0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE49215UHALA1

TLE49215UHALA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SIP4

  • 描述:

    Digital Switch Special Purpose Open Collector Hall Effect P-SSO-4-1

  • 数据手册
  • 价格&库存
TLE49215UHALA1 数据手册
TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection About this document Overview Features • • • • • • • • • • • • • • • Advanced performance High sensitivity Symmetrical thresholds High piezo resistivity Reduced power consumption South and north pole pre-induction possible AC coupled Digital output signal Two-wire and three-wire configuration possible Large temperature range Large airgap Low cut-off frequency Protection against overvoltage Protection against reversed polarity Output protection against electrical disturbances Target applications The differential Hall Effect sensor TLE4921-5U provides a high sensitivity and a superior stability over temperature and symmetrical thresholds in order to achieve a stable duty cycle. TLE4921-5U is particularly suitable for rotational speed detection and timing applications of ferromagnetic toothed wheels such as anti-lock braking systems, transmissions, crankshafts, etc. The integrated circuit (based on Hall effect) provides a digital signal output with frequency proportional to the speed of rotation. Unlike other rotational sensors differential Hall ICs are not influenced by radial vibration within the effective airgap of the sensor and require no external signal processing. Product type Marking Ordering code Package TLE4921-5U 215U SP000013593 PG-SSO-4-1 Datasheet www.infineon.com Please read the Important Notice and Warnings at the end of this document Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection Table of contents Table of contents About this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1 1.1 1.2 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Pin Configuration (view on branded side of component) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.3 1.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 Electrical and magnetic parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 Application configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 6 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 7 Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Datasheet 2 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 1 General 1 General 1.1 Pin Configuration (view on branded side of component) 2.67 B 2.5 A 0.2 B 1.53 Center of sensitive area 1 2 VS Q GND C 4 0.2 A 3 AEP01694 Figure 1 Table 1 Pin definitions and functions Pin No. Symbol Function 1 VS Supply voltage 2 Q Output 3 GND Ground 4 C Capacitor 1.2 Block diagram VS 1 Protection Device Internal Reference and Supply VREG (3V) Hall-Probes Amplifier GND Datasheet Protection Open Collector Device 2 Q 4 3 Figure 2 SchmittTrigger HighpassFilter CF AEB01695 Block diagram 3 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 1 General 1.3 Functional description The Differential Hall Sensor IC detects the motion and position of ferromagnetic and permanent magnet structures by measuring the differential flux density of the magnetic field. To detect ferromagnetic objects the magnetic field must be provided by a back biasing permanent magnet (south or north pole of the magnet attached to the rear unmarked side of the IC package). Using an external capacitor the generated Hall voltage signal is slowly adjusted via an active high pass filter with a low cut-off frequency. This causes the output to switch into a biased mode after a time constant is elapsed. The time constant is determined by the external capacitor. Filtering avoids ageing and temperature influence from Schmitttrigger input and eliminates device and magnetic offset. The TLE4921-5U can be exploited to detect toothed wheel rotation in a rough environment. Jolts against the toothed wheel and ripple have no influence on the output signal. Furthermore, the TLE4921-5U can be operated in a two-wire as well as in a three-wireconfiguration. The output is logic compatible by high/low levels regarding on and off. 1.4 Circuit description The TLE4921-5U is comprised of a supply voltage reference, a pair of Hall probes spaced at 2.5 mm, differential amplifier, filter for offset compensation, Schmitt trigger, and an open collector output. The TLE4921-5U was designed to have a wide range of application parameter variations. Differential fields up to ± 80 mT can be detected without influence to the switching performance. The pre-induction field can either come from a magnetic south or north pole, whereby the field strength up to 500 mT or more will not influence the switching points. The improved temperature compensation enables a superior sensitivity and accuracy over the temperature range. Finally the optimized piezo compensation and the integrated dynamic offset compensation enable easy manufacturing and elimination of magnet offsets. Protection is provided at the input/supply (pin 1) for overvoltage and reverse polarity and against over-stress such as load dump, etc., in accordance with ISO-TR 7637 and DIN 40839. The output (pin 2) is protected against voltage peaks and electrical disturbances. Datasheet 4 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 2 Maximum ratings 2 Maximum ratings Table 2 Absolute maximum ratings Tj = -40°C to 150°C Parameter Symbol Limit Values Min. Unit Remarks Max. Supply voltage VS -35(1) Output voltage VQ -0.7 30 V Output current IQ – 50 mA Output reverse current -IQ – 50 mA Capacitor voltage VC -0.3 3 V Junction temperature Tj – 150 °C – 160 2500 h – 170 1000 h – 210 40 h 30 V 5000 h Storage temperature TS -40 150 °C Thermal resistance PG-SSO-4-1 RthJA – 190 K/W Current through inputprotection device ISZ – 200 mA t < 2 ms; v = 0.1 Current through outputprotection device IQZ – 200 mA t < 2 ms; v = 0.1 (1) Reverse current < 10 mA Datasheet 5 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 3 Operating range 3 Operating range Table 3 ESD Protection Human Body Model (HBM) tests according to: Standard EIA/JESD22-A114-B HBM Parameter Symbol Limit Values Min. ESD - protection Table 4 VESD – Unit Remarks Max. ±2 kV Operating range Parameter Symbol Limit Values Min. Typ. Unit Remarks Max. Supply voltage VS 4.5 – 24 V Junction temperature Tj -40 – 150 °C – – 160 2500 h – – 170 1000 h Pre-induction B0 -500 – 500 mT Differential induction ∆B -80 – 80 mT Note: Datasheet 5000 h at Hall probe; independent of magnet orientation In the operating range the functions given in the circuit description are fulfilled. 6 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 4 Electrical and magnetic parameters 4 Electrical and magnetic parameters Table 5 Electrical Characteristics table template Parameter Symbol Limit Values Min. Supply current IS 3.8 Typ. 5.3 Max. 8.0 Unit Test Condition Test Circuit mA 1 VQ = high IQ = 0 mA 4.3 5.9 8.8 mA VQ = low 1 IQ = 40 mA Output saturation voltage VQSAT – 0.25 0.6 V IQ = 40 mA 1 Output leakage current IQL – – 50 µA VQ = 24 V 1 Center of switching points: (∆BOP + ∆BRP) / 2 ∆Bm -1 0 1 mT -20 mT < ∆B 2 < 20 mT(1) (2) f = 200 Hz Operate point ∆BOP – – 0 mT f = 200 Hz, ∆B = 20 mT 2 Release point ∆BRP 0 – – mT f = 200 Hz, ∆B = 20 mT 2 Hysteresis ∆BH 0.5 1.5 2.5 mT f = 200 Hz, ∆B = 20 mT 2 Overvoltage protection at supply voltage at output VSZ 27 – 35 V IS = 16 mA 1 VQZ 27 – 35 V IQ = 16 mA 1 Output rise time tr – – 0.5 µs IQ = 40 mA CL = 10 pF 1 Output fall time tf – – 0.5 µs IQ = 40 mA CL = 10 pF 1 Delay time tdop – – 25 µs 2 tdrp – – 10 µs f = 10 kHz ∆B = 5 mT tdop - tdrp – 0 15 µs Filter input resistance RC 35 43 52 kΩ 25°C ±2°C 1 Filter sensitivity to ∆B SC – -5 – mV/ mT – 1 Filter bias voltage VC 1.6 2 2.4 V ∆B = 0 1 Frequency f (3) – 2000 Hz ∆B = 5 mT 2 -0.1 – 0.1 mT F=2N 2(4) -0.1 – 0.1 mT Resistivity against ∆Bm mechanical stress (piezo) ∆BH (1) The Current consumption characteristic will be different and the specified values can slightly change Datasheet 7 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 4 Electrical and magnetic parameters (2) (3) (4) Leakage currents at pin 4 should be avoided. The bias shift of Bm caused by a leakage current IL can be calculated by: I × RC T ΔBm = L SC T For higher ∆B the values may exceed the limits like following | ∆Bm | < | 0.05 × ∆B | Depends on filter capacitor CF. The cut-off frequency is given by 1 f= 2π × RC × CF . The switching points are guaranteed over the whole frequency range, but amplitude modification and phase shift due to the 1st order highpass filter have to be taken into account. Note: The listed characteristics are ensured over the operating range of the integrated circuit. Typical characteristics specify mean values expected over the production spread. If not otherwise specified, typical characteristics apply at Tj = 25°C and the given supply voltage. IS VSZ 300 W RP 1 VS VLD I C1) 4 C VS RL TLE4921-5U Q I Q , I QR 2 4.7 nF VC 1) Figure 3 RC = VQSAT , VQZ GND 3 DVC D IC CL AES01696 Test circuit 1 1 VS 4 VS CF 470 nF C TLE4921-5U GND 3 1 kW Q 2 f min f max D BOP D BHy VQ AES01258 Figure 4 Datasheet Test circuit 2 8 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 5 Application configurations 5 Application configurations Two possible applications are shown in Figure 7 and Figure 8 (Toothed and Magnet Wheel). The difference between two-wire and three-wire application is shown in Figure 9. Gear Tooth Sensing In the case of ferromagnetic toothed wheel application the IC has to be biased by the south or north pole of a permanent magnet (e.g. SmCO5 (Vacuumschmelze VX145)) with the dimensions 8 mm × 5 mm × 3 mm) which should cover both Hall probes. The maximum air gap depends on: • the magnetic field strength (magnet used; pre-induction) and • the toothed wheel that is used (dimensions, material, etc.; resulting differential field) a centered distance of Hall probes b Hall probes to IC surface L IC surface to tooth wheel N S b L a a = 2.5 mm b = 0.3 mm Figure 5 AEA01259 Sensor Spacing T Conversion DIN – ASA m = 25.4 mm/p T = 25.4 mm CP d AEA01260 DIN d diameter (mm) z number of teeth m module m = d/z (mm) T pitch T = π × m (mm) Figure 6 ASA p diameter pitch p = z/d (inch) PD pitch diameter PD = z/p (inch) CP circular pitch CP = 1 inch × π/p Tooth Wheel Dimensions Gear Wheel Hall Sensor 1 Signal Processing Circuitry Hall Sensor 2 S (N) Permanent Magnet N (S) Figure 7 Datasheet AEA01261 TLE4921-5U, with Ferromagnetic Toothed Wheel 9 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 5 Application configurations Magnet Wheel S S N Hall Sensor 1 Hall Sensor 2 Signal Processing Circuitry Figure 8 AEA01262 TLE4921-5U, with Magnet Wheel Two-wire-application Line 1 4 RL VS C VS Q 2 GND 3 CF 470 nF VSIGNAL RS Sensor Mainframe for example : R L = 330 R S = 120 AES01263 Three-wire-application Rp Line 1 4 RL VS C CF 470 nF Q 2 GND 3 VSIGNAL 4.7 nF Sensor Datasheet 4.7 nF Mainframe for example :R L = 330 R P = 0 ... 330 Figure 9 VS AES01264 Application Circuits 10 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 5 Application configurations N (S) S (N) 1 4 B1 B2 Wheel Profile Missing Tooth Small Airgap Magnetic Field Difference ∆B = B2 _ B1 Large Airgap ∆BRP = 0.75 mT ∆ BHYS ∆BOP = _ 0.75 mT Output Signal VQ Operate point: B2 _ B1 < ∆BOP switches the output ON (VQ = LOW) Release point: B2 _ B1 > ∆ BRP switches the output OFF (VQ = HIGH) ∆BRP = ∆BOP + ∆BHYS The magnetic field is defined as positive if the south pole of the magnet shows towards the rear side of the IC housing. Figure 10 Datasheet AED01697 System Operation 11 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 6 Typical performance characteristics 6 Typical performance characteristics Quiescent Current versus Supply Voltage Quiescent Current versus Temperature AED03167 10 mA IS 9 I Q = 40 mA 8 8 7 7 I S ON 6 I S OFF 5 I S ON 5 I S OFF 4 3 3 2 2 0 1 I S Diff 0 5 10 15 I ON = 40 mA 6 4 1 AED03168 10 mA IS 9 I S Diff 0 -50 -10 30 20 V 25 70 110 150 ˚C 230 Tj VS Quiescent Current versus Output Current Saturation Voltage versus Temperature AED03169 10 mA IS 9 VS = 12 V VQ 8 400 mV AED03170 VS = 4.5 V I Q = 50 mA 300 7 250 I S ON 6 5 200 4 150 3 100 2 50 1 0 0 10 20 30 0 -50 40 mA 50 50 100 150 ˚C 200 Tj I OUT Datasheet 0 12 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 6 Typical performance characteristics Output Saturation Voltage versus IQ @ 25°C Tj 300 mV Saturation Voltage versus Supply Voltage AED03171 I Q ±50 mA, VS = 4.5 V VQ Out Sat Voltage 200 AED03172 0.40 V I Q = 40 mA Tj = 25 ˚C 0.30 100 0.25 0 0.20 -100 0.15 -200 0.10 -300 -400 -60 0.05 -40 -20 0 20 0 mA 60 0 5 10 15 20 IQ Center of Switching Points versus Temperature BM 2 mT 30 VS Hysteresis versus Temperature AED03173 BM = ( BOP + BRP)/2 f = 200 Hz BHy max 1 25 4 mT AED03174 BHy = BRP - BOP f = 200 Hz 3 max 0 2 typ typ min -1 1 min -2 -60 -20 20 60 100 0 -60 ˚C 180 20 60 100 ˚C 180 Tj Tj Datasheet -20 13 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 6 Typical performance characteristics Minimum Switching Field versus Frequency Bmin Minimum Switching Field versus Frequency AED03175 1.5 mT CF = 1 µF Bmin AED03176 1.5 mT CF = 1 µF 1.0 1.0 Tj = -40 ˚C Tj = 170 ˚C Tj = 25 ˚C Tj = 150 ˚C 0.5 0.5 0 -2 10 10-1 100 0 -2 10 101 kHz 102 10-1 100 101 kHz 102 f f Delay Time between Switching Threshold ∆B and Falling Edge of VOUT at Tj = 25°C Delay Time between Switching Threshold ∆B and Rising Edge of VOUT at Tj = 25°C 25 25 ΔB = 2mT, f =200Hz µs µs tdop ΔB = 2mT, f =200Hz tdrp 20 20 15 15 10 10 ΔB = 2mT 5 5 ΔB = 2mT ΔB = 5mT ΔB = 5mT 0 0 0 5000 10000 15000 0 20000 Hz 25000 f Datasheet 5000 10000 15000 20000 Hz 25000 f 14 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 6 Typical performance characteristics Delay Time versus Differential Field Delay Time versus Temperature t AED03180 8.5 µs B = 2 mT, f = 200 Hz 8.0 7.5 tdrp 7.0 tdop 6.5 6.0 5.5 5.0 -60 -10 40 90 140 ˚C 190 T Rise and Fall Time versus Temperature t Rise and Fall Time versus Output Current AED03181 40 ns I Q = 40 mA t 35 100 30 80 tr 25 AED03182 120 ns Tj = 25 ˚C 60 tr tf 20 40 tf 15 10 -50 20 0 50 100 0 150 ˚C 200 Tj Datasheet 0 20 40 60 80 mA 100 I OUT 15 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 6 Typical performance characteristics Capacitor Voltage versus Temperature VC Switching Thresholds versus Mechanical Stress AED03183 3.0 V AED03184 1.0 Brp , ( Bop ) 2.5 Tj = 25 ˚C 0.9 typ 2.0 0.8 max 1.5 min 0.7 1.0 0.6 0.5 0 -50 0.5 0 50 100 150 ˚C 200 0 1 2 3 4 N 5 F Tj Filter Sensitivity versus Temperature Filter Input Resistance versus Temperature AED03185 0 mV/mT SC -1 -2 1.4 -3 1.3 -4 1.2 typ 1.1 -5 1.0 -6 0.9 -7 0.8 -8 0.7 -9 -10 -50 0 50 100 0.6 -50 150 ˚C 200 0 50 100 150 ˚C 200 Tj Tj Datasheet AED03186 1.6 RC RC @ 25˚C 16 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 6 Typical performance characteristics Delay Time for Power on (VS Switching from 0 V to 4.5 V) tpon versus Temp. Periodjitter (1σ) versus Temperature @ B = 10 mT k AED03188 0.50 % Jitter AED03187 0.40 ms/nF f = 1 KHz, BP = 5 mT 0.40 0.30 0.35 0.25 0.30 0.20 0.25 TLE4921-5U 0.20 0.15 0.15 max typ min 0.10 0.10 0.05 0.05 0 -50 0 50 100 0 -40 150 ˚C 200 0 40 80 120 Tj T Table 6 ˚C 200 Electro magnetic compatibility ref. DIN 40839 part 1; test circuit 1 Parameter Symbol Level/Typ Status Testpulse 1 VLD IV / – 100 V C Testpulse 2 IV /100 V B Testpulse 3a IV / – 150 V C Testpulse 3b IV / 100 V C Testpulse 4 IV / – 7 V C Testpulse 5 IV / 86.5 V C Note: Datasheet Stresses above those listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 17 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 6 Typical performance characteristics d optional: data matrix code Branded Side Hall-Probe d : Distance chip to upper side of IC PG-SSO-4-1 : 0.3 ±0.08 mm Figure 11 Datasheet Distance Chip to Upper Side of IC 18 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 7 Package outlines Package outlines 2 A 12.7 ±1 7˚ CODE 0.6 MAX. 0.2 +0.1 4 ±0.3 6.35 ±0.4 12.7 ±0.3 Total tolerance at 10 pitches ±1 1 -1 0.5 +0.75 3 x 1.27 = 3.81 4x 6 ±0.5 0.4 ±0.05 4 1.27 7˚ 0.25 ±0.05 9 -0.5 1 CODE (14.8) (Useable Length) 1 MAX.1) (0.25) 3.71 ±0.08 3.38 ±0.06 CODE 1 x 45˚±1˚ 18 ±0.5 1.9 MAX. 1 -0.1 23.8 ±0.5 0.2 5.16 ±0.08 38 MAX. 5.34 ±0.05 0.1 MAX. 7 A Adhesive Tape Tape 0.25 -0.15 0.39 ±0.1 1) No solder function area Figure 12 PG-SSO-4-1 (Plastic Single Small Outline Package) You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http:// www.infineon.com/products. Dimensions in mm Datasheet 19 Rev. 1.2 2008-01 TLE4921-5U Dynamic Differential Hall Effect Sensor IC Detection 8 Revision history 8 Revision history Revision History Page Subjects (major changes since last revision) Revision History: 2020-11, Rev. 1.2 Previous Revisions: Rev. 1.1 17 Edited figure 11 (optional: data matrix code) Rev. 1.0 5 Ordering Code changed 11 “Output leakage current” unit corrected 20 Figures “Delay Time between Switching Threshold” exchanged and corrected 21 Figure “Delay Time versus Differential Field” corrected Datasheet 20 Rev. 1.2 2008-01 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2008-01 Published by Infineon Technologies AG 81726 Munich, Germany © 2020 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference IFX-jwo1598516982309 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLE49215UHALA1 价格&库存

很抱歉,暂时无法提供与“TLE49215UHALA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLE49215UHALA1
  •  国内价格 香港价格
  • 1+30.796011+3.73230
  • 10+24.7874710+3.00410
  • 25+22.5646825+2.73471
  • 50+21.6252850+2.62086
  • 100+21.12336100+2.56003
  • 250+21.06708250+2.55321
  • 500+16.82571500+2.03918

库存:0