0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE4291EXUMA1

TLE4291EXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LSSOP14

  • 描述:

    IC REG LINEAR 5V 450MA SSOP-14-1

  • 数据手册
  • 价格&库存
TLE4291EXUMA1 数据手册
TLE4291 Low Drop Out Linear Voltage Regulator TLE4291E Data Sheet Rev. 1.1, 2012-12-03 Automotive Power TLE4291 Table of Contents Table of Contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.2 4.3 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 5.1 5.2 5.3 Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Description Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Electrical Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Typical Performance Characteristics Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6 6.1 6.2 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Electrical Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Typical Performance Characteristics Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 7 7.1 7.2 Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Description Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics Enable Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 8 8.1 8.2 8.3 Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Reset Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 17 20 21 9 9.1 9.2 9.3 Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Characteristics Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Performance Characteristics Standard Watchdog Function . . . . . . . . . . . . . . . . . . . . . . . . . 22 22 24 25 10 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 11 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Data Sheet 2 7 7 8 8 Rev. 1.1, 2012-12-03 Low Drop Out Linear Voltage Regulator TLE4291E 5 V Fixed Output Voltage 1 Overview Features • • • • • • • • • • • • • • • Output Voltage 5 V ± 2% Output Current up to 450 mA Very low Current Consumption Power-on and Undervoltage Reset with Programmable Delay Time Integrated Standard Watchdog Reset Low Down to VQ = 1 V Very Low Dropout Voltage Output Current Limitation Reverse Polarity Protection Overtemperature Protection Suitable for Use in Automotive Electronics Wide Temperature Range from -40 °C up to 150 °C Input Voltage Range from -42 V to 45 V Green Product (RoHS compliant) AEC Qualified PG-SSOP-14 EP Description The TLE4291 is a monolithic integrated low-dropout voltage regulator in a PG-SSOP-14 EP exposed pad package, especially designed for automotive applications. An input voltage up to 42 V is regulated to an output voltage of 5.0 V. The component is able to drive loads up to 450 mA. It is short-circuit protected by the implemented current limitation and has an integrated overtemperature shutdown. The integrated reset and watchdog function makes it suitable for supplying microprocessor systems in automotive environments. The watchdog and the power-on reset delay timing can be programmed by the external delay capacitor. Type Package Marking TLE4291E PG-SSOP-14 EP TLE4291 Data Sheet 3 Rev. 1.1, 2012-12-03 TLE4291 Block Diagram Block Diagram Supply TLE 4291 I Q Regulated Output Voltage CQ EN RO Internal Supply Protection Circuits Bandgap Reference Reset and Watchdog Generator GND WO Load e. g. Micro Controller XC22xx WI RADJ GND B lockD iagr am_A ppC ir cuit1.vsd 2 D CD Figure 1 Data Sheet Block Diagram and Simplified Application Circuit 4 Rev. 1.1, 2012-12-03 TLE4291 Pin Configuration 3 Pin Configuration 3.1 Pin Assignment I EN n.c. RO n.c. RADJ GND 14 13 12 11 10 9 8 1 2 3 4 5 6 7 Q n.c. WO n.c. WI n.c. D PG -SSOP -14-1 .vsd Figure 2 Pin Configuration PG-SSOP-14 EP 3.2 Pin Definitions and Functions 11 Pin Symbol Function 1 I Regulator Input and IC Supply For compensating line influences, a capacitor to GND close to the IC pins is recommended. 2 EN Enable High signal enables the regulator; Low signal disables the regulator; Connect to I, if the enable function is not needed. 3 n.c. Not Connected Internally not connected; Connection to PCB GND recommended. 4 RO Reset Output Open collector output with an internal pull-up resistor to the output Q. An additional external pull-up resistor to the output Q is optional. Leave open if the reset function is not needed. 5 n.c. Not Connected Internally not connected; Connection to PCB GND recommended. 6 RADJ Reset Switching Threshold Adjust For reset threshold adjustment connect to a voltage divider from output Q to GND. For triggering the reset at the internally determined threshold, connect this pin directly to GND. Connect directly to GND if the reset function is not needed. 7 GND Ground Interconnect the GND pins on PCB. Connect to heat sink area. Data Sheet 5 Rev. 1.1, 2012-12-03 TLE4291 Pin Configuration Pin Symbol Function 8 D Reset Delay and Watchdog Timing Connect a ceramic capacitor D (pin 6) to GND for reset delay and watchdog timing adjustment. Leave only open if both, the reset and the watchdog function are not needed. 9 n.c. Not Connected Internally not connected; Connection to PCB GND recommended. 10 WI Watchdog Input Positive edge triggered input, usable for microcontroller monitoring. Connect to GND if the watchdog function is not needed. 11 n.c. Not Connected Internally not connected; Connection to PCB GND recommended 12 WO Watchdog Output Open collector output with an internal pull-up resistor to the output Q. An additional external pull-up resistor to the output Q is optional. Leave open if the watchdog function is not needed. 13 n.c. Not Connected Internally not connected; Connection to PCB GND recommended. 14 Q 5 V Regulator Output Block to GND with a capacitor close to the IC pins, respecting capacitance and ESR requirements given in the Chapter 4.2. PAD Heat sink connect to PCB heat sink area and GND Data Sheet 6 Rev. 1.1, 2012-12-03 TLE4291 General Product Characteristics 4 General Product Characteristics 4.1 Absolute Maximum Ratings Absolute Maximum Ratings 1) Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Max. VI VEN VQ VWI VWO VRADJ VRO VD -42 45 V – -42 45 V – -1 7 V – -0.3 7 V – -0.3 7 V – -0.3 7 V – -0.3 7 V – -0.3 7 V – Tj Tstg -40 150 °C – -55 150 °C – VESD VESD -4 4 kV HBM2) -750 750 V CDM3) Voltages 4.1.1 Supply Voltage 4.1.2 Enable Input EN 4.1.3 Regulator Output 4.1.4 Watchdog Input 4.1.5 Watchdog Output 4.1.6 Reset Adjust 4.1.7 Reset Output 4.1.8 Reset Delay Temperatures 4.1.9 Junction Temperature 4.1.10 Storage Temperature ESD Susceptibility PG-SSOP-14 EP 4.1.11 ESD Resistivity to GND 4.1.12 ESD Resistivity to GND 1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to AEC-Q100-002-JESD 22-A114 3) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 Note: Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Note: Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 7 Rev. 1.1, 2012-12-03 TLE4291 General Product Characteristics 4.2 Pos. Functional Range Parameter Symbol Limit Values Min. Max. Unit Conditions 4.2.1 Input Voltage Range for Normal Operation VI VQ + Vdr 42 V 1) 4.2.2 Extended Input Voltage Range 3.3 42 V 2) 4.2.3 Junction Temperature -40 150 °C – 4.2.4 Output Capacitor Requirements VI Tj CQ ESRCQ 22 – µF 3) – 3 4.2.5 4) 1) For specification of the output voltage VQ and the drop out voltage Vdr, see Chapter 5 Voltage Regulator. 2) The output voltage will follow the input voltage, but is outside the specified range. For details see Chapter 5 Voltage Regulator. 3) The minimum output capacitance is applicable for a worst case capacitance tolerance of 30% 4) Relevant ESR value at f = 10 kHz Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the Electrical Characteristics table. 4.3 Thermal Resistance Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to www.jedec.org. Pos. Parameter Symbol 4.3.1 Junction to Case1) RthJC RthJA Limit Values Unit Conditions Min. Typ. Max. – 7 – K/W – – 43 – K/W 2) 4.3.3 – 120 – K/W Footprint only3) 4.3.4 – 59 – K/W 300 mm2 heatsink area on PCB3) 4.3.5 – 49 – K/W 600 mm2 heatsink area on PCB3) 4.3.2 Junction to Ambient 1) 1) Not subject to production test, specified by design. 2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2 x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. 3) Specified RthJA value is according to JEDEC JESD 51-3 at natural convection on FR4 1s0p board; The Product (Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 copper layer (1 x 70µm Cu). Data Sheet 8 Rev. 1.1, 2012-12-03 TLE4291 Voltage Regulator 5 Voltage Regulator 5.1 Description Voltage Regulator The output voltage VQ is controlled by comparing a portion of it to an internal reference and driving a PNP pass transistor accordingly. Saturation control as a function of the load current prevents any oversaturation of the pass element. The control loop stability depends on the output capacitor CQ, the load current, the chip temperature and the poles/zeros introduced by the integrated circuit. To ensure stable operation, the output capacitor’s capacitance and its equivalent series resistor ESR requirements given in Chapter 4.2 table “Functional Range” have to be maintained. For details see also the typical performance graph “Output Capacitor Series Resistor ESRCQ vs. Output Current IQ”. Also, the output capacitor shall be sized to buffer load transients. An input capacitor CI is not needed for the control loop stability, but recommended to buffer line influences. Connect the capacitors close to the IC terminals. Protection circuitry prevent the IC as well as the application from destruction in case of catastrophic events. These safeguards contain output current limitation, reverse polarity protection as well as thermal shutdown in case of overtemperature. In order to avoid excessive power dissipation that could never be handled by the pass element and the package, the maximum output current is decreased at input voltages above VI = 28 V. The thermal shutdown circuit prevents the IC from immediate destruction under fault conditions (e.g. output continuously short-circuited) by switching off the power stage. After the chip has cooled down, the regulator restarts. This leads to an oscillatory behavior of the output voltage until the fault is removed. However, junction temperatures above 150 °C are outside the maximum ratings and therefore reduce the IC lifetime. The TLE4291 allows a negative supply voltage. However, several small currents are flowing into the IC increasing its junction temperature. This has to be considered for the thermal design, respecting that the thermal protection circuit is not operating during reverse polarity condition. II Supply I Q + VI CQ CI Bandgap Reference VQ,nom VI(ext),min Data Sheet LOAD Block Diagram Voltage Regulator Circuit VI Vdr VQ dVQ Iload ≈ CQ dt Diagram_Output-InputVoltage.svg Figure 4 VQ GND BlockDiagram _VoltageRegulator .vsd V Regulated Output Voltage + Saturation Control Current Limitation Temperature Shutdown Figure 3 IQ dVQ IQ,max - Iload ≈ CQ dt t Output Voltage vs. Input Voltage 9 Rev. 1.1, 2012-12-03 TLE4291 Voltage Regulator 5.2 Electrical Characteristics Voltage Regulator Electrical Characteristics: Voltage Regulator VI = 13.5V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 3 (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 5.2.1 Output Voltage VQ 4.9 5.0 5.1 V 1 mA < IQ < 450 mA 9 V < VI < 28 V 5.2.2 Output Voltage VQ 4.9 5.0 5.1 V 1 mA < IQ < 400 mA 6 V < VI < 28 V 5.2.3 Output Voltage VQ 4.85 5.0 5.15 V 1 mA < IQ < 200 mA 6 V < VI < 40 V 5.2.4 Output Current Limitation – 1100 mA Load Regulation steady-state IQ,max dVQ,load 451 5.2.5 -30 -15 – mV 5.2.6 Line Regulation steady-state dVQ,line – 5 15 mV 5.2.7 Power Supply Ripple Rejection PSRR 60 65 – dB 5.2.8 Drop Out Voltage Vdr – 120 250 mV 5.2.9 Vdr = VI - VQ – 250 500 mV 5.2.10 Overtemperature Shutdown Threshold 151 – 200 °C VQ =4.8 V IQ = 5 mA to 400 mA; VI = 8 V VI = 8 V to 32 V; IQ = 5 mA fripple = 100 Hz; Vripple = 1 Vpp1) IQ = 100 mA2) IQ = 300 mA2) Tj increasing1) Tj,sd 1) Parameter not subject to production test; specified by design. 2) Measured when the output voltage VQ has dropped 100 mV from its nominal value. Data Sheet 10 Rev. 1.1, 2012-12-03 TLE4291 Voltage Regulator 5.3 Typical Performance Characteristics Voltage Regulator Output Voltage VQ versus Junction Temperature Tj Output Current IQ versus Input Voltage VI 01_VQ_TJ.vsd 5.20 02_IQmax_VI.vsd 1000 900 800 700 IQ,maxq [mA] VQ [V] 5.10 5.00 VI = 7 V I Q = 5 mA 500 400 300 4.90 4.80 600 Tj = -40 °C 200 Tj = 25 °C 100 Tj = 150 °C 0 -40 0 40 80 120 0 160 5 10 15 Tj [°C] 25 30 35 40 VI [V] Output Current IQ versus Input Voltage VI Output Capacitor Series Resistor ESR(CQ) versus Output Current IQ 04_ESR_IQ.vsd 100 03_IQmax_VI.vsd 1100 20 1000 Unstable Region 900 10 700 ESR [䃈] IQ,max [mA] 800 600 500 400 300 Tj = -40°C 200 Tj = 25°C 100 Tj = 150°C 2.5 3 3.5 4 4.5 CQ = 22 μF Tj = -40..150 °C VI = 6V..28 V 0.01 5 0 VI [V] Data Sheet Stable Region 0.1 0 2 1 80 160 240 320 400 IQ [mA] 11 Rev. 1.1, 2012-12-03 TLE4291 Voltage Regulator Line Regulation dVQ,line versus Input Voltage Change dVI Load Regulation dVQ,line versus Output Current Change dIQ 05_DVQ_VI.vsd 14 06_DVQ_IQ.vsd 0 Tj = -40°C Tj = 25°C 12 -5 Tj = 150°C -10 d VQ [mV] d VQ [mV] 10 8 6 -15 4 -20 Tj = -40 °C Tj = 25 °C T j = 150 °C 2 0 -25 5 10 15 20 25 30 35 40 0 100 VI [V] Power Supply Ripple Rejection PSRR 07_VDR_TJ.vsd 450 350 08_PSRR_freq.vsd 90 IQ = 100 mA I Q = 300 mA IQ = 400 mA 80 70 60 PSRR [dB] 300 Vdr [mV] 400 300 IQ [mA] Dropout Voltage Vdr versus Output Current IQ 400 200 250 200 50 40 150 30 100 20 50 10 150°C 25°C 0 -40 0 40 80 120 0 160 0.01 Tj [°C] Data Sheet -40°C 12 0.1 1 10 freq [kHz] 100 1000 Rev. 1.1, 2012-12-03 TLE4291 Current Consumption 6 Current Consumption 6.1 Electrical Characteristics Current Consumption Electrical Characteristics: Current Consumption VI = 13.5V, Tj = -40 °C to +150 °C, all voltages with respect to ground, directions of currents as shown in Figure 5 (unless otherwise specified) Pos. Parameter Symbol Limit Values Unit Conditions Min. Typ. Max. Iq,OFF – 2 5 μA VEN = 0 V; Tj ≤ 105°C Iq – 220 300 μA – – 350 μA 6.1.4 – 6 15 mA 6.1.5 – 16 30 mA VEN = 5V; IQ = 1mA; Tj ≤ 85 °C VEN = 5V; IQ = 1mA; Tj ≤ 105 °C VEN = 5V; IQ = 250 mA VEN = 5V; IQ = 400 mA 6.1.1 Current Consumption Iq,OFF = II 6.1.2 Current Consumption Iq = II - IQ 6.1.3 Supply + II I IEN EN Q IQ Voltage Regulator Regulated Output Voltage + + VI CI CQ V EN CurrentConsumption _ ParameterDefinition .vsd VQ LOAD GND Iq Figure 5 Data Sheet Parameter Definition 13 Rev. 1.1, 2012-12-03 TLE4291 Current Consumption 6.2 Typical Performance Characteristics Current Consumption Current Consumption Iq versus Output Current IQ Current Consumption Iq versus Input Voltage VI 02_Iq_Vi_50K_100Ohm.vsd 6.0 01_Iq_IQ.vsd 25.0 50mA Tj = -40°C T j = 25°C Tj = 150°C 20.0 5.0 100μA 15.0 Iq [mA] Iq [mA] 4.0 10.0 3.0 2.0 5.0 1.0 0.0 0.0 0 0 50 100 150 200 250 300 350 400 5 10 15 IQ [mA] 25 30 35 40 VI [V] Current Consumption Iq versus Input Voltage VI 03_Iq_lowVi_50K.vsd 5.0 T=-40°C IQ = 100μA 4.5 T=25°C 4.0 T=150°C 3.5 Current Consumption Iq versus Input Voltage VI 04_Iq_lowVi_100Ohm.vsd 7.0 T=-40°C 6.0 IQ = 50mA T=25°C T=150°C 5.0 3.0 Iq [mA] Iq [mA] 20 2.5 2.0 1.5 4.0 3.0 2.0 1.0 1.0 0.5 0.0 0.0 0 1 2 3 4 5 6 7 8 0 VI [V] Data Sheet 1 2 3 4 5 6 7 8 VI [V] 14 Rev. 1.1, 2012-12-03 TLE4291 Current Consumption Current Consumption Iq versus Junction Temperature Tj Regulator disabled 05_Iq_TJ_EN=0.vsd 5.0 4.0 Iq [uA] 3.0 2.0 1.0 0.0 -40 0 40 80 120 Tj [C] Data Sheet 15 Rev. 1.1, 2012-12-03 TLE4291 Enable Function 7 Enable Function 7.1 Description Enable Function The TLE4291 can be turned on or turned off via the EN Input. With voltage levels higher than VEN,high applied to the EN Input the device will be completely turned on. A voltage level lower than VEN,low sets the device to low quiescent current mode. In this condition the device is turned off and is not functional. The Enable Input has an build in hysteresis to avoid toggling between ON/OFF state, if signals with slow slope are applied to the input. 7.2 Electrical Characteristics Enable Function Electrical Characteristics: Enable Function VI = 13.5V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in (unless otherwise specified) Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions 7.2.1 Enable Low Signal Valid VEN,low – – 0.8 V – 7.2.2 Enable High Signal Valid VEN,high 2 – – V VQ settled 7.2.3 Enable Threshold Hysteresis VEN,hyst 30 – – mV – 7.2.4 Enable Input current IEN – – 2 µA VEN = 5 V 7.2.5 Enable internal pull-down resistor REN 3 4.5 6 MΩ – Data Sheet 16 Rev. 1.1, 2012-12-03 TLE4291 Reset Function 8 Reset Function 8.1 Description Reset Function The reset function provides several features: Output Undervoltage Reset: An output undervoltage condition is indicated by setting the Reset Output “RO” to “low”. This signal might be used to reset a microcontroller during low supply voltage. Power-On Reset Delay Time The power-on reset delay time td,PWR-ON allows a microcontroller and oscillator to start up. This delay time is the time period from exceeding the reset switching threshold until the reset is released by switching the reset output “RO” from “low” to “high”. The power-on reset delay time td,PWR-ON is defined by an external delay capacitor CD connected to pin “D” which is charged up by the delay capacitor charge current ID,ch starting from VD = 0 V. In case a power-on reset delay time td,PWR-ON different from the value for CD = 100nF is required, the delay capacitor’s value can be derived from the specified value given in Item 8.2.13: CD = 100nF × td,PWR-ON / td,PWR-ON,100nF (1) with td,PWR-ON: Desired power-on reset delay time td,PWR-ON,100nF: Power-on reset delay time specified in Item 8.2.13 CD: Delay capacitor required. The formula is valid for CD ≥ 10nF. For precise timing calculations consider also the delay capacitor’s tolerance. • • • Reset Reaction Time In case the output voltage of the regulator drops below the output undervoltage lower reset threshold VRT,lo, the delay capacitor CD is discharged rapidly. Once the delay capacitor’s voltage has reached the lower delay switching threshold VDST,lo, the reset output “RO” will be set to “low”. Additionally to the delay capacitor discharge time trr,d, an internal reaction time trr,int applies. Hence, the total reset reaction rime trr,total becomes: trr,total = trr,int + trr,d (2) with • • • trr,total: Total reset reaction time trr,int: Internal reset reaction time; see Item 8.2.14. trr,d: Delay capacitor discharge time. For a capacitor CD different from the value specified in Item 8.2.15, see typical performance graphs. Reset Output “RO” The reset output “RO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “RO” signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “RO” sink current is limited, the optional external resistor RRO,ext must not below as specified in Item 8.2.7. Data Sheet 17 Rev. 1.1, 2012-12-03 TLE4291 Reset Function Reset Adjust Function The undervoltage reset switching threshold can be adjusted according to the application’s needs by connecting an external voltage divider (RADJ1, RADJ2) at pin “RADJ”. For selecting the default threshold connect pin “RADJ” to GND. The reset adjustment range is given in Item 8.2.5. When dimensioning the voltage divider, take into consideration that there will be an additional current constantly flowing through the resistors. With a voltage divider connected, the reset switching threshold VRT,new is calculated as follows VRT,lo,new = VRADJ,th × (RADJ,1 + RADJ,2) / RADJ,2 (3) with VRT,lo,new: Desired undervoltage reset switching threshold. RADJ,1, RADJ,2: Resistors of the external voltage divider, see Figure 6. VRADJ,th: Reset adjust switching threshold given in Item 8.2.4. Supply I Q RRO Int. Supply Control CQ RO ID ,ch OR V RADJ ,th VDD Reset IRO VDST S optional • • • R RADJ ,1 MicroController RADJ IRADJ GND opti onal IDR ,dsch D BlockDiagram _ResetAdjust .vsd RADJ ,2 GND CD Figure 6 Data Sheet Block Diagram Reset Circuit 18 Rev. 1.1, 2012-12-03 TLE4291 Reset Function VI t VQ t < trr,blank VRH VRT,hi VRT,lo 1V t td VD VDST,hi VDST,lo t td trr,total td trr,total td trr,total VRO VRO,low 1V t Thermal Shutdown Input Voltage Dip Undervoltage Spike at output Over load TimingDiagram_Reset.vs d Figure 7 Data Sheet Timing Diagram Reset 19 Rev. 1.1, 2012-12-03 TLE4291 Reset Function 8.2 Electrical Characteristics Reset Function Electrical Characteristics: Reset Function VI = 13.5V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 6 (unless otherwise specified). Pos. Parameter Symbol Limit Values Min. Typ. Unit Conditions Max. Output Undervoltage Reset Comparator Default Values (Pin RADJ = GND) 8.2.1 Output Undervoltage Reset Lower Switching Threshold VRT,lo 4.5 4.65 4.8 V VQ decreasing 8.2.2 Output Undervoltage Reset Upper Switching Threshold VRT,hi 4.55 4.7 4.85 V VQ increasing Output Undervoltage Reset Headroom VRH 8.2.3 RADJ = GND RADJ = GND 200 350 – mV Calculated Value: VQ - VRT,lo IQ = 50 mA RADJ = GND Reset Threshold Adjustment 8.2.4 Reset Adjust Lower Switching Threshold VRADJ,th 1.26 1.36 1.44 V 3.2 V ≤ VQ < 5 V 8.2.5 Reset Adjustment Range 1) VRT,range 3.50 – 4.65 V – VRO,low – 0.1 0.4 V 1 V ≤ VQ ≤ VRT,low; no external RRO,ext 5.6 – – kΩ 1 V ≤ VQ ≤ VRT,low; VRO = 0.4 V RRO 20 30 40 kΩ internally connected to Q Reset Output RO 8.2.6 Reset Output Low Voltage 8.2.7 Reset Output RRO,ext External Pull-up Resistor to Q 8.2.8 Reset Output Internal Pull-up Resistor Reset Delay Timing 8.2.9 Upper Delay Switching Threshold VDST,hi – 0.9 – V – 8.2.10 Lower Delay Switching Threshold VDST,lo – 0.25 – V – 8.2.11 Delay Capacitor Charge Current ID,ch – 6.5 – μA VD = 0.6 V 8.2.12 Delay Capacitor Reset Discharge Current IDR,dsch – 70 – mA VD = 0.6 V 8.2.13 Power-on Reset Delay Time td,PWR,ON,100nF 8 13.5 18 ms Calculated value; CD = 100 nF 2) 8.2.14 Internal Reset Reaction Time – 9 15 μs 8.2.15 Delay Capacitor Discharge Time trr,int trr,d – 1.9 3 μs CD = 0 nF CD = 100 nF 2) 8.2.16 Total Reset Reaction Time trr,total – 11 18 μs Calculated Value: trr,d,100nF + trr,int; CD = 100 nF 2) 1) Related Parameter VRT is scaled linear when the Reset Switching Threshold is modified. 2) For programming a different delay and reset reaction time, see Chapter 8.1 for calculation. Data Sheet 20 Rev. 1.1, 2012-12-03 TLE4291 Reset Function 8.3 Typical Performance Characteristics Reset Function Power On Reset Delay Time tRD versus Junction Temperature Tj Undervoltage Reset Switching Threshold VRT,hi/ VRT,lo vs. Junction Temperature Tj 01_VRT_Tj.vsd 4.80 16 4.75 15 td,pwron [ms] V RT,hi 4.70 VRT [V] 03_tdpwron _Tj.vsd 17 4.65 VRT,lo 4.60 14 13 12 C D = 100 nF 4.55 11 4.50 -40 10 0 40 80 120 -40 160 0 40 Power On Reset Delay Time tRD versus Delay Capacitance CD 70 120 160 Tj [°C] Tj [°C] Total Reset Reaction Time trr,total versus Junction Temperature Tj 02_tdpwron _delaycap .vsd 80 80 04_trr,total_Tj.vsd 10 9 Tj = 25 °C CD = 100nF 8 60 50 trr,total [us] t d,pw ron [ms] 7 40 30 6 5 4 3 20 2 10 0 10 1 100 200 300 400 500 0 600 0 40 80 120 160 Tj [°C] Delay capacitance [nF] Data Sheet -40 21 Rev. 1.1, 2012-12-03 TLE4291 Watchdog Function 9 Watchdog Function 9.1 Description The TLE4291 features a programmable watchdog timing. The watchdog function monitors a microcontroller, including time base failures. In case of a missing rising edge within a certain pulse repetition time, the watchdog output is set to ‘low’. The programming of the expected watchdog pulse repetition time can be easily done by an external reset delay capacitor. The watchdog output “WO” is separated from the reset output “RO”. Hence, the watchdog output might be used as an interrupt signal for the microcontroller independent from the reset signal. It is possible to interconnect pin “WO” and pin “RO” in order to establish a wire-or function with a dominant low signal. I IQ Q Control CQ RWO Int. Supply WI Edge Detect WO I D,ch S R MicroController Reset IWO VDW OR VDD optional Supply 1 I DW,dsch WI I/O VDW,hi GND D BlockDiagram_ Watchdog .vsd GND CD Figure 8 Block Diagram Watchdog Circuit Watchdog Output “WO” The watchdog output “WO” is an open collector output with an integrated pull-up resistor. In case a lower-ohmic “WO” signal is desired, an external pull-up resistor to the output “Q” can be connected. Since the maximum “WO” sink current is limited, the optional external resistor RWO,ext needs to be sized to comply with the watchdog output sink current (see Item 9.2.8 and Item 9.2.9). Watchdog Input “WI” The watchdog is triggered by an positive edge at the watchdog input “WI”. The signal is filtered by a bandpass filter and therefore its amplitude and slope has to comply with the specification 9.2.11 to 9.2.14. For details on the test pulse applied, see Figure 9. Data Sheet 22 Rev. 1.1, 2012-12-03 TLE4291 Watchdog Function VWI -dVWI / dt VWI tWI,hi VWI,hi tWI,hi VWI,hi tWI,lo VWI,lo VWI,lo d VWI / d t tWI,lo t Figure 9 t Test Pulses Watchdog Input WI Watchdog Timing Positive edges at the watchdog input pin “WI” are expected within the watchdog trigger time frame tWI,tr, otherwise a low signal at pin “WO” is generated. If a watchdog low signal at pin “WO” is generated, it remains low for tWD,lo. All watchdog timings are defined by charging and discharging the capacitor CD at pin “D”. Thus, the watchdog timing can be programmed by selecting CD. For timing details see also Figure 10. In case a watchdog trigger time period tWI,tr different from the value for CD = 100nF is required, the delay capacitor’s value can be derived from the specified value given in Item 9.2.5: CD = 100nF × tWI,tr / tWI,tr,100nF (4) The watchdog output low time tWD,lo and the watchdog period tWD,p then becomes: tWD,lo = tWD,lo,100nF × CD / 100nF (5) tWD,p = tWI,tr + tWD,lo (6) The formula is valid for CD ≥ 10nF. For precise timing calculations consider also the delay capacitor’s tolerance. VWI VWI,hi VWI,lo No positive VWI edge VD dV WI / dt outside spec tWI,tr tWI,lo tWI,hi t TWI,p VDW,hi VDW,lo t tWD,lo tWD,lo VWO VWO,low t TimingDiagram_Watchdog.vs d Figure 10 Data Sheet Timing Diagram Watchdog 23 Rev. 1.1, 2012-12-03 TLE4291 Watchdog Function 9.2 Electrical Characteristics Watchdog Function Electrical Characteristics Watchdog Function VI = 13.5V, Tj = -40 °C to +150 °C, all voltages with respect to ground, direction of currents as shown in Figure 8 (unless otherwise specified). Pos. Parameter Symbol Limit Values Min. Typ. Max. Unit Conditions Watchdog Timing 9.2.1 Delay Capacitor Charge Current ID – 6.5 – μA VD = 0.6 V 9.2.2 Delay capacitor watchdog discharge current IDW,disch – 1.4 – μA VD = 0.6 V 9.2.3 Upper watchdog timing threshold VDW,hi – 0.9 – V – 9.2.4 Lower watchdog timing threshold VDW,lo – 0.35 – V – 9.2.5 Watchdog Trigger Time tWI,tr,100nF 24 40 58 ms Calculated value; CD = 100 nF 1) 9.2.6 Watchdog Output Low Time tWD,lo,100nF 6 8 12 ms Calculated value; CD = 100 nF 1); VQ > VRT,lo 9.2.7 Watchdog Period tWD,p,100nF 30 48 70 ms Calculated value; tWI,tr,100nF + tWD,lo,100nF; CD = 100 nF 1) IWO = 1 mA; VWI = 0 V VWO = 0.8 V; VWI = 0 V Watchdog Output WO 9.2.8 Watchdog Output Low Voltage VWO,low – 0.1 0.4 V 9.2.9 Watchdog Output Maximum Sink Current IWO,max 1.5 13 30 mA 9.2.10 Watchdog Output Internal Pull-up Resistor RWO 20 30 40 kΩ – Watchdog Input WI 9.2.11 Watchdog Input Low Signal Valid VWI,lo – – 0.8 V 2) 9.2.12 Watchdog Input High Signal Valid VWI,hi 2.6 – – V 2) 9.2.13 Watchdog Input High Signal Pulse Length tWI,hi 0.5 – – μs VWI ≥ VWI,hi 2) 9.2.14 Watchdog Input Low Signal Pulse Length (Slewrate ≥ 1 V/μs) tWI,lo 2 – – μs VWI ≤ VWI,lo 2); dVWI/dt ≥ 1 V/μs 9.2.15 Watchdog Input Low Signal Pulse Length (Slewrate ≥ 5 V/μs) tWI,lo 0.5 – – μs VWI ≤ VWI,lo 2); dVWI/dt ≥ 5 V/μs VWI,hi ≥ 4 V 1) For programming a different watchdog timing, see Chapter 9.1. 2) For details on the test pulse applied, see Figure 9. Data Sheet 24 Rev. 1.1, 2012-12-03 TLE4291 Watchdog Function 9.3 Typical Performance Characteristics Standard Watchdog Function Watchdog Trigger Time tWI,tr versus Delay Capacitance CD 01_twi_tr_delaycap.vsd 250 Watchdog Trigger Time tWI,tr versus Junction Temperature 02_twi_tr_TJ.vsd 42 Tj = 25 °C 41 200 150 tWI,tri [ms] tWI,tr [ms] 40 100 39 38 37 50 0 10 36 35 100 200 300 400 -40 500 40 80 120 160 Tj [°C] Capacitance [nF] Data Sheet 0 25 Rev. 1.1, 2012-12-03 TLE4291 Package Outlines 10 Package Outlines 0.19 +0.06 0.08 C 0.15 M C A-B D 14x 0.64 ±0.25 1 8 1 7 0.2 M D 8x Bottom View 3 ±0.2 A 14 6 ±0.2 D Exposed Diepad B 0.1 C A-B 2x 14 7 8 2.65 ±0.2 0.25 ±0.05 2) 0.1 C D 8˚ MAX. C 0.65 3.9 ±0.11) 1.7 MAX. Stand Off (1.45) 0 ... 0.1 0.35 x 45˚ 4.9 ±0.11) Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Does not include dambar protrusion PG-SSOP-14-1,-2,-3-PO V02 Figure 11 PG-SSOP-14 EP Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). For further information on packages, please visit our website: http://www.infineon.com/packages. Data Sheet 26 Dimensions in mm Rev. 1.1, 2012-12-03 TLE4291 Revision History 11 Revision History Revision Date Changes 1.1 2012-12-03 Page 23: Figure 9: Definition in Test Pulses Watchdog Input WI extended with low signal pulse length. Definition of frequency deleted according to the new specification of the watchdog input signal with high and low time. Page 23: Figure 10: Definition of watchdog input signal frequency deleted and definition for watchdog input low time added. Page 24: Specification for “Watchdog Input WI” corrected: Specification for watchdog input low time as replacement for watchdog input signal frequency. Slewrate specification moved to condition for watchdog input low time. Page 24: 9.2.14: Specification of minimum watchdog input low time for slewrates ≥ 1 V/μs. Page 24: 9.2.15: Specification of minimum watchdog input low time for slewrates ≥ 5 V/μs. 1.0 2011-06-07 Data Sheet Data Sheet 27 Rev. 1.1, 2012-12-03 Edition 2012-12-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
TLE4291EXUMA1 价格&库存

很抱歉,暂时无法提供与“TLE4291EXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货