0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE6250G

TLE6250G

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    SOIC8_150MIL

  • 描述:

    高速CAN收发器 SOIC8

  • 数据手册
  • 价格&库存
TLE6250G 数据手册
TLE6250 Hi gh Speed CAN-Transceiver Features • CAN data transmission rate up to 1 Mbit/s • Receive-only mode and Stand-by mode • Suitable for 12 V and 24 V applications • Excellent EMC performance (very high immunity and very low emission) • Versions for 5 V and 3.3 V microcontrollers • Bus pins are short circuit proof to ground and battery voltage • Overtemperature protection • Very wide temperature range (-40°C up to 150°C) • Green Product (RoHS compliant) Potential applications • Engine control unit (ECUs) • Transmission control units (TCUs) • Chassis control modules • Electric power steering Product validation Qualified for automotive applications. Product validation according to AEC-Q100. Description The HS CAN-transceivers of the TLE6250 family are monolithic integrated circuits that are available as bare die as well as in a PG-DSO-8 package with the same functionality. The transceivers are optimized for high speed differential mode data transmission in automotive applications and industrial applications and they are compatible to ISO 11898. The transceivers work as an interface between the CAN protocol controller and the physical differential bus in both 12 V systems and 24 V systems. The transceivers are based on the Smart Power Technology (SPT), which allows bipolar and CMOS control circuitry in accordance with DMOS power devices to coexist in the monolithic circuit. The TLE6250 is designed to withstand the severe conditions of automotive applications and provides excellent EMC performance. TLE6250G 5 V logic I/O version: RxD, TxD, INH, RM. Two control pins (RM, INH) and three operation modes: Normal mode, Stand-by mode and Receive-only mode. Datasheet www.infineon.com/automotive-transceivers 1 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver The functions and parameters of the TLE6250G and TLE6250C are identical, except those related to the package. In this document the content for TLE6250G also applies to TLE6250C, unless otherwise stated. TLE6250GV33 3.3 V logic I/O version (logic I/O voltage adaptive to V33V pin in the range of 3.3 V to 5 V): RxD, TxD, INH. One control pin (INH) and two operation modes: Normal mode and Standby mode. The functions and parameters of theTLE6250GV33 and TLE6250CV33 are identical, except those related to the package. In this document the content for TLE6250GV33 also applies to TLE6250CV33, unless otherwise stated. Type Package Marking TLE6250G PG-DSO-8 TLE6250 TLE6250C (chip) – TLE6250GV33 PG-DSO-8 625033 TLE6250CV33 (chip) – Datasheet 2 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Table of contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 3.1 3.2 3.3 3.4 General product characteristics and electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 7 General product characteristics TLE6250G (5 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Electrical characteristics TLE6250G (5 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 General product characteristics TLE6250GV33 (3.3 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Electrical characteristics TLE6250GV33 (3.3 V version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 6 Package outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 7 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Datasheet 3 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Block diagram 1 Block diagram T L E6250 G C AN H C AN L 3 7 D river Output Stage 6 1 T em pProtection M ode C ontrol 8 5 VCC T xD IN H RM = R eceiver * GN D 4 2 R xD AEA 03311.VSD Figure 1 Block diagram TLE6250G TLE6250GV 33 3 5 CANH CANL 7 6 Driver Output Stage 1 TempProtection Mode Control 8 V CC V 33 V TxD INH = Receiver * GND 2 4 RxD AEA03312.VSD Figure 2 Datasheet Block diagram TLE6250GV33 4 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Pin configuration 2 Pin configuration T L E6250 G T xD 1 8 IN H GN D 2 7 C AN H VCC 3 6 C AN L R xD 4 5 RM AEP03320.VSD Figure 3 Pin configuration TLE6250G (top view) T L E6250GV 33 T xD 1 8 IN H GN D 2 7 C AN H VCC 3 6 C AN L R xD 4 5 V33 V AEP03321.VSD Figure 4 Pin configuration TLE6250GV33 (top view) Table 1 Pin definitions and functions TLE6250G Pin No. Symbol Function 1 TxD CAN transmit data input 20 kΩ pull-up, “low” in dominant state. 2 GND Ground 3 VCC 5 V supply input 4 RxD CAN receive data output “Low” in dominant state, integrated pull-up. 5 RM Receive-only input Control input, 20 kΩ pull-up, set to “low” for entering receive-only mode. 6 CANL Low line I/O “Low” in dominant state. 7 CANH High line I/O “High” in dominant state. 8 INH Inhibit input Control input, 20 kΩ pull-up, set to “low” for entering normal mode. Datasheet 5 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Pin configuration Table 2 Pin definitions and functions TLE6250GV33 Pin No. Symbol Function 1 TxD CAN transmit data input 20 kΩ pull-up, “low” in dominant state. 2 GND Ground 3 VCC 5 V supply input 4 RxD CAN receive data output “Low” in dominant state, integrated pull-up. 5 V33V Logic supply input; 3.3 V or 5 V The microcontroller logic supply can be connected to this pin. The TLE6250GV33 adapts the digital I/Os to the connected microcontroller logic supply at V33V. 6 CANL Low line I/O “Low” in dominant state. 7 CANH High line I/O “High” in dominant state. 8 INH Inhibit input Control input, 20 kΩ pull-up, set to “low” for entering normal mode. Datasheet 6 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics 3 General product characteristics and electrical characteristics 3.1 General product characteristics TLE6250G (5 V version) Table 3 Absolute maximum ratings TLE6250G (5 V version) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Voltages Supply voltage VCC -0.3 – 6.5 V – CAN Input voltage (CANH, CANL) VCANH/L -40 – 40 V – Logic voltages at INH, RM, TxD, RxD VI -0.3 – VCC V 0 V < VCC < 5.5 V Electrostatic discharge voltage at CANH, CANL VESD -6 – 6 kV Human body model (100 pF via 1.5 kΩ) Electrostatic discharge voltage VESD -2 – 2 kV Human body model (100 pF via 1.5 kΩ) Tj -40 – 160 °C – Temperatures Junction temperature Note: Table 4 Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit. Operating range TLE6250G (5 V version) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Voltages Supply voltage VCC 4.5 – 5.5 V – Junction temperature Tj -40 – 150 °C – Rthj-a – – 185 K/W In PG-DSO-8 package 160 – 200 °C Thermal resistance Junction ambient Thermal shutdown (junction temperature) Thermal shutdown temperature TjsD 1) 10°C hysteresis 1) Not subject to production test, specified by design. Datasheet 7 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics 3.2 Table 5 Electrical characteristics TLE6250G (5 V version) Electrical characteristics TLE6250G (5 V version) 4.5 V < VCC < 5.5 V; RL = 60 Ω; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Current consumption Current consumption ICC – 6 10 mA Recessive state; VTxD = VCC Current consumption ICC – 45 70 mA Dominant state; VTxD = 0 V Current consumption ICC – 6 10 mA Receive-only mode; RM = “low” Current consumption ICC,stb – 1 10 µA Stand-by mode; TxD = RM = “high” “High” output current IRD,H – -4 -2 mA VRD = 0.8 × VCC; Vdiff < 0.4 V1) “Low” output current IRD,L 2 4 – mA VRD = 0.2 × VCC; Vdiff > 1 V1) “High” input voltage threshold VTD,H – 0.5 × VCC 0.7 × VCC V “Low” input voltage threshold VTD,L 0.3 × VCC 0.4 × VCC – V Dominant state TxD pull-up resistance RTD 10 25 kΩ – “High” input voltage threshold VINH,H – 0.5 × VCC 0.7 × VCC V “Low” input voltage threshold VINH,L 0.3 × VCC 0.4 × VCC – V Normal mode INH pull-up resistance RINH 10 kΩ – Receiver output RxD Transmission input TxD 50 Recessive state Inhibit input (INH pin) Datasheet 25 8 50 Stand-by mode Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics Table 5 Electrical characteristics TLE6250G (5 V version) (cont’d) 4.5 V < VCC < 5.5 V; RL = 60 Ω; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. 0.5 × VCC 0.7 × VCC V Receive only input (RM pin) (5 V version) “High” input voltage threshold VRM,H – Normal mode “Low” input voltage threshold VRM,L 0.3 × VCC 0.4 × VCC – V Receive-only mode RM pull-up resistance RRM 10 25 50 kΩ – Differential receiver threshold voltage, recessive to dominant edge Vdiff,d – 0.75 0.90 V -20 V < (VCANH, VCANL) < 25 V; Vdiff = VCANH - VCANL Differential receiver threshold voltage dominant to recessive edge Vdiff,r 0.50 0.60 – V -20 V < (VCANH, VCANL) < 25 V; Vdiff = VCANH - VCANL Common mode range CMR -20 – 25 V VCC = 5 V Differential receiver hysteresis Vdiff,hys – 150 – mV – CANH, CANL input resistance Ri 10 20 30 kΩ Recessive state Differential input resistance Rdiff 20 40 60 kΩ Recessive state Bus receiver Datasheet 9 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics Table 5 Electrical characteristics TLE6250G (5 V version) (cont’d) 4.5 V < VCC < 5.5 V; RL = 60 Ω; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Bus transmitter CANL/CANH recessive output voltage VCANL/H 0.4 × VCC – 0.6 × VCC V VTxD = VCC CANH, CANL recessive output voltage difference Vdiff = VCANH VCANL, no load2) Vdiff -1 – 0.05 V VTxD = VCC CANL dominant output voltage VCANL – – 2.0 V VTxD = 0 V; VCC = 5 V CANH dominant output voltage VCANH 2.8 – – V VTxD = 0 V; VCC = 5 V CANH, CANL dominant output voltage difference Vdiff = VCANH VCANL Vdiff 1.5 – 3.0 V VTxD = 0 V; VCC = 5 V CANL short circuit current ICANLsc 50 120 200 mA VCANLshort = 18 V CANL short circuit current ICANLsc – 150 – mA VCANLshort = 36 V CANH short circuit current ICANHsc -200 -120 -50 mA VCANHshort = 0 V CANH short circuit current ICANHsc – -120 – mA VCANHshort = -5 V Output current ICANH,lk -50 -300 -400 µA VCC = 0 V; VCANH = VCANL = -7 V Output current ICANH,lk -50 -100 -150 µA VCC = 0 V; VCANH = VCANL = -2 V Output current ICANH,lk 50 280 400 µA VCC = 0 V; VCANH = VCANL = 7 V Output current ICANH,lk 50 100 150 µA VCC = 0 V; VCANH = VCANL = 2 V Datasheet 10 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics Table 5 Electrical characteristics TLE6250G (5 V version) (cont’d) 4.5 V < VCC < 5.5 V; RL = 60 Ω; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Dynamic CAN-transceiver characteristics Propagation delay TxD-to-RxD “low” (recessive to dominant) td(L),TR – 150 255 ns 3) Propagation delay TxD-to-RxD “high” (dominant to recessive) td(H),TR – 150 255 ns 3) Propagation delay TxD “low” to bus dominant td(L),T – 100 140 ns CL = 47 pF; RL = 60 Ω; VCC = 5 V Propagation delay TxD “high” to bus recessive td(H),T – 100 140 ns CL = 47 pF; RL = 60 Ω; VCC = 5 V Propagation delay bus dominant to RxD “low” td(L),R – 50 140 ns CL = 47 pF; RL = 60 Ω; VCC = 5 V; CRxD = 20 pF Propagation delay bus recessive to td(H),R RxD “high” – 50 140 ns CL = 47 pF; RL = 60 Ω; VCC = 5 V; CRxD = 20 pF CL = 47 pF; RL = 60 Ω; VCC = 5 V; CRxD = 20 pF CL = 47 pF; RL = 60 Ω; VCC = 5 V; CRxD = 20 pF 1) Vdiff = VCANH - VCANL. 2) Deviation from ISO 11898. 3) TLE6250C: Not subject to production test, specified by design. Datasheet 11 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics 3.3 Table 6 General product characteristics TLE6250GV33 (3.3 V version) Absolute maximum ratings TLE6250GV33 (3.3 V version) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Voltages Supply voltage VCC -0.3 – 6.5 V – 3.3 V supply V33V -0.3 – 6.5 V – CAN input voltage (CANH, CANL) VCANH/L -40 – 40 V – Logic voltages at INH, RM, TxD, RxD VI -0.3 – VCC V 0 V < VCC < 5.5 V Electrostatic discharge voltage at CANH, CANL VESD -6 – 6 kV Human body model (100 pF via 1.5 kΩ) Electrostatic discharge voltage VESD -2 – 2 kV Human body model (100 pF via 1.5 kΩ) Tj -40 – 160 °C – Temperatures Junction temperature Note: Table 7 Maximum ratings are absolute ratings; exceeding any one of these values may cause irreversible damage to the integrated circuit. Operating range TLE6250GV33 (3.3 V version) Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Supply voltage VCC 4.5 – 5.5 V – 3.3 V supply voltage V33V 3.0 – 5.5 V – Junction temperature Tj -40 – 150 °C – Rthj-a – – 185 K/W In PG-DSO-8 package TjsD 160 – 200 °C Thermal resistance Junction ambient Thermal shutdown (junction temperature) Thermal shutdown temperature 1) 10°C hysteresis 1) Not subject to production test, specified by design. Datasheet 12 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics 3.4 Electrical characteristics TLE6250GV33 (3.3 V version) Table 8 Electrical characteristics TLE6250GV33 (3.3 V version) 4.5 V < VCC < 5.5 V; (3.0 V < V33V < 5.5 V for 3.3 V version); RL = 60 Ω; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Current consumption (3.3 V version) Current consumption ICC+33V – 6 10 mA Recessive state; VTxD = V33V Current consumption ICC+33V – 45 70 mA Dominant state; VTxD = 0 V Current consumption I33V – – 2 mA – Current consumption ICC+33V,stb – 1 10 µA Stand-by mode; TxD = “high” “High” output current IRD,H – -2 -1 mA VRD = 0.8 × V33V; Vdiff < 0.4 V1) “Low” output current IRD,L 1 2 – mA VRD = 0.2 × V33V; Vdiff > 1 V1) “High” input voltage threshold VTD,H – 0.55 × V33V 0.7 × V33V V “Low” input voltage threshold VTD,L 0.3 × V33V 0.45 × V33V – V Dominant state TxD pull-up resistance RTD 10 25 kΩ – “High” input voltage threshold VINH,H – 0.55 × V33V 0.7 × V33V V “Low” input voltage threshold VINH,L 0.3 × V33V 0.45 × V33V – V Normal mode INH pull-up resistance RINH 10 25 50 kΩ – Differential receiver threshold voltage, recessive to dominant edge Vdiff,d – 0.75 0.90 V -20 V < (VCANH, VCANL) < 25 V; Vdiff = VCANH - VCANL Differential receiver threshold voltage, dominant to recessive edge Vdiff,r 0.50 0.60 – V -20 V < (VCANH, VCANL) < 25 V; Vdiff = VCANH - VCANL Common mode range CMR -20 – 25 V VCC = 5 V Differential receiver hysteresis Vdiff,hys – 150 – mV – CANH, CANL input resistance Ri 10 20 30 kΩ Recessive state Differential input resistance Rdiff 20 40 60 kΩ Recessive state Receiver output RxD Transmission input TxD 50 Recessive state Inhibit Input (pin INH) Stand-by mode Bus receiver Datasheet 13 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics Table 8 Electrical characteristics TLE6250GV33 (3.3 V version) (cont’d) 4.5 V < VCC < 5.5 V; (3.0 V < V33V < 5.5 V for 3.3 V version); RL = 60 Ω; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Bus transmitter CANL/CANH recessive output voltage VCANL/H 0.4 × VCC – 0.6 × VCC V VTxD = V33V CANH, CANL recessive output voltage difference Vdiff = VCANH VCANL, no load2) Vdiff -1 – 0.05 V VTxD = V33V CANL dominant output voltage VCANL – – 2.0 V VTxD = 0 V; VCC = 5 V CANH dominant output voltage VCANH 2.8 – – V VTxD = 0 ; VCC = 5 V CANH, CANL dominant output voltage difference Vdiff = VCANH VCANL Vdiff 1.5 – 3.0 V VTxD = 0 V; VCC = 5 V CANL short circuit current ICANLsc 50 120 200 mA VCANLshort = 18 V CANL short circuit current ICANLsc – 150 – mA VCANLshort = 36 V CANH short circuit current ICANHsc -200 -120 -50 mA VCANHshort = 0 V CANH short circuit current ICANHsc – -120 – mA VCANHshort = -5 V Output current ICANH/L,lk -50 -300 -400 µA VCC = 0 V; VCANH = VCANL = -7 V Output current ICANH/L,lk -50 -100 -150 µA VCC = 0 V; VCANH = VCANL = -2 V Output current ICANH/L,lk 50 280 400 µA VCC = 0 V; VCANH = VCANL = 7 V Output current ICANH/L,lk 50 100 150 µA VCC = 0 V; VCANH = VCANL = 2 V Datasheet 14 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver General product characteristics and electrical characteristics Table 8 Electrical characteristics TLE6250GV33 (3.3 V version) (cont’d) 4.5 V < VCC < 5.5 V; (3.0 V < V33V < 5.5 V for 3.3 V version); RL = 60 Ω; VINH < VINH,ON; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin; unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Min. Typ. Max. Dynamic CAN-transceiver characteristics Propagation delay TxD-to-RxD “low” (recessive to dominant) td(L),TR – 150 255 ns 3) Propagation delay TxD-to-RxD “high” (dominant to recessive) td(H),TR – 150 255 ns 3) Propagation delay TxD “low” to td(L),T bus dominant – 100 140 ns CL = 47 pF; RL = 60 Ω; VCC = 5 V Propagation delay TxD “high” to td(H),T bus recessive – 100 140 ns CL = 47 pF; RL = 60 Ω; VCC = 5 V Propagation delay bus dominant td(L),R to RxD “low” – 50 140 ns CL = 47 ; RL = 60 Ω; VCC = 5 V; CRxD = 20 pF Propagation delay bus recessive td(H),R to RxD “high” – 50 140 ns CL = 47 pF; RL = 60 Ω; VCC = 5 V; CRxD = 20 pF CL = 47 pF; RL = 60 Ω; VCC = 5 V; CRxD = 20 pF CL = 47 pF; RL = 60 Ω; VCC = 5 ; CRxD = 20 pF 1) Vdiff = VCANH - VCANL. 2) Deviation from ISO 11898. 3) TLE6250CV33: Not subject to production test, specified by design. Datasheet 15 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Diagrams 4 Diagrams INH 7 TxD CANH RM 47 pF 8 1 5 60 Ω RxD 6 4 20 pF CANL GND VCC 3 5V 100 nF 2 AEA03328.VSD Figure 5 Test circuit for dynamic characteristics (5 V version) INH 7 TxD CANH RxD 8 1 4 20 pF 47 pF 60 Ω V33 V 6 5 3.3 V 100 nF CANL GND VCC 3 2 5V 100 nF AEA03329.VSD Figure 6 Datasheet Test circuit for dynamic characteristics (3.3 V version) 16 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Diagrams VTxD VCC(33V) GND VDIFF td(L), T td(H), T t VDIFF(d) VDIFF(r) VRxD td(L), R t td(H), R VCC(33V) 0.7VCC(33V) 0.3VCC(33V) GND td(L), TR td(H), TR t AET02926 Figure 7 Datasheet Timing diagram for dynamic characteristics 17 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Diagrams 120 Ω TLE6250 G V Bat C AN Bus RM IN H 7 6 C AN H R xD C AN L TxD GN D V CC 5 8 4 µP 1 3 100 nF 2 100 nF GN D e. g . TLE 4270 VI + 22 µF 100 nF 5V VQ + GN D 22 µF EC U 1 TLE6250 GV33 IN H R xD 7 6 TxD C AN H V 33 C AN L GN D 8 4 1 µP 5 V V CC 3 100 nF 2 e. g . TLE 4476 V Q1 VI + 22 µF 100 nF Datasheet GN D 3.3 V 22 µF + + 22 µF EC U X 120 Ω Figure 8 100 nF 5V V Q2 GN D 100 nF AEA03308.VSD Application circuit TLE6250G with TLE6250GV33 18 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Application information 5 Application information Normal Mode INH = 1 INH = 0 RM = 1 INH = 0 and RM = 1 RM = 1 INH = 0 and RM = 0 Stand-by Mode INH = 1 RM = 0 Receive-only Mode INH = 1 RM = 0 / 1 INH = 0 RM = 0 AED02924 Figure 9 Mode state diagram TLE6250G Normal Mode INH = 0 INH = 1 INH = 0 Stand-by Mode INH = 1 AEA03327.VSD Figure 10 Mode state diagram TLE6250GV33 The TLE6250G offers three modes of operation (see Figure 9), controlled by the INH and RM pin. The TLE6250GV33 offers two modes of operation (see Figure 10), controlled by the INH pin respectively. In normal mode the transceiver can receive and transmit messages. In receive-only mode the transceiver does not transmit signals at the TxD input to the CAN bus. Receive-only mode can be used for diagnostic purposes (to check the bus connections between the nodes) as well as to prevent the bus being blocked by a faulty permanent dominant TxD input signal. Stand-by mode is a low power mode that disables both the receiver and the transmitter. If the receive-only feature is not used, then the RM pin must be left open. If stand-by mode is not used, then the INH pin must be connected to ground level in order to switch the TLE6250G to normal mode. Application information for the 3.3 V versions The TLE6250GV33 can be used for both 3.3 V and 5 V microcontroller logic supply, see Figure 11, Figure 12 and Figure 13. Do not connect external resistors between the power supply and the V33V pin, because that may lead to a voltage drop at this pin. Datasheet 19 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Application information T L E6250 GV 33 IN H 7 6 R xD C AN H T xD C AN L 4 1 3 .3 V 3 V CC 100 nF 2 e. g. T LE 4476 100 nF 3 .3 V VQ 2 + 22 µF 100 nF GN D 100 nF 5V VQ 1 VI µP 5 V 33 V GN D 8 + GN D 22 µF + 22 µF AEA 03300.VSD Figure 11 Application circuit TLE6250GV33 used for 3.3 V logic T L E6250 GV 33 IN H 7 6 R xD C AN H T xD C AN L V 33 V GN D V CC 8 4 1 5 µP 5V 3 100 nF 2 100 nF GN D e. g. T LE 4270 VI + 22 µF 100 nF 5V VQ + GN D 22 µF AEA 03299.VSD Figure 12 Datasheet Application circuit TLE6250GV33 used for 5 V logic 20 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Application information T L E6250 GV 33 IN H 7 6 R xD C AN H T xD C AN L V 33 V GN D V CC 8 4 1 5 µP 5V 3 100 nF 100 nF 2 GN D e. g. T LE 4270 VI + 22 µF 100 nF VQ 5V + GN D 22 µF e. g. T LE 4270 VI + 22 µF 100 nF VQ 5V GN D + AEA 13299.VSD Figure 13 Datasheet Application circuit TLE6250GV33 used for 5 V logic 21 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Package outlines 6 Package outlines B 0.1 SEATING PLANE 2) 0.41+0.1 -0.06 0.2 8 5 1 4 5 -0.2 1) M A B 8x C 0.19 +0.06 8 MAX. 1.27 4 -0.21) 1.75 MAX. 0.175 !0.07 (1.45) 0.35 x 45 0.64 !0.25 6 !0.2 0.2 M C 8x A Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Lead width can be 0.61 max. in dambar area Figure 14 PG-DSO-8 (PG-DSO-8 Plastic Dual Small Outline)1) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further information on packages https://www.infineon.com/packages 1) Dimensions in mm Datasheet 22 Rev. 4.2 2022-02-03 TLE6250 High Speed CAN-Transceiver Revision history 7 Revision history Revision Date Changes 4.2 2022-02-03 Editorial change (Marking) 4.11 2019-07-15 Editorial changes 4.1 2017-03-15 New style template Editorial changes Chapter „Overview“: • Table of device types and packages: Marking added Chapter „General product characteristics and electrical characteristics“: 4.0 Datasheet 2008-04-28 • Table 5: Propagation delay TxD-to-RxD “low” (recessive to dominant) Max. value updated, footnote added • Table 5: Propagation delay TxD-to-RxD “high” (dominant to recessive) Max. value updated, footnote added • Table 8: Propagation delay TxD-to-RxD “low” (recessive to dominant) Max. value updated, footnote added • Table 8: Propagation delay TxD-to-RxD “high” (dominant to recessive) Max. value updated, footnote added Changed symbol for the leakage current CANH/L: From ICANH,lk to ICANH/L,lk Max. value for the parameter changed: Output current, ICANH/L,lk, VCC = 0 V, VCANH = VCANL = 7 V: From 300 µA to 400 µA 23 Rev. 4.2 2022-02-03 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2022-02-03 Published by Infineon Technologies AG 81726 Munich, Germany © 2022 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference Z8F55827012 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLE6250G 价格&库存

很抱歉,暂时无法提供与“TLE6250G”相匹配的价格&库存,您可以联系我们找货

免费人工找货
TLE6250G
    •  国内价格
    • 1+4.15800
    • 20+3.92700
    • 50+3.69600
    • 100+3.23400
    • 300+3.00300
    • 500+2.77200
    • 1000+2.54100

    库存:51339

    TLE6250G
      •  国内价格
      • 1+3.70986
      • 10+3.40326
      • 30+3.34194
      • 100+3.15798

      库存:2242