1
IVCC
10
SET
CIVCC
PWM
PWM output
Rfilter
μC
(e.g. XC866)
Cfilter
VSET
GND
12
Figure 19
Datasheet
Analog dimming in various applications
30
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Analog dimming
10.3
Electrical characteristics
VIN = 8 V to 34 V, TJ = -40°C to +150°C, all voltages with respect to ground, positive current flowing into pin;
(unless otherwise specified)
Table 12
Electrical characteristics: Protection and diagnosis
Parameter
SET programming
range
Symbol
VSET
Values
Min.
Typ.
Max.
0
–
1.6
Unit
Note or
Test Condition
Number
V
1)
P_10.3.1
refer to
Figure 17
1) Specified by design; not subject to production test.
Datasheet
31
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Application information
11
Application information
Note:
The following information is given as a hint for the implementation of the device only and shall not
be regarded as a description or warranty of a certain functionality, condition or quality of the device.
LBO
DBO
VIN
VIN = 4.5V to 45V
CIN
TDIM2
S
CBO
D
DZ
ILED
G
RDIM2
TSW
14
IN
SWO
2
SWCS
4
RFB
VREF
RCS
RDIM1
VCC or VIVCC
PWM
VSET
Analog Dimming
10
Rfilter
IC2
Microcontroller
(e.g. XC866)
SET
3
OVFB
9
ROVH
IC1
TLD5098
Cfilter
PWMI
13
EN / PWMI
Spread
Spectrum
11
FREQ / SYNC
8
COMP
Short
to
GND
ROVL
IVCC
D2
D4
6
1
D5
CIVCC
RPOL
DPOL
D6
D7
CCOMP
FBL
7
D8
PWMO
PWMO
RFREQ
D1
D3
FBH
Digital Dimming
STATUS
SGND
RCOMP
TDIM1
5
D9
GND
D10
12
LED load seperated
via wire harness
Figure 20
Figure 21
Datasheet
Boost to Ground application circuit - B2G (Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LUW H9GP
LED
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DZ
5V or 10V
Vishay
ZENER
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CIN, CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML
Inductor
1
RDIM1+2, RCOMP,
RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
4
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
TDIM1, TDIM2
60V Dual N-ch (3.1A) and
P-ch. enh. (2A)
Infineon
BSO615CG
Transistor
1
alternativ: 100V N-ch (0.37A),
Infineon
BSP123
Transistor
1
alternativ: 60V P-ch (1.9A)
Infineon
BSP171P
Transistor
1
Bill of Materials for B2G application circuit
32
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Application information
L1
DBO
CSEPIC
VIN
VIN = 4.5V to 45V
CIN
ISW
RFB
L2
VREF
CBO
TSW
IN
SWO
2
SWCS
4
ILED
D1
RCS
VCC or VIVCC
PWM
Analog Dimming
10
IC2
Microcontroller
(e.g. XC866)
SET
OVFB
9
D2
D4
ROVL
IC1
TLD5098
Cfilter
PWMI
D5
D6
D7
Digital Dimming
13
EN / PWMI
Spread
Spectrum
11
FREQ / SYNC
8
COMP
STATUS
3
D3
VSET
Rfilter
SGND
ROVH
FBH
6
FBL
7
CCOMP
DPOL
IVCC
Number of LEDs could be variable
independent from VIN:
→ BUCK-BOOST configuration
14
Dn
RPOL
1
CIVCC
RFREQ
RCOMP
PWMO
PWMO
TDIM
5
GND
12
Figure 22
SEPIC application circuit (Buck - Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
LED
variable
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CSEPIC
3.3 uF, 20V
EPCOS
X7R, Low ESR
Capacitor
1
CIN , CBO
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
2
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
Figure 23
Datasheet
47 uH
Coilcraft
MSS1278T-473ML
Inductor
2
alternativ: 22uH coupled
inductor
Coilcraft
MSD1278-223MLD
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPD35N10S3L-26
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Bill of Materials for SEPIC application circuit
33
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Application information
DBO
VIN
VIN = 4.5V to 45V
L1
CIN
ISW
RFB
L2
VREF
CBO
TSW
14
IN
SWO
2
SWCS
4
ILED
RCS
VCC or VIVCC
9
D1
D2
10
Rfilter
SET
D3
ROVL
IC1
TLD5098
Cfilter
PWMI
D4
D5
D6
Digital Dimming
13
EN / PWMI
Output
11
FREQ / SYNC
8
COMP
STATUS
OVFB
ROVH
VSET
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
3
FBH
6
FBL
7
D7
CCOMP
DPOL
IVCC
Number of LEDs could be variable
independent from VIN:
→ BUCK-BOOST configuration
PWM
SGND
RPOL
Dn
1
CIVCC
RFREQ
RCOMP
PWMO
GND
PWMO
12
Figure 24
TDIM
5
Flyback application circuit (Buck - Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
D1 - n
White
Osram
DBO
Schottky , 3 A, 100 VR
Vishay
CBO
3.3 uF, 50V (100V)
CIN
Type
Quantity
LUW H9GP
LED
variable
SS3H10
Diode
1
EPCOS
X7R, Low ESR
Capacitor
1
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
L1 , L2
1 µH / 9 uH
EPCOS
Transformer EHP 16
Inductor
1
RCOMP, RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
2
DPOL
80 V Diode
Infineon
BAS1603W
Diode
1
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
ROVH
56.2 kΩ, 1%
Panasonic
ERJ3EKF5622V
Resistor
1
ROVL
1.24 kΩ, 1%
Panasonic
ERJ3EKF1241V
Resistor
1
RCS
5 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TDIM,TSW
Dual N-ch enh. (60V, 20A)
Infineon
IPG20N06S4L-26
Transistor
1
alternativ: 100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
2
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
2
Figure 25
Datasheet
Bill of Materials for Flyback application circuit
34
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Application information
CBO
DSC1:
Low Power Diode
Rlim:10kΩr
ange
DSC2:
Low Power Diode
RFB
TDIM2
VIN = 4.5V to 45V
CIN
D3
Power
Schottky
Diode
DZ
D1
Dn
Number of LEDs could be variable
independent from VIN:
à BUCK-BOOST configuration
Short to GND
RDIM2
RDIM1
Short to GND
ILED
DBO
LBO
ISW
TDIM1
PWMO
VOUT
PWMO
5
VCC or VIVCC
PWM
Rfilter
STATUS
FBH
7
FBL
14
IN
10
SET
2
SWCS
4
SGND
3
OVFB
9
RCS
ROVH
VSET
Analog Dimming
IC2
Microcontroller
(e.g. XC866)
6
TSW
SWO
Cfilter
IC1
TLD5098
PWMI
Digital Dimming
13
EN / PWMI
Spread Spectrum
11
FREQ / SYNC
ROVL
COMP
8
IVCC
1
CCOMP
CIVCC
GND
RFREQ
RCOMP
12
Figure 26
Boost to Battery application circuit - B2B (Buck - Boost configuration)
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - n
White
Osram
LUW H9GP
Diode
variable
DBO , D3
Schottky , 3 A, 100 VR
Vishay
SS3H10
Diode
2
DSC1 , DSC2
Low Power Diode
Infineon
BAS16-03W
Diode
2
DZ
Zener Diode
--
--
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK 1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP, RDIM1, RDIM2, Rlim
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
4
RFB
820 mΩ, 1%
Panasonic
ERJ14BQFR82U
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
ROVH
33.2 kΩ, 1%
Panasonic
ERJP06F5102V
Resistor
1
ROVL
1 kΩ, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mΩ, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TDIM1,TDIM2
60V Dual N-ch (3.1A) and P-ch. enh. (2A)
Infineon
BSO615CG
Transistor
1
alternativ: 100V N-ch (0.37A),
Infineon
BSP123
Transistor
1
alternativ: 60V P-ch (1.9A)
Infineon
BSP171P
Transistor
1
N-ch, OptiMOS-T2 100V, 35A
Infineon
IPD35N10S3L-26
_plus _BOM_B2B_T
TransistorApplicationdrawing
1
LD5098 _March2012.vsd
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
alternativ : 60V N-ch, 2.6A
Infineon
BSP318S
Transistor
1
TSW
Figure 27
Datasheet
Bill of Materials for B2B application circuit
35
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Application information
DBO
D1
CBO
TDIM2
VIN = 4.5V to 45V
DZ
RDIM2
14
BUCK Setup:
VIN > VOUT
VCC or VIVCC
VSET
Analog Dimming
10
IC1
TLD5098
Cfilter
PWMI
13
Spread Spectrum
RFB
PWMO
5
FBH
6
TDIM1
SET
Rfilter
Digital Dimming
LBO
RDIM1
IN
PWMO
IC2
Microcontroller
(e.g. XC866)
VREF
S
CIN
PWM
D2
ILED
EN / PWMI
11
FREQ / SYNC
8
COMP
FBL
7
IVCC
1
CIVCC
RPOL
RPOL
TSW
SWO
SWCS
2
SGND
3
OVFB
9
4
RCS
STATUS
CCOMP
PWMO
RFREQ
RCOMP
GND
12
Figure 28
Buck application circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 -2
White
Osram
LE UW Q9WP
LED
2
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
DZ
10V
Vishay
Zener Diode
Diode
1
DPOL
80V Diode
Infineon
BAS1603W
Diode
1
CBO
4.7 uF, 50V
EPCOS
X7R
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK 1H101GP
Capacitor
1
CCOMP
47 nF
EPCOS
X7R
Capacitor
1
CIVCC
1 uF , 6.3V
EPCOS
MLCC CCNPZC105KBW X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
L1
22 µH
Coilcraft
MSS1278T
Inductor
1
RDIM1+2, RCOMP,
RPOL
10 kΩ, 1%
Panasonic
ERJ3EKF1002V
Resistor
4
RFB
820 mΩ, 1%
Isabellenhütte
SMS – Power Resistor
Resistor
1
RFREQ
20 kΩ, 1%
Panasonic
ERJ3EKF2002V
Resistor
1
RCS
50 mΩ, 1%
Isabellenhütte
SMS - Power Resistor
Resistor
1
TDIM1
60V, 0.28A
Infineon
BSS138
Transistor
1
TDIM2
-60V, -1.9A
Infineon
BSP171
Transistor
1
100V N-ch, 35A
Infineon
IPG20N10S4L-22
Transistor
1
alternativ: 60V N-ch, 30A
Infineon
IPD30N06S4L-23
Transistor
1
TSW
Figure 29
Datasheet
Bill of Materials for Buck application circuit
36
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Application information
IBO
DRV
VIN
L1
VBATT
DBO
LBO
C2
C1
ILoad
CBO
ISW
CIN
VBO
constant
VOUT
RL
1
TSW
2
SWO
IN
14
3
SWCS
IVCC
RCS
VCC or VIVCC
CIVCC
RST
Output
10
SGND
4
OVFB
9
ROVH
SET
ROVL
IC1
TLD5098
IC2
Microcontroller
(e.g. XC866)
Output
13
EN / PWMI
Output
11
FREQ / SYNC
8
COMP
RFB1
FBH
6
FBL
7
PWMO
5
RFB2
VREF
CCOMP
RFREQ
GND
RCOMP
RFB3
12
Figure 30
Boost voltage application circuit
Reference
Designator
Value
Manufacturer
Part
Number
Type
Quantity
D1 - 10
White
Osram
LW W5AP
Diode
10
DBO
Schottky, 3 A, 100 VR
Vishay
SS3H10
Diode
1
CBO
100 uF, 80V
Panasonic
EEVFK1K101Q
Capacitor
1
CIN
100 uF, 50V
Panasonic
EEEFK1H101GP
Capacitor
1
CCOMP
10 nF, 16V
EPCOS
X7R
Capacitor
1
CIVCC
1 uF, 6.3V
Panasonic
X7R
Capacitor
1
IC1
--
Infineon
TLD5098
IC
1
IC2
--
Infineon
XC866
IC
1
LBO
100 uH
Coilcraft
MSS1278T-104ML_
Inductor
1
RCOMP
10 kohms, 1%
Panasonic
ERJ3EKF1002V
Resistor
1
RFB1,RFB3
51 kohms, 1%
Panasonic
ERJ3EKF5102V
Resistor
1
RFB2
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RFREQ, RST
20 kohms, 1%
Panasonic
ERJ3EKF2002V
Resistor
2
ROVH
33.2 kohms, 1%
Panasonic
ERJ3EKF3322V
Resistor
1
ROVL
1 kohms, 1%
Panasonic
ERJ3EKF1001V
Resistor
1
RCS
50 mohms, 1%
Panasonic
ERJB1CFR05U
Resistor
1
TSW
N-ch, OptiMOS-T2 100V
Infineon
IPD35N10S3L-26
Transistor
1
Figure 31
Bill of Materials for Boost voltage application circuit
Note:
The application drawings and corresponding bill of materials are simplified examples. Optimization
of the external components must be done accordingly to specific application requirements.
Datasheet
37
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Application information
11.1
Further application information
•
For further information you may contact http://www.infineon.com/
•
Application Note: TLD509x DC-DC Multitopology Controller IC “Dimensioning and Stability Guideline Theory and Practice”
Datasheet
38
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Package outlines
Package outlines
0.35 x 45°
6 x 0.65 = 3.9
0.25 ±0.05 2)
0.19 +0.06
0.1 H D 2x
H
0.08 C
SEATING
PLANE
0.64 ±0.25
D
8° MAX.
C
0.65
3.9 ±0.11)
1.7 MAX.
0.05 ±0.05
STAND OFF
(1.45)
0.2 C 14x
6 ±0.2
0.15 M C A-B D 14x
Bottom View
3 ±0.2
A
14
1
8
1
7
Index
Marking 4.9 ±0.11)
Exposed
Diepad
B
0.1 H A-B 2x
7
14
8
2.65 ±0.2
12
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
PG-SSOP-14-1,-2,-3, -5-PO V05
Figure 32
Outline PG-SSOP-14-3
Green product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations the device is available as a green product. Green products are RoHS-Compliant
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Further information on packages
https://www.infineon.com/packages
Datasheet
39
Rev. 1.30
2018-10-08
LITIX™ Power
TLD5098EL
Revision history
13
Revision history
Revision
Date
Changes
1.3
2018-10-08
Template update
P_4.1.3 → added footnote
P_4.3.2 to P_4.3.4 → added footnote
1.2
2015-02-12
Brand name change to LITIX™ Power
Datasheet
40
Rev. 1.30
2018-10-08
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2018-10-08
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2018 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
LITIX™ Power TLD5098_v1.3
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.