TLE5041PLUSCXAMA1

TLE5041PLUSCXAMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SIP2

  • 描述:

    MAG SWITCH SPEC PURP SSO-2-53

  • 数据手册
  • 价格&库存
TLE5041PLUSCXAMA1 数据手册
Whe el S pe ed Sensor iGMR based Wheel Speed Sensor TL E 5 041 p lus C Da ta Sh e et V 1.2, 2018-01-18 AT V SC Edition 2018-01-18 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. TLE5041plusC Revision History January 2018, V 1.2 Previous version V 1.1, 2013-05 Change Subjects (major changes since previous revision) V 1.2 Update SP Numbers due to PCN 2017-106 V 1.1 Chapter 1 Sensor picture added Chapter 3.4.1 Periode jitter extended, dBx down to 1mT. Test conditions removed. See Table 4 Chapter 3.4.1 Equation added to Figure 12 “Period jitter definition is valid for measurement on risingto-rising or falling-to-falling edge” on Page 18 Chapter 3.4.2.1 Magnetic induction areas where the jitter exceeds Sjit1 extended to the lifetime of the sensor. Comment “ valid at 0 ” hours removed from Table 6 “Magnetic induction area where period jitter exceeds Sjit1” on Page 19 Trademarks of Infineon Technologies AG AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™. Other Trademarks Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited. Last Trademarks Update 2011-02-24 Data Sheet 3 V 1.2, 2018-01-18 TLE5041plusC Table of Contents Table of Contents Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 1.1 1.2 1.3 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 7 7 2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3 2.4.4 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Sensitive area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Uncalibrated Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Calibrated Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Behavior at Magnetic Input Signals Slower than fmag < 1Hz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Undervoltage behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 3.1 3.2 3.3 3.4 3.4.1 3.4.2 3.4.2.1 3.4.3 3.4.4 3.5 3.5.1 3.5.2 3.5.3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Magnetic Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating area for Period Jitter Sjit1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Typical Diagrams (measured performance) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electrostatic discharge protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electro Magnetic Compatibility (EMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISO 7637-2:2011 and ISO 16750-2:2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISO 7637-3:2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ISO 11452-3:2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13 14 15 16 16 18 19 21 24 24 25 25 25 4 4.1 4.2 4.3 4.4 4.5 4.6 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bending for assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package surface to silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 26 26 26 27 28 29 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Data Sheet 4 V 1.2, 2018-01-18 TLE5041plusC List of Figures List of Figures Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 Figure 19 Figure 20 Figure 21 Figure 22 Figure 23 Data Sheet Side read placement of the TLE5041plusC besides a magnetic encoder wheel . . . . . . . . . . . . . . . 8 Sensing element positions of TLE5041plusC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TLE5041plusC block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Differential amplitude and threshold dBlimit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 TLE5041plusC differential arrangement of sensing elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Offset calibration of TLE5041plusC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Undervoltage behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Basic application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Advanced application circuit including protection and EMC components. . . . . . . . . . . . . . . . . . . . 13 Test circuit for the TLE5041plusC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Slew Rate definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Period jitter definition is valid for measurement on rising-to-rising or falling-to-falling edge . . . . . . 18 Operating area for period jitter Sjit1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Supply Current = f(T) (left), Supply Current Ratio IHigh / ILow = f(T) (right) . . . . . . . . . . . . . . . . . . . 21 Slew Rate = f(T), RM = 75 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Magnetic Threshold dBLimit = f(T) (left), Magnetic Threshold dBLimit = f(f) (right). . . . . . . . . . . . . . . 22 Magnetic Threshold dBLimit = f(f) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Period Jitter = f(T) at dBX = 2 mT (left) , Duty Cycle = f(T) at dBX = 2 mT (right) . . . . . . . . . . . . . . 23 EMC test circuit for the TLE5041plusC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Distance from package surface to silicon (=sensing element) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Package dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Packing dimensions in mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Packing dimensions in mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5 V 1.2, 2018-01-18 TLE5041plusC List of Tables List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Data Sheet Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Electrical parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Magnetic input values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Magnetic induction area where period jitter exceeds Sjit1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 ESD protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Conducted pulses along supply lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Pulses by capacitive coupling on signal lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Radiated immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Package parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 6 V 1.2, 2018-01-18 iGMR based Wheel Speed Sensor 1 Product Description 1.1 Overview TLE5041plusC The TLE5041plusC is a wheel speed sensor designed for sophisticated vehicle control systems. The rotational speed is sensed accurately, enabling the sensor to be used as a component of indirect tire pressure monitoring systems. It is based on integrated giant magneto resistive (GMR) elements sensitive to the direction of a magnetic field. Excellent repeatability and sensitivity is specified over a wide temperature range. To meet harsh automotive requirements, robustness to electrostatic discharge (ESD) and electromagnetic compatibility (EMC) has been maximized. State of the art BiCMOS technology is used for monolithic integration of sensing elements and signal conditioning circuitry, thus requiring no external components. 1.2 • • • • • • • • • • • Features Low jitter High sensitivity Immunity against external magnetic disturbances Wide air-gap performance 2 mm sensing iGMR element pitch for use with magnetic encoder wheels Differential front end highly immune to disturbing fields Two-wire current interface Monolithic integration on a single die No external components required Insensitive to mechanical stress Wide junction temperature range -40°C to 170°C 1.3 Target Applications Wheel speed sensing (ABS) or stability control systems with iTPMS feature. • • • General wheel speed sensing (ABS) ESP Indirect tire pressure monitoring (iTPMS) Product Type Marking Ordering Code Package TLE5041plusC 541CPS SP001952936 PG-SSO-2-53 Data Sheet 7 V 1.2, 2018-01-18 TLE5041plusC Functional Description 2 Functional Description The integrated GMR sensor detects differential magnetic fields in x-direction. Two iGMR sensing elements are arranged at a distance of 2mm. Their output signals are processed differentially. To detect the motion of objects the magnetic field must be provided by a magnetized encoder wheel mounted on the rotating axis. Magnetic offsets and device offsets are cancelled by a self-calibration algorithm. Self-calibration is done after start up and requires only a short history of magnetic input. After calibration switching occurs exactly at the zero crossing for sinusoidal signals or generally speaking the arithmethical mean of any magnetic input signal. Switching is indicated by a high or low supply current level. 2.1 General The sensor is sensitive to magnetic field gradients in x direction. In Figure 1 the typical placement of the TLE5041plusC facing a magnetic encoder wheel is shown. The figure also indicates the coordinate system, which is valid throughout this document. Other sensor positions and encoder wheels are possible, the coordinate system is therefore related to the sensor. The iGMR structures (sensitive areas) are located at the front side of the package which is marked. Magnetic encoder wheel n tio ta ro rotation = X-motion N S N Y S N X Sensor location N S N S N X „air-gap“ z-distance Z Sensing elements face the marked package front Figure 1 Data Sheet Side read placement of the TLE5041plusC besides a magnetic encoder wheel 8 V 1.2, 2018-01-18 TLE5041plusC Functional Description 2.2 Sensitive area Figure 2 Sensing element positions of TLE5041plusC 2.3 Pin Description Table 1 Pin description Pin No. Symbol In/Out 1 VDD Supply 2 GND Supply Data Sheet Function Output node 9 V 1.2, 2018-01-18 TLE5041plusC Functional Description 2.4 Block Diagram The device is supplied internally by a voltage regulator within the PMU. An on chip oscillator serves as clock generator for the digital part of the circuit. The TLE5041plusC incorporates two GMR sensing elements spaced at 2mm. The signal path is comprised of a differential amplifier, a noise limiting low pass filter and two comparators. An offset cancellation loop is in place to compensate magnetic and electric offsets. The regulation loop consists of a tracking A/D converter, the digital core to evaluate the offset and the offset DAC to feed in the corrective voltage. The current interface is triggered by the main comparator. ESD PMU Current Modulator MainComparator BandgapBiasing VDD async logic Pre-Amplifier +/- LPFilter +/GMR4 Left TrackingADC GMR2 Right D-Core hys.-ctrl GMR3 Right Tracking-ADC Algorithm GMR1 Left GND Offset-DAC Fuses Figure 3 Oscillator TLE5041plusC block diagram The device can be in one of two operating modes, namely uncalibrated mode or calibrated mode. The term calibration is related to the offset correction algorithm. The device starts up in uncalibrated mode. Most performance parameters will not be guaranteed in this mode. While the magnet moves, the device observes the magnetic input and adjusts for signal offsets. After a few periods the offset is calibrated and the device operates with its full performance. To prevent unwanted switching, the changes below a certain value dBLimit are not considered to switch the output. 14mA dB dB_limit 7mA dB_limit Figure 4 Data Sheet Differential amplitude and threshold dBlimit 10 V 1.2, 2018-01-18 TLE5041plusC Functional Description Bx, right hidden fixed hysteresis = dBlimit Bx, left dBx t zero crossing, output switching Output switching sensing right sensing left x z moving direction Figure 5 TLE5041plusC differential arrangement of sensing elements 2.4.1 Uncalibrated Mode When the device is supplied after power down, the device is awake after power on time tPOR. The digital core immediately starts tracking the signal. In order to trigger a first edge, the magnetic signal has to exceed a threshold DNC (digital noise constant d1). Refer to Figure 6 where the first switching point is after the magnetic input has exceeded dBstartup_x . The algorithm works in both directions, thus for rising and falling slopes. dB dBmax d1 d2 = (dBmax – dBstartup_x )/4 t td,input Offset correction tpor d3 = (dBmax – dBmin)/4 dBmin Output signal Phase shift change Calibrated Mode Uncalibrated Mode d1 = dBstartup_x t1 = initial calibration delay time = tpor + td,input Offset correction = (dBm ax + dBmin)/2 Figure 6 Data Sheet Offset calibration of TLE5041plusC 11 V 1.2, 2018-01-18 TLE5041plusC Functional Description 2.4.2 Calibrated Mode In calibrated mode the output will switch at zero-crossing of the input signal. Oscillations of the Offset DAC are avoided by switching into a low-jitter mode. Signals below a defined threshold dΒLimit do not trigger the current interface to avoid unwanted output switching. Offset determination is done continuously in calibrated mode. The phase shift between input and output signal is no longer determined by the ratio between digital noise constant and signal amplitude. Therefore a sudden change in the phase shift may occur during the transition from uncalibrated to calibrated mode. 2.4.3 Behavior at Magnetic Input Signals Slower than fmag < 1Hz Magnetic changes exceeding dBstartup can cause output switching of the TLE5041plusC even at fmag significantly lower than 1 Hz. Depending on their amplitude edges slower than Δtstartup might be detected. If the digital noise constant (dBstartup) is not exceeded before Δtstartup a new initial self-calibration is started. In other words dBstartup needs to be exceeded before Δtstartup. Output switching strongly depends on signal amplitude and initial phase. 2.4.4 Undervoltage behavior The voltage supply comparator has an integrated hysteresis Vhys with the maximum value of the release level Vrel < 4.5V. This determines the minimum required supply voltage VDD of the chip. A minimum hysteresis Vhys of 0.7V is implemented thus avoiding a toggling of the output when the supply voltage VDD is modulated due to the additional voltage drop at RM when switching from low to high current level and VDD = 4.5V (designed for use with RM ≤ 75Ω). Ihigh I low VDD * V rel Vhys V res Vhys = V rel - Vres *direct on pins Figure 7 Data Sheet Undervoltage behavior 12 V 1.2, 2018-01-18 TLE5041plusC Specification 3 Specification 3.1 Application Circuit TLE5041plusC is designed to operate with a minimum amount of external components as shown in Figure 9. Refer to Figure 9 for the recommended application circuit with reverse bias protection, over voltage protection and EMC capacitors. Component values depend on the application. Inserting a 10 Ω resistor in the VDD path (R1) causes some additional voltage drop, limiting the maximum current through diode D2, adding to the overall circuits robustness. Increasing R1 further reduces supply voltage headroom. TLE5041plusC VDD ECU_VDD GND Uout 30Ω - 75Ω ECU_GND Figure 8 Basic application circuit Figure 9 Advanced application circuit including protection and EMC components Data Sheet 13 V 1.2, 2018-01-18 TLE5041plusC Specification 3.2 Absolute Maximum Ratings If not indicated otherwise, absolute maximum ratings are valid at Tj = -40°C to 150°C and 4.5V ≤ VDD ≤ 20V. Table 2 Absolute maximum ratings Parameter Symbol Values Min. Supply voltage VDD Reverse polarity voltage Vrev Reverse polarity current Irev Junction temperature 1) Power-on cycles Passive life time 1) Maximum magnetic induction over lifetime 2) Typ. Unit Note / Test Condition V Tj < 80 °C Max. -0.3 20 V 22 V t = 10 * 5 min. 24 V t = 10 * 5 min., including voltage drop over RM ≥ 30 Ω 24 V 30 min. @ Tj = 25±5°C 27 V t ≤ 400 ms, including voltage drop over RM ≥ 30 Ω V with current limitation Irev 200 mA t < 4 h, external current limitation required 300 mA t < 1 h, external current limitation required -22 Tj either -40 125 °C limited to 10000 h or -40 150 °C limited to 5000 h or -40 160 °C limited to 2500 h or -40 170 °C limited to 500 h additional 190 °C t = 4 h, VDD < 16.5 V additional -10 60 °C limited to 30000 h npo 500.000 times LTpassive 15 a Tj ≤ 50 °C, VDD = 0 V BX -300 300 mT Tj = 25 °C BY -300 300 mT Tj = 25 °C BZ -1000 1000 mT Tj = 25 °C 1) This life time statement is an anticipation based on extrapolation of Infineon qualification test results. The actual life time of a component depends on its form of application and type of use etc. and may deviate from such a statement. The life time statement shall in no event extend the agreed warranty period. 2) Conversion: B = µ0 * H, µ0 = 4 * π * 10-7 mT/A Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Data Sheet 14 V 1.2, 2018-01-18 TLE5041plusC Specification 3.3 Operating Range The following operating conditions must not be exceeded in order to ensure correct operation of the TLE5041plusC. All parameters specified in the following sections refer to these operating conditions, unless otherwise noted. Table 3 Operating range Parameter Symbol Values Min. Supply voltage 1) VDD Supply voltage modulation 2) VAC Operating junction temperature Tj Typ. 4.5 Unit Note / Test Condition Max. 20 V 6 Vpp VDD = 13 V, 0 < fmod < 150 kHz either -40 125 °C limited to 10000 h or -40 150 °C limited to 5000 h or -40 160 °C limited to 2500 h or -40 170 °C limited to 500 h Tj_var -20 20 K/s no unwanted or missing pulses Magnetic induction amplitude at each GMR element 4) 5) BX -75 75 mT TJ = 25 °C Differential magnetic induction 4) 5) dBX -150 150 mT TJ = 25 °C Static differential magnetic preinduction4) dBXoffset -2 2 mT Dynamic and static homogeneous external disturbance fields 4) Bext_XYZ -2 2 mT Magnetic signal frequency 4) fMAG 5000 Hz Junction temperature variation 1) 2) 3) 4) 5) 3) 4) 1 In calibrated mode. Same field at both probes, no unwanted pulses Directly at the sensor pins, not including the voltage drop at RM. Sinusoidal shape of supply voltage variation. Junction temperature change homogenously distributed on the die, equal change at both iGMR sensing elements. Not subject to production test, verified by design/characterisation. Consider magnetic induction temperature coefficient of -0.18 %/K. Data Sheet 15 V 1.2, 2018-01-18 TLE5041plusC Specification 3.4 Characteristics All parameters are related to the application test circuit shown in Figure 10. Figure 10 Test circuit for the TLE5041plusC 3.4.1 Electrical Parameters The indicated electrical parameters apply over operating range, unless otherwise specified. The magnetic input is assumed sinusoidal with constant amplitude and offset. Typical values are at VDD = 12V and TA = 25°C. Table 4 Electrical parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition initial state is low Supply current - initial IINIT 5.9 7 8.4 mA Supply current - output low ILOW 5.9 7 8.4 mA Supply current - output high IHIGH 11.8 14 16.8 mA Supply current ratio kI 1.9 2.1 2.3 kI = IHIGH / ILOW Output current slew rate 1) SRr, SRf 8 24 mA/µs RM = 75 Ω, RM = 30 Ω Line regulation 2) SL 90 µA/V dIX / dVDD, quasi static Power on time 2) 3) tPOR 100 µs time required for stable IINIT Magnetic edges required for offset calibration 2) 4) nstart 4 Number of edges in uncalibrated mode 2) nuncalib 4 5th edge correct Number of edges supressed2) nsupressed 0 after power-on or reset Magnetic edges required for first output pulse 2) 5) nfirst_pulse 1 2 after power-on or reset Systematic phase error of output edges during start-up and uncalibrated mode 2) Φuncalib -90 +90 ° Systematic phase error of “uncal” edge; nth vs. n + 1th edge (does not include random phase error) -45 -90 +45 +90 ° dBX > 4 x dBStartup_X dBX < 4 x dBStartup_X 10 % Within one signal period, assumig sinusoidal input signal 300 µs min-max detection starts after this time, additional to tPOR 100 µs dBX ≥ 1mT Phase shift change during ∆Φswitch transition from uncalibrated to calibrated mode 2) Max. permissible change of signal offset with time2)6) dBX_Offset Initial calibration delay time 2)7) td, input Switching delay time 2)8) Data Sheet 120 tD 16 V 1.2, 2018-01-18 TLE5041plusC Specification Table 4 Electrical parameters Parameter Symbol 2) Values Unit Note / Test Condition Min. Typ. Max. 40 50 60 % dBX ≥ 2 mT, Bext_XYZ = 0 mT, differential offset jumps are not considered9) Duty cycle DC Period Jitter 2) 10) Sjit1 ± 0.3 % ± 3 σ value of period T -10 °C ≤ Tj ≤ 80 °C dBX ≥ 1 mT 100 Hz ≤ fMAG ≤ 1000 Hz, Bext_XYZ = 0 mT, valid in the operating area described in Chapter 3.4.2.1 Sjit2 ±2 % ± 3 σ value of period T -40 °C ≤ Tj ≤ 150 °C dBX ≥ 1 mT 1 Hz ≤ fMAG ≤ 2500 Hz, B11)ext_XYZ < 0.15 mT Sjit3 ±3 % ± 3 σ value of period T -40 °C ≤ Tj < 170 °C dBX ≥ 1 mT 1 Hz ≤ fMAG ≤ 5000 Hz, B11)ext_XYZ < 0.15 mT 590 ms 848 ms Time allowed for edge to exceed dBX_Startup 2) Watchdog reset time 2) tWD_reset 590 1) 2) 3) 4) Refer to Figure 11 Not subject to production test, verified by design/characterisation. VDD ≥ 4.5V. One magnetic edge is defined as a monotonic signal change of more than 0.6 mT. 5) A loss of edges may occur at high frequencies. 6) Percentage of amplitude 7) Occurrence of initial calibration delay time td, input: if there is no input signal change (e.g. at vehicle halt) a new initial calibration is triggered each tWD_reset according to Chapter 2.4.3. This calibration has a duriation of td, input. During this calibration time no input signal change is detected. 8) Internal signal propagation delay time between magnetic input signal and electrical output signal in calibrated mode. 9) During fast offset alterations, due to the calibration algorithm, exceeding the specified duty cycle is permitted for short time periods. 10) Refer to Figure 12 11) Verified by design I tr Ihigh tf 90% 50% I low 10% t1 T t Figure 11 Data Sheet Slew Rate definition 17 V 1.2, 2018-01-18 TLE5041plusC Specification Figure 12 Period jitter definition is valid for measurement on rising-to-rising or falling-to-falling edge 3.4.2 Magnetic Input Characteristics All magnetic input values specified at constant sinusoidal amplitude and constant offset over operating range, unless otherwise specified. Magnetic values are referred to the location at the silicon surface. Typical values are related to VDD = 12V and TA = 25°C. Table 5 Magnetic input values Parameter Symbol Values Unit Notes min. typ. max. 0.1 0.18 0.3 mT 1 Hz < fMAG < 5000 Hz, BY < 0.15 mT, Bext_XYZ = 0mT Start-up threshold peak to peak value3) dBStartup_X 0.2 0.36 0.6 mT 1 Hz < fMAG < 5000 Hz, BY < 0.15 mT, Bext_XYZ = 0 mT 0.1 mT Threshold limit 1) 2) 3) dBLimit_X 4) Internal offset drift3) dBX_Drift 0 1) Refer to Figure 6 “Offset calibration of TLE5041plusC” on Page 11. dBLimit_X is a 99% criteria, calculated out of measured sensitivity. 2)Threshold limit dBLimit_X is increased by 25% under influence of an in-plane magnetic induction perpendicular to the sensitive direction (refer to Chapter 3.3 “Operating Range” on Page 15 of Bext_XYZ). Note: In typical encoder wheel applications, at large air gaps where dBX is as low as dBLimit_X, the in-plane magnetic induction perpendicular to the sensitive direction BY is smaller than 0.15mT. 3) Not subject to production test, verified by design/characterisation 4) dBStartup_X is the minimum DNC at start-up. Data Sheet 18 V 1.2, 2018-01-18 TLE5041plusC Specification 3.4.2.1 Operating area for Period Jitter Sjit1 It has to be ensured that the operating location of the sensor is selected in accordance to BX_Area and BY_Area referring to Table 6. The operating location is defined by air gap and displacement in Y direction. Therefore the project specific encoder wheel parameters have to be characterized. Air Gap Limit threshold dBLimit_X BX = 1mT Operating area with low period jitter Sjit1 Combinations of BX Area and BY Area : The specification of Sjit1 is not valid in these areas. BX Area BY Area BY Area Encoder Wheel (Example) Axis of rotation 0 Displacement (Y-direction) Figure 13 Operating area for period jitter Sjit1 Marked areas are defined by a combination of BY and BX field components. Table 6 shows field amplitudes (field offsets are not considered) related to these areas. In most cases the areas marked in figure Figure 13 are at low air gaps, close to the pole wheel. Table 6 Magnetic induction area where period jitter exceeds Sjit1 Symbol Values Parameter Magnetic induction area in X-direction 1) Magnetic induction area in Y-direction 1) Unit Notes min. max. BX_Area 2.9 10 mT in combination with BY_Area BY_Area 0.7 2.9 mT in combination with BX_Area 1) Not subject to production test. Verified by characterisation. The sequence to find the areas marked in Figure 13 is: • • The encoder wheel magnetic field shall be characterised (measurement of BX and BY at the sensor location). Is the amplitude of the magnetic induction BX between the minimum and maximum value of BX_Area? – If the answer is NO: no further action required – If the answer is YES: For low jitter Sjit1 the magnetic field at the sensor location shall not have a value between the minimum and maximum value of BY_Area Data Sheet 19 V 1.2, 2018-01-18 TLE5041plusC Specification Note: This information applies especially to narrow pole wheels. Depending on the pole wheel these areas are at a magnetic air gap of 0.8mm to 2.8mm. At a specific air gap the mounting tolerance in Y-direction can be between +/- 0.5mm to +/-2mm. This effect is usually observed when using narrow pole wheels, it is recommended to investigate the magnetic field of every pole wheel used. Air gap and tolerance in Y-direction are typical application values mentioned here are for information only, without specification character. For further information and support please contact Infineon. Data Sheet 20 V 1.2, 2018-01-18 TLE5041plusC Specification 3.4.3 Typical Diagrams (measured performance) ILow , IHigh [mA] IHigh / ILow 15 2,3 14 2,2 13 12 2,1 11 10 2,0 9 8 1,9 7 6 1,8 ‐40 0 40 80 120 160 ‐40 Tj [°C] Figure 14 0 40 80 120 160 Tj [°C] Supply Current = f(T) (left), Supply Current Ratio IHigh / ILow = f(T) (right) Slewrate [mA/µs] 24 22 20 18 16 14 12 10 8 ‐40 0 40 80 120 160 Tj [°C] Figure 15 Data Sheet Slew Rate = f(T), RM = 75 Ω 21 V 1.2, 2018-01-18 TLE5041plusC Specification dBlimit [mT], f=1kHz dBlimit [mT], Tj=25°C 0,30 0,30 0,25 0,25 0,20 0,20 0,15 0,15 0,10 ‐40 0 40 80 120 0,10 160 Tj [°C] Figure 16 1 10 100 1000 10000 f [Hz] Magnetic Threshold dBLimit = f(T) (left), Magnetic Threshold dBLimit = f(f) (right) dBlimit [mT], Tj=170°C 0,30 0,25 0,20 0,15 0,10 1 10 100 1000 10000 f [Hz] Figure 17 Data Sheet Magnetic Threshold dBLimit = f(f) 22 V 1.2, 2018-01-18 TLE5041plusC Specification Duty Cycle [%], f=1kHz Period Jitter [%], f=1kHz, 3sigma‐value 0,10 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 0,00 55 54 53 52 51 50 49 48 47 46 ‐40 0 40 80 120 45 160 Tj [°C] Figure 18 Data Sheet ‐40 0 40 80 120 160 Tj [°C] Period Jitter = f(T) at dBX = 2 mT (left) , Duty Cycle = f(T) at dBX = 2 mT (right) 23 V 1.2, 2018-01-18 TLE5041plusC Specification 3.4.4 Electrostatic discharge protection Characterized according to Human Body Model (HBM) test in compliance with EIA/JESD22-A114-B HBM (covers MIL STD 883D) Table 7 Parameter ESD protection Symbol Values min. Unit Notes max. ESD voltage VHBM ±12 kV Method AEC-Q100 (1.5 kΩ, 100 pF) ESD voltage VSDM ±2 kV Method ANSI/ESD SP5.3.2-2008 3.5 Electro Magnetic Compatibility (EMC) The device is characterized according to the IC level EMC requirements described in the “Generic IC EMC Test Specification” Version 1.2 from 20071). Additionally component level EMC characterizations according to ISO 7637-2:2011, ISO 7637-3:2007 and ISO 16750-2:2010 regarding pulse immunity and CISPR 25 (2009-01) Ed. 3.0 regarding conducted emissions are performed. Note: Characterization of electromagnetic compatibility is carried out on sample base. Not all specification parameters can be monitored during EMC exposure. Only functional parameters, e.g., switching current and duty cycle have been monitored. Figure 19 outlines all needed external components to operate the DUT under application conditions. The (additional) outlined components can effect the final EMC result. They are treated as inherent part of the DUT during component level EMC characterizations. Figure 19 EMC test circuit for the TLE5041plusC 1) The document is available online at http://www.zvei.org/Verband/Publikationen/Seiten/Generic-IC-EMCTestSpecification-english.aspx. Data Sheet 24 V 1.2, 2018-01-18 TLE5041plusC Specification 3.5.1 ISO 7637-2:2011 and ISO 16750-2:2010 Refer to EMC test circuit; dBx= 2mT (amplitude of sinus signal); VDD= 13.5V, fMAG= 100Hz; T=25°C Table 8 Conducted pulses along supply lines Test Pulse TP1 1) TP2a 1) TP2b 2) TP3a 1) Symbol Level/Typ Status VEMC IV / -150V C / A (after stress) IV / 112V C - / 10V C IV / -220V A IV / 150V A TP3b 1) 3) IV / -7V C TP5a 3) IV / 86.5V C TP5b 4) Us*= 28.5V C TP4 1) 2) 3) 4) according to ISO 7637-2:2011 according to ISO 7637-2:2004 according to ISO 16750-2:2010 According to ISO 16750-2:2010. A central load dump of 42V is used. Us = 42 V - 13.5 V. 3.5.2 ISO 7637-3:2007 Refer to EMC test circuit; dBx= 2mT (amplitude of sinus signal); VDD= 13.5V, fMAG= 100Hz; T=25°C Table 9 Pulses by capacitive coupling on signal lines Test Pulse Symbol Level/Typ Status TP3a VEMC IV / -220 V A IV / 150V A TP3b 3.5.3 ISO 11452-3:2004 Refer to EMC test circuit; dBx= 2mT (amplitude of sinus signal); VDD= 13.5V, fMAG= 100Hz; T=25°C Table 10 Radiated immunity Parameter Symbol Level/Typ Remark EMC field strength ETEM-Cell IV / 250 V/m AM (80%, 1kHz) Data Sheet 25 V 1.2, 2018-01-18 TLE5041plusC Package Information 4 Package Information Pure tin plating (green lead plating) is used with the plastic single small outline package PG-SSO-2-53. The product complies to restrictions of hazardous substances (RoHS) when marked with the letter G in front or after the date code. Additionally it shows a data matrix on the back side of the package. 4.1 Package Parameters Table 11 Package parameters Parameter Symbol Limit Values Unit Notes K/W Junction-to-Air 1) min. typ. max. Thermal Resistance RthJA Lead Frame 190 material K62 (UNS:C18090) CuSn1CrNiTi Lead pull out Force FPO 10 N for each lead 2) 1) According to Jedec JESD51-7 2) according to IEC 60068-2-21 (fifth edition 1999-1) 4.2 Bending for assembly By following our package handling and assembly recommendation remarks for Sensor-packages the sensor terminals can be bent without causing incipient cracks influencing the sensor element function. Please contact your local Infineon application support. 4.3 Package surface to silicon The distance from the package surface to the surface of the silicon chip d = 0.3 mm ± 0.08 mm. Front side Back side iGMR elements Figure 20 Data Sheet Distance from package surface to silicon (=sensing element) 26 V 1.2, 2018-01-18 TLE5041plusC Package Information 4.4 Package Outline Figure 21 Package dimensions Data Sheet 27 V 1.2, 2018-01-18 TLE5041plusC Package Information 4.5 Packing The TLE5041plusC is delivered in Ammopack as described below. Figure 22 Data Sheet Packing dimensions in mm 28 V 1.2, 2018-01-18 TLE5041plusC Package Information 4.6 Marking Front side marking The TLE5041plusC is delivered in Ammopack as described below. Figure 23 Packing dimensions in mm Position Marking Description 1st Line GYYWW G: green package YY: production year WW: production week 2nd Line 123456 Marking Position Marking Description 1st Line xxxxxxx Data Matrix Code 2nd Line 0123456789 Data Matrix Code Backside marking Data Sheet 29 V 1.2, 2018-01-18 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
TLE5041PLUSCXAMA1 价格&库存

很抱歉,暂时无法提供与“TLE5041PLUSCXAMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLE5041PLUSCXAMA1
  •  国内价格 香港价格
  • 1+20.368221+2.55422
  • 5+18.141415+2.27497
  • 10+17.2997310+2.16942
  • 25+16.2989925+2.04393
  • 50+15.6139450+1.95802
  • 100+14.98732100+1.87944
  • 500+13.72628500+1.72131

库存:1379

TLE5041PLUSCXAMA1
  •  国内价格 香港价格
  • 1500+13.000551500+1.63030
  • 3000+12.591393000+1.57899
  • 4500+12.367934500+1.55097
  • 7500+12.101937500+1.51761

库存:1379