TLE9842-2QX
Microcontroller with LIN and Power Switches for Automotive Applications
Data Sheet
Rev. 1.0, 2016-05-06
Automotive Power
TLE9842-2QX
Table of Contents
Table of Contents
1
1.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
3.1
3.2
Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
5.3.4
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Generation (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power-on Reset Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
19
21
22
22
23
24
25
6
6.1
6.2
6.2.1
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
6.3.3
System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
26
26
26
27
29
29
29
29
29
31
7
7.1
7.2
7.2.1
System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description of the Power Modules System Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
33
33
33
8
8.1
8.2
8.2.1
ARM Cortex-M0 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35
35
36
36
9
Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
10
10.1
10.2
10.2.1
Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
11.1
11.1.1
NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
General Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12
12.1
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Data Sheet
2
39
39
39
39
Rev. 1.0, 2016-05-06
TLE9842-2QX
Table of Contents
12.2
12.2.1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13
13.1
13.2
Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
14
14.1
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.1.1
14.3.2
14.3.2.1
14.3.3
14.3.3.1
GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE9842-2QX Port Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
49
49
50
51
52
52
52
55
55
57
57
15
15.1
15.1.1
15.1.2
15.2
15.2.1
15.2.2
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59
59
59
59
59
60
61
16
16.1
16.2
16.2.1
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
62
62
62
17
17.1
17.2
17.2.1
Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
64
64
64
65
18
18.1
18.2
18.2.1
18.3
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
66
66
66
67
67
19
19.1
19.2
19.2.1
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
68
68
68
69
20
20.1
20.2
20.2.1
High-Speed Synchronous Serial Interface SSC1/SSC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
70
70
71
21
21.1
21.2
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Data Sheet
3
Rev. 1.0, 2016-05-06
TLE9842-2QX
Table of Contents
21.2.1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
22
22.1
22.2
22.2.1
Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
74
74
74
23
23.1
23.2
23.2.1
10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
75
76
76
24
24.1
24.2
24.2.1
High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
77
77
77
25
25.1
25.2
25.2.1
25.2.2
High-Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
78
79
79
79
26
26.1
26.2
Low-Side Switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
27
27.1
27.2
27.3
27.4
27.5
27.6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Relay Window Lift Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection of N.C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection of unused pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection of P0.2 for SWD debug mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Connection of TMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
28
28.1
28.1.1
28.1.2
28.1.3
28.1.4
28.1.5
28.2
28.2.1
28.2.2
28.2.3
28.2.4
28.2.5
28.2.5.1
28.2.6
28.3
28.3.1
28.3.2
28.4
28.4.1
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
PMU Input Voltage VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
PMU I/O Supply Parameters VDDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
PMU Core Supply Parameters VDDC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
VDDEXT Voltage Regulator 5.0V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Load Sharing of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Electrical Characteristics Oscillators and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
External Clock Parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Flash Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Data Sheet
4
82
82
83
83
84
84
84
Rev. 1.0, 2016-05-06
TLE9842-2QX
Table of Contents
28.5
28.5.1
28.5.2
28.5.3
28.5.4
28.6
28.6.1
28.7
28.7.1
28.8
28.8.1
28.8.2
28.8.2.1
28.9
28.9.1
28.9.2
28.10
28.10.1
28.11
28.11.1
28.12
28.12.1
Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Parameters Port 0, Port 1, TMS, Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DC Parameters Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SSC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Central Temperature Sensor Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ADC1 Reference Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Side Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
30
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Data Sheet
5
103
103
104
106
107
109
109
113
113
114
114
117
117
118
118
118
120
120
121
121
124
124
Rev. 1.0, 2016-05-06
Microcontroller with LIN and Power Switches for
Automotive Applications
1
TLE9842-2QX
Overview
Summary of Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
32-bit ARM Cortex-M0 Core
– up to 40 MHz clock frequency
– one clock per machine cycle architecture
– single cycle multiplier
On-chip memory
– 40 KB Flash (including EEPROM)
VQFN-48-31
– 4 KB EEPROM (emulated in Flash)
– 768 bytes 100 Time Programmable Memory (100TP)
– 2 KB RAM
– Boot ROM for startup firmware and Flash routines
On-chip OSC
2 Low-Side Switches incl. PWM functionality, can be used e.g. as relay driver
2 High-Side Switches with cyclic sense option and PWM functionality, e.g. for supplying LEDs or switch panels
(min. 150 mA)
5 High Voltage Monitor Input pins for wake-up and with cyclic sense with analog measurement option
10 General-purpose I/O Ports (GPIO)
6 Analog input Ports
10-Bit A/D Converter with 6 analog inputs + VBAT_SENSE + VS + 5 high voltage monitoring inputs
8-Bit A/D Converter with 7 inputs for voltage and temperature supervision
Measurement unit with 12 channels together with the onboard 10-Bit A/D converter and data post processing
16-Bit timers - GPT12, Timer 2 and Timer 21
Capture/compare unit for PWM signal generation (CCU6)
2 full duplex serial interfaces (UART1, UART2), UART1 with LIN support
2 synchronous serial channels (SSC1, SSC2)
On-chip debug support via 2-wire SWD
LIN Bootstrap loader to program the Flash via LIN (LIN BSL)
1 LIN 2.2 transceiver
Single power supply from 3.0 V to 28 V
Low-dropout voltage regulators (LDO)
5 V voltage supply VDDEXT for external loads (e.g. Hall-sensor)
Core logic supply at 1.5 V
Programmable window watchdog (WDT1) with independent on-chip clock source
Power saving modes:
– Micro Controller Unit slow-down mode
Type
Package
Marking
TLE9842-2QX
VQFN-48-31
TLE9842-2QX
Data Sheet
6
Rev. 1.0, 2016-05-06
TLE9842-2QX
Overview
•
•
•
•
•
•
•
•
– Sleep Mode with cyclic sense option
– Cyclic wake-up during Sleep Mode
– Stop Mode with cyclic sense option
Power-on and undervoltage/brownout reset generator
Overtemperature protection
Short circuit protection for all voltage regulators and actuators (High Side, Low Side)
Loss of clock detection with fail safe mode for power switches
Temperature Range TJ: -40 °C up to 150 °C
Package VQFN-48-31 with LTI feature
Green package (RoHS compliant)
AEC Qualified
Data Sheet
7
Rev. 1.0, 2016-05-06
TLE9842-2QX
Overview
1.1
Abbreviations
The following acronyms and terms are used within this document. List see in Table 1.
Table 1
Acronyms
Acronyms
Name
AHB
ARM Advanced High-Performance Bus
CCU6
Capture Compare Unit 6
CGU
Clock Generation Unit
CLKMU
Clock Management Unit
CMU
Cyclic Management Unit
DPP
Data Post Processing
ECC
Error Correction Code
EEPROM
Electrically Erasable Programmable Read Only Memory
GPIO
General Purpose Input Output
HV
High Voltage
ICU
Interrupt Control Unit
LDO
Low DropOut voltage regulator
LIN
Local Interconnect Network
LSB
Least Significant Bit
LTI
Lead Tip Inspection
LV
Low Voltage
MCU
Microcontroller Unit
MF
Measurement Functions
MPU
Memory Protection Unit
MRST
Master Receive / Slave Transmit, corresponds to MISO in SPI
MSB
Most Significant Bit
MTSR
Master Transmit / Slave Receive, corresponds to MOSI in SPI
MU
Measurement Unit
NMI
Non Maskable Interrupt
NVIC
Nested Vector Interrupt Controller
OSC
Oscillator
OTP
One Time Programmable
PBA
Peripheral Bridge
PC
Program Counter
PCU
Power Control Unit
PD
Pull Down
PGU
Power supply Generation Unit
PLL
Phase Locked Loop
PMU
Power Management Unit
PPB
Private Peripheral Bus
Data Sheet
8
Rev. 1.0, 2016-05-06
TLE9842-2QX
Overview
Table 1
Acronyms
Acronyms
Name
PSW
Program Status Word
PU
Pull Up
PWM
Pulse Width Modulation
RAM
Random Access Memory
RCU
Reset Control Unit
rfu
reserved for future use
RMU
Reset Management Unit
ROM
Read Only Memory
SCU
System Control Unit
SOW
Short Open Window (for WDT1)
SPI
Serial Peripheral Interface
SSC
Synchronous Serial Channel
SWD
ARM Serial Wire Debug
TCCR
Temperature Compensation Control Register
TMS
Test Mode Select
TSD
Thermal Shut Down
UART
Universal Asynchronous Receiver Transmitter
VBG
Voltage reference Band Gap
VCO
Voltage Controlled Oscillator
WDT1
Watchdog timer in SCU-PM (System Control Unit - Power Modules)
WMU
Wake-up Management Unit
100TP
100 Times Programmable
Data Sheet
9
Rev. 1.0, 2016-05-06
TLE9842-2QX
Block Diagram
2
Block Diagram
TMS
P0.0
TEST / DEBUG
INTERFACE
ARM
CORTEX-M0
FLASH
systembus
SRAM
slave
ROM
slave
slave
Multilayer AHB Matrix
slave
slave
PBA0
P2.x (ANx)
VBAT_SENSE
ADC10B
DPP1
LS1
UART1
CCU6
GPIO
UART2
LS1
GNDLS
LS2
PBA1
GPT12
LS2
SSC1
LIN
SSC2
MU:
P0.x
P1.x
P2.x
LIN
GNDLIN
ADC8B
HS1
HS1
HS2
HS2
T2
DPP2
T21
PMU –
Power
Management
Unit
VS
RESET
VDDEXT
VDDP
VDDC
1- 5 MON
MON 1...5
PLL
SCU_DM
WDT1
SCU_PM
Figure 1
Data Sheet
Block Diagram, TLE9842-2QX
10
Rev. 1.0, 2016-05-06
TLE9842-2QX
Device Pinout and Pin Configuration
Device Pinout and Pin Configuration
3.1
Device Pinout
36
35
34
33
32
31
30
29
28
27
26
25
P2.3
P2.7
P2.6
P2.2
P2.4 / XTAL1
P2.5 / XTAL2
GNDP
N.C.
N.C.
N.C.
P1.4
P0.5
3
E
E
37
38
39
40
41
42
43
44
45
46
47
48
24
23
22
21
20
19
18
17
16
15
14
13
P0.4
P0.3
P0.2
RESET
P0.0 / SWD _CLK
GNDP
TMS / SWD _IO
P0.1
P1.2
P1.1
P1.0
GNDLS
LIN 1
GNDLIN 2
HS1 3
HS2 4
MON1 5
MON2 6
MON3 7
MON4 8
MON5 9
N.C. 10
LS1 11
LS2 12
E
E
P2.1
N.C.
P2.0
N.C.
N.C.
VDDC
GNDA
VDDP
VDDEXT
N.C.
VS
VBAT _SENSE
Figure 2
Data Sheet
Device Pinout, TLE9842-2QX
11
Rev. 1.0, 2016-05-06
TLE9842-2QX
Device Pinout and Pin Configuration
3.2
Pin Configuration
After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:
•
•
•
•
Pull-up enabled only (PU)
Pull-down enabled only (PD)
Input with both pull-up and pull-down disabled (I)
Output with output stage deactivated = high impedance state (Hi-Z)
The functions and default states of the TLE9842-2QX external pins are provided in the following table.
Type: indicates the pin type.
•
•
•
•
I/O: Input or output
I: Input only
O: Output only
P: Power supply
Not all alternate functions listed, see Chapter 14.
Table 2
Symbol
Pin Definitions and Functions
Pin Number Type
Reset
State
P0
Function
Port 0
Port 0 is an 6-Bit bidirectional general purpose I/O port.
Alternate functions can be assigned and are listed in the Port
description. Main function is listed below.
P0.0
20
I/O
I/PU
SWD_CLK
GPIO
Serial Wire Debug Clock
General Purpose IO
Alternate function mapping see Table 8
P0.1
17
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.2
22
I/O
I/PD
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.3
23
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.4
24
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.5
25
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P1
Port 1
Port 1 is an 4-Bit bidirectional general purpose I/O port.
Alternate functions can be assigned and are listed in the Port
description. Main function is listed below.
P1.0
14
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.1
15
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.2
16
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.4
26
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
Data Sheet
12
Rev. 1.0, 2016-05-06
TLE9842-2QX
Device Pinout and Pin Configuration
Table 2
Pin Definitions and Functions (cont’d)
Symbol
Pin Number Type
Reset
State
P2
Function
Port 2
Port 2 is an 8-Bit general purpose input-only port.
Alternate functions can be assigned and are listed in the Port
description. Main function is listed below.
P2.0
39
I
I
AN0
ADC1 analog input channel 12
Alternate function mapping see Table 10
P2.1
37
I
I
AN1
ADC1 analog input channel 7
Alternate function mapping see Table 10
P2.2
33
I
I
AN2
ADC1 analog input channel 8
Alternate function mapping see Table 10
P2.3
36
I
I
AN3
ADC1 analog input channel 9
Alternate function mapping see Table 10
P2.4
32
I
I
P2.5
31
XTAL11)
Alternate function mapping see Table 10
External oscillator input
Alternate function mapping see Table 10
External oscillator output
I
O
I
Hi-Z
XTAL21)
P2.6
34
I
I
AN6
ADC1 analog input channel 10
Alternate function mapping see Table 10
P2.7
35
I
I
AN7
ADC1 analog input channel 11
Alternate function mapping see Table 10
VS
47
P
–
Battery supply input
VDDP
44
P
–
I/O port supply (5.0 V). Do not connect external loads. For
buffer and bypass capacitors.
VDDC
42
P
–
Core supply (1.5 V during Active Mode,
0.9 V during Stop Mode). Do not connect external loads. For
buffer/bypass capacitor.
VDDEXT
45
P
–
External voltage supply output (5.0 V, 20 mA)
GNDLS
13
P
–
Low-side ground LS1, LS2
GNDP
19, 30
P
–
Core supply ground
GNDA
43
P
–
Analog supply ground
GNDLIN
2
P
–
LIN ground
MON1
5
I
I
High Voltage Monitor Input 1
MON2
6
I
I
High Voltage Monitor Input 2
MON3
7
I
I
High Voltage Monitor Input 3
MON4
8
I
I
High Voltage Monitor Input 4
MON5
9
I
I
High Voltage Monitor Input 5
Power Supply
Monitor Inputs
High-Side Switch / Low-Side Switch Outputs
LS1
Data Sheet
11
O
Hi-Z
Low-Side switch output 1
13
Rev. 1.0, 2016-05-06
TLE9842-2QX
Device Pinout and Pin Configuration
Table 2
Pin Definitions and Functions (cont’d)
Symbol
Pin Number Type
Reset
State
Function
LS2
12
O
Hi-Z
Low-Side Switch output 2
HS1
3
O
Hi-Z
High-Side Switch output 1
HS2
4
O
Hi-Z
High-Side Switch output 2
1
I/O
PU
LIN bus interface input/output
TMS
18
I
I/PD
TMS
SWD_IO
RESET
21
I/O
I/O/PU
Reset input/output, not available during Sleep Mode
VBAT_SENSE 48
I
I
Battery supply voltage sense input
N.C.
10, 27, 28,
29, 38, 40,
41, 46
–
–
Not connected, can be connected to GND
EP
–
–
–
Exposed Pad, connect to GND
LIN Interface
LIN
Others
test mode select input
Serial Wire Debug input/output
1) configurable by user
Data Sheet
14
Rev. 1.0, 2016-05-06
TLE9842-2QX
Modes of Operation
4
Modes of Operation
This highly integrated circuit contains analog and digital functional blocks. For system and interface control an
embedded 32-Bit Cortex-M0 microcontroller is included. For internal and external power supply purposes, on-chip
low drop-out regulators are existent. An internal oscillator (no external components necessary) provides a cost
effective and suitable clock in particular for LIN slave nodes. As communication interface, a LIN transceiver and
several High Voltage Monitor Inputs with adjustable threshold and filters are available. Furthermore two HighSides Switches (e.g. for driving LEDs or powering of switches), two low-side switches (e.g. for relays) and several
general purpose input/outputs (GPIO) with pulse-width modulation (PWM) capabilities are available.
The Micro Controller Unit supervision and system protection including reset feature is controlled by a
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated temperature
sensors are available on-chip.
All relevant modules offer power saving modes in order to support terminal 30 connected automotive applications.
A wake-up from the power saving mode is possible via a LIN bus message, via the monitoring inputs or repetitive
with a programmable time period (cyclic wake-up).
The integrated circuit is available in a package with 0.5 mm pitch and is designed to withstand the challenging
conditions of automotive applications.
The TLE9842-2QX has several operational modes mainly to support low power consumption requirements. The
low power modes and state transitions are depicted in Figure 3 below.
Power-up
VS > 3V
Reset
WDT1 reset
(error_wdt++)
Transition by software Transition by external event
VDDC stable &
error_supp < 5
VDDC fail
(error_supp++)
Safety Fallback
Transition by internal event
Safety fallback
error_supp = 5
Cyclic wake
LIN wake or
MON wake or
GPIO wake
Active Mode
STOP command
Stop Mode
Cyclic wake
LIN wake or
MON wake
SLEEP command
Safety fallback
error_wdt = 5
Sleep Mode
Cyclic-sense
Cyclic-sense
PMU_System_Modes.vsd
Figure 3
Data Sheet
Power Control State Diagram
15
Rev. 1.0, 2016-05-06
TLE9842-2QX
Modes of Operation
Reset Mode
The Reset Mode is a transition mode e.g. during power-up of the device after a power-on reset. In this mode the
on-chip power supplies are enabled and all other modules are initialized. Once the core supply VDDC is stable,
the Active Mode is entered. In case the watchdog timer WDT1 fails for more than four times, a fail-safe transition
to the Sleep Mode is done.
Active Mode
In Active Mode all modules are activated and the TLE9842-2QX is fully operational.
Stop Mode
The Stop Mode is one out of two major low power modes. The transition to the low power modes is done by setting
the respective Bits in the mode control register. In Stop Mode the embedded microcontroller is still powered
allowing faster wake-up reaction times, but not clocked. A wake-up from this mode is possible by LIN bus activity,
the High Voltage Monitor Input pins or the respective 5V GPIOs.
Sleep Mode
The Sleep Mode is a major low-power mode. The transition to the low-power modes is done by setting the
respective Bits in the Micro Controller Unit mode control register. The sleep time is configurable. In Sleep Mode
the embedded microcontroller power supply is deactivated, allowing the lowest system power consumption, but
the wake-up time is longer compared to the Stop Mode. In this mode a 64 bit wide buffer for data storage is
available. A wake-up from this mode is possible by LIN bus activity or the High Voltage Monitor Input pins and
cyclic wake. A wake-up from Sleep Mode behaves similar to a power-on reset. While changing into Sleep Mode,
no incoming wake-requests are lost (i.e. no dead-time). It is possible to enter sleep-mode even with LIN dominant.
Cyclic Wake-up Mode
The cyclic wake-up mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to the
cyclic wake-up mode is done by first setting the respective Bits in the mode control register followed by the SLEEP
or STOP command. Additional to the cyclic wake-up behavior (wake-up after a programmable time period), the
wake-up sources of the normal Stop Mode and Sleep Mode are available.
Cyclic Sense Mode
The cyclic sense mode is a special operating mode of the Sleep Mode and the Stop Mode. The transition to the
cyclic sense mode is done by first setting the respective Bits in the mode control register followed by the STOP or
SLEEP command. In cyclic sense mode the High-Side Switch can be switched on periodically for biasing some
switches for example. The wake-up condition is configurable, when the sense result of defined monitor inputs at
a window of interest changed compared to the previous wake-up period or reached a defined state respectively.
In this case the Active Mode is entered immediately.
The following table shows the possible power mode configurations of each major module or function respectively.
Table 3
Power Mode Configurations
Module/function
Active Mode
Sleep Mode
Stop Mode
Comment
VPRE, VDDP, VDDC
ON
OFF
ON
–
VDDEXT
ON/OFF
OFF
cyclic ON/OFF
–
HSx
ON/OFF
cyclic ON/OFF
cyclic ON/OFF
cyclic sense
LSx
ON/OFF
OFF
OFF
–
LIN TRx
ON/OFF
wake-up only / OFF
wake-up only/
OFF
–
Data Sheet
16
Rev. 1.0, 2016-05-06
TLE9842-2QX
Modes of Operation
Table 3
Power Mode Configurations (cont’d)
Module/function
Active Mode
Sleep Mode
Stop Mode
Comment
MONx (wake-up)
n.a.
disabled/static/
cyclic
disabled/static/
cyclic
cyclic: combined with
HS=on
MONx (measurement)
ON/OFF
OFF
OFF
available on all
channels
VS sense
ON/OFF
brownout
detection
brownout detection
brownout
detection
brownout det. done in
PCU
VBAT_SENSE
ON/OFF
OFF
OFF
–
GPIO 5V
ON
OFF
ON
–
WDT1
ON
OFF
OFF
–
CYCLIC WAKE
n.a.
cyclic wake-up/
cyclic sense/OFF
cyclic wake-up/
cyclic sense with HS;
cyclic sense/OFF wake-up needs MC for
enter Sleep Mode
again
Measurement
ON1)
OFF
OFF
–
Micro Controller Unit
ON/slowdown/STOP
OFF
OFF
–
CLOCK GEN (MC)
ON
OFF
OFF
–
LP_CLK (fLP_CLK)
ON
OFF
OFF
WDT1
LP_CLK2 (fLP_CLK2)
ON
ON
ON
for cyclic wake-up
1) May not be switched off due to safety reasons
Wake-up Source Prioritization
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up sources,
the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are latched in order
to provide all wake-up events to the application software. The software can clear the wake-up source flags. It is
ensured, that no wake-up event is lost.
As default wake-up sources, MON inputs and cyclic wake are activated after power-on reset, LIN is disabled as
wake-up source by default.
Wake-up Levels and Transitions
The wake-up can be triggered by rising, falling or both signal edges for each monitor input individually.
Data Sheet
17
Rev. 1.0, 2016-05-06
TLE9842-2QX
Power Management Unit (PMU)
5
Power Management Unit (PMU)
5.1
Features
•
•
•
•
•
•
System modes control (startup, sleep, stop and active)
Power management (cyclic wake)
Control of system voltage regulators with diagnosis (overload, short, overvoltage)
Fail safe mode detection and operation in case of system errors (watchdog fail)
Wake-up sources configuration and management (LIN, MON, GPIOs)
System error logging
5.2
Introduction
The purpose of the power management unit is to ensure the fail safe behavior of the system IC. Therefore the
power management unit controls all system modes including the corresponding transitions. The power
management unit is responsible for generating all needed voltage supplies for the embedded MCU (VDDC,
VDDP) and the external supply (VDDEXT). Additionally, the PMU provides well defined sequences for the system
mode transitions and generates hierarchical reset priorities. The reset priorities control the reset behavior of all
system functionalities especially the reset behavior of the embedded MCU. All these functions are controlled by
finite state machines. The system master functionality of the PMU requires the generation of an independent logic
supply and system clock. Therefore the PMU has a module internal logic supply and system clock which works
independently of the MCU clock.
Data Sheet
18
Rev. 1.0, 2016-05-06
TLE9842-2QX
Power Management Unit (PMU)
5.2.1
Block Diagram
The following figure shows the structure of the Power Management Unit. Table 4 describes the submodules more
detailed.
VS
Power Down Supply
e.g. for WDT 1
Power Supply Generation Unit
(PGU)
I
N
T
E
R
N
A
L
LP_CLK
Peripherals
e.g. for cyclic wake
LP_CLK2
PMU-PCU
MONx
LIN
B
U
S
LDO for External Supply
VDDEXT
VDDP
VDDC
VDDEXT
PMU-SFR
PMU-CMU
PMU-WMU
PMU-RMU
PMU-Control
Power Management Unit
Power_ Management.vsd
Figure 4
Power Management Unit Block Diagram
Table 4
Description of PMU Submodules
Mod.
Name
Modules
Functions
Power Down
Supply
Independent Supply Voltage
Generation for PMU
This supply is dedicated to the PMU to ensure an
independent operation from generated power supplies
(VDDP, VDDC).
LP_CLK
(= fLP_CLK)
- Clock Source for all PMU
submodules
- Backup Clock Source for System
- Clock Source for WDT1
This ultra low power oscillator generates the clock for the
PMU.
This clock is also used as backup clock for the system in
case of PLL Clock failure and as independent clock source
for WDT1.
LP_CLK2
(= fLP_CLK2)
Clock Source for PMU
This ultra low power oscillator generates the clock for the
PMU in Stop Mode and in the cyclic modes.
Peripherals
Peripheral Blocks of PMU
These blocks include the analog peripherals to ensure a
stable and fail safe PMU startup and operation (bandgap,
bias).
Data Sheet
19
Rev. 1.0, 2016-05-06
TLE9842-2QX
Power Management Unit (PMU)
Table 4
Description of PMU Submodules (cont’d)
Mod.
Name
Modules
Functions
Power Supply
Generation
Unit (PGU)
Voltage regulators for VDDP and
VDDC
This block includes the voltage regulators for the pad
supply (VDDP) and the core supply (VDDC).
VDDEXT
Voltage regulator for VDDEXT to
supply external modules (e.g.
Sensors)
This voltage regulator is a dedicated supply for external
modules.
PMU-SFR
All PMU relevant Extended Special
Function Registers
This module contains all PMU relevant registers, which
are needed to control and monitor the PMU.
PMU-PCU
Power Control Unit of the PMU
This block is responsible for controlling all power related
actions within the PGU Module.It also contains all
regulator related diagnosis like under- and overvoltage
detection, overcurrent and short circuit diagnoses.
PMU-WMU
Wake-up Management Unit of the
PMU
This block is responsible for controlling all Wake-up
related actions within the PMU Module.
PMU-CMU
Cyclic Management Unit of the PMU This block is responsible for controlling all actions within
cyclic mode.
PMU-RMU
Reset Management Unit of the PMU This block generates resets triggered by the PMU like
undervoltage or short circuit reset, and passes all resets to
the relevant modules and their register. A reset status
register with every reset source is available.
Data Sheet
20
Rev. 1.0, 2016-05-06
TLE9842-2QX
Power Management Unit (PMU)
5.2.2
PMU Modes Overview
The following state diagram shows the available modes of the device.
VS > 4V and VS ramp up
or
VS < 3V and VS ramp down
LIN-wake or
MON-wake or
cyclic -wake
start-up
VDDC =stable and
error_supp 40V
P_1.1.9
VIO,max
-0.3
–
VDDP
V
VIN < VDDPmax3)
P_1.1.10
P_1.1.11
Voltages GPIOs
Voltage on port pin P0.x, P1.x,
P2.x, TMS and RESET
+0.3
Currents
Injection current in Sleep Mode
on P0.x, P1.x, P2.x, TMS and
RESET
Ixx
–
–
5
mA
maximum allowed
injection current on
single pin or sum of
pins in Sleep Mode
and unpowered
device
Injection current on HS
IXLO
–
–
150
mA
P_1.1.12
current flowing into
HS pin (back supply in
case of short to battery)
Data Sheet
86
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 18
Absolute Maximum Ratings1) (cont’d)
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
ILS
-300
–
–
mA
current flowing out of P_1.1.13
LS pin, e.g. reverse
polarity event (defined
in LV124) or ISO
Pulse event (defined
in ISO 7637-2)
Junction Temperature
Tj
-40
–
150
°C
–
P_1.1.14
Storage Temperature
Tstg
-55
–
150
°C
–
P_1.1.15
ESD Susceptibility HBM
all pins
VESD1
-2
–
2
kV
JEDEC HBM4)
P_1.1.16
ESD Susceptibility HBM
pins LIN vs. LINGND
VESD3
-6
–
6
kV
JEDEC HBM4)
P_1.1.17
ESD Susceptibility CDM
VESD_CDM
–500
–
500
V
Charged device
model, acc. JEDEC
JESD22-C101
P_1.1.18
ESD Susceptibility CDM
VESD_CDM
pins 1, 12, 13, 24, 25, 36, 37, 48
(corner pins)
–750
–
750
V
Charged device
model, acc. JEDEC
JESD22-C101
P_1.1.19
Output current on LS
Temperatures
ESD Susceptibility
1)
2)
3)
4)
Not subject to production test, specified by design.
for -28V, external 3.9kΩ resistor is required to limit output current.
One of these limits must be kept. Keeping V
ESD susceptibility, “JEDEC HBM” according to ANSI/ESDA/JEDEC JS001 (1.5kΩ, 100pF).
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
28.1.2
Functional Range
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
87
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 19
Functional Range
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Supply voltage in Active Mode
VS_AM
5.5
–
28
V
–
P_1.2.1
Extended Supply voltage in Active
Mode - Range 1
VS_AM_exte 28
–
40
V
Functional with
parameter
deviation1)
P_1.2.12
Extended Supply voltage in Active
Mode with reduced functionality
(Microcontroller / Flash with full
operation) - Range 2
VS_AM_exte 3.0
–
5.5
V
Functional with
parameter
deviation2)
P_1.2.2
Specified Supply voltage for LIN
Transceiver - Active Mode
VS_AM_LIN
5.5
–
18
V
Parameter
Specification
P_1.2.3
Extended Supply voltage for LIN
Transceiver - Active Mode
VS_AM_LIN_ 4.8
–
28
V
Functional with
parameter
deviation
P_1.2.4
–
5.5
V
Wakeup
functionality
ensured
P_1.2.13
nd_1
nd_2
extend
Extended Supply voltage for LIN &
VS_SSM_LIN 3.6
Monitoring Input (MON) - Stop & Sleep _MON_extend
Mode
Min. Supply voltage in Stop Mode
VS_Stopmin
3.0
–
–
V
Min. Supply voltage in Sleep Mode
VS_Sleepmin 3.0
–
–
V
Supply Voltage transients slew rate
Output current on any GPIO
Output sum current for all GPIO pins
dVS/dt
IOH , IOL
IGPIO,sum
4)
sys
Operating frequency
f
Junction Temperature
Tj
-5
–
-10
–
-50
–
5
10
50
P_1.2.5
P_1.2.6
V/µs
3)
P_1.2.7
mA
3)
P_1.2.8
mA
3)
P_1.2.9
P_1.2.10
P_1.2.11
5
–
40
MHz
3)
-40
–
150
°C
–
1) This operation voltage range is only allowed for a short duration: tmax ≤ 400 ms.
2) Hall-Supply, ADC, SPI, UART, NVM, RAM, CPU fully functional and in spec down to 3V VS. Actuators (HS, LS) in VS range
from 3V < VS < 5.5V functional but some parameters can be out of spec
3) Not subject to production test, specified by design.
4) Function not specified when limits are exceeded.
28.1.3
Data Sheet
Current Consumption
88
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 20
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Number
Min. Typ.
Max.
–
19
22
mA
fsys = 40 MHz
Vs= 5.5V to 28V
all digital modules enabled and
functional, ADCs converting in
sequencer mode, PLL running,
no loads on GPIOs, VDDEXT off,
LIN in recessive state (no
communication), HSx & LSx
enabled but off
P_1.3.18
P_1.3.1
Current Consumption @VS pin
Current Consumption in
Active Mode
IVs
Current Consumption in
Active Mode
IVs_freduced –
–
15
mA
fsys = 10 MHz
Vs= 13.5V
all digital modules enabled and
functional, ADCs converting in
sequencer mode, PLL running,
no loads on GPIOs, VDDEXT off,
LIN in recessive state (no
communication), HSx & LSx
enabled but off1)
Current consumption in
Sleep Mode
ISleep
–
–
15
µA
System in Sleep Mode,
P_1.3.2
microcontroller not powered, Wake
capable via LIN and MON;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 25°C;
Vs = 13.5V
Current consumption in
Sleep Mode (extended
Temperature Range)
ISleep(T_exte –
–
25
µA
System in Sleep Mode,
P_1.3.3
microcontroller not powered, Wake
capable via LIN and MON;
GPIOs open (no loads) or
connected to GND:
TJ = 25°C to 85°C;
Vs = 13.5V
Current consumption in
Sleep Mode (extended
Voltage and
Temperature Range)
ISleep(V_T_e –
–
30
µA
System in Sleep Mode,
P_1.3.4
microcontroller not powered, Wake
capable via LIN and MON;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 85°C;
Vs = 5.5V to 18V
Data Sheet
nd)
xtend)
89
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 20
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min. Typ.
Unit Note / Test Condition
Number
Max.
Current consumption in
Sleep Mode (extended
Voltage and
Temperature Range 2)
ISleep(V_T_e –
Current consumption in
Sleep Mode with cyclic
wake
ICyclic
Current consumption in
Sleep Mode with cyclic
wake (extended
Temperature Range)
ICyclic(T_exte –
Current consumption in
Stop Mode
IStop
–
65
115
µA
P_1.3.19
System in Stop Mode,
microcontroller not clocked, Wake
capable via LIN and MON;
GPIOs open (no loads) or
connected to GND; TJ = 40°C to 85°C
Current consumption in
Stop Mode
IStop_V_exte –
3.5
4.0
mA
System in Stop Mode,
P_1.3.21
microcontroller not clocked, Wake
capable via LIN and MON;
GPIOs open (no loads) or
connected to GND; TJ = 40°C to 85°C;
Vs = 3V
Current consumption in
Stop Mode with cyclic
sense
IStop_CS
70
125
µA
System in Stop Mode (during stop P_1.3.20
period), microcontroller not
clocked, Wake capable via LIN
and MON; VDDEXT off; High Side
off;
GPIOs open (no loads) or
connected to GND or VDDP; TJ = 40°C to 85°C;
Vs = 5.5V to 28V
–
40
µA
System in Sleep Mode,
P_1.3.7
microcontroller not powered, Wake
capable via LIN and MON;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 85°C;
Vs = 3V to 28V
–
15
µA
TJ = -40°C to 25°C;
Vs = 13.5V
xtend2)
–
P_1.3.5
during sleep period
–
30
µA
nd)
TJ = 25°C to 85°C;
Vs = 13.5V;
P_1.3.6
during sleep period
nd
–
1) Not subject to production test, specified by design
28.1.4
Data Sheet
Thermal Resistance
90
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 21
Thermal Resistance
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Junction to Case
Rth(JC)
–
6
–
K/W
1)
measured to
Exposed Pad
P_1.4.1
Junction to Ambient
Rth(JA)
–
33
–
K/W
2)
P_1.4.2
1) Not subject to production test, specified by design.
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board . Board: 76.2x114.3x1.5mm³ with 2 inner
copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and
300mm2 cooling area on the bottom layer (70µm).
28.1.5
Timing Characteristics
The transition times between the system modes are specified here. Generally the timings are defined from the
time when the corresponding Bits in register PMCON0 are set until the sequence is terminated.
Table 22
System Timing1)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min. Typ.
Max.
Unit
Note / Test Condition
Number
Wake-up over battery
tstart
–
–
1
ms
Battery ramp-up till MCU reset P_1.5.1
is released; Vs > 3V and
RESET = ’1’
Sleep-Exit
tsleep - exit –
–
1
ms
rising/falling edge of any
P_1.5.2
wake-up signal (LIN, MON) till
MCU software running
Sleep-Entry
tsleep -
–
330
µs
2)
–
P_1.5.3
entry
1) Not subject to production test, specified by design.
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.
Data Sheet
91
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.2
Power Management Unit (PMU)
This chapter includes all electrical characteristics of the Power Management Unit
28.2.1
PMU Input Voltage VS
Table 23
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit
Note / Test Condition
Number
P_2.1.12
Min.
Typ.
Max.
CVS1
0.1
–
–
µF
1)
Required buffer capacitance for CVS2
stability (load jumps)
10
–
–
µF
2)
Required decoupling
capacitance
ESR < 1Ω
P_2.1.13
1) only min. value is tested.
2) Not subject to production test, specified by design.
28.2.2
PMU I/O Supply Parameters VDDP
Table 24
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)1)
Parameter
Specified Output Current
Symbol
IVDDP
Values
Min.
Typ.
Max.
0
–
50
Unit
Note / Test Condition
Number
mA
2)
P_2.1.1
CVDDP1
0.47
–
–
µF
3)4)
Required buffer capacitance for CVDDP2
stability (load jumps)
0.47
–
1
µF
4)5)
Required decoupling
capacitance
ESR < 1Ω
P_2.1.2
P_2.1.3
Output Voltage including line
and load regulation @ Active
Mode
VDDPOUT
4.9
5.0
5.1
V
6)
Iload < 90mA;Vs > 5.5V P_2.1.4
Output Voltage including line
and load regulation @ Stop
Mode
VDDPOUTS 4.5
5.0
5.25
V
6)
Iload is only internal;Vs
> 5.5V
P_2.1.5
Output Drop
Vs V DDPout –
50
+400
mV
7)
IVDDP = 50mA; VS = 3V; P_2.1.6
Load Regulation
VVDDPLOR -50
–
50
mV
2 ... 90mA; C =
CVDDP1+CVDDP2
P_2.1.7
Line Regulation
VVDDPLIR
-50
–
50
mV
Vs= 5.5 ... 28V
P_2.1.8
Over Voltage Detection
VDDPOV
5.14
–
5.4
V
Vs > 5.5V; Overvoltage
leads to SUPPLY_NMI
P_2.1.9
Data Sheet
TOP
92
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 24
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)1)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Number
Under Voltage Reset
VDDPUV
2.55
2.7
2.8
V
–
P_2.1.10
Over Current Diagnostic
IVDDPOC
90
–
200
mA
current including VDDC
current consumption
P_2.1.11
1) currents used in this table are positive but flowing out the pin VDDP
2) Specified output current for port supply and additional other external loads connected to VDDP, excluding on-chip current
consumption.
3) only min. value is tested.
4) the total capacitance on VDDP must not exceed 2,2 µF
5) Not subject to production test, specified by design.
6) Load current includes internal supply.
7) Output drop for IVDDP plus internal supply
Data Sheet
93
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.2.3
PMU Core Supply Parameters VDDC
Table 25
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Required decoupling capacitance
CVDDC1
0.1
–
–
µF
1)
ESR < 1Ω
P_2.2.1
Required buffer capacitance for
stability (load jumps)
CVDDC2
0.33
–
1
µF
2)
–
P_2.2.2
Output Voltage including line
regulation @ Active Mode/Stop
Mode
VDDCOUT
1.44
1.5
1.56
V
Iload < 40mA; with
Load Regulation
VDDCLOR
-50
–
50
mV
2 ... 40mA; C =
CVDDC1+CVDDC2
P_2.2.4
Line Regulation
VDDCLIR
-25
–
25
mV
Vs= 5.5 ... 28V
P_2.2.5
Over Voltage Detection
VDDCOV
1.58
–
1.68
V
Overvoltage leads to P_2.2.6
SUPPLY_NMI
Under Voltage Reset
VDDVUV
1.10
–
1.19
V
–
P_2.2.7
Over Current Diagnostic
IVDDCOC
40
–
80
mA
–
P_2.2.8
P_2.2.3
setting of VDDC
output voltage to
1.5V in Stop Mode
1) only min. value is tested.
2) Not subject to production test, specified by design.
Data Sheet
94
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.2.4
VDDEXT Voltage Regulator 5.0V
Table 26
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)1)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ. Max.
0
–
20
mA
current flowing out of P_2.3.1
pin VDDEXT
330
–
1000
nF
2)
P_2.3.3
P_2.3.4
VDDEXT Regulator Active Mode
Specified Output Current
IVDDEXT
Required decoupling capacitance CVDDEXT1
Required buffer capacitance for
stability (load jumps)
CVDDEXT2
Output Voltage including line and VDDEXT
load regulation
Output Drop
Vs-VDDEXT
Load Regulation
VDDEXTLOR
Line Regulation
VVDDEXTLIR
ESR < 1 Ω
P_2.3.2
100
–
1000
nF
3)
4.9
5.0
5.1
V
Iload < 20mA;Vs ≥
5.5V
50
+400
mV
Iload < 20mA;
3V < Vs < 5.0V
P_2.3.5
-80
–
20
mV
0.01 ... 20mA; C =
CVDDEXT1+CVDDEXT2;
Vs≥ 5.5V
P_2.3.6
-50
–
50
mV
Vs= 5.5 ... 28V
P_2.3.7
Power Supply Ripple Rejection
PSSRVDDEXT 50
–
–
dB
3)
Under Voltage Shutdown
VVDDEXTUV
1.9
2.2
V
4)
1.55
Over Current Limitation
IVDDEXTOC
VDDEXT output discharge
resistance
RVDDEXT_DIS 16
100
Vs= 13.5V; f=0 ... P_2.3.8
1KHz; Vr=2Vpp; 0 ...
20mA
P_2.3.9
250
380
mA
3)
20
24
kΩ
–
P_2.3.11
–
5
mA
–
P_2.3.28
5.0
5.1
V
Iload ≤ 5mA;Vs ≥ 5.5V P_2.3.29
50
+300
mV
Iload ≤ 5mA;
3V < Vs ≤ 5V;
C=
CVDDEXT1+CVDDEXT2
P_2.3.30
–
250
mV
0 ... 5mA; C =
CVDDEXT1+CVDDEXT2;
Vs≥ 5.5V
P_2.3.31
–
300
mV
Iload ≤ 5mA;
Vs= 5.5 ... 28V
P_2.3.32
–
–
dB
3)
–
P_2.3.10
CHG
VDDEXT Regulator Low Current Mode
Specified Output Current
IVDDEXT_LCM 0
Output Voltage including line and VDDEXT_LCM 4.6
load regulation - Load 1
1
Output Drop - Load 1
VsVDDEXT_LCM
1
Load Regulation - Load 1
VDDEXTLOR_ -250
LCM1
Line Regulation - Load 1
VVDDEXTLIR_ -300
LCM1
Power Supply Ripple Rejection
PSSRVDDEXT 50
_LCM
Data Sheet
95
Vs= 13.5V; f=0 ... P_2.3.33
1KHz; Vr=2Vpp; 0 ...
5mA
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
1)
2)
3)
4)
currents used in this table are positive but flowing out the pin VDDEXT
only min. value is tested.
Not subject to production test, specified by design.
When condition is met, the Bit VDDEXT_CTRL.VDDEXT_UV_IS will be set.
Data Sheet
96
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.2.5
VPRE Voltage Regulator (PMU Subblock) Parameters
The PMU VPRE Regulator acts as a supply of VDDP and VDDC voltage regulators.
Table 27
Functional Range
Parameter
Symbol
Specified Output Current
IVPRE
Values
Min.
Typ.
Max.
–
–
90
Unit
Note / Test Condition Number
mA
1)
P_2.4.1
1) Not subject to production test, specified by design.
28.2.5.1
Load Sharing of VPRE Regulator
The figure below shows the load sharing concept of VPRE regulator.
VS
VPRE
max. 90 mA
max. 50 mA
VDDP
VDDP - 5V
max. 90 mA
C VDDP
max. 0 mA
GNDA (Pin 43)
VDDC
VDDC - 1.5V
max. 40 mA
C VDDC
GNDA (Pin 43)
Load Sharing VPRE
Load_Sharing _VPRE.vsd
Figure 36
Data Sheet
Load Sharing of VPRE Regulator
97
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.2.6
Power Down Voltage Regulator (PMU Subblock) Parameters
The PMU Power Down voltage regulator consists of two subblocks:
•
•
Power Down Pre regulator: VDD5VPD
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)
Both regulators are used as purely internal supplies. The following table contains all relevant parameter:
Table 28
Functional Range
Parameter
Symbol
Values
Min.
Power-On Reset Threshold
VDD1V5_PD_ 1.2
Typ.
Max.
–
1.5
Unit
Note / Test Condition Number
V
1)
Iload = internal load
P_2.5.1
connected to
VDD1V5_PD
RSTTH
1) Not subject to production test, specified by design
Data Sheet
98
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.3
System Clocks
28.3.1
Electrical Characteristics Oscillators and PLL
Table 29
Electrical Characteristics System Clocks
VS = 5.5 V to 28 V,, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
Number
Typ.
Max.
17
20
23
MHz this clock is used at startup P_3.1.1
and can be used in case the
PLL fails
70
100
130
kHz
this clock is used for cyclic
wake
MHz
within any 100 ms, e.g. after
P_3.1.3
synchronization to a LIN frame
(includes PLL accumulated
jitter value).Assuption: Tj is
varying < 30°C.
PMU Oscillators (Power Management Unit)
Frequency of LP_CLK
fLP_CLK
Frequency of LP_CLK2 fLP_CLK2
P_3.1.2
CGU Oscillator (Clock Generation Unit Microcontroller)
Short term frequency
deviation1)
fTRIMST
-0.4%
–
+0.4%
Absolute accuracy
fTRIMABSA
-1.49%
–
+1.49% MHz Including temperature& lifetime P_3.1.4
tOSC
–
CGU-OSC Start-up
time
drift and supply variation
–
10
µs
2)
startup time OSC from
Sleep Mode, power supply
stable
P_3.1.5
PLL (Clock Generation Unit Microcontroller) 2)
fREF
0.8
1
1.25
MHz
P_3.1.25
VCO frequency (tuning) fVCO
range
75
–
160
MHz
P_3.1.21
4
–
6
MHz see also specified limits for
fVCO and fREF resulting in
restrictions for possible N
divider settings
P_3.1.6
4
–
6
MHz see also specified limits for
fVCO and fREF resulting in
restrictions for possible N
divider settings
P_3.1.23
15
–
40
MHz see also specified limits for
fVCO and fREF resulting in
restrictions for possible N
divider settings
P_3.1.7
–
34
–
MHz
P_3.1.24
VCO reference
frequency range
Input frequency range
fOSC
XTAL1 input freq. range fOSCHP
Output freq. range
fPLL
Free-running frequency fVCOfree
Data Sheet
99
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 29
Electrical Characteristics System Clocks (cont’d)
VS = 5.5 V to 28 V,, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit
Min.
Typ.
Max.
Note / Test Condition
Number
Input clock high/low
time
thigh/low
10
–
–
ns
Peak period jitter
tjp
-500
–
500
ps
for K=2; this parameter
value is only valid with the
combination of an external
quartz oscillator (e.g. 5
MHz)
P_3.1.9
Accumulated jitter with
external oscillator
jacc_ext
–
–
5
ns
for K=2; this parameter
value is only valid with the
combination of an external
quartz oscillator (e.g. 5
MHz).
P_3.1.10
Lock-in time
tL
–
–
260
µs
this parameter represents
the duration from module
power-on to assertion of
lock signal
P_3.1.11
P_3.1.8
1) The typical oscillator frequency is 40 MHz
2) Not subject to production test, specified by design.
28.3.2
External Clock Parameters XTAL1, XTAL2
Table 30
Functional Range
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)1)
Parameter
Symbol
Values
Max.
Unit Note /
Test Condition
-1.7 + VDDC –
1.7
V
2)
P_3.2.1
0.3 x VDDC
–
–
V
3)
Peak-to-peak
voltage
P_3.2.2
0 V < VIN < VDDI
P_3.2.3
Min.
Input voltage range limits
for signal on XTAL1
VIX1_SR
Input voltage (amplitude) on VAX1_SR
XTAL1
Typ.
Number
XTAL1 input current
IIL
–
–
±20
µA
Oscillator frequency
fOSC
4
–
6
MHz Clock signal
P_3.2.4
Oscillator frequency
fOSC
4
–
6
MHz Crystal or
Resonator
P_3.2.5
High time
t1_VCOBYP
6
–
–
ns
4)5)
ns
4)5)
–
P_3.2.7
ns
4)5)
–
P_3.2.8
ns
4)5)
–
P_3.2.9
ns
5)6)
–
P_3.2.10
Low time
Rise time
Fall time
High time
Data Sheet
t2_VCOBYP
t3_VCOBYP
t4_VCOBYP
t1_PLLNM
6
–
–
12
–
8
8
–
100
–
8
8
–
P_3.2.6
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 30
Functional Range (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)1)
Parameter
Low time
Rise time
Fall time
Symbol
t2_PLLNM
t3_PLLNM
t4_PLLNM
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
12
–
–
ns
5)6)
–
P_3.2.11
ns
5)6)
–
P_3.2.12
ns
5)6)
–
P_3.2.13
–
–
7
7
7
7
Number
1) Not subject to production test, specified by design.
2) Overload conditions must not occur on pin XTAL1.
3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and
the resulting voltage peaks must remain within the limits defined by VIX1.
4) this performance is only valid for Prescaler Mode (VCO Bypass mode).
5) tested with rectangular signal with VIN_Low = 0V to VIN_High = VDDC
6) this performance is only valid for PLL Normal Mode.
Data Sheet
101
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.4
Flash Parameters
This chapter includes the parameters for the 40 KByte embedded flash module.
28.4.1
Flash Characteristics
Table 31
Flash Characteristics1)
VS = 5.5 V to 28 V,, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Programming time per 128 Byte page
tPR
–
Typ.
Unit
Note /
Number
Test Condition
Max.
3
2)
3.5
ms
3V < VS < 28V
P_4.1.1
2)
4.5
ms
3V < VS < 28V
P_4.1.2
Erase time per sector/page
tER
–
4
Data retention time
tRET
20
–
–
years
1,000 erase /
P_4.1.3
program cycles
Data retention time
tRET
50
–
–
years
1,000 erase /
P_4.1.4
program cycles
Tj = 30°C3)
Flash erase endurance for user sectors NER
30
–
–
kcycles Data retention
time 5 years
P_4.1.5
Flash erase endurance for security
pages4)
NSEC
10
–
–
cycles
Data retention
time 20 years
P_4.1.6
Drain disturb limit
NDD
32
–
–
kcycles
5)
P_4.1.7
1) Not subject for production test, specified by design.
2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system
clock cycles. The requirement is only relevant for extremely low system frequencies.
3) Derived by extrapolation of lifetime tests.
4) Temperature: 25 °C
5) This parameter limits the number of subsequent programming operations within a physical sector without a given page in
this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal
sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM emulation firmware
routines handle this limit automatically, for wordline erases in code sectors (without EEPROM emulation) it is
recommended to execute a software based refresh, which may make use of the integrated random number generator
NVMBRNG to statistically start a refresh.
Data Sheet
102
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.5
Parallel Ports (GPIO)
28.5.1
Description of Keep and Force Current
VDDP
keeper
current
PU Device
PUDSEL
P1.x
P0.x
\PUDSEL
keeper
current
PD Device
VSS
Pull- Up- Down.vsd
Figure 37
Pull-Up/Down Device
UGPIO
Logical „1"
7.5 KOhm (equivalent)
(1.5V / 200uA) *)
VIH - VDDP
undefined
2.33 KOhm (equivalent)
(3.5V / 1.5mA) *)
VIL - VDDP
Logical „0"
-I PLF
I
-IPLK
Current_Diag.vsd
*) value for port 0 and 1, as example
Figure 38
Data Sheet
Pull-Up Keep and Forced Current
103
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
UGPIO
Logical „1"
2.33 KOhm (equivalent)
(3.5V / 1.5mA) *)
VIH
undefined
7.5 KOhm (equivalent)
(1.5V / 200uA) *)
VIL
Logical „0"
IPLK
I
I PLF
Current_Diag-Pull _down.vsd
*) value for port 0 and 1, as example
Figure 39
Pull-Down Keep and Force Current
28.5.2
DC Parameters Port 0, Port 1, TMS, Reset
Table 32
DC Characteristics Port0, Port1
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
Input low voltage
VIL
-0.3
–
0.3 x VDDP V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.2.1
Input low voltage
VIL_extend
-0.3
0.42 x
–
2)
2.6V ≤ VDDP <
4.5V
P_5.2.14
Input high voltage
VIH
0.7 x VDDP
Input high voltage
VIH_extend –
V
VDDP
–
VDDP + 0.3 V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.2.2
0.52 x
VDDP + 0.3 V
2)
2.6V ≤ VDDP <
4.5V
P_5.2.15
–
V
2)
4.5V ≤ VDDP ≤
5.5V; Series
resistance = 0 Ω
P_5.2.3
–
V
2)
2.6V ≤ VDDP <
4.5V; Series
resistance = 0 Ω
P_5.2.16
P_5.2.4
VDDP
0.11 x VDDP –
Input Hysteresis
HYS
Input Hysteresis
HYSextend –
0.09 x
Output low voltage
VOL
–
–
1.0
V
3) 4)
Output low voltage
VOL
–
–
0.4
V
3) 5)
IOL ≤
IOLnom
P_5.2.5
Output high voltage
VOH
VDDP - 1.0
–
–
V
3) 4)
IOH ≥ IOHmax
P_5.2.6
V
3) 5)
IOH ≥ IOHnom
P_5.2.7
µA
6)
Output high voltage
Input leakage current
VOH
IOZ2
VDDP - 0.4
-5
VDDP
–
–
–
+5
IOL ≤ IOLmax
TJ ≤ 85°C,
0.45 V < VIN
P_5.2.8
< VDDP
Data Sheet
104
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 32
DC Characteristics Port0, Port1 (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
Input leakage current
IOZ2
-15
–
+15
µA
TJ ≤ 150°C,
0.45 V < VIN
< VDDP
P_5.2.9
Pull level keep current7)
IPLK
–
–
±200
µA
8)
VPIN ≥ VIH (up)
VPIN ≤ VIL (dn)
P_5.2.10
Pull level force current7)
IPLF
±1.5
–
–
mA
8)
VPIN ≥ VIL (up)
VPIN ≤ VIH (dn)
P_5.2.11
Pin capacitance
CIO
–
–
10
pF
2)
P_5.2.12
–
µs
9)
P_5.2.13
Reset Pin Timing
Reset Pin Input Filter Time Tfilt_RESET –
5
1) Tested at VDDP = 5V, specified for 2.55V < VDDP < 5.1V.
2) Not subject to production test, specified by design.
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for pin
groups must be respected.
4) Tested at 2.55V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 2.7V < VDDP < 5.1V.
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOL→GND, VOH→VDDP).
Tested at 2.55V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA.
6) The given values are worst-case values. In production test, this leakage current is only tested at 125°C; other values are
ensured by correlation. For derating, please refer to the following descriptions:
Leakage derating depending on temperature (TJ = junction temperature [°C]):
IOZ = 0.05 × e(1.5 + 0.028×TJ) [μA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 μA.
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):
IOZ = IOZtempmax - (1.6 × DV) [μA]
This voltage derating formula is an approximation which applies for maximum temperature.
7) Negative current is representing pullup; positive current is representing pulldown
8) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down.
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose
IO pins.
9) This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the overload current IOV.
Table 33
Current Limits for Port Output Drivers1)
Port Output Driver Mode
Maximum Output Current
Data Sheet
-
VDDP ≥ 4.5V
2.55V < VDDP
< 4.5V
5 mA
1.6 mA
1.0 mA
< 4.5V
Strong Driver
Output Current (IOLnom ,
3 mA
105
Number
IOHnom)
(IOLmax , - IOHmax)
VDDP ≥ 4.5V 2.55V < VDDP
P_5.2.20
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 33
Current Limits for Port Output Drivers1) (cont’d)
Port Output Driver Mode
Maximum Output Current
Output Current (IOLnom ,
-
Number
(IOLmax , - IOHmax)
VDDP ≥ 4.5V 2.55V < VDDP
VDDP ≥ 4.5V
2.55V < VDDP
< 4.5V
Medium Driver
3 mA
1.8 mA
1.0 mA
0.8 mA
P_5.2.21
Weak Driver
0.5 mA
0.3 mA
0.25 mA
0.15 mA
P_5.2.22
< 4.5V
IOHnom)
1) Not subject to production test, specified by design.
28.5.3
DC Parameters Port 2
These parameters apply to the IO voltage range, 2.55 V ≤ VDDP ≤ 5.5 V.
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the overload current IOV.
Table 34
DC Characteristics Port 2
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Number
Min.
Typ.
Max.
-0.3
–
0.3 x VDDP V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.3.1
0.42 x
–
2)
2.6V ≤ VDDP <
4.5V
P_5.3.8
Input low voltage
VIL_P2
Input low voltage
VIL_P2_exte -0.3
nd
Input high voltage
VIH_P2
Input high voltage
VIH_P2_ext –
0.7 x VDDP
end
HYSP2
Input Hysteresis
HYSP2_ext –
end
Input leakage current
IOZ1_P2
Input leakage current
(extended temperature
range)
IOZ1_P2_T_ -1
Pull level keep current4)
IPLK_P2
-400
V
VDDP
–
VDDP + 0.3 V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.3.2
0.52 x
VDDP + 0.3 V
2)
2.6V ≤ VDDP <
4.5V
P_5.3.9
–
V
2)
4.5V ≤ VDDP ≤
5.5V; Series
resistance = 0 Ω
P_5.3.3
–
V
2)
2.6V ≤ VDDP <
4.5V; Series
resistance = 0 Ω
P_5.3.10
–
+400
nA
4.5V ≤ VDDP ≤
5.5V
TJ ≤ 85°C,
0 V < VIN < VDDP
P_5.3.4
–
+1
uA
2.6V ≤ VDDP <
4.5V
TJ ≤ 150°C,
0 V < VIN < VDDP
P_5.3.11
–
±30
µA
3)
VDDP
0.11 x VDDP –
Input Hysteresis
Data Sheet
Unit Note /
Test Condition
0.09 x
VDDP
extend
–
106
VPIN ≥ VIH (up) P_5.3.5
VPIN ≤ VIL (dn)
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 34
DC Characteristics Port 2 (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
4)
Pull level force current
IPLF_P2
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
±750
–
–
µA
3)
10
pF
2)
CIO_P2
–
–
Pin capacitance
(digital inputs/outputs)
1) Tested at VDDP = 5V, specified for 4.9V < VDDP < 5.1V.
Number
VPIN ≤ VIL (up) P_5.3.6
VPIN ≥ VIH (dn)
P_5.3.7
2) Not subject to production test, specified by design.
3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down.
4) Negative current is representing pullup; positive current is representing pulldown
28.5.4
Operating Conditions
The following operating conditions must not be exceeded to ensure correct operation of the TLE9842-2QX. All
parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.
Note: Typical parameter values refer to room temperature and nominal supply voltage,
minimum/maximum parameter values also include conditions of minimum/maximum temperature and
minimum/maximum supply voltage. Additional details are described where applicable.
Table 35
Operating Condition Parameters
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Digital core supply voltage
Symbol
VDDC
Values
Min.
Typ.
Max.
1.35
–
1.6
Unit
Note /
Test Condition
Number
V
Full active mode
P_5.4.1
P_5.4.2
Digital supply voltage for IO pads
VDDP
2.55
5.0
5.5
V
1)
Digital ground voltage
VSS
0
–
0
V
Reference voltage P_5.4.3
Overload current
IOV
- 5.0
–
5.0
mA
Per IO pin2)3)
P_5.4.4
Overload current
IOV
- 2.0
–
5.0
mA
Per analog input
pin2)3)
P_5.4.5
Overload positive current coupling
factor for analog inputs4)
KOVA
–
1.0
x 10-6
1.0
x 10-4
–
IOV > 03)
P_5.4.6
Overload negative current coupling
factor for analog inputs
KOVA
–
2.5
x 10-4
1.5
x 10-3
–
IOV < 03)
P_5.4.7
Overload positive current coupling
factor for digital
I/O pins
KOVD
–
1.0
x 10-4
5.0
x 10-3
–
IOV > 03)
P_5.4.8
Overload negative current coupling
factor for digital
I/O pins
KOVD
–
1.0
x 10-2
3.0
x 10-2
–
IOV < 03)
P_5.4.9
Absolute sum of overload currents
Σ|IOV|
–
–
80
mA
3)
P_5.4.10
Data Sheet
107
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
1)Performance of pad drivers, A/D Converter, and Flash module depends on VDDP.
If the external supply voltage VDDP becomes lower than the specified operating range, a power reset must be
generated. Otherwise, the core supply voltage VDDI may rise above its specified operating range due to parasitic
effects.
This power reset can be generated by the on-chip SWD. If the SWD is disabled the power reset must be generated
by activating the PORST input
2) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the
specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin (IOV < 0). The absolute sum of input overload currents on all pins may
not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions
depends on the application.
Overload conditions must not occur on pin XTAL1 (powered by VDDIM).
3) Not subject to production test, specified by design.
4) An overload current (IOV) through a pin injects an error current (IINJ) into the adjacent pins. This error current adds to that
pin’s leakage current (IOZ). The value of the error current depends on the overload current and is defined by the overload
coupling factor KOV. The polarity of the injected error current is reversed from the polarity of the overload current that
produces it.
The total current through a pin is |ITOT| = |IOZ| + (|IOV| x KOV). The additional error current may distort the input voltage on
analog inputs.
Data Sheet
108
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.6
LIN Transceiver
28.6.1
Electrical Characteristics
Table 36
Electrical Characteristics LIN Transceiver
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit Note / Test Condition
Number
Max.
Bus Receiver Interface
Receiver threshold voltage, Vth_dom
recessive to dominant edge
Receiver dominant state
VBUSdom -27
Receiver threshold voltage, Vth_rec
dominant to recessive edge
Receiver recessive state
0.4 ×VS 0.45 ×VS 0.53 x VS V
VBUSrec
0.47 x
VS
SAE J2602
P_6.1.1
0.4 ×VS
V
LIN Spec 2.2 (Par. 17)
P_6.1.2
0.55 ×VS 0.6 ×VS
V
SAE J2602
P_6.1.3
–
0.6 ×VS –
1.15 ×VS V
1)
LIN Spec 2.2 (Par. 18) P_6.1.4
LIN Spec 2.2 (Par. 19) P_6.1.5
Receiver center voltage
VBUS_CN 0.475
× VS
T
0.5 ×VS
0.525
× VS
V
2)
Receiver hysteresis
VHYS
0.07
× VS
0.12 ×VS 0.175
× VS
V
3)
LIN Spec 2.2 (Par. 20) P_6.1.6
Wake-up threshold voltage
VBUS,wk
0.4 ×VS 0.5 ×VS
0.6 ×VS
V
–
P_6.1.7
30
150
µs
P_6.1.8
including analog and
digital filter time. Digital
filter time can be
adjusted by
PMU.CNF_WAKE_FIL
TER
Dominant time for bus wake- tWK,bus
up
–
Bus Transmitter Interface
Bus recessive output
voltage
VBUS,ro
0.8 ×VS –
VS
V
VTxD = high Level
P_6.1.9
Bus short circuit current
IBUS,sc
40
100
150
mA
Current Limitation for
driver dominant state
driver on
VBUS = 18 V; LIN Spec
2.2 (Par. 12)
P_6.1.10
Leakage current
IBUS_NO_ -1000
-450
0
µA
VS = 0 V; VBUS = -12 V; P_6.1.11
LIN Spec 2.2 (Par. 15)
GND
Leakage current
IBUS_NO_ –
10
20
µA
IBUS_PAS -1
Leakage current
IBUS_PAS –
–
–
mA
VS = 18 V; VBUS = 0 V;
LIN Spec 2.2 (Par. 13)
P_6.1.13
–
20
µA
VS = 8 V; VBUS = 18 V;
P_6.1.14
_dom
LIN Spec 2.2 (Par. 14)
_rec
Data Sheet
P_6.1.12
LIN Spec 2.2 (Par. 16)
BAT
Leakage current
VS = 0 V; VBUS = 18 V;
109
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 36
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Bus pull-up resistance
Symbol
RBUS
Values
Unit Note / Test Condition
Number
Min.
Typ.
Max.
20
30
47
kΩ
Normal mode LIN Spec P_6.1.15
2.2 (Par. 26), also
present in Sleep mode
AC Characteristics - Transceiver Normal Slope Mode
td(L),R
0.1
1
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.16
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
1
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.17
-2
–
2
µs
tsym,R = td(L),R - td(H),R;
P_6.1.18
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
tsym,R
LIN Spec 2.2 (Par. 32)
4)
Duty cycle D1
Normal Slope Mode
(for worst case at 20 kbit/s)
tduty1
0.396
–
–
P_6.1.19
duty cycle 1
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS;
tbit = 50 µs;
D1 = tbus_rec(min) / 2 x tbit;
LIN Spec 2.2 (Par. 27)
Duty cycle D2
Normal Slope Mode
(for worst case at 20 kbit/s)
tduty2
–
–
0.581
4)
P_6.1.20
duty cycle 2
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS;
tbit = 50 µs;
D2 = tbus_rec(max) / 2 x tbit;
LIN Spec 2.2 (Par. 28)
AC Characteristics - Transceiver Low Slope Mode
td(L),R
0.1
1
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.21
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
1
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.22
-2
–
2
µs
tsym,R = td(L),R - td(H),R;
LIN Spec 2.2 (Par. 32)
P_6.1.23
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
Data Sheet
tsym,R
110
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 36
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ.
Max.
Number
4)
Duty cycle D3
(for worst case at
10,4 kbit/s)
tduty1
0.417
–
–
P_6.1.24
duty cycle 3
THRec(max) =
0.778 ×VS;
THDom(max) =
0.616 ×VS;
tbit = 96 µs;
D3 = tbus_rec(min) / 2 x tbit;
LIN Spec 2.2 (Par. 29)
Duty cycle D4
(for worst case at
10,4 kbit/s)
tduty2
–
–
0.590
4)
duty cycle 4
P_6.1.25
THRec(min) = 0.389 ×VS;
THDom(min) =
0.251 ×VS;
tbit = 96 µs;
D4 = tbus_rec(max) / 2 x tbit;
LIN Spec 2.2 (Par. 30)
AC Characteristics - Transceiver Fast Slope Mode
td(L),R
0.1
1
6
µs
–
P_6.1.26
td(H),R
Propagation delay
bus recessive to RxD HIGH
0.1
1
6
µs
–
P_6.1.27
µs
tsym,R = td(L),R - td(H),R;
P_6.1.42
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetryextended supply voltage
range
tsym,R
-2.0
–
2.0
Duty cycle D5
(used for 62,5 kbit/s)
tduty1
0.395
–
–
duty cycle 5
P_6.1.29
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS;
tbit = 16µs;
D5 = tbus_rec(min) / 2 x tbit;
Duty cycle D6
(used for 62,5 kbit/s)
tduty2
–
–
0.581
4)
td(L),R
0.1
0.5
6
µs
–
P_6.1.31
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
0.5
6
µs
–
P_6.1.32
-1.0
–
2.0
µs
tsym,R = td(L),R - td(^H),R;
P_6.1.44
4)
P_6.1.30
duty cycle 6
THRec(min)= 0.422 ×VS;
THDom(min)= 0.284 ×VS;
tbit = 16 µs;
D6 = tbus_rec(max) / 2 x tbit;
AC Characteristics - Flash Mode
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
Data Sheet
tsym,R
111
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 36
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Number
Min.
Typ.
Max.
Duty cycle D7
tduty1
(for worst case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
(used for 250 kbit/s
programming)
0.395
–
–
duty cycle D7
P_6.1.34
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS; tbit = 8.7 µs;
D7 = tbus_rec(min) / 2 x tbit;
tduty2
Duty cycle D8
(for worst case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
(used for 250 kbit/s
programming)
–
–
0.578
5)
5)
P_6.1.35
duty cycle D8
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS; tbit = 8.7 µs;
D8 = tbus_rec(max) / 2 x tbit;
LIN input capacity
CLIN_IN
–
15
30
pF
6)
P_6.1.36
TxD dominant time out
ttimeout
6
12
20
ms
VTxD = 0 V
P_6.1.37
180
200
°C
6)
P_6.1.38
K
6)
P_6.1.39
Thermal Shutdown (Junction Temperature)
Thermal shutdown temp.
Thermal shutdown hyst.
1)
2)
3)
4)
TjSD
∆T
160
–
10
–
Maximum limit specified by design.
VBUS_CNT = (Vth_dom +Vth rec)/2
VHYS = VBUSrec - VBUSdom
Bus load concerning LIN Spec 2.2:
Load 1 = 1 nF / 1 kΩ = CBUS / RBUS
Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS
Load 3 = 10 nF / 500 Ω = CBUS / RBUS
5) Bus load
Load 1 = 1 nF / 500 Ω = CBUS / RBUS
6) Not subject to production test, specified by design.
Data Sheet
112
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.7
High-Speed Synchronous Serial Interface
28.7.1
SSC Timing
The table below provides the SSC timing in the TLE9842-2QX.
Table 37
SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Number
Test Condition
–
2)
VDDP > 2.7 V
P_7.1.1
–
ns
2)
VDDP > 2.7 V
P_7.1.2
ns
2)
VDDP > 2.7 V
P_7.1.3
MRST hold from SCLK
t3
15
–
–
ns
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.
2)
VDDP > 2.7 V
P_7.1.4
1)
t0
SCLK clock period
t1
MTSR delay from SCLK
10
t2
MRST setup to SCLK
2 * TSSC –
–
10
–
–
2) Not subject to production test, specified by design.
t0
SCLK1)
t1
t1
MTSR1)
t2
t3
Data
valid
MRST1)
t1
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
SSC_Tmg1
Figure 40
Data Sheet
SSC Master Mode Timing
113
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.8
Measurement Unit
28.8.1
Electrical Characteristics
Table 38
Supply Voltage Signal Conditioning
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit Note / Test Condition
Number
Max.
ADC1 - Battery / Supply Voltage Measurement VBAT_SENSE / VS
Input to output voltage
attenuation:
VBAT_SENSE / VS
ATTVBAT_SENSE –
, ATTVS
0.047
–
P_8.1.10
VBAT_SENSE,
Nominal operating input
voltage range VBAT_SENSE / range, VS, range
0
–
25.7
7
V
2)
Accuracy of VBAT_SENSE /
VS after calibration - with
IIR filter
-200
–
200
mV
Vs= 5.5V to 18V,
Tj = -40..125°C,
fADCI = fsys_max
VS
∆VBAT_SENSE_II
R, VS_IIR
Max. value corresponds P_8.1.11
to typ. ADC full scale
input;
P_8.1.12
ADC1_FILTCOEFF0_11.
CHx = 11’b.
Accuracy of VBAT_SENSE /
VS after calibration
∆VBAT_SENSE,
-300
–
300
mV
VS
Vs= 5.5V to 18V,
Tj = -40..125°C,
fADCI = fsys_max.
P_8.1.36
ADC1 - Monitoring Input Voltage Measurement VMONx
Input to output voltage
attenuation:
VMONx
ATTVMONx
–
0.039
–
Nominal operating input
voltage range VMONx
VMONx,range
0
–
31.0
5
V
2)
Accuracy of VMONx sense
after calibration - with IIR
filter
∆VMONx_IIR
-241
–
241
mV
Vs= 5.5V to 18V,
Tj = -40..125°C,
fADCI = fsys_max
P_8.1.13
Max. value corresponds P_8.1.14
to typ. ADC full scale
input;
P_8.1.33
ADC1_FILTCOEFF0_11.
CHx = 11’b.
Accuracy of VMONx sense ∆VMONx_ROR_IIR -170
after calibration - Reduced
Operating Range - with IIR
filter
–
170
mV
2)
Vs= 5.5V to 18V,
Tj = -40..125°C,
VMONx,range= 0V to 12V,
fADCI = fsys_max,
P_8.1.20
ADC1_FILTCOEFF0_11.
CHx = 11’b.
Data Sheet
114
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 38
Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Accuracy of VMONx sense
after calibration
Symbol
∆VMONx
Values
Unit Note / Test Condition
Min.
Typ.
Max.
-361
–
361
mV
Number
2)
Vs= 5.5V to 18V,
Tj = -40..125°C,
fADCI = fsys_max.
P_8.1.37
–
P_8.1.15
ADC1 - Port 2.x Voltage Measurement V2.x
Input to output voltage
attenuation:
VPort2.x
ATT2.x
–
0.219
–
Nominal operating input
voltage range VPort2.x
VPort2.x,range
0
–
5.53
Accuracy of VPort2.x sense
after calibration - with IIR
filter
∆VPort2.x_IIR
-43
V
2)
mV
Vs= 5.5V to 18V,
Tj = -40..125°C,
fADCI = fsys_max
1)
–
43
Max. value corresponds P_8.1.16
to typ. ADC full scale
input;
P_8.1.34
ADC1_FILTCOEFF0_11.
CHx = 11’b.
Accuracy of VPort2.x sense
after calibration
∆VPort2.x
-67
–
67
mV
Vs= 5.5V to 18V,
Tj = -40..125°C,
fADCI = fsys_max.
P_8.1.38
ADC2 - Supply Voltage Measurement VS
Input to output voltage
attenuation:
VS
ATTVS_ADC2
–
0.039
–
Nominal operating input
voltage range VS
VS,ADC2
3
–
31.0
5
V
2)
Accuracy of VS after
calibration
∆VS,ADC2
-270
–
270
mV
Vs= 5.5V to 18V,
Tj = -40..125°C
P_8.1.3
–
P_8.1.17
P_8.1.1
Max. value corresponds P_8.1.2
to typ. ADC full scale
input; 3V < VS < 28V
ADC2 - VDDEXT Voltage Measurement VDDEXT
Input to output voltage
attenuation:
VDDEXT
ATTVDDEXT
–
0.203
–
Nominal operating input
voltage range VDDEXT
VDDEXT,range
0
–
5.96
V
2)
Max. value corresponds P_8.1.18
to typ. ADC full scale
input;
ADC2 - Pad Supply Voltage Measurement VVDDP
Input-to-output voltage
attenuation:
VDDP
ATTVDDP
–
0.203
–
Nominal operating input
voltage range VDDP
VDDP,range
0
–
5.96
Data Sheet
115
–
V
P_8.1.4
2)
Max. value corresponds P_8.1.5
to typ. ADC full scale
input;
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 38
Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Unit Note / Test Condition
Typ.
Max.
Number
ADC2 - Reference Voltage Measurement VBG
Input-to-output voltage
attenuation:
VBG
ATTVBG
–
0.75
–
–
Nominal operating input
voltage range VBG
VBG,range
0.8
–
VDD V
C0.1V
2)
Value of ADC2-VBG
measurement after
calibration
VBG_PMU
0.90
1.0
1.1
–
P_8.1.39
P_8.1.8
V
P_8.1.6
Max. value corresponds P_8.1.7
to typ. ADC full scale
input;
ADC2 - Core supply Voltage Measurement VDDC
Input-to-output voltage
attenuation:
VDDC
ATTVDDC
–
0.75
–
–
Nominal operating input
voltage range VDDC
VDDC,range
0.6
–
VDD V
C+
0.1V
2)
Max. value corresponds P_8.1.9
to typ. ADC full scale
input;
1) This typical theoretical full scale is not reached as the internal ESD Clamping Structure limits the voltage to max. 5.2V.
2) Not subject to production test, specified by design.
Data Sheet
116
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.8.2
Central Temperature Sensor Module
28.8.2.1
Electrical Characteristics
Table 39
Electrical Characteristics Temperature Sensor Module
VS = 5.5 V to 28 V, , Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit
Note / Test Condition
Number
T0=0°C (273 K)
P_8.2.1
Min.
Typ.
Max.
a
–
0.628
–
V
Temperature sensitivity b 2) b
–
2.31
–
mV/K
Output voltage VTEMP at
T0=0°C (273 K)2)
P_8.2.2
Accuracy_1
Acc_1
-10
–
10
°C
1)
-40°C < Tj < 85°C
P_8.2.3
Accuracy_2
Acc_2
-15
–
15
°C
125°C < Tj < 175°C
P_8.2.4
°C
2)
P_8.2.5
Accuracy_3
Acc_3
-5
–
5
85°C < Tj < 125°C
1) Accuracy with reference to on-chip temperature calibration measurement.
2) Not subject to production test, specified by design.
Data Sheet
117
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.9
ADC1 (10-Bit)
28.9.1
ADC1 Reference Voltage
Table 40
DC Specifications
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Note / Test Condition Number
Min.
Typ.
Max.
1.211
+1%
V
P_9.1.10
+1%
V
P_9.1.11
Reference Voltage
VBG
-1%
Temperature Drift
∆VBG
-1%
28.9.2
Unit
Electrical Characteristics ADC1 (10-Bit)
These parameters describe the conditions for optimum ADC performance.
Note: Operating Conditions apply.
Table 41
A/D Converter Characteristics
VS = 5.5 V to 28 V, , Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Analog clock frequency
fADCI
5
–
40
MHz
1)
DNL error
EADNL
–
–
±2
LSB
2)
INL error
EAINL
–
–
±3
LSB –
P_9.2.1
–
P_9.2.8
P_9.2.9
4)
P_9.2.10
4)
P_9.2.11
Gain error
EAGAIN
–
–
± 1.2
% of calibrated;
FSR Gain Error is
3)
calibrated by
implemented
calibration unit
Offset error
EAOFF
–
–
± 2.5
LSB
Total unadjusted error
EATUE
–
–
± 10
LSB already
calibrated
Data Sheet
118
Number
calibrated;
Offset Error is
calibrated by
implemented
calibration unit
P_9.2.33
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 41
A/D Converter Characteristics (cont’d)
VS = 5.5 V to 28 V, , Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Input referred noise
Symbol
VNoise_LSB
Values
Min.
Typ.
Max.
–
–
1.5
Unit Note /
Test Condition
Number
LSB
rms
P_9.2.34
4)
Tj = 25°C; this
value is
determined out
of 4 consecutive
measurements
which are
averaged.
Cross-coupling
Attenuation between LV
Channels
EACCOUP
–
±1
±2
LSB
4)
Input capacitance of
a HV analog input
CAINT_HVI
–
–
200
fF
4)
P_9.2.13
Input capacitance of
a LV analog input
CAINT_LVI
–
–
200
fF
4)
P_9.2.19
1)
2)
3)
4)
–
P_9.2.12
The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.
this parameter is measured with disabled hardware calibration
this Gain error is calibrated by IFX end of line
Not subject to production test
Data Sheet
119
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.10
High-Voltage Monitoring Input
28.10.1
Electrical Characteristics
Table 42
Electrical Characteristics Monitoring Input
VS = 5.5 V to 28 V; Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit
Note / Test Condition Number
V
without external serial P_10.1.1
resistor Rs (with Rs:DV
= IPD/PU * Rs);
0.06*Vs 0.10*Vs V
P_10.1.2
in all modes; without
external serial resistor
Rs (with Rs:dV = IPD/PU
* Rs); 5.5 V < VS < 18 V
Threshold hysteresisextended supply
voltage range
VMONth,hys 0.02*Vs 0.06*Vs 0.12*Vs V
P_10.1.7
in all modes; without
external serial resistor
Rs (with Rs:dV = IPD/PU
* Rs); 18 V < VS < 28 V
Pull-up current
IPU, MON
-20
-10
-5
µA
0.6*Vs;
P_10.1.3
Pull-down current
IPD, MON
5
10
20
µA
0.4*Vs;
P_10.1.4
Input leakage current
ILK,MON
-2
–
2
µA
0 V < VMON_IN < 28 V
P_10.1.5
tFT,MON
-
20
-
µs
1)
P_10.1.6
Min.
Typ.
Max.
0.4*Vs
0.5*Vs
0.6*Vs
MON Input Pin characteristics
Wake-up/monitoring
threshold voltage
VMONth
Threshold hysteresis
VMONth,hys 0.015*
Vs
_VS_extende
d
Timing
Wake-up filter time
1) With pull-up, pull down current disabled.
Data Sheet
120
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.11
High Side Switches
28.11.1
Electrical Characteristics
Table 43
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
Number
PWM frequency of HS with
Slew Rate Control
fPWM_W_SR
0
–
10
kHz
1)
Frequency must be
configured in the PWM
Generator
P_11.1.1
PWM frequency of HS
without Slew Rate Control
fPWM_W/O_SR 0
–
252)
kHz
1)
Frequency must be
configured in the PWM
Generator
P_11.1.2
ON-State Resistance
RON
2
10
18
Ω
5.5 V < VS < 28V,
Ids=100mA,
Tj = 25 °C
P_11.1.3
Output leakage Current
Ileakage
–
–
2
µA
Output OFF
0 V < VXLO < VS;
Tj ≤ 150 °C
P_11.1.4
1
–
10
V/µs 20% to 80% of VS
VS = 9 to 18V
RL =300Ω1)
P_11.1.5
-10
–
-1
V/µs 80% to 20% of VS
VS = 9 to 18V
RL =300Ω1)
P_11.1.6
18.0
–
55.0
V/µs 20% to 80% of VS
VS = 9 to 18V
RL =300Ω1)
P_11.1.7
P_11.1.8
Output HS
Output Slew Rate (rising) with SRraise_SR1
slow Slew Rate setting (Slew
Rate 1)
Output Slew Rate (falling)
with slow Slew Rate setting
(Slew Rate 1)
SRfall_SR1
Output Slew Rate (rising) with SRraise_SR2
fast Slew Rate setting (Slew
Rate 2)
Output Slew Rate (falling)
with fast Slew Rate setting
(Slew Rate 2)
SRfall_SR2
-43.4
–
-12.5 V/µs 80% to 20% of VS
VS = 9 to 18V
RL =300Ω1)
Turn ON Delay time (Slew
Rate 1)
tIN-HS_SR1
–
–
4.5
µs
ON = 1 to 20% of VS
RL =300Ω
P_11.1.9
Turn ON time (Slew Rate 1)
tON_SR1
1
–
15
µs
VS = 9 to 18V
P_11.1.10
HS_ON=1 to 80% of VS
RL =300Ω
Tj =25°C
Turn OFF time (Slew Rate 1) tOFF_SR1
1
–
15
µs
VS = 9 to 18V
P_11.1.11
HS_ON= 0 to 20% of VS
RL =300Ω;
Tj =25°C
Data Sheet
121
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 43
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
Number
Turn ON Delay time (Slew
Rate 2)
tIN-HS_SR2
–
–
1
µs
ON = 1 to 20% of VS
RL =300Ω
P_11.1.55
Turn ON time (Slew Rate 2)
tON_SR2
–
–
3
µs
VS = 9 to 18V
P_11.1.56
HS_ON=1 to 80% of VS
RL =300Ω
Tj =25°C
Turn OFF time (Slew Rate 2) tOFF_SR2
–
–
3
µs
VS = 9 to 18V
P_11.1.57
VS = 13.5V
P_11.1.12
HS_ON= 0 to 20% of VS
RL =300Ω;
Tj =25°C
Over-current detection
Overcurrent threshold 0
Iocth0
26
42
60
mA
HSx_OC_SEL =00
Overcurrent threshold 0
hysteresis
Iocth0,hyst
–
14
–
mA
1)
Overcurrent threshold 1
Iocth1
51
60
80
mA
VS = 13.5V
HSx_OC_SEL =00
P_11.1.13
P_11.1.14
HSx_OC_SEL =01
Overcurrent threshold 1
hysteresis
Iocth1,hyst
–
17
–
mA
1)
Overcurrent threshold 2
Iocth2
101
123
150
mA
VS = 13.5V
HSx_OC_SEL =01
P_11.1.15
P_11.1.16
HSx_OC_SEL =10
Overcurrent threshold 2
hysteresis
Iocth2,hyst
–
25
–
mA
1)
Overcurrent threshold 3
Iocth3
151
176
210
mA
VS = 13.5V
HSx_OC_SEL =11
P_11.1.19
VS = 13.5V,
P_11.1.20
HSx_OC_SEL =10
P_11.1.17
P_11.1.18
HSx_OC_SEL =11
Overcurrent threshold 3
hysteresis
Iocth3,hyst
–
30
–
mA
1)
Over-current shutdown
response time
tocft
8
–
80
µs
1)
RL =100Ω, HS_ON to
OC_SD (including switchon time)
ON-state open load detection
Open load threshold
IOLONth
0.46
1.32 2.2
mA
–
P_11.1.21
Hysteresis
IOLONhys
35
155
300
µA
–
P_11.1.22
IHS max
40
–
–
mA
Sleep Mode / Stop Mode
P_11.1.23
–
–
40
Ω
Ids = 40mA,
P_11.1.24
Cyclic sense mode
Current capability
sleep_pd
ON-State Resistance
Data Sheet
RON,static
122
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
Table 43
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ. Max.
Unit Note / Test Condition
Number
Output Slew Rate (rising)
SRrise_cyc
1
–
–
V/µs 20% to 80% of VS
VS = 9 to 18V
RL =300Ω
P_11.1.25
Output Slew Rate (falling)
SRfal_cycl
–
–
-1
V/µs 80% to 20% of VS
VS = 9 to 18V
RL =300Ω
P_11.1.26
–
–
2
µs
ON =1 to 20% of VS
RL=300Ω
P_11.1.27
–
–
15
µs
VS = 9 to 18V
P_11.1.28
Delay Time CYCLIC_ON-HS tIN_cyc
Turn-ON time
tON_cyc
ON=1 to 80%
RL =300Ω
Turn-OFF time
tOFF_cyc
–
–
15
µs
VS = 9 to 18V
P_11.1.29
ON=0 to 20% of VS
RL =300Ω;
Tj=25°C
1) Not subject to production test, specified by design.
2) this is an additional requirement which refers to a 47Ohm series resistor to charge an external power mos gate.
Data Sheet
123
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
28.12
Low Side Switches
28.12.1
Electrical Characteristics
Table 44
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ.
Max.
1)
PWM Frequency of LS
fPWM
–
–
25
kHz
Overcurrent Limitation
ILSTyp
270
300
330
mA
ON-State Resistance
RON
1
4
10
Ω
Ids =100mA;
P_12.1.3
Leakage Current
Ileakage
–
–
2
µA
0 V < VLS < VS;
Tj < 85°C
P_12.1.5
Turn ON Delay time, slow mode
tdOn-LS
–
–
50
µs
2)
P_12.1.6
Turn ON Delay time, PWM mode tdOn,f-LS
RL =270Ω
Number
P_12.1.1
P_12.1.2
LS_ON=1 to 0.9*Vs
VS=13.5V, RL =270Ω
–
–
0.5
µs
LS_ON=1 to 0.9*Vs
P_12.1.7
VS=13.5V, RL =270Ω
Turn ON fall time, PWM mode
tONF,PWM
–
1
1.25
µs
VLS 0.9*Vs to 0.1*Vs
VS=13.5V, RL =270Ω
P_12.1.8
Turn ON fall time, slow mode
tONF,Slow
–
100
150
µs
2)
VLS 0.9*Vs to 0.1*Vs
VS=13.5V, RL =270Ω
P_12.1.9
–
–
50
µs
2)
P_12.1.10
Turn OFF Delay time, slow mode tdOff-LS
tdOff,f-LS
LS_ON=0 to 0.1*Vs
VS=13.5V, RL =270Ω
–
–
2
µs
LS_ON=0 to 0.1*Vs
VS=13.5V, RL =270Ω
P_12.1.11
Turn OFF Rise time, PWM mode tOFFR,PWM –
1
1.25
µs
VLS 0.1*Vs to 0.9*Vs;
VS=13.5V, RL =270Ω
P_12.1.12
100
150
µs
2)
VLS 0.1*Vs to 0.9*Vs;
VS=13.5V, RL =270Ω
P_12.1.13
Turn OFF Delay time, PWM
mode
Turn OFF Rise time, slow mode
tOFFR,Slow –
Minimum Duty Cycle Pulse Width tonMIN
variation
1.5
2
3.5
µs
ton(dig) = 2µs1)
P_12.1.14
Typical (systematic) Pulse Width d tonTYP
increase LS_ON to VLS
–
1.25
–
µs
ton(dig) = 2µs1)
P_12.1.15
Zener Clamp Voltage
VAZ
–
50
–
V
values are valid at
Tj = 25°C
P_12.1.16
Clamping Energy (repetitive)
Eclamp
–
–
2
mJ
1)3)
1.000.000 cycles, @
Imax = 90mA
P_12.1.17
Clamping Energy
Eclamp
–
–
14
mJ
1)3)
10 cycles, Tstart =
25°C, @ Imax = 230mA
P_12.1.18
Clamping Energy (single), hot
Eclamp
–
–
7
mJ
1)3)
P_12.1.19
Data Sheet
124
10 cycles, Tstart =
85°C, @ Imax = 230mA
Rev. 1.0, 2016-05-06
TLE9842-2QX
Electrical Characteristics
1) Not subject to production test, specified by design.
2) Static ON mode (no PWM)
3) valid for one low-side, not for both at the same time
Data Sheet
125
Rev. 1.0, 2016-05-06
TLE9842-2QX
Package Outlines
Package Outlines
0.9 MAX.
(0.65)
0.
13
±
+0.03
1)
0.4 x 45°
Index Marking
C
0.15 ±0.05
0.1 ±0.05
48
13
(0
(0.2)
0.05 MAX.
2)
37
1
12
1) Vertical burr 0.03 max., all sides
2) These four metal areas have exposed diepad potential
Figure 41
36
25
24
SEATING PLANE
7 ±0.1
6.8
48x
0.08
0.5
0.5 ±0.07
0.1±0.03
B
26
0.
6.8
11 x 0.5 = 5.5
(6)
A
(5.2)
7 ±0.1
0.
05
29
.3
0.23 ±0.05
5)
(5.2)
Index Marking
48x
0.1 M A B C
(6)
PG-VQFN-48-29, -31-PO V05
Package outline VQFN-48-31 (with LTI)
Notes
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/products.
2. Dimensions in mm.
Data Sheet
126
Rev. 1.0, 2016-05-06
TLE9842-2QX
Revision History
30
Revision History
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 1.0, 2016-05-06
Initial revision
Data Sheet
127
Rev. 1.0, 2016-05-06
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2016-05-06
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.