TLE8458
LIN Transceiver with integrated Voltage Regulator
TLE8458G
TLE8458GV33
Data Sheet
Rev. 1.1, 2014-04-01
Automotive Power
TLE8458
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3
3.1
3.2
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4
4.1
4.2
4.3
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5
5.1
5.2
5.2.1
5.2.2
5.2.2.1
5.2.2.2
5.2.3
5.2.4
5.2.5
5.2.5.1
5.2.5.2
5.2.5.3
5.2.6
5.2.7
5.3
5.4
5.5
Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Operation Mode State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Description of Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Stand-By Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Normal Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Normal Slope Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Software Flash Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Sleep Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Wake-up Events in Sleep and Stop Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Bus Wake-up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Local Wake-up Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Mode Transition via EN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Power Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Over-Temperature Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Electrical Characteristics EN and WK Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Power Up, Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6
6.1
6.2
Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Description of Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Electrical Characteristics of the Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7
7.1
7.1.1
7.1.2
7.1.3
7.2
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Undervoltage Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TxD Time-Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LIN Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics of the LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
20
20
21
22
22
23
8
8.1
8.1.1
8.2
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
EMC Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Pin Compatibility to Stand-Alone LIN transceivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
27
28
28
28
9
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Data Sheet
2
6
6
7
7
Rev. 1.1 2014-04-01
LIN Transceiver with integrated Voltage Regulator
LIN-LDO
1
TLE8458
Overview
Features
•
LIN Transceiver compliant to LIN 2.1
•
5 V or 3.3 V Low Drop Voltage Regulator
•
50 mA output current capability
•
Normal, Stop, and Sleep modes
•
Wake-up via bus from Sleep Mode
•
Wake-up from Local WK pin
•
Very low quiescent current in Stop Mode
•
Very low quiescent current in Sleep Mode
•
Very high ESD Robustness ± 10 kV according IEC61000-4-2
•
Bus short to ground and VBat protection
•
Software Flash mode
•
Over-Temperature protection
•
Pin- and function compatible to single LIN Transceivers, like TLE7259-3GE
•
Green (RoHS compliant) product
•
AEC Qualified
PG-DSO-8-16
Description
The TLE8458G and TLE8458GV33 integrate a low drop voltage regulator and a LIN transceiver on one monolithic
circuit. The device is suitable to supply microcontrollers and driving a LIN bus at the same time. The TLE8458 is
pin compatible to stand-alone LIN transceivers like the TLE7259-3GE. The combination of a voltage regulator and
a LIN transceiver on one circuit decreases the quiescent current for a typical application to a value of 8 μA, while
the TLE8458 is still able to wake-up off a LIN bus signal or a signal change on the local wake-up input WK.
Compliant to all LIN standards and with a wide operational supply range, the TLE8458 can be used in all
automotive applications.
Based on the Infineon Smart Power Technology SPT®, the TLE8458 provides excellent ESD robustness together
with a very high electro-magnetic immunity (EMI). The TLE8458 reaches a very low level of electro-magnetic
emission (EME) within a broad frequency range. The TLE8458 family and the Infineon SPT® technology are AEC
qualified and tailored to withstand the harsh conditions in the automotive environment.
Type
Package
Marking
Note
TLE8458G
PG-DSO-8-16
8458G
VCC = 5 V
TLE8458GV33
PG-DSO-8-16
8458GV3
VCC = 3.3 V
Data Sheet
3
Rev. 1.1, 2014-04-01
TLE8458
Block Diagram
2
Block Diagram
8
VCC
Overtem perature
Shutdow n
Bandgap
R eference
+
1
-
VS
C harge
Pum p
7
Supply
RBUS
LIN
Output
Stage
6
D river
M ode
C ontrol
T em p.Protection
C urrent
Lim it
2
EN
R EN
T xD Input
4
TxD
T im eout
R TxD
R eceiver
F ilter
Vcc
1
W ake and Bus
C om parator
WK
F ilter
5
3
Figure 1
Data Sheet
RxD
GND
Block Diagram
4
Rev. 1.1, 2014-04-01
TLE8458
Pin Configuration
3
Pin Configuration
3.1
Pin Assignments
RxD
1
8
VC C
EN
2
7
VS
WK
3
6
LIN
TxD
4
5
GND
Figure 2
Pin Configuration
3.2
Pin Definitions and Functions
Table 1
Pin Definition
Pin
Symbol
Function
1
RxD
Receive Data Output;
Low in dominant state, active low after a Wake-up event on BUS or WK pin.
2
EN
Enable Input;
Integrated pull-down resistor, device set to normal operation mode when HIGH.
3
WK
Wake-up Input;
Active LOW, negative edge triggered, internal pull-up.
4
TxD
Transmit Data Input;
Integrated pull-down resistor, LOW in dominant state. Active LOW after Wake-up
via WK pin.
5
GND
Ground
6
LIN
Bus Output / Input;
LIN bus input / Output,
LOW in dominant state,
Internal termination and pull-up current source.
7
VS
Battery Supply Input
8
VCC
Output Voltage;
Decouple to GND with a capacitor CVcc ≥ 470 nF, ESR < 6 Ω at 10 kHz,
Active during Normal Mode, disabled in Sleep Mode.
Data Sheet
5
Rev. 1.1, 2014-04-01
TLE8458
General Product Characteristics
4
General Product Characteristics
4.1
Absolute Maximum Ratings
Table 2
Absolute Maximum Ratings 1)
All voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
-0.3
–
40
V
LIN2.1 Param 11 P_4.1.1
Input Voltage on LIN, WK pin versus VLIN,G
GND
-40
–
40
V
–
P_4.1.2
Logic Voltages at EN, TxD, RxD pin VL,max
-0.3
–
5.5
V
–
P_4.1.3
Output Voltage at VCC pin
VCC
-0.3
–
5.5
V
Static
P_4.1.4
Junction Temperature
Tj
-40
–
150
°C
–
P_4.1.5
Storage Temperature
Tstg
-55
–
150
°C
–
P_4.1.6
–
2
kV
HBM2)
P_4.1.7
2)
P_4.1.8
P_4.1.9
Voltages
Supply Voltage on VS pin
VS
Temperatures
ESD Resistivity
ESD all pins
ESD VS, WK, LIN versus GND
VESD,HBM -2
VESD,HBM -8
ESD Resistivity all pins versus GND VESD,CDM -750
–
8
kV
HBM
–
750
V
CDM3)
1) Not subject to production test; specified by design.
2) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100pF)
3) ESD susceptibility, Charged Device Model “CDM” EIA / JESD 22-C101 or ESDA STM5.3.1
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Data Sheet
6
Rev. 1.1, 2014-04-01
TLE8458
General Product Characteristics
4.2
Functional Range
Table 3
Functional Range
Symbol
Parameter
Values
Min.
Typ.
Max.
Unit
Note / Test Condition Number
Extended Supply Range
VS(EXT)
5.5
–
40
V
Parameter deviations
possible
P_4.2.1
Supply Voltage for Normal
Operation
VS(Nor)
7
–
27
V
LIN 2.1 Param. 11
P_4.2.3
Junction Temperature
Tj
-40
–
150
°C
–
P_4.2.2
Note: Within the functional range, the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3
Thermal Characteristics
Table 4
Thermal Resistance
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
P_4.3.1
Thermal Resistance
Junction to Case
PG-DSO-8-16
RthJC,G
–
55
–
K/W
1)
Junction to Ambient
PG-DSO-8-16
RthJA,G
–
120
–
K/W
1) 2)
P_4.3.2
150
–
200
°C
3)
P_4.3.5
P_4.3.6
,
Thermal Shutdown Junction Temperature
VCC Shutdown Temperature
TSD,Vcc
VCC Thermal Shutdown Hysteresis
∆TSD,Vcc –
35
–
K
3)
LIN Shutdown Temperature
TSD,LIN
–
200
°C
3)
P_4.3.7
K
3)
P_4.3.8
LIN Thermal Shutdown Hysteresis
∆TSD,LIN
150
–
10
–
1) Not subject to production test. Simulated thermal resistance
2) The RthJA values are according to Jedec JESD51-2,-7 at natural convection on 2s2p board for 1 W.
Package was simulated on a 76.2 × 114.3 × 1.5 mm³ board with 2 inner copper layers (70 µm thick).
3) Not subject to production test, specified by design.
Data Sheet
7
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5
Mode Control
5.1
Operation Mode State Diagram
Start Up
Power Up
Wake-Up Source indication on the
Pins RxD, TxD in Stand-By Mode
RxD TxD
0
0
11)
0
1
0
1
11)
Standby Mode
Vcc on
BUS off
Wake Source
WK pin
LIN Bus
Power-up
-
1)
weak pull-down, to see high signal a
external pull-up resistor is required
EN
Go to
Normal
trmode
EN
Normal Operation Mode
Normal Slope Mode
EN
TxD
Vcc on
BUS on
EN
Software
Flash Mode
Vcc on
BUS on
EN
EN
TxD
Go to
Sleep
tmode
EN
TxD
Go to
Stop
tmode
EN
EN
TxD
Sleep Mode
Vcc off
BUS off
EN
Figure 3
Data Sheet
TxD
Go to
Sleep
tmode
WK pin or
Wake Up BUS
Stop Mode
TxD
Vcc on
BUS off
EN
WK pin or
Wake Up BUS
Operation Mode State Diagram
8
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5.2
Description of Mode Control
The TLE8458 has 4 major operation modes:
•
Normal Operation Mode
•
Stand-By Mode
•
Sleep Mode
•
Stop Mode
The Normal Operation mode contains 2 sub-operation modes, which differentiate by the slew rate control of the
LIN Bus signal (see Figure 3).
Sub-operation modes with different slew rates on the BUS pin:
•
Normal Slope Mode, for data transmission rates up to 20 kBaud
•
Software Flash mode, for programming of the external microcontroller
The operation mode of the TLE8458 is selected by the EN pin and the TxD pin. (see Table 5, see Figure 4).
Table 5
Operation Modes
Mode
EN
TxD
RxD
VCC
LIN Bus
Termination
Comments
Normal Operation HIGH
Mode
LOW
LOW
HIGH1) HIGH
ON
30 kΩ
(typical)
TxD drives the data to the bus,
RxD indicates the data on the
bus.
Stand-By Mode
LOW
LOW
LOW
HIGH2) HIGH
ON
30 kΩ
(typical)
In Stand-By Mode the RxD and
TxD pins indicate the Wake-up
source
Sleep Mode
LOW
HIGH
Float
OFF
High
Impedance
For Sleep Mode TxD needs to
be HIGH for the time tmode1
Stop Mode
LOW
LOW
Float
ON
High
Impedance
For Stop Mode TxD needs to be
LOW for the time tmode1
1) The TxD pin acts as an input
2) The TxD pin acts as an output and indicates the Wake-up source.The TxD input needs an external termination to indicate
a HIGH or a LOW signal. The external termination could be a pull-up resistor or an active microcontroller output.
Data Sheet
9
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
Stand-By Mode to Normal Operation Mode
tMode_NO
EN
ttorec
TxD
Don’t Care
Data Transmission
Stand-by Mode
Normal Operation Mode
Normal Operation Mode1) to Sleep Mode
tmode1
EN
TxD
Data Transmission
Don’t Care
Normal Operation Mode1)
Sleep Mode
Normal Operation Mode1) to Stop Mode
EN
tmode2
tmode3
TxD
tmode1
Data
Transmission
Normal Operation Mode1)
Stop Mode
Stop Mode to Sleep Mode
EN
TxD
tmode1
Stop Mode
1)
Figure 4
Data Sheet
Don’t Care
Sleep Mode
Normal Operation Mode can be either Normal Slope Mode or Software Flash Mode
Mode Transition
10
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5.2.1
Stand-By Mode
The Stand-By Mode is an idle operation mode, which disables the communication to the LIN bus. The TLE8458
enters automatically the Stand-By Mode after a Power-up. By setting the EN pin to HIGH, the operation mode
changes to Normal Operation Mode, regardless of the signal applied to the TxD pin.
The TLE8458 can be transferred to Stand-By mode by the following options:
•
After Power-up on the supply VS, the TLE8458 starts in Stand-By Mode.
•
From Sleep Mode or from Stop Mode the TLE8458 changes to Stand-By Mode if a Wake-up event occurs on
the LIN bus.
•
From Sleep Mode or from Stop Mode the TLE8458 changes to Stand-By Mode if a Wake-up event occurs on
the local Wake input WK.
•
In case of an undervoltage event on VS, the TLE8458 changes to Stand-By Mode regardless of selected
operation mode.
In Stand-By mode the external power supply VCC is active and LIN bus output stage is disabled. The TLE8458
provides the following functionality in Stand-By Mode:
•
The power supply VCC is active and functional.
•
The LIN transceiver output stage is disabled, no communication to the LIN bus is possible.
•
The LIN transceiver bus input receiver is disabled.
•
The LIN bus is terminated by the 30 kΩ.
•
Both digital pins, the TxD pin and the RxD pin act as output pins and indicate a Wake-up or a Power-up event2).
•
The EN input pin is active. By setting the EN pin to HIGH the TLE8458 changes the operation mode to Normal
Operation Mode (see Figure 3).
•
The Wake-up logic is disabled. Wake-up events don’t trigger an operation mode change.
Table 6
Logic table for Wake-up monitoring1)
Power-up
Wake-up event
RxD
TxD2)
Comments
Yes
No
HIGH
LOW
Power Up event
No
Via LIN Bus
LOW
HIGH
Wake-up via LIN Bus
No
Via WK Pin
LOW
LOW
Wake-up via local Wake pin WK
1) The Wake-up monitor is only active in Stand-By Mode
2) The TxD input needs an external termination to indicate a “High” or a “Low” signal. The external termination could be a pullup resistor or an active microcontroller output.
5.2.2
Normal Operation Mode
The TLE8458 enters the Normal Operation Mode after the microcontroller sets EN to “High” (see Figure 4). In
Normal Operation mode the LIN bus receiver and the LIN bus transmitter are active. The TLE8458 converts the
logical HIGH and LOW signals on the TxD input pin to DOMINANT and RECESSIVE signals to the LIN bus.
Simultaneously the input receiver of the TLE8458 converts the DOMINANT and RECESSIVE signals on the LIN bus
to HIGH and LOW signals to the RxD output. In Normal Operation mode the output voltage VCC is active and the bus
termination is set to 30 kΩ.
Normal Slope Mode and the Software Flash Mode are Normal Operation Modes. In these two sub-modes the
behavior of the power supply VCC and the bus termination are the same. Per default the TLE8458 always enters
into Normal Slope Mode, either from Sleep Mode, Stop Mode or from Stand-By Mode. The Software Flash Mode
can only be entered from Normal Slope mode.
Data Sheet
11
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
In order to avoid any bus disturbance during a mode change, the output stage of the TLE8458 is disabled and set
to recessive state during the mode change procedure. To release the TLE8458 for data communication on the LIN
bus, the TxD pin needs to be set to HIGH for the time ttorec after the operation mode change.
5.2.2.1
Normal Slope Mode
In Normal Slope Mode the maximum data transmission rate of the LIN transceiver is limited by the slope control
mechanism of LIN output signal. The limitation of the slew rate of the LIN output signal results in an optimized
radiated emission fulfilling automotive EMC requirements.
The data transmission rate of the TLE8458G and the TLE8458GV33 is limited to 20 kBaud in Normal Operation
Mode and the devices are compliant to the specification LIN2.1.
5.2.2.2
Software Flash Mode
Software Flash Mode is a Normal Operation Mode and it is possible to transmit data to the LIN bus and receive
data from the LIN bus. The slope control mechanism of the LIN transmitter output stage is disabled and therefore
it is possible to reach higher data transmission rates, disregarding the EMC limitation of the LIN network. The
Software Flash Mode can be used for programming the external microcontroller via the LIN bus, got example
during the production flow of the ECU.
The Software Flash Mode can only be entered from Normal Slope Mode (see Figure 3). By setting the EN pin to
low for the time tfl1 and by generating a falling and a rising edge at the TxD pin with the time tfl2 and tfl3 during the
low phase of the EN pin, the TLE8458 changes to the Software Flash Mode (see Figure 5). Vice versa, the
TLE8458 changes from Software Flash Mode to Normal Slope Mode by applying the same sequence to the EN
pin and the TxD pin.
In any case, regardless if the device is in Normal Slope Mode or in Software Flash Mode, a LOW signal on the EN
pin changes the operation mode to Sleep Mode or Stop Mode. The slope control mechanism will be activated,
when the device changes to the Normal Operation Mode again.
Software
Flash Mode
Normal
Mode
tfl1
EN
TxD
Normal
Mode
tfl2
tfl3
tfl1
tfl2
tfl3
tfl3
tfl3
TO20070515.vsd
Figure 5
Data Sheet
Software Flash Mode
12
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5.2.3
Stop Mode
The Stop Mode is a Low Power Mode, meaning the quiescent current of the TLE8458 is reduced to a minimum,
while the device is still able to recognized Wake-up events. The following functions are available in Stop Mode:
•
The power supply VCC is active and functional.
•
The LIN transceiver output stage is disabled, no communication to the LIN bus is possible.
•
The LIN transceiver input receiver is disabled.
•
The internal LIN bus termination is switched off.
•
The TxD input and the RxD output is inactive.
•
The EN input is active. A HIGH signal on the EN pin changes the operation mode to Normal Operation Mode.
•
The LIN bus Wake-up receiver is active, a Wake-up event on the LIN bus changes the operation mode to
Stand-By Mode.
•
The wake input WK is active, a Wake-up event on the WK pin changes the operation mode to Stand-By Mode.
Entering Stop Mode is only possible from the Normal Operation Mode, regardless if the device is in Normal Slope
Mode or Software Flash Mode. Setting the signal on the EN pin to LOW, followed by a LOW signal on the TxD pin
for the time tMode1 changes the operation mode to Stop Mode (see Figure 4).
5.2.4
Sleep Mode
The Sleep Mode is a Low Power Mode as well, in comparison to the Stop Mode, the quiescent current of the
TLE8458 is even further reduced. In Sleep Mode the TLE8458 is able as well to recognized Wake-up events.
The Wake-up behavior in Sleep Mode is the same as in Stop Mode. The only difference between Sleep Mode and
Stop Mode is, that in Stop Mode the output voltage VCC is active, in Sleep Mode the output voltage VCC is disabled.
Sleep Mode can be entered from Normal Operation Mode by setting the EN pin to LOW and simultaneously setting
the TxD pin to HIGH for the time tMode1 (see Figure 4). The Sleep Mode can be also entered from Stop Mode, by
setting the signal on the TxD pin to HIGH for the time tMode1.
5.2.5
Wake-up Events in Sleep and Stop Mode
A Wake-up event in Sleep Mode or Stop Mode changes the operation mode of the TLE8458 to Stand-By Mode.
There are 3 different options to Wake-up the TLE8458 from Sleep Mode or Stop Mode:
•
A bus Wake-up event, caused by a message on the LIN bus.
•
A local Wake-up event, caused by a logical LOW signal on the WK pin.
•
A signal change to logical HIGH on the EN pin.
Data Sheet
13
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5.2.5.1
Bus Wake-up Event
A falling edge on the LIN bus, followed by a dominant bus signal for the time t > twk,Bus causes a bus Wake-up or
also called remote Wake-up. The mode change becomes active with the following rising edge on the LIN bus (see
Figure 6). In Stand-By Mode the Wake-up source is indicated by the TxD and RxD pins (see Table 6).
LIN BUS Signal
VBUS
VBUS,wk
VBUS,dom
tWK,Bus
Sleep Mode
Stand-By Mode
Stop Mode
Stand-By Mode
VCC
VCC
Note: In Sleep Mode the Output Voltage VCC is disabled and will be actived by
a mode change to Stand-By Mode. In Stop Mode the Output Voltage VCC is
active and remains active after the mode change to Stand-By Mode.
Figure 6
Bus Wake-up
5.2.5.2
Local Wake-up Event
A Wake-up via LOW signal on the pin WK is called local Wake-up. A falling edge of the signal on the pin WK
followed by a LOW signal for the time t > tWK change the operation mode from Sleep Mode or Stop Mode to StandBy Mode. In the case the LOW signal is shorter then the time t < tWk, the Wake-up is ignored and the TLE8458
remains in Sleep Mode or Stop Mode. In Stand-By Mode the Wake-up source is indicated by the TxD and RxD
pins (see Table 6). In order to avoid unintended Wake-up´s via the local wake pin Wk, the Wk pin should get
connected by a serial resistor to the power supply Vs (see Figure 15). Before the TLE8458 enters into Sleep Mode
it is required to set the Voltage on the WK pin to the Vs power supply.
Data Sheet
14
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
WK Signal
VWK
VWK,L
tWK
Sleep Mode
Stand-By Mode
Stop Mode
Stand-By Mode
VCC
Note: In Sleep Mode the Output Voltage VCC is disabled and will be actived by
a mode change to Stand-By Mode. In Stop Mode the Output Voltage VCC is
active and remains active after the mode change to Stand-By Mode.
VCC
Figure 7
Local Bus Wake-up
5.2.5.3
Mode Transition via EN pin
The EN pin is used for the mode selection. In case the power supply VCC is present, like in Stop Mode or Sleep
Mode, the TLE8458 can be directly transferred into Normal Operation Mode by setting the EN pin to HIGH. An
integrated pull-down resistor at the EN pin avoids mode changes due to floating signals on the EN input. The
TLE8458 changes the operation mode to Normal Operation Mode, from Stop Mode or from Sleep Mode if the EN
pin is HIGH for the time t > tMode1 (see Figure 8). An integrated hysteresis on the EN pin avoids bit toggling. The
mode transition via the EN pin will not be indicated in Stand-By Mode.
EN Signal
VEN
VEN,ON
EN Hysteresis
VEN,OFF
tMode_NO
Stop Mode /
Stand-By Mode
Figure 8
Data Sheet
tMode1
Normal Operation Mode
Sleep Mode
Mode Transition via EN pin
15
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5.2.6
Power Up
After a Power-up the device enters per default into Stand-By Mode. Above VS,PU the VCC output voltage follows
the supply VS closely. In Stand-By Mode, the Power-up is indicated by a HIGH signal on the RxD pin and a LOW
signal on the TxD pin.
Power Down
Stand-by Mode
Power Down
VS
VS
VCC
VS,PU
VCC
RxD
VS,PU
VRxD,H
TxD
EN
Figure 9
Power-up Level
5.2.7
Over-Temperature Protection
The TLE8458 is protected against thermal over-heating. Over-heating could be caused by a short circuit on the
VCC power supply or by a permanent short on the LIN bus combined with a high ambient temperature. In case of
an over-temperature event, the TLE8458 eliminates the root cause of the over-temperature event. Two different
temperature sensors are implemented inside the TLE8458. One temperature sensor protects the voltage regulator
and controls the output voltage VCC, the second temperature sensor protects the LIN transmitter output stage.
In case the junction temperature on the LIN output stage raises above the threshold T > TSD,LIN, the temperature
sensor disables the LIN output stage. The TLE8458 is still able to receive data from the LIN bus. If the temperature
falls below the threshold, T < TSD,LIN, the output stage will be enabled and the communication can start again. An
integrated hysteresis on the temperature sensor avoids toggling during over-temperature events. An overtemperature event on the LIN bus will not cause any operation mode change.
In case the junction temperature on the VCC power output stage raises above the threshold T > TSD,VCC, the
temperature sensor shuts down the output voltage VCC. If the junction temperature falls below the threshold,
T > TSD,VCC, the power supply VCC will be enabled again. An integrated hysteresis on the temperature sensor
avoids toggling during over-temperature events.
Data Sheet
16
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5.3
Current Consumption
Table 7
Electrical Characteristics: Current Consumption
VS = 13.5 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Current Consumption
Current Consumption
in Normal Mode
at VS in LIN Recessive State
IS_rec
–
1.3
2.2
mA
Recessive state,
without RL;
VTxD = VCC;
ICC = 100 µA
P_5.3.1
Current Consumption
in Normal Mode
at VS in LIN Dominant State
IS_dom
–
1.8
3.2
mA
Dominant state,
without RL;
VTxD = 0 V;
ICC = 100 µA
P_5.3.2
Current Consumption at VS
in Sleep Mode
IS_sleep
–
8
12
µA
P_5.3.3
Sleep Mode,
-40 °C < Tj < 85 °C;
VLIN = VS;
VCC = 0 V
Current Consumption at VS
in Stop Mode
IS_stop
–
–
40
µA
Stop Mode;
P_5.3.4
-40 °C < Tj < 85 °C;
VLIN = VS;
no load on VCC
40
72
µA
Sleep Mode,
VLIN = 0 V
VCC = 0 V
IS_sleep_short 6
Current Consumption
in Sleep Mode, Bus Shorted to
Ground
Data Sheet
17
P_5.3.5
Rev. 1.1, 2014-04-01
TLE8458
Mode Control
5.4
Electrical Characteristics EN and WK Pins
Table 8
Electrical Characteristics: Mode Pins
7 V < VS < 27 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
EN Pin
HIGH Level Input Voltage
VEN,H
2
–
–
V
–
P_5.4.6
LOW Level Input Voltage
VEN,L
–
–
0.8
V
–
P_5.4.7
EN Input Hysteresis
VEN,hys
–
0.3
–
V
–
P_5.4.8
EN pull-down Resistance
REN
20
40
80
kΩ
–
P_5.4.9
Filter Time for Mode Change
tmode1
50
–
150
µs
–
P_5.4.10
TxD low delay time
tmode2
0
–
50
µs
Stop Mode transfer P_5.4.11
TxD high time
tmode3
10
–
–
µs
Stop Mode transfer P_5.4.12
10
–
µs
1)
–
50
µs
1)
µs
1)
P_5.4.14
µs
1)
P_5.4.15
Time for Mode Change from Stop or
tMode_NO –
Sleep Mode to Normal Operation Mode
tfl1
Time for Flash Mode activation
TxD Time for Flash Mode activation
25
tfl2
5
–
–
Transfer to Normal P_5.4.1
Operation Mode
EN pin low
P_5.4.13
tfl3
10
High Level Input Voltage
VWK,H
VS - 1 –
VS + 3 V
VS = 13.5 V
P_5.4.16
Low Level Input Voltage
VWK,L
-0.3
–
VS - 4 V
VS = 13.5 V
P_5.4.17
Pull-up Current
IWK,PU
-60
-30
-3
µA
VWK = 0V
VS = 13.5 V
P_5.4.18
High Level Leakage Current
IWK,L
-5
–
5
µA
VS = 0 V;
VWK = 40 V
P_5.4.19
Dominant Time for Wake-up
tWK
30
–
150
µs
–
P_5.4.20
TxD Time for Flash Mode activation
–
–
WK Pin
1) Not subject to production test, specified by design
5.5
Power Up, Power Down
Table 9
Electrical Characteristics: Power-up
Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
–
–
3.5
Unit
Note /
Test Condition
Number
V
ICC = 40 mA,
VCC > 3.0 V
P_5.5.21
Vs Pin
VS Power-up Voltage Threshold VS,PU
Data Sheet
18
Rev. 1.1, 2014-04-01
TLE8458
Voltage Regulator
6
Voltage Regulator
6.1
Description of Voltage Regulator
The TLE8458G has a monolithic integrated voltage regulator dedicated for microcontroller supplies under harsh
automotive environment conditions. Due to its ultra low current consumption, the TLE8458 is perfectly suited for
applications permanently connected to a battery. Additionally, the regulator is switched off in Sleep Mode to
achieve a very low quiescent current. The TLE8458 is equipped with protection functions against overloading,
short circuits, and over temperature.
6.2
Electrical Characteristics of the Voltage Regulator
Table 10
Electrical Characteristics: Voltage Regulator
VS = 5.5 V to 13.5 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition Number
Min.
Typ.
Max.
Output Voltage for TLE8458G
VCC,5
4.9
5
5.1
V
1 mA < ICC < 50 mA;
5.5 V < VS < 18 V
P_6.2.1
Output Voltage for TLE8458G
VCC,5
4.9
5
5.1
V
ICC = 10 mA;
5.5 V < VS < 40 V
P_6.2.8
Output Voltage for TLE8458GV33 VCC,3.3
3.234
3.3
3.366
V
1 mA < ICC < 50 mA;
5.5 V < VS < 18 V
P_6.2.2
Output Voltage for TLE8458GV33 VCC,3.3
3.234
3.3
3.366
V
ICC = 10 mA;
5.5 V < VS < 40 V
P_6.2.9
Output Current Limitation
TLE8458G
ICC,lim
60
–
–
mA
VCC,5 > 4.5V
VS = 13.5 V
P_6.2.3
Output Current Limitation
TLE8458GV33
ICC,lim
50
–
–
mA
VCC3,3 > 2.8V
VS = 13.5 V
P_6.2.10
Output Voltage Drop
VDR
–
250
500
mV
ICC = 40 mA1)
P_6.2.4
Load Regulation
∆VCC,LO –
25
50
mV
1 mA < ICC < 50 mA
VS =13.5 V
P_6.2.5
Line Regulation
∆VCC,LI
–
25
50
mV
ICC = 1 mA;
6 V < VS < 28 V
P_6.2.6
PSRR
–
f = 100 Hz;
Vr = 0.5 Vpp2)3)
1) Measured when the output voltage has dropped 100 mV from the nominal value obtained at VS = 13.5 V
Power Supply Ripple Rejection
60
–
dB
P_6.2.7
2) Voltage of ripple Vr is 0.5 V peak-to-peak
3) Not subject to production test; specified by design.
Data Sheet
19
Rev. 1.1, 2014-04-01
TLE8458
LIN Transceiver
7
LIN Transceiver
7.1
Functional Description
The LIN Bus is a single wire, bi-directional bus, used for in-vehicle networks. The LIN Transceiver implemented
inside the TLE8458 is the interface between the microcontroller and the physical LIN Bus. (see Figure 1 and
Figure 15). The digital output data from the microcontroller are driven to the LIN bus via the TxD input pin on the
TLE8458. The transmit data stream on the TxD input is converted to a LIN bus signal with optimized slew rate to
minimize the EME level of the LIN network. The RxD output sends back the information from the LIN bus to the
microcontroller. The receiver has an integrated filter network to suppress noise on the LIN Bus and to increase the
EMI (Electro Magnetic Immunity) level of the transceiver.
Two logical states are possible on the LIN bus according to the LIN Specification 2.1 (see Figure 10):
In dominant state, the voltage on the LIN bus is set close to the GND level. In recessive state, the voltage on the
LIN bus is set close to the supply voltage VS. By setting the TxD input of the TLE8458 to LOW the transceiver
generates a dominant level on the LIN interface pin. The RxD output reads back the signal on the LIN bus and
indicates a dominant LIN bus signal with a logical LOW to the microcontroller. Setting the TxD pin to HIGH the
transceiver TLE8458 sets the LIN interface pin LIN to the recessive level, at the same time the recessive level on
the LIN bus is indicated by a logical “High” on the RxD output.
Every LIN network consists of a master node and one or more slave nodes. To configure the TLE8458 for master
node applications, a resistor in the range of 1 kΩ and a reverse diode must be connected between the LIN bus
and the power supply VS. (see Figure 15).
VCC
Recessive
Dominant
Recessive
TxD
t
VS
Recessive
Dominant
Recessive
LIN
t
VCC
Recessive
Dominant
Recessive
RxD
t
Figure 10
Data Sheet
LIN Bus Signals
20
Rev. 1.1, 2014-04-01
TLE8458
LIN Transceiver
7.1.1
Undervoltage Detection
A dropping power supply VS on a local ECU can effect the communication of the whole LIN network. To avoid any
blocking of the LIN network by a local ECU the TLE8458 has an integrated Power-On reset at the supply VS and
an undervoltage detection at the supply VS. In case the supply voltage VS is dropping below the Power-On reset
level VS < VS,UV,PON, the TLE8458 changes the operation mode to Stand-By mode. In Stand-By mode the output
stage of the TLE8458 is disabled and no communication to the LIN bus is possible. The internal bus termination
remains active as well as the VCC output voltage. (see Figure 1 and Figure 11).
In Stand-By mode the RxD pin indicates the low power supply condition with a logical HIGH signal. Setting the EN
pin to logical HIGH changes the operation mode back to Normal Operation mode.
In case the supply voltage VS is dropping below the undervoltage reset level VS < VSUV (see Figure 11), the
TLE8458 disables the output and receiver stages. This feature secures the communication on the LIN bus. If the
power supply VS reaches a higher level as the undervoltage reset level VS > VSUV the TLE8458 continues with
normal operation. A mode change only applies if the power supply VS drops below the power on reset level
(VS < VS,UV,PON).
Supply voltage Vs
Power on reset level VS,UV,PON
Blanking time tUV
Power On reset
Normal Operation
Mode
Reset and
Communication
blocked
Stand-By
Mode
Supply voltage Vs
Under Voltage level VSUV
Under Voltage
Detection VS
Power on reset level VS,UV,PON
Blanking time tUV
Normal Operation
Mode
Figure 11
Data Sheet
Normal Operation
Mode
Communication
blocked
Under-Voltage Detection
21
Rev. 1.1, 2014-04-01
TLE8458
LIN Transceiver
7.1.2
TxD Time-Out
If the TxD signal is dominant for the time t > ttimeout, the TxD time-out function deactivates the LIN transmitter output
stage. The device remains in recessive state. The TxD time-out functions prevents the LIN bus from being blocked
by a permanent LOW signal on the TxD pin, caused by a failure. The transmitter output stage is released again,
after a rising edge on the TxD pin has been detected (see Figure 12).
Recovery of the
microcontroller error
TxD Time-Out due to
microcontroller error
Release after TxD
Time-out
Normal Communication
ttimeout
ttorec
Normal Communication
TxD
t
LIN
t
Figure 12
TxD Time-Out function
7.1.3
LIN Specifications
The LIN network is standardized by international regulations. The devices TLE8458G and the TLE8458GV33 are
compliant to the specification LIN 2.1. The physical layer specification LIN 2.1 is a super set of the previous LIN
specifications, like LIN 2.0 or LIN 1.3. The TLE8458G and the TLE8458GV33 have been qualified according to
the LIN 2.1 standard, conformance test results are available on request.
Data Sheet
22
Rev. 1.1, 2014-04-01
TLE8458
LIN Transceiver
7.2
Electrical Characteristics of the LIN Transceiver
Table 11
Electrical Characteristics: LIN Transceiver Supply
VS = 7 V to 27 V, Tj = -40 °C +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
4
–
5
Unit Note / Test Condition
Number
V
–
P_7.2.1
V
1)
P_7.2.52
µs
1)
P_7.2.2
Voltage Supply
Undervoltage switch-off
Power-On Reset Level
Blanking Time for UnderVoltage switch-off
Vsuv
VS,UV,PON 2
tuv
–
–
4
10
–
1) Not subject to production test; specified by design.
Table 12
Electrical Characteristics: LIN Transceiver
VS = 7 V to 27 V, Tj = -40 °C +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into
pin (unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Number
Min.
Typ.
Max.
VRxD,H
0.8 ×
–
–
V
IRxD = -1.6 mA;
Vbus = VS
P_7.2.3
VRxD,L
–
–
0.2 ×
V
IRxD = 1.6 mA
Vbus = 0 V
P_7.2.4
VTxD,H
0.7 ×
V
Recessive State
P_7.2.5
VTxD,hys
–
mV
–
P_7.2.6
VTxD,L
–
V
Dominant State
P_7.2.7
TxD Pull-down Resistance
RTxD
–
300
–
kΩ
VTxD = 0 V
P_7.2.8
TxD Low Level Current
(Standby Mode, after
Wake-up via WK)
ITxD,L
1.5
3
10
mA
VTxD = 0.9 V
P_7.2.9
Receiver Output (RxD pin)
HIGH Level Output Voltage
LOW Level Output Voltage
VCC
VCC
Transmission Input (TxD pin)
HIGH Level Input Voltage
TxD Input Hysteresis
LOW Level Input Voltage
Data Sheet
–
–
VCC
0.12 × –
VCC
–
0.3 ×
VCC
23
Rev. 1.1, 2014-04-01
TLE8458
LIN Transceiver
Table 12
Electrical Characteristics: LIN Transceiver (cont’d)
VS = 7 V to 27 V, Tj = -40 °C +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into
pin (unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit Note / Test Condition
Number
Max.
LIN Bus Receiver (LIN Pin)
Receiver Threshold Voltage,
Recessive to Dominant Edge
VBus,rd
0.4 ×
0.45 × –
VS
VS
Receiver Dominant State
VBus,dom
–
–
Receiver Threshold Voltage,
Dominant to Recessive Edge
VBus,dr
–
Receiver Recessive State
VBus,rec
0.6 ×
VBus,c
0.475
× VS
VBus,hys
0.07 × 0.1 ×
Receiver Center Voltage
Receiver Hysteresis
Wake-up Threshold Voltage
Dominant Time for Bus
Wake-up
0.4 ×
V
VBus,rec < VBus < 27 V
P_7.2.10
V
LIN2.1 Param. 17
P_7.2.11
VBus,rec < VBus < 27 V
P_7.2.12
VS
0.55 × 0.60 × V
VS
VS
–
–
V
LIN2.1 Param 18
P_7.2.13
0.5 ×
0.525
× VS
V
LIN2.1 Param 19
P_7.2.14
0.175
× VS
V
Vbus,hys = Vbus,rec - Vbus,dom
P_7.2.15
V
–
P_7.2.16
VS
VS
VS
VS
LIN2.1 Param 20
VBus,wk
0.40 × 0.5 ×
0.6 ×
VS
VS
VS
tWK,Bus
30
–
150
µs
–
P_7.2.17
0.8 ×
–
VS
V
VTxD = high Level
P_7.2.18
LIN Bus Transmitter (LIN Pin)
Bus Recessive Output
Voltage
VBUS,ro
VS
Bus Dominant Output Voltage VBUS,do
–
–
1.2
V
VTxD = 0 V;
6.0 V ≤ VS ≤ 7.3 V;
P_7.2.53
Bus Dominant Output Voltage VBUS,do
–
–
0.2 x
V
VTxD = 0 V;
7.3 V ≤ VS ≤ 10.0 V;
P_7.2.19
Bus Dominant Output Voltage VBUS,do
–
–
2.0
V
VTxD = 0 V;
10.0 V ≤ VS ≤ 18.0 V;
P_7.2.20
100
150
mA
VBUS = 13.5 V;
LIN2.1 Param 12
P_7.2.23
0
µA
VS = 0 V; VBUS = -12 V;
P_7.2.24
VS
Bus Short Circuit Current
IBUS,sc
40
Leakage Current
Loss of Ground
IBUS,lk
-1000 -450
Leakage Current
Loss of Battery
IBUS,lk
Leakage Current
IBUS,lk
-1
–
–
mA
VS = 18 V; VBUS = 0 V;
LIN2.1 Param 13
P_7.2.26
Leakage Current
Driver Off
IBUS,lk
–
–
5
µA
VS = 8 V; VBUS = 18 V;
P_7.2.27
Bus Pull-up Resistance
RBUS
Data Sheet
LIN2.1 Param 15
–
–
5
µA
VS = 0 V; VBUS = 18 V;
P_7.2.25
LIN2.1 Param 16
LIN2.1 Param 14
20
30
47
24
kΩ
Normal Mode
LIN2.1 Param 26
P_7.2.28
Rev. 1.1, 2014-04-01
TLE8458
LIN Transceiver
Table 12
Electrical Characteristics: LIN Transceiver (cont’d)
VS = 7 V to 27 V, Tj = -40 °C +150 °C, RL = 500 Ω, all voltages with respect to ground, positive current flowing into
pin (unless otherwise specified)
Parameter
Symbol
LIN Output Current
IBUS
LIN Input Capacitance
CBUS
Receiver propagation delay
bus dominant to RxD LOW
td(L),R
Receiver propagation delay
bus recessive to RxD HIGH
td(H),R
Receiver delay symmetry
tsym,R
Values
Min.
Typ.
Max.
-60
-30
-5
15
–
1
6
Unit Note / Test Condition
Number
µA
Sleep Mode
VS = 12 V;
EN = 0 V; VLIN = 0 V
P_7.2.29
pF
1)
P_7.2.55
µs
CRxD = 20 pF;
P_7.2.38
LIN2.1 Param 31
–
1
6
µs
CRxD = 20 pF;
P_7.2.39
LIN2.1 Param 31
-2
–
2
µs
tsym,R = td(L),R - td(H),R;
P_7.2.40
LIN2.1 Param 32
TxD Dominant Time Out
ttimeout
6
12
20
ms
VTxD = 0 V
P_7.2.44
µs
1)
P_7.2.45
TxD Dominant Time Out
Recovery Time
ttorec
–
10
–
Duty Cycle D1
(For worst case at 20 kbit/s)
LIN2.1 Normal Slope
D1
0.396
–
–
THRec(max) = 0.744 × VS; P_7.2.46
THDom(max) = 0.581 × VS;
VS = 7.0 … 18 V;
tbit = 50 µs;
D1 = tbus_rec(min)/2 tbit;
LIN2.1 Param 27
Duty Cycle D2
(for worst case at 20 kbit/s)
LIN2.1 Normal Slope
D2
–
–
0.581
2)
2)
THRec(min.) = 0.422 × VS; P_7.2.47
THDom(min.) = 0.284 × VS;
VS = 7.6 … 18 V;
tbit = 50 µs;
D2 = tbus_rec(max)/2 tbit;
LIN2.1 Param 28
1) Not subject to production test, specified by design.
2) Bus load conditions concerning LIN spec 2.1 CLIN, RLIN = 1 nF, 1 kΩ / 6.8 nF, 660 Ω / 10 nF, 500 Ω
Data Sheet
25
Rev. 1.1, 2014-04-01
TLE8458
LIN Transceiver
VS
TxD
100 nF
RxD
RLIN
CRxD
LIN
CLIN
Figure 13
WK
GND
Simplified Test Circuit for Dynamic Characteristics
tBit
tBit
tBit
TxD
(input to
transmitting node)
tBus_dom(max)
VSUP
(Transceiver supply
of transmitting
node)
tBus_rec(min)
THRec(max)
THDom(max)
Thresholds of
receiving node 1
THRec(min)
THDom(min)
Thresholds of
receiving node 2
tBus_dom(min)
tBus_rec(max)
RxD
(output of receiving
node 1)
td(L),R(1)
td(H),R(1)
RxD
(output of receiving
node 2)
t(L),R(2)
td(H),r(2)
Duty Cycle 1 = tBUS_rec(min) / (2 x tBIT)
Duty Cycle 2 = tBUS_rec(max) / (2 x tBIT)
Figure 14
Data Sheet
Timing Diagram for Dynamic Characteristics
26
Rev. 1.1, 2014-04-01
TLE8458
Application Information
8
Application Information
Note: The following information is given as a hint for the implementation of the device only and should not be
regarded as a description or warranty of a certain functionality, condition or quality o f the device.
VBat LIN Bus
Master Node
TLE7259 -3GE
100
nF
VS
EN
RxD
TxD
1 kΩ
10 kΩ
Bus
1 nF
INH
XC22XX
GND
INH
100
nF
WK
VQ
5V
e. g. TLE 4263
22
µF
100
nF
VI
GND
22 µF
GND
ECU 1
Slave Node
VS
22
µF
220
pF
TLE8458 G
EN
RxD
TxD
100
nF
LIN
XC22XX
Vcc
10 kΩ
WK GND
10
µF
100
nF
GND
ECU X
Figure 15
Application Example
Note: This is a simplified example of an application circuit. The function must be verified in the actual application.
Data Sheet
27
Rev. 1.1, 2014-04-01
TLE8458
Application Information
8.1
ESD Tests
Test for ESD robustness according to IEC61000-4-2 “Gun test” (150 pF, 330 Ω) have been performed. The results
and test conditions are available in a separate test report (see Table 13).
Table 13
ESD “Gun test”
Parameter
Symbol
Values
Min.
Typ.
Max.
–
10
Unit
Note /
Test Condition
Number
kV
GUN1)
P_8.1.1
Performed Test
ESD at VS, LIN versus GND
VESD,GUN -10
1)
ESD at WK PIN
VESD,GUN -6
–
6
kV
GUN
P_8.1.1
1) ESD susceptibility “ESD GUN” according LIN EMC Test Specification, Section 3.4.3 (IEC 61000-4-2:2001-12),
tested by external test house (IBEE Zwickau, EMC Test report Nr. 05-12-13a)
8.1.1
EMC Measurement
The EMC performance has been qualified by an external test house according to the LIN EMC Test specification
Version 1.0 (August 1, 2004). For the DPI measurements according to the LIN EMC Test Specification, Section
4.2 (ISO62132 part 1: 2006, ISO62132 part 4: 2006) the verification limit for the output voltage VCC, was set to a
limit of +/- 100 mV. External test reports are available on request.
8.2
Pin Compatibility to Stand-Alone LIN transceivers
The TLE8458G is pin - and function compatible to the single LIN transceivers like the TLE7259-3GE (see
Figure 16). Instead of the INH output pin on the single LIN transceiver TLE7259-3GE the VCC power supply output
can be connected to the external microcontroller. The TLE8458G provides the same operation modes and
features as single LIN transceiver TLE7259-3GE.
RxD
1
8
VCC
RxD
1
8
INH
EN
2
7
VS
EN
2
7
VS
WK
3
6
LIN
WK
3
6
LIN
TxD
4
5
GND
TxD
4
5
GND
TLE8458G
Figure 16
Data Sheet
TLE7259-3GE
Pinning of TLE8458G versus the TLE7259-3GE
28
Rev. 1.1, 2014-04-01
TLE8458
Package Outlines
9
Package Outlines
0.1
2)
0.41+0.1
-0.06
0.2
8
5
1
4
5 -0.2 1)
M
B
0.19 +0.06
C
8 MAX.
1.27
4 -0.21)
1.75 MAX.
0.175 ±0.07
(1.45)
0.35 x 45˚
0.64 ±0.25
6 ±0.2
A B 8x
0.2
M
C 8x
A
Index Marking
1) Does not include plastic or metal protrusion of 0.15 max. per side
2) Lead width can be 0.61 max. in dambar area
GPS01181
Figure 17
PG-DSO-8-16 (SO-8 Standard, Green (RoHS compliant))
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
For further information on alternative packages, please visit our website:
http://www.infineon.com/packages.
Data Sheet
29
Dimensions in mm
Rev. 1.1, 2014-04-01
TLE8458
Revision History
10
Revision History
Revision Date
Changes
1.1
2014-04-01
All pages: - Editorial changes, updated with latest Infineon style guide
Updated compatibility with stand alone transceiver with TLE7259-3G
Updated condition for Parameter P_5.3.4: no load on VCC
Removed device versions TLE8458GU and -GUV33, references and description
Removed LIN Duty Cycle parameters D3 and D4 (only applicatble to -GU and -GUV33)
Chapter 8.1: Updated ESD and EMC references to the latest IBEE test report
1.02
2010-03-08
all pages: Editorial changes
table 10: changed Output current limitation min. to 60 mA
table 11: changed power on reset values
figure 15: deleted 2 resistors
1.01
2009-04-28
Editorial Change to the data sheet
Update table 13 on page 30.
P_8.1.1 performed test changed from:
“ESD at LIN Pin”
to:
“ESD at VS, LIN versus GND”
1.0
2009-03-23
Initial data sheet
Data Sheet
30
Rev. 1.1, 2014-04-01
Edition 2014-04-01
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systems
and/or automotive, aviation and aerospace applications or systems only with the express written approval of
Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device
or system. Life support devices or systems are intended to be implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user
or other persons may be endangered.