0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE8457BLEXUMA1

TLE8457BLEXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    TDFN8

  • 描述:

    TLE8457 - AUTOMOTIVE LIN TRANSCE

  • 数据手册
  • 价格&库存
TLE8457BLEXUMA1 数据手册
TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator 1 Overview Features • Single-wire LIN transceiver for transmission rates up to 20 kBit/s • Compliant to ISO 17987-4, LIN specification 2.2 A and SAE J2602 • 5 V or 3.3 V low drop-out linear voltage regulator with 70 mA current capability • Stable with ceramic output capacitor of 1 µF • Ultra low current consumption in sleep mode of max. 16 µA • Ultra low current consumption in standby mode of typical 20 µA • Very low leakage current on the BUS pin • VCC undervoltage detection with RESET output • TxD protected with dominant time-out function • Initialization watchdog with automatic transition to sleep mode • BUS short to VBAT protection and BUS short to GND handling • Overtemperature protection and supply undervoltage detection • Very high ESD robustness: ±8 kV according to IEC61000-4-2 • Optimized for high electromagnetic compatibility (EMC); Very low emission and high immunity to interference • Available in standard PG-DSO-8 and leadless PG-TSON-8 packages • PG-TSON-8 package supports automated optical inspection (AOI) • Green Product (RoHS compliant) Potential applications • LIN slave satellite modules • Window lifters • Rain and light sensors • Sun roof control modules • Wiper modules • Ambient lighting Data Sheet www.infineon.com/Automotive-Transceivers 1 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Overview Product validation Qualified for automotive applications. Product validation according to AEC-Q100. Description The TLE8457A / TLE8457B is a monolithic integrated LIN transceiver and low drop-out voltage regulator. The device is designed to supply a microcontroller and peripherals with up to 70 mA, provide protection through VCC undervoltage reset, while also offering bi-directional bus communication compliant to LIN specification 2.2 A and SAE J2602. With the ultra low quiescent current consumption of typical 20 µA in standby mode the TLE8457A / TLE8457B is especially suited for applications that are permanently supplied by the battery. Based on the Infineon BiCMOS technology the TLE8457A / TLE8457B provide excellent ESD robustness together with a very high level of electromagnetic compatibility (EMC). The TLE8457A / TLE8457B is AEC qualified and tailored to withstand the harsh conditions of the automotive environment. Type LDO VCC output voltage Package Marking Init timeout feature1) TLE8457ASJ 5V PG-DSO-8 8457A Yes TLE8457ALE 5V PG-TSON-8 8457A Yes TLE8457BSJ 3.3 V PG-DSO-8 8457B Yes TLE8457BLE 3.3 V PG-TSON-8 8457B Yes 1) Please refer to TLE8457C & TLE8457D if “Init timeout feature” is not needed. Data Sheet 2 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Table of contents 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 3.1 3.2 Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.4 4.5 4.5.1 4.5.2 4.6 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Normal operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Init mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Bus wake-up event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Mode transition via EN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Power-up and power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 VS undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 VCC undervoltage detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Reset output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Initialization watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 TxD time-out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Short-circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 5 5.1 5.2 5.3 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 6.1 6.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Functional device characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 7 7.1 7.2 7.3 7.4 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ESD robustness according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Transient robustness according to ISO 7637-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LIN physical layer compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Data Sheet 3 19 19 20 21 29 29 30 30 30 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Block diagram 2 Block diagram Linear Regulator 8 Bandgap Reference VCC Driver Current Limitation VCC Undervoltage Detection Control VS VCC 1 RNRST 7 NRST Supply Monitor Rslave Control Wake Receiver 2 EN VCC REN Over-Temperature and Over-Current Protection BUS 4 RTxD Transmitter 6 Driver TxD Time-Out VCC Receiver GND Figure 1 Data Sheet 3 BUS RFFilter VS / 2 5 RxD Block diagram 4 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Pin configuration 3 Pin configuration 3.1 Pin assignment VS 1 8 VCC EN 2 7 NRST GND 3 6 TxD BUS 4 5 VS 1 8 VCC EN 2 7 NRST 6 TxD 5 RxD GND 3 BUS 4 RxD (PAD) PG-TSON-8 (Top side X-Ray view) PG-DSO-8 Figure 2 Pin configuration 3.2 Pin definitions and functions Pin Symbol Function 1 VS Battery supply voltage; Decoupling capacitor required 2 EN Enable input; Integrated pull-down resistor Logic “high” to select normal operation mode 3 GND Ground 4 BUS BUS input/output; Integrated LIN slave termination 5 RxD Receive data output; Monitors the LIN bus signal in normal operation mode Indicates a wake-up event in init mode 6 TxD Transmit data input; Integrated pull-up resistor Logic “low” to drive a dominant signal on the LIN bus 7 NRST 8 VCC Undervoltage reset output; Integrated pull-up resistor Logical “low” during reset Voltage regulator output; Output capacitor requirements specified in functional device characteristics PAD1) – Connect to PCB heat sink area. Do not connect to other potential than GND 1) Only available with PG-TSON8 package. Data Sheet 5 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4 Functional description 4.1 Operating modes The operation mode of the TLE8457A / TLE8457B is controlled with the EN and TxD input pins (see Figure 3 and Table 2). The TLE8457A / TLE8457B has 3 major operation modes: • Normal operation mode • Standby mode • Sleep mode Additionally the TLE8457A / TLE8457B has an init mode that is automatically entered when powering up, detecting wake-up events or in case of malfunctions. Power-up Recovery from overtemperature event on voltage regulator Standby Mode LIN transceiver: Off LDO regulator: On EN: Low NRST: High BUS 11 1 -up Init Mode 12 VCC unde r vo EN EN g p C VC EN BUS Wake-up e nd do ge lta o rv 9 e-u ak SW BU 7 EN ch at nW io at liz tia 2 8 Ini TxD = „high“ LIN transceiver: Off LDO regulator: On EN: Low RxD: Wake-up source1) NRST: High2) ltage 10 WHILE 13 Wa ke u 5 6 3 Normal Operation Mode LIN transceiver: On LDO regulator: On EN: High Sleep Mode 4 EN AND TxD NRST: High LIN transceiver: Off LDO regulator: Off EN: Low NRST: Low 1) Wake-up Source: RxD: RxD: logical „high“ after Power-up or Reset logical „low“ after BUS Wake-up detection 2) Reset: NRST will stay „low“ during LDO failures and for the Reset time tRST Figure 3 Data Sheet TLE8457_MODE_DIAGRAM Operation mode state diagram 6 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description Table 1 Operation mode transitions No. Reason for transition Comment 1 Power-on detection The VS supply voltage rise above the VS,PON power-on reset level. 2 Mode change with EN input Triggered by logic “high” level. 3 VCC undervoltage detection VCC output voltage fall below the reset threshold level. 4 Mode change with EN and TxD inputs Triggered by logic “low” level on EN and TxD. 5 Mode change with EN input Triggered by logic “high” level. 6 Bus wake-up detection RxD set “low” for signalling the bus wake-up event to the microcontroller. 7 Bus wake-up detection in standby mode RxD set “low” for signalling the bus wake-up event to the microcontroller. Operating mode is not changed. 8 Initialization watchdog timer elapsed Forced transition to sleep mode because of no response from microcontroller after power-on, wake-up, reset or if local errors are preventing VCC to power up. 9 Mode change with EN and TxD inputs Triggered by logic “low” level on EN while TxD is held “high”. 10 Mode change with EN input Triggered by logic “high” level. 11 Bus wake-up detection RxD set “low” for signalling the bus wake-up event to the microcontroller. 12 VCC undervoltage detection Detection of failure due to VCC undervoltage or recovery from an overtemperature event. 13 Recovery from LDO overtemperature event When overtemperature on the LDO is detected the TLE8457A / TLE8457B is disabled. After recover the device is activated in init mode. Table 2 Mode Sleep Operating mode control Control Functionality EN TxD Low Low 1) Comments VCC NRST RxD Off Low Floating – 2) Init Low High On High Low High RxD “low” after a bus wake-up RxD “high” after power-up or reset Standby Low High1) On High High – Low High On High Low High RxD reflects the signal on the bus TxD driven by the microcontroller Normal High operation 1) The TxD input has a pull-up structure to VCC and is per default set to logic “high” if left open. 2) NRST is logic “low” during VCC undervoltage and while issuing a reset pulse to the microcontroller. Data Sheet 7 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.1.1 Normal operation mode In normal operation mode both the voltage regulator and the LIN transceiver are active. The TLE8457A / TLE8457B supports data transmission rates up to 20 kBit/s. Data from the microcontroller is transmitted to the LIN bus via the TxD input, while the receiver detects the data stream on the LIN bus and forwards it to the RxD output. After entering normal operation mode the TLE8457A / TLE8457B requires a logic “high” signal for the time tto,rec on the TxD input before releasing the data communication. The transmitter remains deactivated as long as the signal on the TxD input pin remains logic “low”, preventing possible bus communication disturbance (see Figure 4). From normal operation mode the TLE8457A / TLE8457B can be set to standby mode or sleep mode. EN tMODE,HIGH tMODE,LOW t VCC t NRST t Data transmission RxD tto,rec t Data transmission TxD t Standby mode Normal Operation mode Sleep mode TLE8457_NORMAL_MODE Figure 4 4.1.2 Entering normal operation mode, transition to sleep mode Standby mode Standby mode is a low power mode with ultra low quiescent current consumption while the voltage regulator remains active, supplying for example a microcontroller in stop mode. No LIN bus communication is possible, the transmitter and the receiver are disabled. The low power receiver is still active and the device can wake up by a message from the LIN bus. For changing the operation mode from standby mode to sleep mode, the device has to be set to normal operation mode first, then to sleep mode (see Figure 4). Data Sheet 8 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.1.3 Init mode After a power-up event the TLE8457A / TLE8457B enters init mode by default. In this mode the LIN transceiver is disabled, but the voltage regulator is switched on. Following the linear voltage regulator has reached its nominal output voltage VCC and the NRST output set “high”, the external microcontroller can change the mode to Normal Operation Mode. If the Initialization Watchdog timer elapses before a “high” signal is detected on the EN input, the TLE8457A / TLE8457B will autonomously transition to sleep mode (see Chapter 4.4). The initialization watchdog protection in init mode is always activated after starting up the voltage regulator and after a reset pulse, triggered by the NRST output going “high”. In init mode the TLE8457A / TLE8457B indicates wake-up information on the RxD output. After a power-up and reset event, the RxD output will be “high”. If the TLE8457A / TLE8457B is in init mode after bus wake-up detection, the RxD output will be “low”. Transitions to init mode can be controlled with the EN input when in sleep mode, or automatic forced after: • Bus wake-up event on the BUS pin. • Power-up event on the supply VS. • Power-on reset caused by the supply VS. • Voltage regulator failure event due to VS undervoltage. • Recovery of an overtemperature event on the voltage regulator. VS VS,PON t LIN tWK,bus t VCC t NRST t RxD RxD signals Power-up RxD signals Bus Wake-up t The device remains in Init mode while the signal on the EN pin is „low“ EN t Un-powered Init mode Normal Operation mode TLE8457_INIT_MODE Figure 5 Data Sheet Entering init mode after power-up 9 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.1.4 Sleep mode Sleep mode is a low power mode with quiescent current consumption reduced to a minimum while the device can still wake up by a message from the LIN bus. Both the transceiver and the voltage regulator are switched off. 4.1.5 Bus wake-up event A bus wake-up event, also called remote wake-up, causes a transition from a low power mode to init mode. A falling edge on the LIN bus, followed by a dominant BUS signal for the time tWK,bus results in a bus wake-up event. The mode change to init mode becomes active with the following rising edge on the LIN bus, when BUS voltage exceeds VBUS,wk. The TLE8457A / TLE8457B remains in low power mode until it detects a state change on the LIN bus from dominant to recessive (see Figure 6). In init mode a logic “low” signal on the RxD output indicates a bus wake-up event. In case the TLE8457A / TLE8457B detects a bus wake-up event while already being in init mode, the wake-up event will be signalled with a logic “low” level on RxD and override the previous wake source (see Figure 5). VBUS VBUS,dom VBUS,wk tWK,bus t Sleep mode Init mode VCC,UV,ON VCC t tRST NRST t EN t TxD is „high“ because of internal pull-up structure TxD t RxD „low“ indicates a Bus Wake-up event RxD t TLE8457_BUS_WAKE Figure 6 Data Sheet Bus wake-up behavior 10 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.1.6 Mode transition via EN pin The EN input is used for operation mode control of the TLE8457A / TLE8457B. By setting the EN input logic “high” for the time tMODE,HIGH while being in init mode or standby mode, a transition to normal operation mode will be triggered. If the voltage level at the EN input is set logic “high” while the TLE8457A / TLE8457B is in sleep mode, a transition to init mode is initiated. If the EN input is continuously held “high” though powering up the voltage regulator and the following reset pulse, normal operation mode will be entered. From normal operation mode the TLE8457A / TLE8457B can be set to either sleep mode or standby mode. If the EN input is set “low” for the time tMODE,LOW while the TxD input is held at logic “high”, the mode will change to standby mode. For a transition to sleep mode, the TxD must be set to logic “low” before the time tMODE,LOW elapses after EN goes “low” (see Figure 7). It is recommended to program a short delay time from when EN is set “low” until TxD is set “low”, to prevent driving the BUS dominant through mode transition to sleep mode. The EN input has an integrated pull-down resistor to ensure the device remains in a low power mode if the EN input is left open. The EN input has an integrated hysteresis (see Figure 7). The TLE8457A / TLE8457B changes the operation modes regardless of the signal on the BUS pin. In the case of a short circuit failure between the LIN bus and GND, resulting in a permanent dominant signal, the TLE8457A / TLE8457B can be set to sleep mode. VEN,ON EN EN hysteresis VEN,OFF tMODE,LOW tMODE,LOW tMODE,HIGH t tMODE,HIGH TxD t tRST NRST t Normal Operation mode Standby mode Normal Operation mode Sleep mode Init mode Normal Operation mode TLE8457_MODE_CONTROL Figure 7 Operation mode control The EN input is blocked while the TLE8457A / TLE8457B is in init mode and NRST is “low”, no mode transitions to normal operation mode is possible while a reset pulse is issued. After the NRST output goes “high”, mode control with the EN input is released. At the same time the initialization watchdog timer starts (see Chapter 4.4). Note: Data Sheet If the TLE8457A / TLE8457B is being forced to sleep mode by the initialization watchdog while the EN input is externally being held at a logic “high” level, the device will reinitiate init mode after the Vcc voltage has been discharged below ~1 V. In such applications additional supervision means are recommended. 11 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.2 Power supplies The TLE8457A / TLE8457B is designed for being supplied by the battery line through an external reverse polarity protection diode at the VS pin (see Figure 18). An input capacitor is needed for damping input line transients. 4.2.1 Power-up and power-down During power-up the TLE8457A / TLE8457B will enter init mode when the VS supply reaches the power-on reset level VS,PON. The voltage regulator output VCC will track the VS supply voltage until VCC reaches its nominal voltage level. As VCC reaches the undervoltage level VCC,UV, the NRST output will stay logic “low” for the reset time tRST and then be set logic “high”. As NRST goes “high”, the EN input will become active and the TLE8457A / TLE8457B can change operating mode accordingly (see Table 2). VS VS,UV,ON VS,UV,OFF VCC VS VCC,UV VCC VCC,UV VS,PON VS,PON t tRST NRST t EN t un-powered Init mode Normal Operation mode Transmission blocked Figure 8 Init mode un-powered TLE8457_VS_POWER-UP_DOWN Power-up and power-down behavior While powering down while in normal operation mode the TLE8457A / TLE8457B will block the LIN transmitter as the VS supply voltage falls below VS,UV,OFF. The voltage regulator will start tracking the VS supply voltage when falling below VCC + VDR. As VCC falls below the undervoltage level VCC,UV, the NRST output will be set logic “low” and the TLE8457A / TLE8457B will enter init mode. When the VS supply voltage falls below the power-onreset level VS,PON the voltage regulator will be disabled and the TLE8457A / TLE8457B will be considered unpowered. Data Sheet 12 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.2.2 VS VS undervoltage detection Undervoltage release level VS,UV,ON Undervoltage blocking level VS,UV,OFF Undervoltage hysteresis VS,UV,hys Power-on reset level VS,PON Blanking time tblank,UV t Normal Operation mode No communication possible Normal Operation mode TLE8457_VS_EARLY_UNDERVOLTAGE_A Figure 9 VS early undervoltage detection The TLE8457A / TLE8457B has an undervoltage detection on the supply pin VS with two different thresholds: • In normal operation mode the TLE8457A / TLE8457B blocks the communication between the LIN bus and the microcontroller when detecting an early undervoltage event. The RxD output will be set “high”. However, no mode change will occur. After VS rises above the undervoltage release level VS,UV,REL, the bus communication interface will be released as soon as the signal on the TxD input goes “high” (see Figure 9). • When the power supply VS drops below the power-on reset level VS,PON the TLE8457A / TLE8457B not only blocks the transceiver communication, it also changes the operation mode to init mode after recovery of VS, see Figure 10. In init mode the TLE8457A / TLE8457B indicates a power-up event on the RxD pin. The power-on reset detection is active in all operation modes. VS Undervoltage release level VS,UV,ON Undervoltage blocking level VS,UV,OFF Undervoltage hysteresis VS,UV,hys Power-on reset level VS,PON Blanking time tblank,UV t Power-down Normal Operation mode No communication possible Figure 10 Data Sheet Init mode (EN = “low“) Normal Operation mode (EN = “high“) TLE8457_VS_UNDERVOLTAGE_A VS undervoltage detection 13 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.3 Voltage regulator The TLE8457A / TLE8457B has an integrated voltage regulator dedicated for supplying microcontrollers and/or on-board sensors under harsh automotive environment conditions. It can supply a load current up to 70 mA with an output voltage tolerance within ± 2%. Because of the ultra low current consumption, the TLE8457A / TLE8457B is perfectly suited for applications permanently connected to the battery supply. Additionally, in sleep mode, the voltage regulator is switched off and an even lower quiescent current can be achieved. The voltage regulator output is protected against undervoltage, overcurrent, overtemperature and power-up failures. In case the load current rises above the functional range, for example during VCC short circuits, the output current is limited to ICC,lim. Therefore the VCC output voltage will drop. A reset pulse will be issued if VCC falls below the undervoltage reset threshold. The VCC supply output provides a stable supply voltage with output capacitors down to 1 µF, including low ESR multi-layer ceramic capacitors. 4.3.1 VCC undervoltage detection The TLE8457A / TLE8457B has an undervoltage detection feature on the voltage regulator VCC output. If the VCC voltage falls below the undervoltage threshold VCC,UV for longer than detection time tdet,RST, the NRST output will be set logic “low” and the TLE8457A / TLE8457B will automatically enter init mode and start the initialization watchdog (see Chapter 4.3.2 and Chapter 4.4) . tdet,RST VCC,UV VCC t Normal Operation mode (EN = „high“) Standby mode (EN = „low“) Init mode Normal Operation mode (EN = „high“) Init mode (EN = „low“) tRST NRST t NRST goes and stays „low“ as long as VCC is in undervoltage Figure 11 4.3.2 NRST stays „low“ for additional Reset time tRST TLE8457_VCC_UNDERVOLTAGE VCC undervoltage detection Reset output The NRST output is used for issuing reset pulses, for example to an external microcontroller. In case of voltage regulator undervoltage or overtemperature events, the NRST output will go “low” and a mode transition to init mode will be triggered. The NRST output will stay “low” until a complete recovery from the failure is achieved. After the additional time tRST has elapsed NRST will go “high” (see Figure 11). While the TLE8457A / TLE8457B is in init mode and NRST is “low” mode transition to normal operation mode is blocked. The NRST pin has an internal pull up to VCC. If needed in the application, an additional external pull-up resistor can be implemented. Data Sheet 14 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.4 Initialization watchdog The TLE8457A / TLE8457B features an enhanced initialization watchdog timer for detection of local failures and error handling for minimizing system current consumption. The benefit of this safety function is to prevent a malfunctioning ECU being stuck in init mode with high current consumption and draining the car battery. The initialization watchdog is only active in init mode, with the two use cases: VCC supply initialization and normal operation mode activation. VS VS,PON 1 VCC,UV 2 VCC tRST NRST tto,rec 3 VCC Supply Initialization Watchdog Normal Operation mode Activation Timeout Timeout 1 2 5 EN 4 Un-powered Init mode If Timeout → forced transition to Sleep mode Normal Operation mode If Timeout → forced transition to Sleep mode 1 VS exceeds the Power-on reset threshold → VCC Supply Initialization Watchdog is started 2 VCC exceeds the VCC-Undervoltage threshold → Reset timer is started 3 Reset timer elapses → Normal Operation mode Activation Watchdog is started 4 Mode change with the EN input → Mode transition to normal mode 5 TxD must be „high“ for at least tto,rec after entering Normal mode for releasing the transmitter Figure 12 TLE8457_WATCHDOG Initialization watchdog VCC supply initialization The VCC supply initialization watchdog is detecting if local errors on the ECU is preventing the VCC supply to power up correctly because of short circuits to ground or if components on the board are drawing too high currents. The timer is started when the linear regulator is switched on after power-up events or after mode transitions to init mode triggered by either bus wake-up or the EN input being set “high” in sleep mode. Additionally, the timer will start when detecting VCC undervoltage and after recovery from an overtemperature event. Data Sheet 15 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description In case the VCC voltage rise above the VCC,UV undervoltage threshold before the timer elapses, VCC is considered successfully initialized and the timer is disabled. If the timer elapses before VCC powers up correctly, the TLE8457A / TLE8457B will autonomously transition to sleep mode. Normal operation mode activation After the TLE8457A / TLE8457B has generated a reset pulse the initialization watchdog is started for monitoring the activation of normal operation mode. The microcontroller must set the EN input “high” before the timer elapses after tInit_WD, else the TLE8457A / TLE8457B will autonomously transition to sleep mode. tInit_WD EN t tRST NRST t Standby mode / Sleep mode / unpowered Init mode Sleep mode TLE8457_INITIALIZATION_TIMEOUT Figure 13 Data Sheet Enable activation time-out 16 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.5 LIN transceiver The LIN interface is a single wire, bi-directional bus, used for in-vehicle networks. The integrated LIN transceiver of the TLE8457A / TLE8457B is the interface between the microcontroller and the physical LIN bus (see Figure 18). Data from the microcontroller is driven to the LIN bus via the TxD input. The transmit data stream on the TxD input is converted to a LIN bus signal with optimized slew rates in order to minimize the electromagnetic emission of the LIN network. The RxD output reads back the information from the LIN bus to the microcontroller. The receiver has an integrated filter network for noise suppression from the LIN bus and to increase the electromagnetic immunity level of the transceiver. The LIN specification defines two valid bus levels (see Figure 14): • Dominant state with the LIN bus voltage level near GND, actively driven by a transceiver. • Recessive state with the LIN bus voltage pulled up to the supply voltage VS through the bus termination. By setting the TxD input of the TLE8457A / TLE8457B to a logic “low” signal, the transceiver generates a dominant level on the BUS interface pin. The receiver reads back the signal on the LIN bus and indicates the dominant LIN bus signal with a logic “low” on the RxD output to the microcontroller. By setting the TxD input “high”, the transceiver sets the LIN interface pin to the recessive level. At the same time the recessive level on the LIN bus is indicated by a logic “high” signal on the RxD output. Every LIN network consists of a master node and one or more slave nodes. To configure the TLE8457A / TLE8457B for master node applications, a termination resistor of 1 kΩ and a diode must be connected between the LIN bus and the power supply VS (see Figure 18). VCC TxD t VS Recessive Dominant Recessive Vth_REC BUS Vth_DOM t VCC RxD t TLE8457_LIN_COMMUNICATION_A Figure 14 Data Sheet LIN bus signals 17 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Functional description 4.5.1 TxD time-out The TxD time-out feature protects the LIN bus against permanent blocking in the case where the logical signal on the TxD input is continuously “low”, caused by a malfunctioning microcontroller or a short circuit on the printed circuit board for example. In normal operation mode, a logic “low” signal on the TxD input for time t > tTxD disables the transmitter’s output driver stage (see Figure 15). The receiver will remain active and the data on the BUS is still monitored on the RxD output. The TLE8457A / TLE8457B will release the output stage after a TxD time-out event first when detecting a logic “high” signal on the respective TxD input for the duration of tto,rec. Recovery of the microcontroller error TxD time-out due to e.g. microcontroller error Release after TxD time-out tTxD tto,rec Normal communication Normal communication TxD t VBUS t TLE8457_TXD_TIMEOUT_A Figure 15 4.5.2 TxD time-out Short-circuit The BUS pin of TLE8457A / TLE8457B can withstand short-circuits to either GND or to the power supply VS. The integrated overtemperature protection may disable the transmitter if a permanent short circuit on the BUS pin causes the TLE8457A / TLE8457B to overheat. 4.6 Overtemperature protection The TLE8457A / TLE8457B has two independent overtemperature detectors for protecting the device against thermal overstress, namely on the voltage regulator pass element and on the LIN bus transmitter. In the case where the junction temperature at the LIN transmitter increases above the thermal shut-down level TJSD, it will be disabled until the junction temperature of the transmitter cools down below TJ < TJSD - ∆T. No other effect, nor mode change, will occur. After the LIN transmitter overtemperature recovery, the TxD input requires a logic “high” signal before restarting data transmission. If an overtemperature event is detected on the voltage regulator, it will be disabled and the NRST output will be set “low”. During the overtemperature condition no functionality of the TLE8457A / TLE8457B is available. After the junction temperature cools down below TJ < TJSD - ∆T, the TLE8457A / TLE8457B will automatically enter init mode and be reactivated. Note: Data Sheet The overtemperature detection of the LIN transmitter and the voltage regulator are working independently. Therefore either only the LIN transmitter or only the voltage regulator or both can be switched off, depending on the circumstance. An example of only LIN transmitter overtemperature could be bus short-circuit or severe electromagnetical injection. 18 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator General product characteristics 5 General product characteristics 5.1 Absolute maximum ratings Table 3 Absolute maximum ratings voltages, currents and temperatures1) All voltages with respect to ground; positive current flowing into pin; unless otherwise specified Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Voltage Supply input voltage VS -0.3 – 45 V LIN Spec 2.2A (Par. 11) P_5.1.1 Bus input voltage VBUS -27 – 40 V – P_5.1.2 Logic voltages at EN and TxD Vlogic,in -0.3 – 7.0 V – P_5.1.3 Logic voltages at RxD and NRST Vlogic,out -0.3 – VCC + 0.3 V – P_5.1.4 Voltage regulator output VCC -0.3 – 7.0 V – P_5.1.5 Output current at RxD IRxD -15 – 15 mA – P_5.1.6 Output current at NRST INRST – – 10 mA – P_5.1.7 Junction temperature Tj -40 – 150 °C – P_5.1.8 Storage temperature Ts -55 – 150 °C – P_5.1.9 Electrostatic discharge voltage at VS and BUS vs. GND VESD -8 – 8 kV Human body model (100 pF via 1.5 kΩ)2) P_5.1.10 Electrostatic discharge voltage all other pins VESD -2 – 2 kV Human body model (100 pF via 1.5 kΩ)2) P_5.1.11 Electrostatic discharge voltage corner pins VESD -750 – 750 V Charged device model3) P_5.1.12 Electrostatic discharge voltage at all other pins VESD -500 – 500 V Charged device model3) P_5.1.13 Currents Temperature ESD susceptibility 1) Not subject to production test, specified by design. 2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF). 3) ESD susceptibility, charged device model “CDM” EIA / JESD 22-C101 or ESDA STM5.3.1. Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as ‘outside’ normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 19 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator General product characteristics 5.2 Table 4 Functional range Operating range Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition Number Supply voltage range for normal VS(nor) operation 5.5 – 28 V LIN Spec 2.2A Param. 10 P_5.2.12 Extended Supply Voltage Range VS(ext) for Operation 3.0 – 40 V Parameter deviations P_5.2.22 possible 1.0 – – µF 1)3) P_5.2.3 P_5.2.4 P_5.2.5 Supply voltage Stability requirement on VCC Output capacitor range Output capacitor ESR CVCC ESR(CVCC) – – 5.0 Ω 2)3) – 150 °C 3) Thermal parameter Junction temperature Tj -40 1) The minimum output capacitance requirement is applicable for a worst case capacitance tolerance of 30%. 2) Relevant ESR value at f = 10 kHz. 3) Not subject to production test, specified by design. Note: Data Sheet Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. 20 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator General product characteristics 5.3 Thermal characteristics Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, please visit www.jedec.org. Table 5 Thermal resistance1) Parameter Symbol Values Min. Typ. Max. Unit Note or Test Condition 130 – K/W 2) 60 – K/W 2) Number Thermal resistance, PG-DSO-8 package version Junction to ambient RthJA – P_5.3.1 Thermal resistance, PG-TSON-8 package version Junction to ambient RthJA Junction to ambient – – Junction to ambient 190 – P_5.3.2 K/W Footprint only 3) 2 P_5.3.5 – 70 – K/W 300 mm heatsink on PCB3) P_5.3.6 Thermal shutdown temperature TJSD 160 180 200 °C TJSD increasing P_5.3.3 Thermal shutdown hysteresis – 10 – K TJSD decreasing P_5.3.4 Thermal shutdown junction temperature ΔT 1) Not subject to production test, specified by design. 2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (IC+package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 2 inner copper layers (2 × 70 μm Cu, 2 × 35 μm Cu). Where applicable a thermal via array under the exposed pad contacted to the first inner copper layer. 3) Specified RthJA value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board; The product (IC+package) was simulated on a 76.2 × 114.3 × 1.5 mm3 board with 1 inner copper layer (1 × 70 μm Cu). Data Sheet 21 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Electrical characteristics 6 Electrical characteristics 6.1 Functional device characteristics Table 6 Electrical characteristics 5.5 V < VS < 28 V; RLIN = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Current Consumption Current consumption at VS, transmitter in recessive state IS,rec 0.1 0.3 0.7 mA ICC = 50 µA; without RLIN; TxD = “high”; VBUS = VS P_6.1.1 IS,dom Current consumption at VS, transmitter in dominate state 0.1 1.0 3.0 mA ICC = 50 µA; without RLIN; TxD = “low”; VBUS = 0 V P_6.1.2 Current consumption at VS, dominate state IS,dom_max 70 71 73 mA ICC = 70 mA; without RLIN; TxD = “low”; VBUS = 0 V P_6.1.3 Current consumption at VS in standby mode IS,standby = IS - ICC IS,standby – 20 40 µA Standby mode; ICC = 50 µA; VS = VBUS = 13.5 V; P_6.1.4 Current consumption at VS in sleep mode IS,Sleep – 7 16 µA Sleep mode; VS = 13.5 V; VBUS = VS; VCC = 0 V P_6.1.5 Current consumption at VS in sleep mode. BUS shorted to GND IS,SC_GND 250 – 800 µA Sleep Mode; VS = 13.5 V; VBUS = 0 V; VCC = 0 V P_6.1.6 VS,PON – – 3.0 V – P_6.1.7 Undervoltage threshold, VS on VS,UV,ON 4.7 5.15 5.5 V Rising edge P_6.1.8 Undervoltage threshold, VS off VS,UV,OFF 4.4 4.85 5.2 V Falling edge P_6.1.9 P_6.1.10 Power-up and power-down Power-on reset level, VS on Undervoltage hysteresis on VS VS,UV,hys VS,UV,hys = VS,UV,ON - VS,UV,OFF 200 300 – mV 2) Undervoltage blanking time tBLANK,UV – 10 – µs 2) P_6.1.11 “High” level input voltage VEN,ON 2 – – V – P_6.1.12 “Low” level input voltage VEN,OFF – – 0.8 V – P_6.1.13 Input hysteresis VEN,hys 50 200 – mV – P_6.1.14 Pull-down resistance REN 15 30 60 kΩ – P_6.1.15 Delay time for mode change, EN → “low” tMODE,LOW 10 – 50 µs – P_6.1.16 Delay time for mode change, EN → “high” tMODE,HIGH – – 5 µs 2) P_6.1.17 Initialization watchdog time tInit_WD 200 – 1000 ms – P_6.1.18 Enable input: EN Data Sheet 22 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Electrical characteristics Table 6 Electrical characteristics (cont’d) 5.5 V < VS < 28 V; RLIN = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Ci_EN – 5 – pF 2) P_6.1.83 “High” level leakage current INRST,H – – 5 µA 2) P_6.1.19 “Low” level output voltage VNRST – – 0.4 V INRST = 1.5 mA; VCC > 1 V; P_6.1.20 Reset time tRST 4 10 16 ms – P_6.1.21 Internal pull-up resistance RNRST 5 10 20 kΩ – P_6.1.22 Input capacitance Reset Output: NRST Voltage regulator output, 5 V versions (TLE8457Axx): VCC Output voltage VCC 4.9 5.0 5.1 V 0.05 mA < ICC < 70 mA; 5.8 V < VS < 28 V P_6.1.23 Output voltage drop VDR = VS - VCC 3) VDR – 250 650 mV ICC < 70 mA P_6.1.24 Output voltage drop, 50 mA VDR = VS - VCC VDR,50 – 180 480 mV ICC < 50 mA P_6.1.25 Output voltage drop, 20 mA VDR = VS - VCC VDR,20 – 80 200 mV ICC < 20 mA P_6.1.26 Output current limitation ICC,lim -150 – -70 mA 0 V < VCC < 4.8 V P_6.1.27 Load regulation ∆VCC,lo – 25 50 mV 0.05 mA < ICC < 70 mA; VS = 13.5 V P_6.1.28 Line regulation ∆VCC,li – 25 50 mV ICC = 1 mA; 5.8 V < VS < 28 V P_6.1.29 Power supply ripple rejection PSRR 50 60 – dB 2) ICC = 50 mA; f = 100 Hz; Vr = 0.5 Vpp; VS = 13.5 V P_6.1.30 Undervoltage reset threshold VCC,UV 4.27 4.4 4.5 V VCC decreasing P_6.1.31 Undervoltage reset hysteresis VCC,UV,hy 50 100 – mV – P_6.1.32 µs 2) VCC = 3.5 V CNRST = 20 pF P_6.1.33 Undervoltage detection time tdet,RST 1 – 20 Voltage regulator output, 3.3 V versions (TLE8457Bxx): VCC Output voltage VCC 3.234 3.300 3.366 V 0.05 mA < ICC < 70 mA; 4.066 V < VS < 28 V P_6.1.34 Output voltage drop VDR = VS - VCC VDR – 380 770 mV ICC < 70 mA P_6.1.35 Output voltage drop, 50 mA VDR = VS - VCC VDR,50 – 280 550 mV ICC < 50 mA P_6.1.36 Output voltage drop, 20 mA VDR = VS - VCC VDR,20 – 110 220 mV ICC < 20 mA P_6.1.37 Output current limitation ICC,lim -150 – -70 mA 0 V < VCC < 3.1 V P_6.1.38 Data Sheet 23 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Electrical characteristics Table 6 Electrical characteristics (cont’d) 5.5 V < VS < 28 V; RLIN = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Load regulation ∆VCC,lo – 25 50 mV 0.05 mA < ICC < 70 mA; VS = 13.5 V P_6.1.39 Line regulation ∆VCC,li – 25 50 mV ICC = 1 mA; 4.066 V < VS < 28 V P_6.1.40 Power supply ripple rejection PSRR 50 60 – dB 2) ICC = 50 mA; f = 100 Hz; Vr = 0.5 Vpp; VS = 13.5 V P_6.1.41 Undervoltage reset threshold VCC,UV 2.82 2.90 2.96 V VCC decreasing P_6.1.42 Undervoltage reset hysteresis VCC,UV,hy 33 66 – mV – P_6.1.43 20 µs 2) VCC = 2.31 V CNRST = 20 pF P_6.1.44 tdet,RST 1 “High” level output voltage VRxD,H 0.8 – × VCC – V IRxD = -2 mA; VBUS = VS P_6.1.45 “Low” level output voltage VRxD,L – 0.2 V × VCC IRxD = 2 mA; VBUS = 0 V P_6.1.46 “High” level input voltage range VTxD,H 0.7 – × VCC – V Recessive state P_6.1.47 “Low” level input voltage range VTxD,L – – 0.3 V × VCC Dominant state P_6.1.48 Input hysteresis VTxD,hys 200 – – mV – P_6.1.49 Pull-up resistance RTxD 15 30 60 kΩ – P_6.1.50 TxD time-out tTxD 8 18 28 ms – P_6.1.51 P_6.1.52 Undervoltage detection time – Receiver output: RxD – Transmission input: TxD TxD recessive release time tto,rec – – 10 µs 2) Input capacitance Ci_TxD – 5 – pF 2) P_6.1.93 Receiver threshold voltage, recessive to dominant edge Vth_dom 0.4 × VS 0.44 × VS – V VS < 18 V; P_6.1.53 Receiver dominant state VBUSdom -27 – 0.4 × VS V LIN Spec 2.2A (Par. 17)4) P_6.1.54 Receiver threshold voltage, dominant to recessive edge Vth_rec – 0.56 × VS 0.6 × VS V VS < 18 V; P_6.1.55 Receiver recessive state VBUSrec 0.6 × VS – 40 V LIN Spec 2.2A (Par. 18)5) P_6.1.56 Receiver center voltage VBUS_CNT 0.475 0.5 × VS × VS 0.525 V × VS LIN Spec 2.2A (Par. 19)6) VS < 18V; P_6.1.57 BUS receiver: BUS Data Sheet 24 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Electrical characteristics Table 6 Electrical characteristics (cont’d) 5.5 V < VS < 28 V; RLIN = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Receiver hysteresis VHYS 0.07 × VS 0.12 × VS 0.175 V × VS LIN Spec 2.2A (Par. 20)7) VS < 18 V; P_6.1.58 Wake-up threshold voltage VBUS,wk 0.4 × VS 0.5 × VS 0.6 × VS V – P_6.1.59 BUS recessive output voltage VBUS,ro 0.8 × VS – VS V TxD = “high”; Open load P_6.1.60 BUS short-circuit current IBUS_LIM 40 85 125 mA VBUS = 18 V; LIN Spec 2.2A (Par. 12); P_6.1.61 Leakage current IBUS_NO_GND -1 -0.5 – mA VS = 0 V; VBUS = -12 V; LIN Spec 2.2A (Par. 15) P_6.1.62 Leakage current IBUS_NO_BAT 1 5 µA VS = 0 V; VBUS = 18 V; LIN Spec 2.2A (Par. 16) P_6.1.63 Leakage current IBUS_PAS_dom -1 -0.5 – mA VS = 18 V; VBUS = 0 V; LIN Spec 2.2A (Par. 13) P_6.1.64 Leakage current IBUS_PAS_rec – 1 5 µA VS = 8 V; VBUS = 18 V; Driver stage “off”; TxD = “high”; LIN Spec 2.2A (Par. 14) P_6.1.65 Forward voltage serial diode VSerDiode 0.4 – 1.0 V ISerDiode = - 75 µA LIN Spec 2.2A (Par.21) P_6.1.66 BUS pull-up resistance Rslave 20 40 60 kΩ LIN Spec 2.2A (Par. 26) P_6.1.67 BUS dominant output voltage VBUS,do maximum load – 1.4 V VTxD = 0 V; RLIN = 500 Ω; VS = 5.5 V; P_6.1.68 – BUS dominant output voltage VBUS,do maximum load – 2.0 V VTxD = 0 V; RLIN = 500 Ω; VS = 18 V; P_6.1.98 – – 30 pF 2) P_6.1.95 – 150 µs – P_6.1.69 LIN Spec 2.2A (Par. 31) CRxD = 20 pF P_6.1.70 LIN Spec 2.2A (Par. 32) trx_sym = trx_pdf - trx_pdr; CRxD = 20 pF P_6.1.71 BUS transmitter: BUS Input capacitance – Ci_BUS Dynamic transceiver characteristics: BUS Dominant time for bus wakeup tWK,bus 30 Propagation delay: LIN bus dominant to RxD “low” LIN bus recessive to RxD “high” trx_pdft 1 3.5 6 µs trx_pdr 1 3.5 6 µs Receiver delay symmetry trx_sym -2 – 2 µs Data Sheet 25 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Electrical characteristics Table 6 Electrical characteristics (cont’d) 5.5 V < VS < 28 V; RLIN = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Duty cycle D1 (for worst case at 20 kBit/s) D1 0.396 – – Duty cycle 1 8) THRec(max) = 0.744 × VS; THDom(max) = 0.581 × VS; VS = 7.0 … 18 V; tbit = 50 µs; LIN Spec 2.2A (Par. 27) P_6.1.72 D1 0.396 – – Duty cycle 1 8) THRec(max) = 0.760 × VS; THDom(max) = 0.593 × VS; 5.5 V < VS < 7.0 V; tbit = 50 µs P_6.1.73 D2 – – 0.581 Duty cycle 2 8) THRec(min) = 0.422 × VS; THDom(min) = 0.284 × VS; VS = 7.6 … 18 V; tbit = 50 µs; LIN Spec 2.2A (Par. 28) P_6.1.74 D2 – – 0.581 Duty cycle 2 8) THRec(min) = 0.41 × VS; THDom(min) = 0.275 × VS; 6.1 V < VS < 7.6 V; tbit = 50 µs; P_6.1.75 D3 0.417 – – Duty cycle 3 8) THRec(max) = 0.778 × VS; THDom(max) = 0.616 × VS; VS = 7.0 … 18 V; tbit = 96 µs; LIN Spec 2.2A (Par. 29) P_6.1.76 D3 0.417 – – Duty cycle 3 8) THRec(max) = 0.797 × VS; THDom(max) = 0.630 × VS; 5.5 V < VS < 7.0 V; tbit = 96 µs; P_6.1.77 D1 = tbus_rec(min) / 2 × tbit Duty cycle D1 VS supply 5.5 V to 7.0 V (for worst case at 20 kBit/s) D1 = tbus_rec(min) / 2 × tbit Duty cycle D2 (for worst case at 20 kBit/s) D2 = tbus_rec(max) / 2 × tbit Duty cycle D2 VS supply 6.1 V to 7.6 V (for worst case at 20 kBit/s) D2 = tbus_rec(max) / 2 × tbit Duty cycle D3 VS supply 7.0 V to 18.0 V (for worst case at 10.4 kBit/s) D3 = tbus_rec(min) / 2 × tbit Duty cycle D3 VS supply 5.5 V to 7.0 V (for worst case at 10.4 kBit/s) D3 = tbus_rec(min) / 2 × tbit Data Sheet 26 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Electrical characteristics Table 6 Electrical characteristics (cont’d) 5.5 V < VS < 28 V; RLIN = 500 Ω; -40°C < Tj < 150°C; all voltages with respect to ground; positive current flowing into pin1); unless otherwise specified. Parameter Symbol Values Unit Note or Test Condition Number Min. Typ. Max. Duty cycle D4 VS supply 7.6 V to 18.0 V (for worst case at 10.4 kBit/s) D4 – – 0.590 Duty cycle 4 8) THRec(min) = 0.389 × VS; THDom(min) = 0.251 × VS; VS = 7.6 … 18 V; tbit = 96 µs; LIN Spec 2.2A (Par. 30) P_6.1.78 D4 – – 0.590 Duty cycle 4 8) THRec(min) = 0.378 × VS; THDom(min) = 0.242 × VS; 6.1 V < VS < 7.6 V; tbit = 96 µs; P_6.1.79 D4 = tbus_rec(max) / 2 × tbit Duty cycle D4 VS supply 6.1 V to 7.6 V (for worst case at 10.4 kBit/s) D4 = tbus_rec(max) / 2 × tbit 1) 2) 3) 4) 5) 6) 7) 8) Load current on VCC specified positive direction out of pin. Not subject to production test, specified by design. Measured when the output voltage VCC has dropped 100 mV from the nominal value obtained at VS = 13.5 V. Minimum limit specified by design. Maximum limit specified by design. VBUS_CNT = (Vth_dom + Vth rec) / 2. VHYS = Vth_rec - Vth_dom. BUS load according to LIN Spec 2.2A: Load 1 = 1 nF / 1 kΩ = CBUS / RLIN Load 2 = 6.8 nF / 660 Ω = CBUS / RLIN Load 3 = 10 nF / 500 Ω = CBUS / RLIN Data Sheet 27 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Electrical characteristics 6.2 Diagrams VCC VS CVCC 100 nF NRST CNRST EN RLIN TxD BUS RxD CBus CRxD GND TLE8457_TEST_CIRCUIT_A Figure 16 Simplified test circuit for dynamic transceiver characteristics tBit tBit tBit TxD (input to transmitting node) tBus_dom(max) tBus_rec(min) THRec(max) Thresholds of receiving node 1 THDom(max) VSUP (Transceiver supply of transmitting node) THRec(min) Thresholds of receiving node 2 THDom(min) tBus_dom(min) tBus_rec(max) RxD (output of receiving node 1) trx_pdf(1) trx_pdr(1) RxD (output of receiving node 2) trx_pdr(2) trx_pdf(2) Duty Cycle D1, D3 = tBUS_rec(min) / (2 x tBIT) Duty Cycle D2, D4 = tBUS_rec(max) / (2 x tBIT) Figure 17 Data Sheet TLE8457_LIN_TIMING_DIAGRAM_A Timing diagram for dynamic transceiver characteristics 28 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Application information 7 Application information Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device. 7.1 Application example VBat 5 V or 3.3V 22μF VQ VI 100nF TLE42xx LIN BUS GND VCC 1μF 100nF INH 2.4kΩ Master Node 7 VS INH 8 Pull-Up to MCU Supply Micro Controller e.g XC22xx 100nF TLE7258 1 RxD 1kΩ TxD 6 EN BUS 4 2 GND 1nF GND 5 ECU_1 1 22μF 100nF VS VCC 8 1μF VCC 100nF TLE8457 Slave Node 5 RxD 7 Micro Controller e.g XC22xx NRST TxD 4 BUS 220pF EN GND 6 2 GND 3 ECU_X Figure 18 Data Sheet Simplified application circuit 29 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Application information 7.2 ESD robustness according to IEC61000-4-2 Test for ESD robustness according to IEC61000-4-2 (150 pF, 330 Ω) have been performed. The results and test conditions are available in a separate test report. Table 7 ESD robustness according to IEC61000-4-2 Performed Test Results Electrostatic discharge voltage at pin VS, BUS versus GND Electrostatic discharge voltage at pin VS, BUS versus GND +8 -8 Unit Remarks kV 1) kV 1) Positive pulse Negative pulse 1) ESD susceptibility according LIN EMC 1.3 Test Specification, Section 4.3. (IEC 61000-4-2) - Tested by external test house. 7.3 Transient robustness according to ISO 7637-2 Test for transient robustness according to ISO 7637-2 have been performed. The results and test conditions are available in a separate test report. Table 8 Automotive transient robustness according to ISO 7637-2 Performed Test Results Unit Pulse 1 -100 V Pulse 2 +75 V Pulse 3a -150 V Pulse 3b +100 V 7.4 LIN physical layer compatibility As the LIN physical layer is independent from higher LIN layers (for example LIN protocol layer), all nodes with a LIN physical layer corresponding to this revision can be mixed with LIN physical layer nodes, which are according to older revisions (LIN 1.0, LIN 1.1, LIN 1.2, LIN 1.3, LIN 2.0, LIN 2.1 and LIN 2.2), without any restrictions. Data Sheet 30 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Package information Package information 0.2 8 5 1 4 5 -0.2 1) M 0.19 +0.06 B 0.1 2) 0.41+0.1 -0.06 C 8 MAX. 1.27 0.35 x 45˚ 4 -0.2 1) 1.75 MAX. 0.175 ±0.07 (1.45) 8 0.64 ±0.25 6 ±0.2 A B 8x 0.2 M C 8x A Index Marking 1) Does not include plastic or metal protrusion of 0.15 max. per side 2) Lead width can be 0.61 max. in dambar area GPS01181 0 +0.05 1±0.1 PG-DSO-8 (Plastic dual small outline PG-DSO-8)1) 0.2 ±0.1 Pin 1 Marking 1.63 ±0.1 0.25 ±0.1 3 ±0.1 0.05 Z 0.65 ±0.1 0.38 ±0.1 1.58 ±0.1 0.3 ±0.1 0.4 ±0.1 3 ±0.1 2.4 ±0.1 0.81 ±0.1 0.1 ±0.1 0.56 ±0.1 Figure 19 Pin 1 Marking 0.3 ±0.1 PG-TSON-8-1-PO V01 Z (4:1) 0.07 MIN. Figure 20 PG-TSON-8 (Plastic thin small outline nonleaded PG-TSON-8)1) Green Product (RoHS compliant) To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further information on packages https://www.infineon.com/packages 1) Dimensions in mm Data Sheet 31 Rev. 1.1 2018-10-15 TLE8457A / TLE8457B LIN Transceiver with integrated voltage regulator Revision history 9 Revision history Revision Date Changes 1.1 2018-10-15 Data Sheet updated: 1.0 Data Sheet 2016-08-05 • Updated to new layout style • Editorial changes Data Sheet created 32 Rev. 1.1 2018-10-15 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-10-15 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com Document reference Z8F55801912 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLE8457BLEXUMA1 价格&库存

很抱歉,暂时无法提供与“TLE8457BLEXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货