TLE9879QTW40
Microcontroller with LIN and BLDC MOSFET Driver for Automotive
Applicati ons
BF-step
Extended operating temperatur e range (grade 0)
Features
•
32-bit Arm®* Cortex®-M3 core
•
128 KB flash
•
6 KB RAM
•
On-chip OSC and PLL for clock generation
•
MOSFET driver including charge pump
•
1 LIN 2.2 transceiver
•
High-speed operational amplifier for motor current sensing via shunt
•
Single power supply from 5.5 V to 27 V
•
Temperature range Tj = -40°C to +175°C
Potential applications
•
Wiper
•
Aux. pumps
•
Fans
•
Window lift
•
Sunroof
•
Tailgate
Product validation
Qualified for automotive applications. Product validation according to AEC-Q100/101.
Description
Type
Package
TLE9879QTW40
TQFP-48-10
Marking
* Arm and Cortex are registered trademarks of Arm Limited, UK
Datasheet
www.infineon.com
1
Rev. 1.0
2020-07-23
TLE9879QTW40
Table of contents
1
1.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
3.1
3.2
Device pinout and pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Device pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
Power management unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PMU modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power supply generation unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage regulator 5.0 V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage regulator 1.5 V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External voltage regulator 5.0 V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
19
21
22
22
23
24
6
6.1
6.2
6.2.1
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
System control unit – digital modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock generation unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low-precision clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High-precision oscillator circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External input clock mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External crystal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
25
26
28
28
28
29
29
7
7.1
7.2
7.2.1
System control unit – power modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
30
30
30
8
8.1
8.2
8.2.1
Arm® Cortex®-M3 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
32
33
33
9
9.1
9.2
9.2.1
9.3
9.3.1
DMA controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DMA mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
34
35
35
36
36
10
Address space organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11
11.1
11.2
Memory control unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Datasheet
2
Rev. 1.0
2020-07-23
TLE9879QTW40
11.2.1
11.3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
NVM module (flash memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
12
12.1
12.2
12.2.1
Interrupt system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13.1
13.2
Watchdog timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
14
14.1
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.1.1
14.3.2
14.3.2.1
14.3.3
14.3.3.1
GPIO ports and peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 and port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE9879QTW40 port module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
45
45
45
47
48
48
48
50
50
52
52
15
15.1
15.1.1
15.1.2
15.2
15.2.1
15.2.2
General-purpose timer units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features of block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features of block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram of GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram of GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
54
54
54
54
55
56
57
16
16.1
16.2
16.2.1
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer2 and Timer21 mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
58
58
58
17
17.1
17.2
17.3
17.3.1
Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer3 modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
60
60
60
60
60
18
18.1
18.2
18.2.1
Capture/compare unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Feature set overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
62
62
63
64
19
19.1
19.2
19.2.1
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
65
65
65
Datasheet
3
41
41
41
41
Rev. 1.0
2020-07-23
TLE9879QTW40
19.3
UART modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
20
20.1
20.2
20.2.1
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
67
67
68
21
21.1
21.2
21.2.1
High-speed synchronous serial interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
69
69
70
70
22
Measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2.1
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2.1.1
BEMF comparator block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
71
71
71
72
73
23
23.1
23.2
23.2.1
23.2.2
Core measurement module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Core measurement module mode overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
74
74
74
75
24
24.1
24.2
24.2.1
10-bit analog-to-digital converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
76
76
76
77
25
25.1
25.2
25.2.1
High-voltage monitor input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
78
78
78
78
26
26.1
26.2
26.2.1
26.2.2
Bridge driver (incl. charge pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
79
79
79
80
80
27
27.1
27.2
27.2.1
Current sense amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
81
81
81
82
28
28.1
28.2
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
BLDC driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ESD immunity according to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
29
29.1
29.1.1
29.1.2
29.1.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Datasheet
4
86
86
86
89
90
Rev. 1.0
2020-07-23
TLE9879QTW40
29.1.4
29.1.5
29.2
29.2.1
29.2.2
29.2.3
29.2.4
29.2.4.1
29.2.5
29.3
29.3.1
29.3.2
29.4
29.4.1
29.5
29.5.1
29.5.2
29.5.3
29.6
29.6.1
29.7
29.7.1
29.8
29.8.1
29.8.2
29.8.3
29.8.3.1
29.8.3.2
29.9
29.9.1
29.9.2
29.10
29.11
29.11.1
29.12
29.12.1
29.13
29.13.1
Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Timing characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Power management unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
PMU I/O supply (VDDP) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
PMU core supply (VDDC) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
VDDEXT voltage regulator (5.0 V) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
VPRE voltage regulator (PMU subblock) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Load-sharing scenario for the VPRE regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Power-down voltage regulator (PMU subblock) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
System clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Parameters of oscillators and PLLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
External clock parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Flash parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Parallel ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Description of the keep and force currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
DC parameters of port 0, port 1, TMS, and reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
DC parameters of port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
High-speed synchronous serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
SSC timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Measurement unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
System voltage measurement parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Central temperature sensor parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
ADC2 VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ADC2 reference voltage VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ADC2 specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
ADC1 reference voltage - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Electrical characteristics of VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Electrical characteristics of the ADC1 (10-bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
High-voltage monitoring input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
MOSFET driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Operational amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
30
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
31
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Datasheet
5
Rev. 1.0
2020-07-23
TLE9879QTW40
Overview
1
Overview
Summary of Features
•
32-bit Arm® Cortex®-M3 core
– Up to 40 MHz clock frequency
– One clock per machine cycle architecture
•
On-chip memory
– 128 KB flash including
– 4 KB EEPROM (emulated in flash)
– 512 byte 100-time programmable memory (100TP)
– 6 KB RAM
– Boot ROM for startup firmware and flash routines
•
On-chip OSC and PLL for clock generation
– PLL loss-of-lock detection
•
MOSFET driver including charge pump
•
10 general-purpose I/O Ports (GPIO)
•
5 analog inputs, 10-bit A/D Converter (ADC1)
•
16-bit timers - GPT12, Timer2, Timer21, and Timer3
•
Capture/compare unit for PWM signal generation (CCU6)
•
2 full-duplex serial interfaces (UART) with LIN support (for UART1 only)
•
2 synchronous serial channels (SSC)
•
On-chip debug support via 2-wire SWD
•
1 LIN 2.2 transceiver
•
1 high-voltage monitoring input
•
Single power supply from 5.5 V to 27 V
•
Extended power supply voltage range from 3 V to 28 V
•
Low-dropout voltage regulators (LDO)
•
High-speed operational amplifier for motor current sensing via shunt
•
5 V voltage supply for external loads (e.g., Hall sensor)
•
Core logic supply at 1.5 V
•
Programmable window watchdog (WDT1) with independent on-chip clock source
•
Power-saving modes
– MCU slow-down mode
– Sleep mode
– Stop mode
– Cyclic wake-up sleep mode
•
Power-on and undervoltage/brownout reset generator
•
Overtemperature protection
•
Short-circuit protection
•
Loss of clock detection with fail-safe mode entry for low system power consumption
•
Temperature range Tj = -40°C to +175°C
Datasheet
6
Rev. 1.0
2020-07-23
TLE9879QTW40
Overview
•
Package TQFP-48
•
Green package (RoHS compliant)
•
AEC-qualified
Datasheet
7
Rev. 1.0
2020-07-23
TLE9879QTW40
Overview
1.1
Abbreviations
The following acronyms and terms are used within this document. List see in Table 1.
Table 1
Acronyms
Acronyms
Name
AHB
Advanced High-performance Bus
APB
Advanced Peripheral Bus
CCU6
Capture compare unit 6
CGU
Clock generation unit
CMU
Cyclic management unit
CP
Charge pump for MOSFET driver
CSA
Current-sense amplifier
DPP
Data post-processing
ECC
Error correction code
EEPROM
Electrically erasable programmable read only memory
EIM
Exceptional interrupt measurement
FSM
Finite state machine
GPIO
General-purpose input/output
H-Bridge
Half-bridge
ICU
Interrupt control unit
IEN
Interrupt enable
IIR
Infinite impulse response
LDM
Load instruction
LDO
Low-dropout voltage regulator
LIN
Local interconnect network
LSB
Least significant bit
LTI
Lead tip inspection
MCU
Microcontroller unit
MF
Measurement functions
MSB
Most significant bit
MPU
Memory protection unit
MRST
Master receive, slave transmit
MTSR
Master transmit, slave receive
MU
Measurement unit
NMI
Non-maskable interrupt
NVIC
Nested vector interrupt controller
NVM
Non-volatile memory
OTP
One-time programmable
OSC
Oscillator
PBA
Peripheral bridge
Datasheet
8
Rev. 1.0
2020-07-23
TLE9879QTW40
Overview
Table 1
Acronyms (cont’d)
Acronyms
Name
PCU
Power control unit
PD
Pull-down
PGU
Power supply generation unit
PLL
Phase-locked loop
PPB
Private Peripheral Bus
PU
Pull-up
PWM
Pulse-width modulation
RAM
Random-access memory
RCU
Reset control unit
RMU
Reset management unit
ROM
Read-only memory
SCU-DM
System control unit – digital modules
SCU-PM
System control unit – power modules
SFR
Special function register
SOW
Short open window (for WDT)
SPI
Serial Peripheral Interface
SSC
Synchronous serial channel
STM
Store instruction
SWD
Arm® Serial Wire Debug
TCCR
Temperature compensation control register
TMS
Test mode select
TSD
Thermal shut-down
UART
Universal asynchronous receiver-transmitter
VBG
Voltage reference bandgap
VCO
Voltage-controlled oscillator
VPRE
Preregulator
WDT
Watchdog timer in SCU-DM
WDT1
Watchdog timer in SCU-PM
WMU
Wake-up management unit
100TP
100-time programmable
Datasheet
9
Rev. 1.0
2020-07-23
TLE9879QTW40
Block diagram
2
Block diagram
TMS
P0.0
TEST / DEBUG
INTERFACE
Arm®
Cortex®-M3
µDMA
CONTROLLER
system bus
FLASH
slave
SRAM
slave
ROM
slave
slave
Multilayer AHB matrix
slave
VAREF
GND_REF
P2.0, P2.2, P2.3, P2.4, P2.5
(AN0, AN2, AN3, AN4, AN5)
MU-VAREF
Figure 1
Datasheet
PBA1
SCU_DM
ADC 1
DPP1
GPT12
UART1
UART2
SSC1
SSC2
MOSFET
driver
CCU6
T2
T21
SCU_DM
WDT
SCU_PM
WDT1/
CLKWDT
CP
µDMA
controller
PLL
XTAL1
XTAL2
GPIO
P0.1 – P0.4
P1.0 – P1.4
LIN
OP AMP
VCP
VSD
CP2H
CP2L
CP1H
CP1L
PBA0
OP AMP
VDH
GH3
SH3
GL3
GH2
SH2
GL2
GH1
SH1
GL1
SL
slave
LIN
GND_LIN
MU
MF / ADC2
DPP2
OP AMP
OP1
OP2
PMU –
power
control
system
functions
VS
RESET
VDDEXT
VDDP
VDDC
MON
MON
T3
Block diagram
10
Rev. 1.0
2020-07-23
TLE9879QTW40
25 P0. 2
27 P1.4
28 GND
29 P2. 0/XTAL1
30 P2. 2/XTAL2
31 P2.5
32 P2.4
33 GND_REF
Device pinout
34 VAREF
3.1
35 P2.3
Device pinout and pin configuration
36 OP2
3
26 P1. 3
Device pinout and pin configuration
OP1 37
24 P0.3
EP
VDDC 38
23 P0.1
EP
GND 39
22 RESET
VDDP 40
21 P0.0
VDDEXT 41
20 TMS
19 GND
GND_LIN 42
TLE 987x
LIN 43
18 P0.4
VDH 44
17 P1.2
VS 45
16 P1.1
SH3 46
15 P1.0
VSD 47
14 MON
13 GL1
Note:
Figure 2
Datasheet
GL2 12
GL3 11
SL 10
GH1 9
SH1 8
GH2 7
SH2 6
GH3 5
CP2L 4
VCP 2
CP2H 3
CP1L 1
CP1H 48
= Low voltage pins
Device pinout
11
Rev. 1.0
2020-07-23
TLE9879QTW40
Device pinout and pin configuration
3.2
Pin configuration
After a reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:
•
Pull-up device enabled only (PU)
•
Pull-down device enabled only (PD)
•
Input with both pull-up and pull-down devices disabled (I)
•
Output with output stage deactivated = high-impedance state (Hi-Z)
The functions and default states of the TLE9879QTW40 external pins are provided in the following table.
Type: indicates the pin type.
•
I/O: Input or output
•
I: Input only
•
O: Output only
•
P: Power supply
Not all alternate functions are listed.
Table 2
Symbol
Pin definitions and functions
Pin
number
Type
Reset Function
state1)
P0
Port 0
Port 0 is a 5-bit bidirectional general-purpose I/O port.
Alternate functions can be assigned and are listed in the port
description. The main functions are listed below.
P0.0
21
I/O
I/PU
SWD
Serial wire debug clock
P0.1
23
I/O
I/PU
GPIO
General-purpose I/O
Alternate function mapping see Table 8.
P0.2
25
I/O
I/PD
GPIO
General-purpose I/O
Alternate function mapping see Table 8.
Note:
For a functional SWD connection,
this GPIO must be tied to zero.
P0.3
24
I/O
I/PU
GPIO
General-purpose I/O
Alternate function mapping see Table 8.
P0.4
18
I/O
I/PD
GPIO
General-purpose I/O
Alternate function mapping see Table 8.
P1
Port 1
Port 1 is a 5-bit bidirectional general-purpose I/O port.
Alternate functions can be assigned and are listed in the port
description. The main functions are listed below.
P1.0
15
I/O
I
GPIO
General-purpose I/O
Alternate function mapping see Table 8.
P1.1
16
I/O
I
GPIO
General-purpose I/O
Alternate function mapping see Table 9.
P1.2
17
I/O
I
GPIO
General-purpose I/O
Alternate function mapping see Table 9.
Datasheet
12
Rev. 1.0
2020-07-23
TLE9879QTW40
Device pinout and pin configuration
Table 2
Pin definitions and functions (cont’d)
Symbol
Pin
number
Type
Reset Function
state1)
P1.3
26
I/O
I
GPIO
General-purpose I/O, used for inrush transistor
Alternate function mapping see Table 9.
P1.4
27
I/O
I
GPIO
General-purpose I/O
Alternate function mapping see Table 9.
P2
Port 2
Port 2 is a 5-bit general-purpose input-only port.
Alternate functions can be assigned and are listed in the port
description. The main functions are listed below.
P2.0/XTAL1
29
I/I
I
AN0
ADC analog input 0
Alternate function mapping see Table 10.
P2.2/XTAL2
30
I/O
I
AN2
ADC analog input 2
Alternate function mapping see Table 10.
P2.3
35
I
I
AN3
ADC analog input 3
Alternate function mapping see Table 10.
P2.4
32
I
I
AN4
ADC analog input 4
Alternate function mapping see Table 10.
P2.5
31
I
I
AN5
ADC analog input 5
Alternate function mapping see Table 10.
45
P
–
Battery supply input
Power supply
VS
VDDP
40
P
–
2)
VDDC
38
P
–
3)
Core supply (1.5 V in Active mode).
Do not connect external loads, but connect an external buffer
capacitor.
VDDEXT
41
P
–
External voltage supply output (5.0 V, 20 mA)
GND
19
P
–
GND digital
GND
28
P
–
GND digital
GND
39
P
–
GND analog
14
I
–
High voltage monitor input
LIN
43
I/O
–
LIN bus interface input/output
GND_LIN
42
P
–
LIN ground
CP1H
48
P
–
Charge pump capacity 1 high, connect external C
CP1L
1
P
–
Charge pump capacity 1 low, connect external C
CP2H
3
P
–
Charge pump capacity 2 high, connect external C
CP2L
4
P
–
Charge pump capacity 2 low, connect external C
VCP
2
P
–
Charge pump capacity
I/O port supply (5.0 V). Connect external buffer capacitor.
Monitor input
MON
LIN interface
Charge pump
Datasheet
13
Rev. 1.0
2020-07-23
TLE9879QTW40
Device pinout and pin configuration
Table 2
Pin definitions and functions (cont’d)
Symbol
Pin
number
Type
Reset Function
state1)
VSD
47
P
–
Battery supply input for charge pump
VDH
44
P
–
Voltage drain high-side MOSFET driver
SH3
46
P
–
Source high-side FET 3
SH2
6
P
–
Source high-side FET 2
GH2
7
P
–
Gate high-side FET 2
SH1
8
P
–
Source high-side FET 1
GH1
9
P
–
Gate high-side FET 1
SL
10
P
–
Source low-side FET
GL2
12
P
–
Gate low-side FET 2
GL1
13
P
–
Gate low-side FET 1
GH3
5
P
–
Gate high-side FET 3
GL3
11
P
–
Gate low-side FET 3
GND_REF
33
P
–
GND for VAREF
VAREF
34
I/O
–
5V ADC1 reference voltage, optional buffer or input
OP1
37
I
–
Negative operational amplifier input
OP2
36
I
–
Positive operational amplifier input
TMS
20
I
I/O
I/PD
TMS
SWD
RESET
22
I/O
–
Reset input, not available during sleep mode
EP
–
–
–
Exposed pad, connect to GND
MOSFET driver
Others
Test mode select input
Serial Wire Debug input/output
1) Only valid for digital IO.
2) Also named VDD5V.
3) Also named VDD1V5.
Datasheet
14
Rev. 1.0
2020-07-23
TLE9879QTW40
Modes of operation
4
Modes of operation
The TLE9879QTW40 highly integrated circuit contains analog and digital functional blocks. An embedded 32bit microcontroller is available for system and interface control. On-chip, low-dropout regulators are provided
for internal and external power supply. An internal oscillator provides a cost-effective clock that is particularly
well suited for LIN communications. A LIN transceiver is available as a communication interface. Driver stages
for a motor bridge or BLDC motor bridge with external MOSFET are integrated, featuring PWM capability,
protection features, and a charge pump for operation at low supply voltage. A 10-bit SAR ADC is implemented
for high-precision sensor measurement. An 8-bit ADC is used for diagnostic measurements.
The Micro controller unit supervision and system protection (including a reset feature) is complemented by a
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated
temperature sensors are available on-chip.
All relevant modules offer power saving modes in order to support automotive applications connected to
terminal 30. A wake-up from power-save mode is possible via a LIN bus message, via the monitoring input, or
using a programmable time period (cyclic wake-up).
The TLE9879QTW40 has several operation modes mainly to support low power consumption requirements.
Reset mode
The Reset mode is a transition mode used, e.g., during power-up of the device after a power-on reset, or after
wake-up from Sleep mode. In this mode, the on-chip power supplies are enabled and all other modules are
initialized. Once the core supply VDDC is stable, the device enters Active mode. If the watchdog timer WDT1
fails more than four times, the device performs a fail-safe transition to Sleep mode.
Active mode
In Active mode, all modules are activated and the TLE9879QTW40 is fully operational.
Stop mode
Stop mode is one of two major low-power modes. The transition to the low-power modes is performed by
setting the corresponding bits in the mode control register. In Stop mode, the embedded microcontroller is
still powered, allowing for shorter wake-up response times. Wake-up from this mode is possible through LIN
bus activity, by using the high-voltage monitoring pin, or through the corresponding 5 V GPIOs.
Stop mode with cyclic wake-up
The Cyclic Wake-Up mode is a special operating mode of the Stop mode. The transition to the Cyclic Wake-Up
mode is performed by first setting the corresponding bits in the mode control register, followed by the Stop
Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period),
asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Stop mode.
Sleep mode
The Sleep mode is a low-power mode. The transition to the low-power mode is performed by setting the
corresponding bits in the MCU mode control register or in case of failure (see below). In Sleep mode the
embedded microcontroller power supply is deactivated, allowing for the lowest system power consumption.
A wake-up from this mode is possible by LIN bus activity, the High Voltage Monitor Input pin, or through cyclic
wake-up.
Sleep mode in case of failure
Sleep mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case,
MON is enabled as the wake source and cyclic wake-up is activated with 1 s of dead time.
Datasheet
15
Rev. 1.0
2020-07-23
TLE9879QTW40
Modes of operation
Sleep Mode with cyclic wake-up
The Cyclic Wake-Up mode is a special operating mode of the Sleep mode. The transition to Cyclic Wake-Up
mode is performed by first setting the corresponding bits in the mode control register followed by the Sleep
Mode and Stop Mode commands. In addition to the cyclic wake-up behavior (wake-up after a programmable
time period), asynchronous wake events via the activated sources (LIN and/or MON) are available, as in
normal Sleep mode.
When using Sleep mode with cyclic wake-up, the voltage regulator is switched off and started again with the
wake. A limited number of registers is buffered during sleep, and can be used by software, e.g., for counting
sleep/wake cycles.
MCU Slow Down mode
In MCU Slow Down mode the MCU frequency is reduced to save power during operation. LIN communication
is still possible. LS MOSFET can be activated.
Wake-up source prioritization
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up
sources, the first wake-up signal will initiate the wake-up sequence. Nevertheless, all wake-up sources are
latched in order to provide all wake-up events to the application software. The software can clear the wakeup source flags. This is to ensure that no wake-up event is lost.
As the default wake-up source, the MON input is activated after power-on reset only. Additionally, the device
is in Cyclic Wake-Up mode with the configurable dead time setting.
The following table shows the possible power mode configurations including the Stop mode.
Table 3
Power mode configurations
Module/function
Active mode
Stop mode
Sleep mode
Comment
VDDEXT
ON/OFF
ON (no dynamic
load)/OFF
OFF
–
Bridge Driver
ON/OFF
OFF
OFF
LIN TRx
ON/OFF
Wake-up only/OFF
Wake-up only/OFF
VS sense
ON/OFF
Brownout detection
Brownout detection POR on VS
Brownout detection
performed in PCU
GPIO 5V (wake-up)
n.a.
Disabled/static
OFF
–
GPIO 5V (active)
ON
ON
OFF
–
WDT1
ON
OFF
OFF
–
CYCLIC WAKE
n.a.
Cyclic wake-up/
cyclic sense/OFF
Cyclic wake-up/OFF –
Measurement
ON1)
OFF
OFF
–
OFF
–
2)
–
MCU
ON/slow-down/STOP STOP
CLOCK GEN (MC)
ON
OFF
OFF
–
LP_CLK (18 MHz)
ON
OFF
OFF
WDT1
LP_CLK2 (100 kHz)
ON/OFF
ON/OFF
ON/OFF
For cyclic wake-up
1) May not be switched off due to safety reasons.
2) MC PLL clock disabled, MC supply reduced to VDDCOUT_Stop_Red.
Datasheet
16
Rev. 1.0
2020-07-23
TLE9879QTW40
Modes of operation
Wake-up levels and transitions
The wake-up can be triggered by rising, falling, or both signal edges for the monitor input, GPIOs, by LIN, or by
cyclic wake-up.
Datasheet
17
Rev. 1.0
2020-07-23
TLE9879QTW40
Power management unit (PMU)
5
Power management unit (PMU)
5.1
Features
•
System mode control (startup, sleep, stop and active)
•
Power management (cyclic wake-up)
•
Control of system voltage regulators with diagnosis (overload, short, overvoltage)
•
Fail-safe mode detection and operation in case of system errors (watchdog fail)
•
Wake-up sources configuration and management (LIN, MON, GPIOs)
•
System error logging
5.2
Introduction
The power management unit is responsible for generating all required voltage supplies for the embedded
MCU (VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure failsafe behavior of the system IC by controlling all system modes, including the corresponding transitions.
Additionally, the PMU provides well-defined sequences for the system mode transitions and generates
hierarchical reset priorities. The reset priorities control the reset behavior of all system functions, especially
the reset behavior of the embedded MCU. All these functions are controlled by a state machine. The system
master function of the PMU uses an independent logic supply and system clock. For this reason, the PMU has
an "Internal logic supply and system clock" module which works independently of the MCU clock.
Datasheet
18
Rev. 1.0
2020-07-23
TLE9879QTW40
Power management unit (PMU)
5.2.1
Block diagram
The following figure shows the structure of the power management unit. Table 4 describes the submodules in
more detail.
VS
Power-down supply
e.g. for WDT1
Power supply generation unit
(PGU)
I
N
T
E
R
N
A
L
LP_CLK
Peripherals
e.g. for cyclic
wake and sense
LP_CLK2
B
U
S
PMU-PCU
MON
LIN
P0.0...P0.4
P1.0...P1.4
LDO for external supply
VDDEXT
VDDP
VDDC
VDDEXT
PMU-SFR
PMU-CMU
PMU-WMU
PMU-RMU
PMU control
Power management unit
Figure 3
Power management unit block diagram
Table 4
Description of PMU submodules
Module name Modules
Functions
Power-down
supply
Independent supply voltage
generation for PMU.
This supply is dedicated to the PMU to ensure an
operation independently of generated power
supplies (VDDP, VDDC).
LP_CLK
(18 MHz)
•
Clock source for all PMU
submodules.
•
Backup clock source for the
system.
•
Clock source for WDT1.
This ultra-low-power oscillator generates the clock
for the PMU.
This clock is also used as the backup clock for the
system in case of PLL clock failures and as an
independent clock source for WDT1.
LP_CLK2
(100 kHz)
Clock source for PMU.
This ultra-low-power oscillator generates the clock
for the PMU in Stop mode and in the cyclic modes.
Peripherals
Peripheral blocks of PMU.
These blocks include the analog peripherals to
ensure a stable and fail-safe PMU startup and
operation (bandgap, bias).
Datasheet
19
Rev. 1.0
2020-07-23
TLE9879QTW40
Power management unit (PMU)
Table 4
Description of PMU submodules (cont’d)
Module name Modules
Functions
Power supply Voltage regulators for VDDP and
generation
VDDC.
unit (PGU)
This block includes the voltage regulators for the pad
supply (VDDP) and the core supply (VDDC).
VDDEXT
Voltage regulator for VDDEXT to
supply external modules (e.g.,
sensors).
This voltage regulator is a dedicated supply for
external modules and can also be used for cyclic
sense operations (e.g., with hall sensor).
PMU-SFR
All extended special function registers This module contains all registers needed to control
that are relevant to the PMU.
and monitor the PMU.
PMU-PCU
Power control unit of the PMU.
This block is responsible for controlling all powerrelated actions within the PGU module. It also
contains all regulator-related diagnostics such as
undervoltage and overvoltage detection as well as
overcurrent and short-circuit diagnostics.
PMU-WMU
Wake-up management unit of the
PMU.
This block is responsible for controlling all actions
related to wake-up within the PMU module.
PMU-CMU
Cyclic management unit of the PMU.
This block is responsible for controlling all actions in
cyclic mode.
PMU-RMU
Reset management unit of the PMU.
This block generates resets triggered by the PMU,
such as undervoltage or short-circuit reset, and
passes all resets to the relevant modules and their
registers.
Datasheet
20
Rev. 1.0
2020-07-23
TLE9879QTW40
Power management unit (PMU)
5.2.2
PMU modes overview
The following state diagram shows the available modes of the device.
VS > 4 V and VS ramp-up
or
VS < 3 V and VS ramp-down
LIN-wake or
MON-wake or
cyclic-wake
start-up
VDDC = stable and
error_supp < 5
VDDC / VDDP =
fail (short-circuit)
error_supp ++
error_supp=5
sleep
active
Sleep command (from MCU) or
WDT1_SEQ_FAIL = 1 ( error_wdt = 5) or
VDDC / VDDP = overload or
system overtemperature
LIN-wake or
MON-wake or
GPIO-wake or
cyclic_wake or
PMU_PIN = 1 or
SUP_TMOUT = 1
PMU_PIN = 1 or
PMU_SOFT = 1 or
(PMU_Ext_WDT = 1 and
WDT1_SEQ_FAIL = 0
error_wdt ++)
Stop
command
(from MCU)
stop
cyclic-sense
Figure 4
Power management unit system modes
Datasheet
21
Rev. 1.0
2020-07-23
TLE9879QTW40
Power management unit (PMU)
5.3
Power supply generation unit (PGU)
5.3.1
Voltage regulator 5.0 V (VDDP)
This module represents the 5 V voltage regulator, which provides the pad supply for the parallel port pins and
other 5 V analog functions (e.g. LIN transceiver).
Features
•
5 V low-drop voltage regulator
•
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
•
Overvoltage monitoring with MCU signaling (interrupt)
•
Undervoltage monitoring with MCU signaling (interrupt)
•
Undervoltage monitoring with reset (undervoltage reset, VDDPUV)
•
Preregulator for the VDDC regulator
•
GPIO supply
•
Pull-down current source at the output for Sleep mode only (typ. 5 mA)
The output capacitor CVDDP is mandatory to ensure proper regulator functionality.
VDDP regulator
VS
VPRE
A
VDDP
CVDDP
V
GND (pin 39)
I
5 V LDO
PMU_5V_OVERVOLT
PMU_5V_OVERLOAD
LDO supervision
Figure 5
Datasheet
Module block diagram of the VDDP voltage regulator
22
Rev. 1.0
2020-07-23
TLE9879QTW40
Power management unit (PMU)
5.3.2
Voltage regulator 1.5 V (VDDC)
This module represents the 1.5 V voltage regulator, which provides the supply for the microcontroller core, the
digital peripherals, and other internal analog 1.5 V functions (e.g., ADC2) of the chip. To further reduce the
current consumption of the MCU during Stop mode the output voltage can be lowered to VDDCOUT_Stop_Red.
Features
•
1.5 V low-drop voltage regulator
•
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
•
Overvoltage monitoring with MCU signaling (interrupt)
•
Undervoltage monitoring with MCU signaling (interrupt)
•
Undervoltage monitoring with reset
•
Pull-down current source at the output for Sleep mode only (typ. 100 μA)
The output capacitor CVDDC is mandatory to ensure a proper regulator functionality.
VDDC regulator
VDDP (5 V)
VDDC (1.5 V)
A
V
CVDDP
CVDDC
GND (pin 39)
I
1.5 V LDO
PMU_1V5_OVERVOLT
PMU_1V5_OVERLOAD
LDO supervision
Figure 6
Datasheet
Module block diagram of the VDDC voltage regulator
23
Rev. 1.0
2020-07-23
TLE9879QTW40
Power management unit (PMU)
5.3.3
External voltage regulator 5.0 V (VDDEXT)
This module represents the 5 V voltage regulator, which serves as a supply for external circuits. It can be used,
e.g., to supply an external sensor, LEDs, or potentiometers.
Features
•
Switchable +5 V, low-drop voltage regulator
•
Switch-on overcurrent blanking time in order to drive small capacitive loads
•
Overcurrent monitoring and shutdown with MCU signaling (interrupt)
•
Overvoltage monitoring with MCU signaling (interrupt)
•
Undervoltage monitoring with MCU signaling (interrupt)
•
Pull-down current source at the output for Sleep mode only (typ. 100 μA)
•
Cyclic sense option together with GPIOs
The output capacitor CVDDEXT is mandatory to ensure a proper regulator functionality.
VDDEXT regulator
VS
A
VPRE
VDDEXT
CVDDEXT
V
GND (pin 39)
I
5 V LDO
Figure 7
Datasheet
VDDEXT_CTRL.OVERLOAD
VDDEXT_CTRL.OVERVOLT
VDDEXT_CTRL.SHORT
LDO supervision
Module block diagram of the external voltage regulator
24
Rev. 1.0
2020-07-23
TLE9879QTW40
System control unit – digital modules (SCU-DM)
6
System control unit – digital modules (SCU-DM)
6.1
Features
•
Flexible clock configuration features
•
Reset management of all system resets
•
System modes control for all power modes (Active mode, Stop mode, Sleep mode)
•
Enabling interrupts for many system peripherals
•
General-purpose input/output control
•
Debug mode control of system peripherals
6.2
Introduction
The system control unit (SCU) supports all central control tasks in the TLE9879QTW40. The SCU is made up of
the following submodules:
•
Clock system and control
•
Reset control
•
Power management
•
Interrupt management
•
General port control
•
Flexible peripheral management
•
Module suspension control
•
Watchdog timer
•
Error detection and correction in data memory
•
Miscellaneous control
Datasheet
25
Rev. 1.0
2020-07-23
TLE9879QTW40
System control unit – digital modules (SCU-DM)
6.2.1
Block diagram
"On" signals to digital
peripherals;
status signals from
digital peripherals
AHB
PMCU
WDT
CGU
XTAL1
XTAL2
I
N
T
E
R
N
A
L
fOSC
OSC_HP
PLL
LP_CLK
fSYS
fPCLK
fMI_CLK
fTFILT_CLK
PMU_1V5DidPOR
PMU_PIN
PMU_ExtWDT
PMU_IntWDT
PMU_SOFT
PMU_Wake
RESET_TYPE_3
RESET_TYPE_4
P0_POCONy.PDMx
P1_POCONy.PDMx
fPLL
CG
fSYS
NMI
ICU
INTISR
B
U
S
Misc. control
MODPISELx
RCU
Port control
System control unit – digital modules
Figure 8
System control unit – digital modules block diagram
AHB (Advanced High-Performance Bus)
PMCU (power module control unit)
WDT (watchdog timer in SCU-DM)
•
fSYS: System clock
Datasheet
26
Rev. 1.0
2020-07-23
TLE9879QTW40
System control unit – digital modules (SCU-DM)
CGU (clock generation unit)
•
fSYS: System clock
•
fPCLK: Peripheral clock
•
fMI_CLK: Measurement interface clock
•
fTFILT_CLK: Analog module filter clock
•
LP_CLK Clock source for all PMU submodules and WDT1
ICU (interrupt control unit)
•
NMI (non-maskable interrupt)
•
INTISR External interrupt signals
RCU (reset control unit)
•
PMU_1V5DidPOR Undervoltage reset of power-down supply
•
PMU_PIN Reset generated by reset pin
•
PMU_ExtWDT WDT1 reset
•
PMU_IntWDT WDT (SCU) reset
•
PMU_SOFT Software reset
•
PMU_Wake Sleep mode/Stop mode exit with reset
•
RESET_TYPE_3 Peripheral reset (contains all resets)
•
RESET_TYPE_4 Peripheral reset (without SOFT and WDT reset)
Port control
•
P0_POCONy.PDMx Driver strength control
•
P1_POCONy.PDMx Driver strength control
Miscellaneous control
•
MODPISELx mode selection registers for UART (source section) and timer (trigger or count selection)
Datasheet
27
Rev. 1.0
2020-07-23
TLE9879QTW40
System control unit – digital modules (SCU-DM)
6.3
Clock generation unit
The clock generation unit (CGU) enables a flexible clock generation for the TLE9879QTW40. During user
program execution, the frequency can be modified to optimize the performance/power consumption ratio,
allowing power consumption to be adapted to the actual application state.
The CGU in the TLE9879QTW40 consists of one oscillator circuit (OSC_HP), a phase-locked loop (PLL) module
with an internal oscillator (OSC_PLL), and a clock control unit (CCU). The CGU can convert a low-frequency
input/external clock signal to a high-frequency internal clock.
The system clock fSYS is generated from one of the following selectable clocks:
•
PLL clock output fPLL
•
Direct clock from oscillator OSC_HP fOSC
•
Low-precision clock fLP_CLK (hardware-enabled for startup after reset and during power-down wake-up
sequence)
CGU
PLL_CON
OSC_CON
HPOSCCON
CMCON1
XTAL1
PLL
OSC_HP
SYSCON0
f PLL
XTAL2
0
f OSC_int
f LP_CLK
LP_CLK
LP_CLK
f LP_CLK
PMU
Figure 9
1
fSYS
2
3
Clock generation unit block diagram
The following sections describe the different parts of the CGU.
6.3.1
Low-precision clock
The clock source LP_CLK is a low-precision RC oscillator (LP-OSC) with a nominal frequency of 18 MHz that is
enabled by hardware as an independent clock source for the TLE9879QTW40 startup after reset and during the
power-down wake-up sequence. fLP_CLK is not user-configurable.
6.3.2
High-precision oscillator circuit (OSC_HP)
The high-precision oscillator circuit, designed to work with either an external crystal oscillator or an external
stable clock source, consists of an inverting amplifier with XTAL1 as the input and XTAL2 as the output.
Datasheet
28
Rev. 1.0
2020-07-23
TLE9879QTW40
System control unit – digital modules (SCU-DM)
6.3.2.1
External input clock mode
When supplying the clock signal directly, not using an external crystal and bypassing the oscillator, the input
frequency needs to be equal or greater than 4 MHz if the PLL VCO part is used.
When using an external clock signal, it must be connected to XTAL1. XTAL2 is left open (unconnected).
6.3.2.2
External crystal mode
When using an external crystal, its frequency can be within the range of 4 MHz to 25 MHz. An external oscillator
load circuitry must be used, connected to the XTAL1 and XTAL2 pins. It normally consists of two load
capacitances C1 and C2. A series damping resistor could be required for some crystals. The exact values and
the corresponding operating ranges depend on the crystal and have to be determined and optimized in
cooperation with the crystal vendor using the negative-resistance method. The following load cap values can
be used as starting points for the evaluation:
Table 5
External CAP capacitors
Fundamental mode crystal frequency (approx., MHz) Load caps C1, C2 (pF)
4
33
8
18
12
12
16
10
20
10
25
8
Datasheet
29
Rev. 1.0
2020-07-23
TLE9879QTW40
System control unit – power modules (SCU-PM)
7
System control unit – power modules (SCU-PM)
7.1
Features
•
Clock watchdog unit (CWU): Supervises all clocks with NMI signaling relevant to power modules.
•
Interrupt control unit (ICU): All interrupt flags and status flags with system relevance.
•
Power control unit (PCU): Takes over control when device enters and exits Sleep and Stop mode.
•
External watchdog (WDT1): Independent system watchdog for monitoring system activity.
7.2
Introduction
7.2.1
Block diagram
The system control unit of the power modules consists of the submodules in the figure shown below:
"On" signals to analog
peripherals;
status signals from
analog peripherals
AHB
I
N
T
E
R
N
A
L
PCU
WDT1
fSYS
MI_CLK
LP_CLK
PREWARN_SUP_NMI
B
U
S
CWU
TFILT_CLK
ICU
PREWARN_SUP_INT
INT
System control unit – power modules
Figure 10
Block diagram of system control unit – power modules
AHB (Advanced High-performance Bus)
CWU (clock watchdog unit)
•
fsys: System frequency
•
MI_CLK: Measurement interface clock (analog clock), derived from fsys using division factors 1/2/3/4
•
TFILT_CLK: Clock used for digital filters, derived from fsys using configurable division factors
Datasheet
30
Rev. 1.0
2020-07-23
TLE9879QTW40
System control unit – power modules (SCU-PM)
WDT1 (system watchdog)
•
LP_CLK Clock source for all PMU submodules and WDT1
ICU (interrupt control unit)
•
PREWARN_SUP_NMI Supply prewarning NMI request
•
PREWARN_SUP_INT Supply prewarning interrupt
•
Grouping of peripheral interrupts for external interupt nodes:
– Grouping single peripheral interrupts for interrupt node INT (measurement unit (MU))
– Grouping single peripheral interrupts for interrupt node INT (ADC1-VAREF)
– Grouping single peripheral interrupts for interrupt node INT (UART1-LIN transceiver)
– Grouping single peripheral interrupts for interrupt node INT (bridge driver)
Datasheet
31
Rev. 1.0
2020-07-23
TLE9879QTW40
Arm® Cortex®-M3 core
8
Arm® Cortex®-M3 core
8.1
Features
The key features of the Arm® Cortex®-M3 implemented are listed below.
Processor core: a low-gate-count core, with low-latency interrupt processing
•
A subset of the Thumb®-2 instruction set
•
Banked stack pointer (SP) only
•
32-bit hardware divide instructions, SDIV and UDIV (Thumb-2 instructions)
•
Handler and thread modes
•
Thumb and debug states
•
Interruptible-continued instructions LDM/STM, push/pop for low interrupt latency
•
Automatic processor state saving and restoration for low-latency interrupt service routine (ISR) entry and
exit
•
Arm® architecture v7-M Style BE8/LE support
•
Arm®v6 unaligned accesses
Nested vectored interrupt controller (NVIC) closely integrated with the processor core to achieve low
latency interrupt processing
•
Interrupts, configurable from 1 to 16
•
Bits of priority (4)
•
Dynamic reprioritization of interrupts
•
Priority grouping. This enables selection of preemptive interrupt levels and non-preemptive interrupt
levels.
•
Support for tail-chaining and late arrival of interrupts. This enables back-to-back interrupt processing
without the overhead of state-saving and restoration between interrupts.
•
Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction
overhead.
Bus interfaces
•
Advanced High-performance Bus-Lite (AHB-Lite) interfaces: ICode, DCode, and system bus interface
•
Memory access alignment
•
Write buffer for buffering of write data
Datasheet
32
Rev. 1.0
2020-07-23
TLE9879QTW40
Arm® Cortex®-M3 core
8.2
Introduction
The Arm® Cortex®-M3 processor is a leading 32-bit processor and provides a high-performance and costoptimized platform for a broad range of applications including microcontrollers, automotive body systems
and industrial control systems. Like the other Arm® Cortex® family processors, the Arm® Cortex®-M3 processor
implements the Thumb®-2 instruction set architecture. With the optimized feature set the Arm® Cortex®-M3
delivers 32-bit performance in an application space that is usually associated with 8- and 16-bit
microcontrollers.
8.2.1
Block diagram
Figure 11 shows the functional blocks of the Arm® Cortex®-M3.
Arm® Cortex ®-M3 processor
Interrupt and
power control
Nested vectored
interrupt
controller
(NVIC)
Arm® Cortex®-M3
processor
core
Serial-wire
(SW-DP)
AHB
access port
(AHB-AP)
ICode
AHB-Lite
instruction
interface
Serial-wire debug
interface
Figure 11
Datasheet
Bus matrix
DCode
AHB-Lite
data
interface
System bus
ICode
PBA0
PBA1
Arm® Cortex®-M3 block diagram
33
Rev. 1.0
2020-07-23
TLE9879QTW40
DMA controller
9
DMA controller
Figure 12 shows the top level block diagram of the TLE9879QTW40.
The bus matrix allows the μDMA to access the PBA0, PBA1, and RAM.
9.1
Features
The principal features of the DMA Controller are:
•
It is compatible with AHB-Lite for DMA transfers.
•
It is compatible with APB for register programming.
•
It has a single AHB-Lite master for transferring data using a 32-bit address bus and a 32-bit data bus.
•
It supports 13 DMA channels.
•
Each DMA channel has dedicated handshake signals.
•
Each DMA channel has a programmable priority level.
•
Each priority level arbitrates using a fixed priority that is determined by the DMA channel number. The DMA
also supports multiple transfer types:
- Memory-to-memory
- Memory-to-peripheral
- Peripheral-to-memory
•
It supports multiple DMA cycle types.
•
It supports multiple DMA transfer data widths.
•
Each DMA channel can access a primary and an alternate channel control data structure.
•
All the channel control data is stored in system memory (RAM) in little-endian format.
•
It performs all DMA transfers using the single AHB-Lite burst type. The destination data width is equal to
the source data width.
•
The number of transfers in a single DMA cycle can be programmed from 1 to 1024.
•
The transfer address increment can be greater than the data width.
Datasheet
34
Rev. 1.0
2020-07-23
TLE9879QTW40
DMA controller
9.2
Introduction
Please also refer to Chapter 9.3, Functional description.
9.2.1
Block diagram
SSC1
ADC1
Timer3
DMA requests
DMA requests
DMA requests
DMA controller
Bus matrix
PBA1
M
AHB-Lite
S
M
AHB-Lite
S
AHB2APB
APB interface
interrupts
PBA0
M
AHB-Lite
S
SCU_DM
RAM
M
AHB-Lite
S
Arm® core
interrupts
M
AHB-Lite
M
M
Figure 12
Datasheet
S
S
AHB-Lite
S
DMA controller top level block diagram
35
Rev. 1.0
2020-07-23
TLE9879QTW40
DMA controller
9.3
Functional description
9.3.1
DMA mode overview
The DMA controller implements the following 13 hardware DMA requests:
•
ADC1 complete sequence 1 done: DMA transfer is requested on completion of the ADC1 channel conversion
sequence.
•
ADC1 exceptional sequence 2 (ESM) done: DMA transfer is requested on completion of the ADC1 conversion
sequence triggered by an exceptional measurement request.
•
SSC1/2 transmit byte: DMA transfer is requested upon the completion of data transmission via SSC1/2.
•
SSC1/2: receive byte: DMA transfer is requested upon the completion of data reception via SSC1/2.
•
ADC1 channel 0 conversion done: DMA transfer is requested on completion of the ADC1 channel 0
conversion.
•
ADC1 channel 1 conversion done: DMA transfer is requested on completion of the ADC1 channel 1
conversion.
•
ADC1 channel 2 conversion done: DMA transfer is requested on completion of the ADC1 channel 2
conversion.
•
ADC1 channel 3 conversion done: DMA transfer is requested on completion of the ADC1 channel 3
conversion.
•
ADC1 channel 4 conversion done: DMA transfer is requested on completion of the ADC1 channel 4
conversion.
•
ADC1 channel 5 conversion done: DMA transfer is requested on completion of the ADC1 channel 5
conversion.
•
ADC1 channel 6 conversion done: DMA transfer is requested on completion of the ADC1 channel 6
conversion.
•
ADC1 channel 7 conversion done: DMA transfer is requested on completion of the ADC1 channel 7
conversion.
•
Timer3 ccu6_int: DMA transfer is requested following a timer trigger.
Datasheet
36
Rev. 1.0
2020-07-23
TLE9879QTW40
Address space organization
10
Address space organization
The TLE9879QTW40 manipulates operands in the following memory spaces:
•
128 KB (incl. 4 KByte emulated EEPROM) of flash memory in code space
•
32 KB Boot ROM memory in code space (used for boot code and IP storage)
•
6 KB RAM memory in code space and data space (RAM can be read/written as program memory or external
data memory)
•
Special function registers (SFRs) in peripheral space
The figure below shows the detailed address alignment of the TLE9879QTW40:
00000000H
Reserved (boot ROM)
00008000H
10FFFFFFH
Flash, 128 KB
1101FFFFH
17FFFFFFH
11000000H
Reserved
11020000H
SRAM, 6 KB
18000000H
180017FFH
Reserved
18001800H
3FFFFFFFH
PBA0
40000000H
47FFFFFFH
PBA1
48000000H
5FFFFFFFH
Reserved
60000000H
DFFFFFFFH
Private Peripheral Bus
E0000000H
E00FFFFFH
Reserved
FFFFFFFFH
Figure 13
Datasheet
TLE9879QTW40 memory map
37
Rev. 1.0
2020-07-23
TLE9879QTW40
Memory control unit
11
Memory control unit
11.1
Features
•
Handles all system memory types and their interaction with the CPU
•
Memory protection functions for all system memory types (D-flash, P-flash, RAM)
•
Address management with access violation detection including reporting
•
Linear address range for all memory types (no paging)
11.2
Introduction
11.2.1
Block diagram
The memory control unit is divided into the following submodules:
•
NVM memory module (embedded flash memory)
•
RAM memory module
•
BootROM memory module
•
Memory protection unit (MPU) module
•
Peripheral bridge PBA0
Datasheet
38
Rev. 1.0
2020-07-23
TLE9879QTW40
Memory control unit
NVM
RAM
S0
S1
BROM
PBA0
S2
S3
ROM
code/ data
RAM
code/ data
NVM
code/ data
Memory protection
unit
Sx: Bus slave
Mx: Bus master
M0
M1
M2
M3
Bus matrix
Figure 14
Datasheet
Block diagram of the memory control unit
39
Rev. 1.0
2020-07-23
TLE9879QTW40
Memory control unit
11.3
NVM module (flash memory)
The flash memory provides embedded user-programmable non-volatile memory, allowing fast and reliable
storage of user code and data.
Features
•
In-system programming via LIN (flash mode) and SWD.
•
Error correction code (ECC) for detection of single-bit and double-bit errors and dynamic correction of
single-bit errors.
•
Interrupts and signals double-bit errors by the NMI.
•
Program width of 128 byte (page).
•
Minimum erase width of 128 bytes (page).
•
Integrated hardware support for EEPROM emulation.
•
8-byte read access.
•
Physical read access time: 75 ns.
•
Code-read access acceleration integrated; read buffer and automatic pre-fetch.
•
Page-program time: tPR .
•
Page-erase (128 bytes) and sector-erase (4 KB) time: tER.
•
Erased bit (cell) is read as ‘1’, for code flash and 100TP.
•
Erased bit (cell) is read as ‘0’ plus NMIMAP request, for data flash.
Note:
The user has to ensure that no flash operations which change the content of the flash get interrupted
at any time.
The clock for the NVM is supplied with the system frequency fsys. Integrated firmware routines for erasing NVM,
EEPROM emulation, and other operations are provided.
Datasheet
40
Rev. 1.0
2020-07-23
TLE9879QTW40
Interrupt system
12
Interrupt system
12.1
Features
•
Up to 16 interrupt nodes for on-chip peripherals
•
Up to 8 NMI nodes for critical system events
•
Maximum flexibility for all 16 interrupt nodes
12.2
Introduction
Before enabling an interrupt, all corresponding interrupt status flags must be cleared.
12.2.1
Overview
The TLE9879QTW40 supports 16 interrupt vectors with 16 priority levels. Fifteen of these interrupt vectors are
assigned to the on-chip peripherals: GPT12, SSC, CCU6, DMA, bridge driver and A/D converter are each
assigned to one dedicated interrupt vector; while UART1 and Timer2, as well as UART2, external interrupt 2
and Timer21 share interrupt vectors. Two vectors are dedicated for external interrupt 0 and 1.
Table 6
Interrupt vector table
Service request
Node ID
Description
GPT12
0/1
GPT interrupt (T2-T6, CAPIN)
MU-ADC2/T3
2
Measurement unit, VBG, Timer3, BEMF
ADC1
3
ADC1 interrupt / VREF5V overload / VREF5V OV/UV
CCU0
4
CCU6 node 0 interrupt
CCU1
5
CCU6 node 1 interrupt
CCU2
6
CCU6 node 2 interrupt
CCU3
7
CCU6 node 3 interrupt
SSC1
8
SSC1 interrupt (receive, transmit, error)
SSC2
9
SSC2 interrupt (receive, transmit, error)
UART1
10
UART1 (ASC-LIN) interrupt (receive, transmit), Timer2, linsync1, LIN
UART2
11
UART2 interrupt (receive, transmit), Timer21, external interrupt (EINT2)
EXINT0
12
External interrupt (EINT0), MON
EXINT1
13
External interrupt (EINT1)
BDRV/CP
14
Bridge driver / charge pump
DMA
15
DMA controller
Datasheet
41
Rev. 1.0
2020-07-23
TLE9879QTW40
Interrupt system
Table 7
NMI interrupt table
Service request
Node
Description
Watchdog timer NMI
NMI
Watchdog timer overflow
PLL NMI
NMI
PLL loss-of-lock
NVM operation complete NMI
NMI
NVM operation complete
Overtemperature NMI
NMI
System overtemperature
Oscillator watchdog NMI
NMI
Oscillator watchdog / MI_CLK watchdog timer overflow
NVM map error NMI
NMI
NVM map error
ECC error NMI
NMI
RAM/NVM uncorrectable ECC error
Supply prewarning NMI
NMI
Supply prewarning
Datasheet
42
Rev. 1.0
2020-07-23
TLE9879QTW40
Watchdog timer (WDT1)
13
Watchdog timer (WDT1)
13.1
Features
There are two watchdog timers in the system. The watchdog timer (WDT) within the system control unit –
digital modules (see SCU_DM) and the Watchdog Timer (WDT1) located within the system control unit – power
modules (see SCU_PM). The watchdog timer WDT1 is described in this section.
In Active mode, the WDT1 acts as a windowed watchdog timer, which provides a highly reliable and safe way
to recover from software or hardware failures.
The WDT1 is always enabled in Active mode. In Sleep mode, Stop Mode and SWD mode (Debug mode), the
WDT1 is automatically disabled.
Functional Features
•
Windowed watchdog timer with programmable timing in Active mode.
•
Long-open window (typ. 80 ms) after power-up, reset, wake-up.
•
Short-open window (typ. 30 ms) to facilitate flash programming.
•
Disabled during debugging.
•
Safety shutdown to Sleep mode after 5 missed WDT1 services.
Datasheet
43
Rev. 1.0
2020-07-23
TLE9879QTW40
Watchdog timer (WDT1)
13.2
Introduction
The behavior of the watchdog timer in Active mode is illustrated in Figure 15.
Reset
Always
Long
Open Window
Trigger and
count_SOW = 0
Normal
"windowed"
operation
Trigger and
count_SOW = 0
Figure 15
Datasheet
Trigger and
count_SOW = 0
Short
open window
and SOW
Trigger SOW and
count_SOW++
Watchdog timer behavior
44
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
14
GPIO ports and peripheral I/O
The TLE9879QTW40 has 15 port pins organized into three parallel ports: Port 0 (P0), port 1 (P1) and port 2 (P2).
Each port pin has a pair of internal pull-up and pull-down devices that can be individually enabled or disabled.
P0 and P1 are bidirectional and can be used as general-purpose input/output (GPIO) or to perform alternate
input/output functions for the on-chip peripherals. For ports configured as an output, the open drain mode
can be selected. On port 2 (P2), analog inputs are shared with general-purpose inputs.
14.1
Features
Features of bidirectional ports (P0, P1)
•
Configurable pin direction
•
Configurable pull-up/pull-down devices
•
Configurable open-drain mode
•
Configurable drive strength
•
Transfer of data through digital inputs and outputs (general-purpose I/O)
•
Alternate input/output for on-chip peripherals
Features of the analog port (P2)
•
Configurable pull-up/pull-down devices
•
Transfer of data through digital inputs
•
Alternate inputs for on-chip peripherals
14.2
Introduction
14.2.1
Port 0 and port 1
Figure 16 shows the block diagram of a TLE9879QTW40 bidirectional port pin. Each port pin is equipped with
a number of control and data bits, thus enabling very flexible usage of the pin. By defining the contents of the
control register, each individual pin can be configured as an input or an output. The user can also configure
each pin as an open-drain pin with or without an internal pull-up/pull-down.
Each bidirectional port pin can be configured for input or output operation. Switching between input and
output mode is accomplished through the register Px_DIR (x = 0 or 1), which enables or disables the output
and input drivers. A port pin can only be configured as either input or output at any one time.
In input mode (default after reset), the output driver is switched off (high-impedance). The voltage level
present at the port pin is translated into a logical 0 or 1 via a Schmitt trigger device and can be read via the
register Px_DATA.
In output mode, the output driver is activated and drives the value supplied through the multiplexer to the
port pin. In the output driver, each port line can be switched to open-drain mode or normal mode (push-pull
mode) via the register Px_OD.
The output multiplexer in front of the output driver enables the port output function to be used for different
purposes. If the pin is used for general-purpose output, the multiplexer is switched by software to the data
register Px_DATA. Software can set or clear the bit in Px_DATA and therefore directly influence the state of the
port pin. If an on-chip peripheral uses the pin for output signals, alternate output lines (AltDataOut) can be
switched via the multiplexer to the output driver circuitry. Selection of the alternate output function is defined
Datasheet
45
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
in registers Px_ALTSEL0 and Px_ALTSEL1. When a port pin is used in an alternate function, its direction must
be set accordingly in the register Px_DIR.
Each pin can also be programmed to activate an internal weak pull-up or pull-down device. Register
Px_PUDSEL selects whether a pull-up or pull-down device is activated, while register Px_PUDEN enables or
disables the pull device.
PUDSEL
Pull-up / pull-down
select register
Pull-up / pull-down
control logic
PUDEN
Pull-up / pull-down
enable register
TCCR
Temperature compensation
control register
I
N
T
E
R
N
A
L
B
U
S
Px_POCONy
Port output
driver control registers
OD
Open-drain
control register
DIR
Direction register
ALTSEL0
Alternate select
register 0
ALTSEL1
Alternate select
register 1
Pull device
AltDataOut 3
11
AltDataOut 2
10
Output
driver
01
AltDataOut 1
Out
Px_DATA
Data register
In
00
Input
driver
AltDataIn
Schmitt trigger
Figure 16
Datasheet
Pad
General structure of a bidirectional port (P0, P1)
46
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
14.2.2
Port 2
Figure 17 shows the structure of an input-only port pin. Each P2 pin can only function in input mode. Register
P2_DIR is provided to enable or disable the input driver. When the input driver is enabled, the actual voltage
level present at the port pin is translated into a logic 0 or 1 via a Schmitt trigger device and can be read via
register P2_DATA. Each pin can also be programmed to activate an internal weak pull-up or pull-down device.
Register P2_PUDSEL selects whether a pull-up or the pull-down device is activated, while register P2_PUDEN
enables or disables the pull device. The analog input (AnalogIn) bypasses the digital circuitry and Schmitt
trigger device for direct feed-through to the ADC input channels.
I
N
T
E
R
N
A
L
PUDSEL
Pull-up / pull-down
select register
Pull-up / pull-down
control logic
PUDEN
Pull-up / pull-down
enable register
DIR
Direction register
Pull device
B
U
S
DATA
Data register
Input
driver
In
Schmitt
trigger
Pad
AltDataIn
AnalogIn
Figure 17
Datasheet
General structure of input port (P2)
47
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
14.3
TLE9879QTW40 port module
14.3.1
Port 0
14.3.1.1 Port 0 functions
Table 8
Port 0 input/output functions
Port pin
Input/output
Select
Connected signals
From/to module
P0.0
Input
GPI
P0_DATA.P0
–
INP1
SWCLK / TCK_0
SW
INP2
T12HR_0
CCU6
INP3
T4INA
GPT12T4
INP4
T2_0
Timer2
INP5
–
–
INP6
EXINT2_3
SCU
GPO
P0_DATA.P0
–
ALT1
T3OUT
GPT12T3
ALT2
EXF21_0
Timer 21
ALT3
RXDO_2
UART2
GPI
P0_DATA.P1
–
INP1
T13HR_0
CCU6
INP2
TxD1
LIN_TxD
INP3
CAPINA
GPT12CAP
INP4
T21_0
Timer21
INP5
T4INC
GPT12T4
INP6
MRST_1_2
SSC1
INP7
EXINT0_2
SCU
GPO
P0_DATA.P1
–
ALT1
TxD1
UART1 / LIN_TxD
ALT2
–
–
ALT3
T6OUT
GPT12T6
Output
P0.1
Input
Output
Datasheet
48
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
Table 8
Port 0 input/output functions (cont’d)
Port pin
Input/output
Select
Connected signals
From/to module
P0.2
Input
GPI
P0_DATA.P2
–
INP1
CCPOS2_1
CCU6
INP2
T2EUDA
GPT12T2
INP3
MTSR_1
SSC1
INP4
T21EX_0
Timer21
INP5
T6INA
GPT12T6
GPO
P0_DATA.P2
–
ALT1
COUT60_0
CCU6
ALT2
MTSR_1
SSC1
ALT3
EXF2_0
Timer2
GPI
P0_DATA.P3
–
INP1
SCK_1
SSC1
INP2
CAPINB
GPT12
INP3
T5INA
GPT12T5
INP4
T4EUDA
GPT12T4
INP5
CCPOS0_1
CCU6
GPO
P0_DATA.P3
–
ALT1
SCK_1
SSC1
ALT2
EXF21_2
Timer21
ALT3
T6OUT
GPT12T6
GPI
P0_DATA.P4
–
INP1
MRST_1_0
SSC1
INP2
CC60_0
CCU6
INP3
T21_2
Timer21
INP4
EXINT2_2
SCU
INP5
T3EUDA
GPT12T3
INP6
CCPOS1_1
CCU6
GPO
P0_DATA.P4
–
ALT1
MRST_1_0
SSC1
ALT2
CC60_0
CCU6
ALT3
CLKOUT_0
SCU
Output
P0.3
Input
Output
P0.4
Input
Output
Datasheet
49
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
14.3.2
Port 1
14.3.2.1 Port 1 functions
Table 9
Port 1 input/output functions
Port pin
Input/output
Select
Connected signals
From/to module
P1.0
Input
GPI
P1_DATA.P0
–
INP1
T3INC
GPT12T3
INP2
T4EUDB
GPT12T4
INP3
CC61_0
CCU6
INP4
SCK_2
SSC2
INP5
EXINT1_2
SCU
GPO
P1_DATA.P0
–
ALT1
SCK_2
SSC2
ALT2
CC61_0
CCU6
ALT3
EXF21_3
Timer21
GPI
P1_DATA.P1
–
INP1
–
–
INP2
T6EUDA
GPT12T6
INP3
–
–
INP4
MTSR_2
SSC2
INP5
T21_1
Timer21
INP6
EXINT1_0
SCU
GPO
P1_DATA.P1
–
ALT1
MTSR_2
SSC2
ALT2
COUT61_0
CCU6
ALT3
TXD2_0
UART2
GPI
P1_DATA.P2
–
INP1
T2INA
GPT12T2
INP2
T2EX_1
Timer2
INP3
T21EX_3
Timer21
INP4
MRST_2_0
SSC2
INP5
RXD2_0
UART2
INP6
CCPOS2_2
CCU6
INP7
EXINT0_1
SCU
GPO
P1_DATA.P2
–
ALT1
MRST_2_0
SSC2
ALT2
COUT63_0
CCU6
ALT3
T3OUT
GPT12T3
Output
P1.1
Input
Output
P1.2
Input
Output
Datasheet
50
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
Table 9
Port 1 input/output functions (cont’d)
Port pin
Input/output
Select
Connected signals
From/to module
P1.3
Input
GPI
P1_DATA.P3
–
INP1
T6INB
GPT12T6
INP2
–
–
INP3
CC62_0
CCU6
INP4
T6EUDB
GPT12T6
INP5
–
–
INP6
CCPOS0_2
CCU6
INP7
EXINT1_1
SCU
GPO
P1_DATA.P3
–
ALT1
EXF21_1
Timer21
ALT2
CC62_0
CCU6
ALT3
TXD2_1
UART2
GPI
P1_DATA.P4
–
INP1
EXINT2_1
SCU
INP2
T21EX_1
Timer21
INP3
T5EUDA
GPT12T5
INP4
RxD1
UART1
INP5
T2INB
GPT12T2
INP6
CCPOS1_2
CCU6
INP7
MRST_1_3
SSC1
GPO
P1_DATA.P4
–
ALT1
CLKOUT_1
SCU
ALT2
COUT62_0
CCU6
ALT3
RxD1
UART1 / LIN_RxD
Output
P1.4
Input
Output
Datasheet
51
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
14.3.3
Port 2
14.3.3.1 Port 2 functions
Table 10
Port 2 input functions
Port pin
Input/output
Select
Connected signals
From/to module
P2.0
Input
GPI
P2_DATA.P0
–
INP1
CCPOS0_3
CCU6
INP2
-
–
INP3
T12HR_2
CCU6
INP4
EXINT0_0
SCU
INP5
CC61_2
CCU6
ANALOG
AN0
ADC1
XTAL (in)
XTAL
GPI
P2_DATA.P2
–
INP1
CCPOS2_3
CCU6
INP2
T13HR_2
CCU6
INP3
–
–
INP4
CC62_2
CCU6
ANALOG
AN2
ADC1
OUT
XTAL (out)
XTAL
GPI
P2_DATA.P3
–
INP1
CCPOS1_0
CCU6
INP2
CTRAP#_1
CCU6
INP3
T21EX_2
Timer21
INP4
CC60_1
CCU6
INP5
EXINT0_3
SCU
ANALOG
AN3
ADC1
GPI
P2_DATA.P4
–
INP1
CTRAP#_0
CCU6
INP2
T2EUDB
GPT12T2
INP3
MRST_1_1
SSC1
INP4
EXINT1_3
SCU
ANALOG
AN4
ADC1
P2.2
P2.3
P2.4
Datasheet
Input
Input
Input
52
Rev. 1.0
2020-07-23
TLE9879QTW40
GPIO ports and peripheral I/O
Table 10
Port 2 input functions (cont’d)
Port pin
Input/output
Select
Connected signals
From/to module
P2.5
Input
GPI
P2_DATA.P5
–
INP1
RXD2_1
UART2
INP2
T3EUDB
GPT12T3
INP3
MRST_2_1
SSC2
INP4
T2_1
Timer 2
ANALOG
AN5
ADC1
Datasheet
53
Rev. 1.0
2020-07-23
TLE9879QTW40
General-purpose timer units (GPT12)
15
General-purpose timer units (GPT12)
15.1
Features
15.1.1
Features of block GPT1
The following list summarizes the supported features:
•
fGPT is derived from PCLK
•
fGPT/4 maximum resolution
•
3 independent timers/counters
•
Timers/counters can be concatenated
•
4 Operating modes:
– Timer mode
– Gated Timer mode
– Counter mode
– Incremental Interface mode
•
Reload and capture functionality
•
Shared interrupt: node 0
15.1.2
Features of block GPT2
The following list summarizes the supported features:
•
fGPT is derived from PCLK
•
fGPT/2 maximum resolution
•
2 independent timers/counters
•
Timers/counters can be concatenated
•
3 Operating modes:
– Timer mode
– Gated Timer mode
– Counter mode
•
Extended capture/reload functions via 16-bit capture/reload register CAPREL
•
Shared interrupt: node 1
Datasheet
54
Rev. 1.0
2020-07-23
TLE9879QTW40
General-purpose timer units (GPT12)
15.2
Introduction
The general-purpose timer unit blocks GPT1 and GPT2 have very flexible multifunctional timer structures
which may be used for timing, event counting, pulse-width measurement, pulse generation, frequency
multiplication, and other purposes.
They incorporate five 16-bit timers that are grouped into the two timer blocks GPT1 and GPT2. Each timer in
each block may operate independently in a number of different modes such as Gated Timer or Counter mode,
or may be concatenated with another timer of the same block.
Each block has alternate input/output functions and specific interrupts associated with it. Input signals can
be selected from several sources through the PISEL register.
The GPT module is clocked with clock fGPT. fGPT is a clock derived from PCLK.
Datasheet
55
Rev. 1.0
2020-07-23
TLE9879QTW40
General-purpose timer units (GPT12)
15.2.1
Block diagram of GPT1
The GPT1 block contains three timers/counters: The core timer T3 and the two auxiliary timers T2 and T4. The
maximum resolution is fGPT/4. The auxiliary timers of GPT1 may optionally be configured as reload or capture
registers for the core timer.
T3CON.BPS1
fGPT
2n : 1
Basic clock
U/D
T2IN
T2EUD
T2
mode
control
Interrupt request
(T2IRQ)
Aux. timer T2
Capture
Reload
Toggle Latch
T3IN
T3
mode
control
U/D
Core timer T3
T3EUD
T3OTL
T3OUT
Interrupt request
(T3IRQ)
Capture
Reload
T4IN
T4EUD
T4
mode
control
U/D
Figure 18
Datasheet
Aux. timer T4
Interrupt request
(T4IRQ)
GPT1 block diagram (n = 2 … 5)
56
Rev. 1.0
2020-07-23
TLE9879QTW40
General-purpose timer units (GPT12)
15.2.2
Block diagram of GPT2
The GPT2 block contains two timers/counters: The core timer T6 and the auxiliary timer T5. The maximum
resolution is fGPT/2. An additional capture/reload register (CAPREL) supports capture and reload operation
with extended functionality.
T6CON.BPS2
2n : 1
fGPT
Basic clock
Toggle FF
T5IN
T2
mode
control
T5EUD
U/D
Interrupt request
(T5IRQ)
GPT2 timer T5
Clear
Capture
CAPIN
T3IN/
T3EUD
CAPREL
mode
control
GPT2 CAPREL
Interrupt request
(CRIRQ)
Reload
Interrupt request
(T6IRQ)
Clear
T6IN
T6
mode
control
GPT2 timer T6
T6EUD
Figure 19
Datasheet
T6OTL
T6OUT
U/D
T6OUF
GPT2 block diagram (n = 1 … 4)
57
Rev. 1.0
2020-07-23
TLE9879QTW40
Timer2 and Timer21
16
Timer2 and Timer21
16.1
Features
•
16-bit auto-reload mode
– Selectable up- or down-counting
•
One-channel 16-bit capture mode
16.2
Introduction
The timer modules are general-purpose 16-bit timers. Timer 2 and Timer 21 can function as timers or counters
in each of their modes. As timers, they count with an input clock of fPCLK/12 (if the prescaler is disabled). As a
counter, Timer2 counts 1-to-0 transitions on pin T2. In the counter mode, the maximum resolution for
counting is fPCLK/24 (if the prescaler is disabled).
16.2.1
Timer2 and Timer21 mode overview
Table 11
Timer2 and Timer21 modes
Mode
Description
Auto-reload
Up/down-count-disabled
Datasheet
•
Counting up only.
•
Counting starts from the 16-bit reload value, overflow at FFFFH.
•
The reload event can be configured to be triggered only by the overflow condition
or by a negative or positive edge at the input pin T2EX as well.
•
Programmable reload value in register RC2.
•
Interrupt is generated with reload events.
58
Rev. 1.0
2020-07-23
TLE9879QTW40
Timer2 and Timer21
Table 11
Timer2 and Timer21 modes (cont’d)
Mode
Description
Auto-reload
Up/down-count-enabled
•
Counting up or down, direction determined by level at input pin T2EX.
•
No interrupt is generated.
•
Counting up
– Counting starts from the 16-bit reload value, overflow at FFFFH.
– Reload event triggered by overflow condition.
– Programmable reload value in register RC2.
•
Counting down
– Counting starts from FFFFH, underflow at value defined in register RC2.
– Reload event triggered by underflow condition.
– Reload value fixed at FFFFH.
Channel capture
Datasheet
•
Counting up only.
•
Counting starts from 0000H, overflow at FFFFH.
•
Reload event triggered by overflow condition.
•
Reload value fixed at 0000H.
•
Capture event triggered by falling/rising edge at pin T2EX.
•
Captured timer value stored in register RC2.
•
Reload or capture events generate interrupts.
59
Rev. 1.0
2020-07-23
TLE9879QTW40
Timer3
17
Timer3
17.1
Features
•
16-bit incremental timer/counter (counting up)
•
Counting frequency up to fsys
•
Selectable clock prescaler
•
Six operating modes
•
Interrupt on overflow
•
Interrupt on compare
17.2
Introduction
The possible applications for this timer include measuring the time interval between events, counting events,
and generating a signal at regular intervals.
Timer3 can function as a timer or a counter. When functioning as a timer, Timer3 is incremented in periods
based on the MI_CLK or LP_CLK clocks. When functioning as a counter, Timer3 is incremented in response to
a 1-to-0 transition (falling edge) at its configured input. Timer3 can be configured in four different operating
modes for a variety of applications (see Table 12).
The different operating modes allow the timer to be used for tasks such as:
•
Simple measurements of the times between two events.
•
Triggering the measuring unit upon PWM/CCU6 unit
•
Measurement of the 100 kHz LP_CLK2
17.3
Functional description
Six modes of operation are provided to enable using this timer for various tasks. In every mode, the clocking
source can be selected from MI_CLK and LP_CLK. In addition, a prescaler provides the capability to divide the
selected clock source by 2, 4, or 8. The timer counts upwards, starting with the value in the timer count
registers, up to the maximum count value, which depends on the selected mode of operation. Timer 3
provides two individual interrupts on counter overflow, one for the low-byte and one for the high-byte counter
register.
17.3.1
Timer3 modes overview
The following table provides an overview of the timer modes together with the reasonable configuration
options in Table 12.
Table 12
Timer3 modes
Mode Submode Operation
0
No
13-bit timer
submode The timer essentially operates an 8-bit counter with a divide-by-32 prescaler.
1
a
Datasheet
16-bit timer
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter.
60
Rev. 1.0
2020-07-23
TLE9879QTW40
Timer3
Table 12
Timer3 modes (cont’d)
Mode Submode Operation
1
b
2
No
8-bit timer with auto-reload
submode The timer register TL3 is reloaded with a user-defined 8-bit value in TH3 on overflow.
3
a
Timer3 operating as two 8-bit timers
The timer registers TL3 and TH3, operate as two separate 8-bit counters.
3
b
Timer3 operating as two 8-bit timers for clock measurement
The timer registers, TL3 and TH3, operate as two separate 8-bit counters. In this mode, the
LP_CLK2 low power clock can be measured. TL3 acts as an edge counter for the clock
edges and TH3 measures the interval between the edges.
Datasheet
16-bit timer triggered by an event
The timer registers, TL3 and TH3, are concatenated to form a 16-bit counter, which is
triggered by an event to enable a single-shot measurement on a preset channel with the
measurement unit.
61
Rev. 1.0
2020-07-23
TLE9879QTW40
Capture/compare unit 6 (CCU6)
18
Capture/compare unit 6 (CCU6)
18.1
Feature set overview
This section gives an overview over the different building blocks and their main features.
Timer 12 block features
•
Three capture/compare channels. Each channel can be used either as capture or as compare channel.
•
Supports three-phase PWM (six outputs with separate signals for high-side and low-side switches).
•
16-bit resolution, maximum count frequency = peripheral clock.
•
Dead-time control for each channel to avoid short-circuits in the power stage.
•
Concurrent update of the T12 registers.
•
Center-aligned and edge-aligned PWM can be generated.
•
Single-shot mode is supported.
•
Start can be controlled by external events.
•
External events can be counted.
•
Multiple interrupt request sources.
•
Hysteresis-like control mode.
Timer 13 block features
•
One independent compare channel with one output.
•
16-bit resolution, maximum count frequency = peripheral clock.
•
Concurrent update of T13 registers.
•
Can be synchronized to T12.
•
Interrupt generation at period-match and compare-match.
•
Single-shot mode is supported.
•
Start can be controlled by external events.
•
Capability of counting external events.
Additional specific functions
•
Block commutation for brushless DC-drives implemented.
•
Position detection via hall-sensor pattern.
•
Noise filter for position input signals supported.
•
Automatic rotational speed measurement and commutation control for block commutation.
•
Integrated error handling.
•
Fast emergency stop without CPU load via external signal (CTRAP).
•
Control modes for multi-channel AC drives.
•
Output levels can be selected and adapted to the power stage.
Datasheet
62
Rev. 1.0
2020-07-23
TLE9879QTW40
Capture/compare unit 6 (CCU6)
18.2
Introduction
The CCU6 unit is made up of the T12 timer block with three capture/compare channels and the T13 timer block
with one compare channel. The T12 channels can independently generate PWM signals or accept capture
triggers, or they can jointly generate control signal patterns to drive DC motors or inverters.
A rich set of status bits, synchronized updating of parameter values via shadow registers, and flexible
generation of interrupt request signals provide efficient software control.
Note:
The capture/compare module itself is referred to as CCU6 (capture/compare unit 6). A
capture/compare channel inside this module is referred to as CC6x.
The timer T12 can work in capture and/or compare mode for its three channels. The modes can also be
combined (e.g., a channel works in compare mode, whereas another channel works in capture mode). The
timer T13 can work only in compare mode. The multi-channel control unit generates output patterns which
can be modulated by T12 and/or T13. The modulation sources can be selected and combined for modulating
signals.
Datasheet
63
Rev. 1.0
2020-07-23
TLE9879QTW40
Capture/compare unit 6 (CCU6)
18.2.1
Block diagram
CCU6 Module Kernel
CC60
T12SUSP
T13SUSP
T12
1
CC61
1
CC62
1
Deadtime
control
Multichannel
control
Trap
control
3
SR[3:0]
2
2
2
Trap Input
Hall input
Output select
Compare
Compare
Capture
1
3
1
CTRAP
CCPOS2
CCPOS1
CCPOS0
COUT63
CC62
COUT62
COUT61
CC60
COUT60
T13HR
Input/output control
T12HR
Interrupt
control
Compare
CC63
Compare
T13
CC61
fCC6
Clock
control
Output select
Start
Debug
suspend
Compare
Port control
P0.x
Figure 20
Datasheet
P1.x
P2.x
CCU6 block diagram
64
Rev. 1.0
2020-07-23
TLE9879QTW40
UART1/UART2
19
UART1/UART2
The description in this chapter applies to both UART1 and UART2.
19.1
•
Features
Full-duplex asynchronous modes
– 8-bit or 9-bit data frames, LSB first.
– Fixed or variable baud rate.
•
Receive-buffered.
•
Multiprocessor communication.
•
Interrupt are generated when data transmission or receptions are complete.
•
Baud-rate generator with fractional divider for generating a wide range of baud rates.
•
Hardware logic for break and synch byte detection.
19.2
Introduction
The UART provides a full-duplex asynchronous receiver/transmitter, i.e., it can transmit and receive
simultaneously. It is also receive-buffered, i.e., it can commence reception of a second byte before a
previously received byte has been read from the receive register. However, if the first byte still has not been
read by the time when the reception of the second byte is complete, one of the bytes will be lost. The serial
port receive and transmit registers are both accessed through the special function register (SFR) SBUF. Writing
to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register.
19.2.1
Block diagram
UART disreq from SCU_DM
RI
TXD
TI
RXD
TXD
SCU_DM
Interrupt
control
URIOS
SCU_DM
UART
module
fUART2
Clock
control
P0.x
f
Baud rate
generator
BR
P1.x
P2.x
RXDO_2
AHB interface
Datasheet
RXD_1
Port control
Address
decoder
Figure 21
RXD_0
SCU_DM
UART
GPIOs
UART block diagram
65
Rev. 1.0
2020-07-23
TLE9879QTW40
UART1/UART2
19.3
UART modes
The UART can be used in four different modes. In mode 0, it operates as an 8-bit shift register. In mode 1, it
operates as an 8-bit serial port. In modes 2 and 3, it operates as a 9-bit serial port. The only difference between
mode 2 and mode 3 is the baud rate, which is fixed in mode 2 but variable in mode 3. The variable baud rate is
set by the underflow rate on the dedicated baud-rate generator.
The different modes are selected by setting bits SM0 and SM1 to the appropriate values, as shown in Table 13.
Table 13
UART modes
SM0
SM1
Operating mode
Baud rate
0
0
Mode 0: 8-bit shift register
fPCLK/2
0
1
Mode 1: 8-bit shift UART
Variable
1
0
Mode 2: 9-bit shift UART
fPCLK/64
1
1
Mode 3: 9-bit shift UART
Variable
UART1 is connected to the integrated LIN transceiver, and to GPIO for test purposes. UART2 is connected to
GPIO only.
Datasheet
66
Rev. 1.0
2020-07-23
TLE9879QTW40
LIN transceiver
20
LIN transceiver
20.1
Features
General functional features
•
Compliant with the LIN2.2 standard, backward-compatible with LIN1.3, LIN2.0, and LIN 2.1
•
Compliant with SAE J2602 (slew rate, receiver hysteresis)
Special features
•
Measurement of the LIN master baudrate via Timer2
•
LIN can be used as input/output with SFR bits
•
TxD timeout feature (optional, on by default)
Operation mode features
•
LIN Sleep mode (LSLM)
•
LIN Receive-Only mode (LROM)
•
LIN Normal mode (LNM)
•
High voltage input/output mode (LHVIO)
Supported baud rates
•
Mode for transmission with up to 10.4 kilobaud
•
Mode for transmission with up to 20 kilobaud
•
Mode for transmission with up to 40 kilobaud
•
Mode for transmission with up to 115.2 kilobaud
Slope mode features
•
Normal Slope mode (20 kbit/s)
•
Low Slope mode (10.4 kbit/s)
•
Flash mode (115.2 kbit/s)
Wake-up features
•
LIN bus wake-up
20.2
Introduction
The LIN module is a transceiver for the Local Interconnect Network (LIN), compliant with the LIN2.2 standard
and backward-compatible with LIN1.3, LIN2.0 and LIN2.1. It operates as a bus driver between the protocol
controller and the physical network. The LIN bus is a single-wire, bidirectional bus typically used for in-vehicle
networks, using baud rates between 2.4 kilobaud and 20 kilobaud. Additionally, baud rates up to
115.2 kilobaud are implemented.
The LIN module offers several different operation modes, including a LIN Sleep mode and the LIN Normal
mode. The integrated slope control allows using several data transmission rates with optimized EMC
performance. For data transfer at the end of line, a Flash mode up to 115.2 kilobaud is implemented. In
Datasheet
67
Rev. 1.0
2020-07-23
TLE9879QTW40
LIN transceiver
specific conditions, this Flash mode supports data rates of up to 250 kbit/s. (In production environments, in
point-to-point communications with reduced wire lengths and limited supply voltages.).
20.2.1
Block diagram
VS
LIN transceiver
RBUS
LIN.CTRL_STS
LIN
CTRL
Driver, current
limiter, and TSD
TxD_1
from UART
LIN-FSM
STATUS
Transmitter
CTRL
STATUS
GND_LIN
Filter
RxD_1 to UART
and TIMER2,
pin T2EX
(T2EXCON=0,
T2EXIS=0)
Receiver
Filter
LIN_Wake
Sleep comparator
GND_LIN
Figure 22
Datasheet
LIN transceiver block diagram
68
Rev. 1.0
2020-07-23
TLE9879QTW40
High-speed synchronous serial interface (SSC1/SSC2)
21
High-speed synchronous serial interface (SSC1/SSC2)
21.1
Features
•
Master and Slave mode operation
– Full-duplex or half-duplex operation
•
Transmit- and receive-buffered
•
Flexible data format
– Programmable number of data bits: 2 to 16 bits
– Programmable shift direction: least significant bit (LSB) or most significant bit (MSB) shift first
– Programmable clock polarity: idle low or high state for the shift clock
– Programmable clock/data phase: data shift with leading or trailing edge of the shift clock
•
Variable baud rate
•
Compatible with Serial Peripheral Interface (SPI)
•
Interrupt generation
– On a “transmitter empty” condition
– On a “receiver full” condition
– On an error condition (receive, phase, baud rate, or transmission error)
Datasheet
69
Rev. 1.0
2020-07-23
TLE9879QTW40
High-speed synchronous serial interface (SSC1/SSC2)
21.2
Introduction
The high-speed synchronous serial interface (SSC) supports both full-duplex and half-duplex serial
synchronous communication. The serial clock signal can be generated by the SSC internally (Master mode),
using its own 16-bit baud rate generator, or can be received from an external master (Slave mode). Data width,
shift direction, clock polarity, and phase are programmable. This allows communication with SPI-compatible
devices as well as devices using other synchronous serial interfaces.
Data is transmitted or received on the TXD and RXD lines, which are normally connected to the MTSR (Master
Transmit, Slave Receive) and MRST (Master Receive, Slave Transmit) pins. The clock signal is output via the
MS_CLK (Master Serial Shift Clock) line or input via the SS_CLK (Slave Serial Shift Clock) line. Both lines are
normally connected to the SCLK pin. Transmission and reception of data are double-buffered.
21.2.1
Block diagram
Figure 23 shows all functionally relevant interfaces associated with the SSC kernel.
MRSTA
TIR
MTSRA
SSC
module
AHB interface
Datasheet
MRST
P0.x
Port
control
fhw_clk
P1.x
P2.x
SCLKA
SCLKB
SCLK
Ma st er
Address
decoder
Figure 23
MTSRB
Slave
Clock
control
MTSR
RIR
Slave
SCU_DM
interrupt
control
MRSTB
Ma st er
EIR
Module
Product interface
SSC interface diagram
70
Rev. 1.0
2020-07-23
TLE9879QTW40
Measurement unit
22
Measurement unit
22.1
Features
•
1 x 8-bit ADC with 10 inputs. Attenuators allow measuring high-voltage input signals.
•
Supply voltage attenuators for attenuating VS, VDDP and VDDC.
•
VBG monitoring of the 8-bit ADC to guarantee functional safety requirements.
•
Bridge driver diagnosis measurement (VDH, VCP).
•
Temperature sensor for monitoring the chip temperature and PMU regulator temperature.
•
BEMF comparators for triggering commutation in BLDC applications.
•
Supplement block with reference voltage generation, bias current generation, voltage buffer for NVM
reference voltage, voltage buffer for analog module reference voltage, and a test interface.
22.2
Introduction
The measurement unit is a functional unit that comprises the following submodules:
Table 14
Measurement functions and associated modules
Module name
Module
Functions
Central function
unit
Bandgap reference circuit
The bandgap reference submodule provides two
reference voltages:
1. A trimmable reference voltage for the 8-bit ADC. A
local dedicated bandgap circuit ensures that the
reference voltage does not drop, e.g., because of
crosstalk or ground voltage shift.
2. The reference voltage for the NVM module.
8-bit ADC (ADC2) 8-bit ADC module with 10
multiplexed inputs and including
high-voltage input attenuators
•
5 high-voltage inputs supporting the full supply
range (2.5 V...30.7 V(FS))
•
2 medium-voltage inputs (0..5 V/7 V FS).
•
3 low-voltage inputs (0..1.2 V/1.6 V FS)
(See the following figure for the allocation of the
inputs).
10-bit ADC (ADC1) 10-bit ADC module with 8
multiplexed inputs
Five (5 V) analog inputs from port 2.x.
VDH input
voltage
attenuator
VDH input voltage attenuator
Scales down (VDH) to the input voltage range of
ADC1.CH6.
Temperature
sensor
Temperature sensor with two
multiplexed sensing elements:
Generates an output voltage that is a linear function
of the local chip (junction) temperature.
Datasheet
•
Sensor located on the PMU
•
Sensor located on the central
chip
71
Rev. 1.0
2020-07-23
TLE9879QTW40
Measurement unit
Table 14
Measurement functions and associated modules (cont’d)
Module name
Module
Functions
BEMF
comparators
Back electromotive force
comparators
Comparators are used to detect the back
electromotive force (zero-crossing event), which can
be used as a commutation trigger for BLDC
applications.
Core
measurement
module
Digital signal processing and ADC2 1. Generates the control signal for the 8-bit ADC2
and the synchronous clock for the switched
control unit
capacitor circuits.
2. Performs digital signal processing functions and
provides status outputs for interrupt generation.
22.2.1
Block diagram
VS
GND_REF
VAREF
P2.0
CH0
VARE F
OP1
GND_SENSE
CH1
CSA
OP2
CH2
P2.2
CH3
P2.3
CH4
P2.4
CH5
VREF
MUX
P2.5
A
VDH
rfu
10
/
Channel sequencer
SFR
ADC 1
CH6
ATTVDH_1
ATTVDH_2
ATTVDH_3
D
CH7
10 Bit ADC + DPP1
Programmable
range setting
rfu
CH0
ATTVS_1
ATTVS_2
CH1
ATTVSD
CH2
VCP
ATTVCP
CH3
MON
ATTMON
CH4
VSD
VBG
MUX
VDDP
VAREF
PMU-VBG
VDDC
Temperature
sensor
ATTVDD P
CH5
ATTVARE F
CH6
ATTVBG
CH7
ATTVDD C
CH8
A
D
8
/
Calibra tion a nd filter
unit with
upper and lower
threshold
detection and interrupt
SFR
ADC 2
CH9
8 Bit ADC + DPP2
Measurement unit
Figure 24
Datasheet
Measurement unit, overview (with opamp)
72
Rev. 1.0
2020-07-23
TLE9879QTW40
Measurement unit
22.2.1.1 BEMF comparator block diagram
V phase U
W
V
U
VS/2
SH3
R
SH2
R
BEMF comparator
Blank filter
Spike filter
R
SH1
BEMF IN
BEMF OUT
R
t
Measurement unit, BEMF comparators
Figure 25
Datasheet
BEMF comparator (applies to each of the three comparators)
73
Rev. 1.0
2020-07-23
TLE9879QTW40
Core measurement module (incl. ADC2)
23
Core measurement module (incl. ADC2)
23.1
Features
•
10 individually programmable channels, split into two groups of user-configurable and non-configurable
channels, respectively.
•
Individually programmable channel prioritization scheme for the measurement unit.
•
Two independent filter stages with programmable low-pass and time filter characteristics for each
channel.
•
Two channel configurations:
– Programmable upper- and lower trigger thresholds comprising a fully programmable hysteresis.
– Two individually programmable trigger thresholds with limit hysteresis settings.
•
Individually programmable interrupts and statuses for all channel thresholds.
23.2
Introduction
The basic function of this block is the digital postprocessing of several digitized analog measurement signals
by filtering, level comparison, and interrupt generation. The measurement postprocessing block consists of
ten identical channel units attached to the outputs of the 10-channel 8-bit ADC (ADC2). It processes ten
channels, where the channel sequence and prioritization is programmable within a wide range.
23.2.1
Block diagram
4
/
Core measurement module
MUX_SEL
Channel controller
(sequencer)
SQ0 – SQ9
FILT_OUTx.OUT_CHx
TSENS_SEL
CNTUP
+
1
/
MMODE
THy_z_LOWER.
CHx
-
CNTLOW
THy_z_UPPER.
CHx
HYSUP
CH8
+
8
/
HYSLOW
VDDC
Temperature sensor
y= a + (1+b)*x
10
/
FILTENLOW
CH7
D
FILTENUP
PMU-VBG
A
8
/
Calibration unit:
FILTENLOW
CH6
EN
CH5
MUX_CTRL
VDDP
VAREF
First-order IIR
8-bit
ADC
VREF
MUX
MUX_CTRL
CH4
EN
MON
COEFF_IIR
CH3
COEFF_B
CH2
VCP
MUX_CTRL
CH1
VSD
EN
CH0
CTRL_STS
rfu
VS
COEFF A
SOC
EOC
ADC2 - SFR
+/-
ADC2_CHx_UPPER_STS
+/-
ADC2_CHx_LOWER_STS
1
/
Digital signal processing
CH9
TSENSE
Figure 26
Datasheet
Module block diagram
74
Rev. 1.0
2020-07-23
TLE9879QTW40
Core measurement module (incl. ADC2)
23.2.2
Core measurement module mode overview
The basic function of this unit is the digital signal processing of several digitized analog measurement signals
by filtering, level comparison, and interrupt generation. The core measurement module processes ten
channels in a quasi-parallel process.
As shown in the figure above, the ADC2 postprocessing unit consists of a channel controller (sequencer), a 10channel demultiplexer, and the signal-processing block, which filters and compares the sampled ADC2 values
for each channel individually. The channel control block controls the multiplexer sequencing on the analog
side, before the ADC2, and in the digital domain, behind the ADC2. The channel sequence can be controlled in
a flexible way, which allows a certain degree of channel prioritization.
This capability can be used, e.g., to give supply voltage channels a higher priority than the other channel
measurements. In addition, the core measurement module offers two different postprocessing measurement
modes for over- and undervoltage detection and for two-level threshold detection.
The channel controller (sequencer) runs in one of the following modes:
•
Normal Sequencer: Channels are selected according to the 10 sequence registers which contain individual
enablers for each of the 10 channels.
•
Exceptional Interrupt Measurement: Following a hardware event, a high-priority channel is inserted into
the current sequence. The current actual measurement is not destroyed.
•
Exceptional Sequence Measurement: Following a hardware event, a complete sequence is inserted after
the current measurement is finished. The current sequence is interrupted by the exception sequence.
Datasheet
75
Rev. 1.0
2020-07-23
TLE9879QTW40
10-bit analog-to-digital converter (ADC1)
24
10-bit analog-to-digital converter (ADC1)
24.1
Features
The principal features of the ADC1 are:
•
Up to 8 analog input channels (channel 7 reserved for future use).
•
Flexible results handling
– 8-bit and 10-bit resolution.
•
Flexible source selection due to sequencer:
– Insert one exceptional sequence (ESM).
– Insert one interrupt measurement into the current sequence (EIM), single or up to 128 times.
– Software mode.
•
Conversion sample time (separate for each channel) adjustable to adapt to sensors and reference.
•
Standard external reference (VAREF) to support ratiometric measurements and different signal scales.
•
DMA support, transfer ADC conversion results via DMA into RAM.
•
Support of suspended and power-saving modes.
•
Result data protection for slow CPU access (Wait-for-Read mode).
•
Programmable clock divider.
•
Integrated sample and hold circuitry.
24.2
Introduction
The TLE9879QTW40 includes a high-performance 10-bit analog-to-digital converter (ADC1) with eight
multiplexed analog input channels. The ADC1 uses a successive approximation technique to convert the
analog voltage levels from up to eight different sources. The analog input channels of the ADC1 are available
at AN0 and AN2 to AN5.
Datasheet
76
Rev. 1.0
2020-07-23
TLE9879QTW40
10-bit analog-to-digital converter (ADC1)
24.2.1
Block diagram
3
/
3
/
MUX_SEL
EoC - SoC
Channel controller
(sequencer)
Settings
ADC1 - SFR
10
P2.0
CH0
10
CH1
P2.2
P2.3
P2.4
CH4
P2.5
CH5
VDH
rfu
OP1
OP2
Figure 27
ADC1
CH2
CH3
10
MUX
A
10
10
D
/
MUX
10
10
10
CH6
10
CH7
10
/
ADC1_OUT_CH0
/
ADC1_OUT_CH1
/
ADC1_OUT_CH2
/
ADC1_OUT_CH3
/
ADC1_OUT_CH4
/
ADC1_OUT_CH5
/
ADC1_OUT_CH6
/
ADC1_OUT_CH7
/
ADC1_RES_OUT_EIM
OPA
ADC1 top-level block diagram
As shown in the figure above, the ADC1 postprocessing block consists of a channel controller (Sequencer) and
an 8-channel demultiplexer. The channel control block controls the multiplexer sequencing on the analog
side, before the ADC1, and in the digital domain, behind the ADC1. The channel sequence can be controlled in
a flexible way, which allows a certain degree of channel prioritization.
This capability can be used, e.g., to give supply voltage channels a higher priority than the other channel
measurements.
Datasheet
77
Rev. 1.0
2020-07-23
TLE9879QTW40
High-voltage monitor input
25
High-voltage monitor input
25.1
Features
•
High-voltage input with VMONth threshold voltage
•
Integrated selectable pull-up and pull-down current sources
•
Wake capability for power-saving modes
•
Level change sensitivity configurable for transitions from low to high, high to low, or both directions
25.2
Introduction
This module is dedicated to monitor external voltage levels above or below a specified threshold or it can be
used to detect a wake-up event at the high-voltage MON pin in low-power mode. The input level can be
monitored if the module is enabled (PMU_MON_CNF).
To use the Wake function when the IC is in a low-power mode, the monitoring pin is switched to Sleep mode
via the SFR bit EN.
25.2.1
Block diagram
VS
MON
+
Filter
-
to internal
circuitry
MON
Logic
SFR
Figure 28
Datasheet
High-voltage monitor input block diagram
78
Rev. 1.0
2020-07-23
TLE9879QTW40
Bridge driver (incl. charge pump)
26
Bridge driver (incl. charge pump)
26.1
Features
The MOSFET driver is intended to drive external normal-level NFET transistors in bridge configurations. The
driver provides many diagnostic functions for detecting faults.
Functional features
•
External power NFET transistor driver stage with driver capability of Qtot_max.
•
Adjustable cross-conduction protection.
•
Supply voltage (VSD) monitoring incl. adjustable over- and undervoltage shutdown with configurable
interrupt signalling.
•
VSD operating range: VSD_AM.
•
VDS comparators for short-circuit-detection in both on- and off-states.
•
Open-load detection in the off-state.
•
Flexible PWM frequency range. Rates above 25 kHz require power dissipation and duty-cycle resolution
analysis.
26.2
Introduction
The MOSFET driver stage can be used for controlling external power NFET transistors (normal level). The
module output is controlled by the SFR or the System PWM Machine (CCU6).
Datasheet
79
Rev. 1.0
2020-07-23
TLE9879QTW40
Bridge driver (incl. charge pump)
26.2.1
Block diagram
VDH
VCP
PWM unit
CCU6
(not part of the module)
Predriver
BDRV.TRIM_DRVx.
LSDRV_DS_TFILT_SEL
BDRV.TRIM_DRVx.
LS_HS_BT_TFILT_SEL
Spike
filter
Blank
filter
BDRV.CTRL3.
DSMONVTH
+
VDS
-
High-side
driver 1)
1
GHx
0
VREF
RGG ND
BDRV.CTRL1.HSx_PW M
SFR
SHx
1
IPDDiag
0
BDRV.CTRL1.LSx_PW M
Spike
filter
Blank
filter
Low-side
driver 1)
+
VDS
GLx
-
BDRV.TRIM_DRVx.
LSDRV_DS_TFILT_SEL
1)
BDRV.TRIM_DRVx.
LS_HS_BT_TFILT_SEL
BDRV.CTRL3.
DSMONVTH
RGG ND
VREF
SL
The VGSx limiter and fast discharge functions are implemented in this block.
Figure 29
26.2.2
Bridge driver module block diagram (incl. system connections)
General
The bridge driver can be controlled in two different ways:
•
In Normal mode, the output stage is fully controllable through the SFR registers CTRLx (x = 1,2,3).
Protection functions such as overcurrent and open-load detection are available.
•
The PWM mode can be enabled by setting the corresponding bit in CTRL1 and CTRL2. The PWM must be
configured in the System PWM Module (CCU6). All protection functions are available in PWM mode as well.
Protection functions
•
Overcurrent detection and shutdown feature for external MOSFET based on drain-source measurements.
•
Programmable minimum cross-current protection time.
•
Open-load detection feature in the off-state for external MOSFET.
Datasheet
80
Rev. 1.0
2020-07-23
TLE9879QTW40
Current sense amplifier
27
Current sense amplifier
27.1
Features
Main features
•
Programmable gain settings: G
•
Differential input voltage: VIX
•
Wide common-mode input range: VCM
•
Low setting time: TSET
27.2
Introduction
The current sense amplifier in the following figure can be used to measure near-ground differential voltages
via the 10-bit ADC. Its gain is digitally programmable through internal control registers.
Linear calibration has to be applied to achieve high gain accuracy, e.g., end-of-line calibration using the shunt
resistor.
The following figure shows how the current sense amplifier can be used as a low-side current sense amplifier
where the motor current is converted to a voltage by means of a shunt resistor RSH. A differential amplifier
input is used to eliminate measurement errors caused by a voltage drop across the stray resistance RStray and
differences between the external and internal grounds. If the voltage at one or both inputs is outside the
operating range, the input circuit is overloaded and requires a certain specified recovery time.
In general, an external low-pass filter should suppress of EMI.
Datasheet
81
Rev. 1.0
2020-07-23
TLE9879QTW40
Current sense amplifier
27.2.1
Block diagram
VDH
VAREF or
VREF5V
VZERO
MOSFET
bridge
CSAÆ CTRL.VZERO
Low-pass filter
ROPAFILT
RSH
OP2
Rin_OP2
Input
offset
G = 10/20/40/60
+
COPAFILT
ROPAFILT
OP1
G
-
Rin_OP1
+
Vzero +
(VOP2 -VOP1)*G
10-bit ADC
CSA_CTRL
RStray
AHB
CSA
GND
Figure 30
Datasheet
Current sense amplifier block diagram
82
Rev. 1.0
2020-07-23
TLE9879QTW40
Application information
28
Application information
28.1
BLDC driver
The following figure shows the TLE9879QTW40 in an electric drive application setup controlling a BLDC motor.
Note:
The following information is given as a hint for the implementation of the device only and shall not
be regarded as a description or warranty of a certain functionality, condition, or quality of the
device.
Rev. polarity protection
LPF ILT
VBAT
CPF ILT1
CPF ILT1
CVDDP2
EMC filter
CVD DP1
DVS
VS
CVS 2
CVDDC1
VDDP
VDDC
CVS1
RMON
IGN
CMON
MON
CVDDC2
CP1H
CP1L
CP2H
CP2L
VCP
CCPS1
CCPS2
RVS D
VSD
CVS D
LIN
LIN
CLIN
CVDH
GND_LIN
GND_REF
D
RGA TE
G
GH1
VAREF
CVA REF
CVC P
RVDH
VDH
TH1
RGS
1)
CGS
SH1
CPH 1
D
S
G
CEM CP1
RVDDPU
TLE4946-2K
Hall
CADC
CVDD_EX T2
CVDD_EX T1
GH2
D
S
G
RGA TE
GH3
SH3
P1.4
TH3
RGS
CGS
S
D
P0.2
RADC
CADC
TLE987x
G
GL1
TL1
RGS
RGA TE
CGS
M
D
S
G
GL2
Temperature
sensor
TL2
P2.2
RGS
CGS
D
S
RGA TE
G
GL3
TL3
P1.2
RGS
SL
OP2
OP1
ROP AFI LT
RGA TE
RShunt
P2.0
P2.3
P2.4
RESET
TMS
P0.0
RTM S
1)
Input protection
circuit
Input protection
circuit
Input protection
circuit
P0.1
P0.4
P2.5
P1.3
GND
BLDC system
RGA TE
ROP AFI LT
P1.1
Debug connector
CGS
S
COP AFI LT
P1.0
CPH 3
U
V
W
CEM CP3
RVDDPU
RGA TE
TLE4946-2K
Hall
CPH 2
CGS
CEM CP2
RVDDPU
RADC
TH2
RGS
SH2
P0.3
RADC
TLE4946-2K
Hall
CADC
VDDEXT
RGA TE
GND
Note: Not connected to board GND.
Figure 31
Note:
Datasheet
Simplified sample application diagram
This is a very simplified example of an application circuit and bill of materials. The function must be
verified in the actual application.
83
Rev. 1.0
2020-07-23
TLE9879QTW40
Application information
Table 15
External components (BOM)
Symbol
Function
Component
CVS1
Blocking capacitor at VS pin
≥ 100 nF ceramic, ESR < 1 Ω
CVS2
Blocking capacitor at VS pin
> 2.2 µF Elco1)
CVDDP
Blocking capacitor at VDDP pin
See P_2.1.2 and P_2.1.20
CVDD_EXT
Blocking capacitor at VDDEXT pin
See P_2.3.22 and P_2.3.20
CVDDC
Blocking capacitor at VDDC pin
See P_2.2.1 and P_2.2.17
CVAREF
Blocking capacitor at VAREF pin
See P_9.1.1
CLIN
Standard C for LIN slave
220 pF
CVSD
Filter C for charge pump end driver
1 µF
CCPS1
Charge pump capacitor
220 nF
CCP2S
Charge pump capacitor
220 nF
CVCP
Charge pump capacitor
470 nF
CMON
Filter C for ISO pulses
10 nF
CVDH
Capacitor
3.3 nF
CPH1
Capacitor
220 µF
CPH2
Capacitor
220 µF
CPH3
Capacitor
220 µF
COPAFILT
Capacitor
1 nF
CEMCP1
Capacitor
1 nF
CEMCP2
Capacitor
1 nF
CEMCP3
Capacitor
1 nF
CPFILT1, CPFILT2
Capacitor
RMON
Resistor at MON pin
RVSD
2Ω
Limitation of reverse current due to
transient (-2 V, 8 ms).
Max. ratings of the VSD pin has to be
met, alternatively the resistor shall be
replaced by a diode
RVDH
Resistor
1 kΩ
RGATE
Resistor
2Ω
ROPAFILT
Resistor
12 Ω
RSH1
Resistor
Optional
RSH2
Resistor
Optional
RSH3
Resistor
Optional
3.9 kΩ
–
LPFILT
DVS
Reverse-polarity protection diode
–
1) The capacitor must be dimensioned so as to ensure that operations which modify the content of the flash are never
interrupted (e.g., in case of power loss).
Datasheet
84
Rev. 1.0
2020-07-23
TLE9879QTW40
Application information
28.2
ESD immunity according to IEC61000-4-2
Note:
Tests for ESD immunity according to IEC61000-4-2 “gun test” (150 pF, 330 Ω) have been performed.
The results and test conditions will be available in a test report.
Table 16
ESD “gun test”
Performed test
ESD at pin LIN, versus GND1)
1)
ESD at pin LIN, versus GND
Result
Unit
Remarks
>6
kV
Positive pulse
< -6
kV
Negative pulse
1) ESD test “ESD GUN” is specified with external components; see application diagram:
CMON = 100 nF, RMON = 1 kΩ, CLIN = 220 pF, CVS = > 20 µF ELCO + 100 nF ESR < 1 Ω, CVSD = 1 µF, RVSD = 2 Ω.
Datasheet
85
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29
Electrical characteristics
This chapter includes all relevant electrical characteristics of the product TLE9879QTW40.
29.1
General characteristics
29.1.1
Absolute maximum ratings
Table 17
Absolute maximum ratings1)
Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Unit Note or
Test Condition
Max.
Number
Voltages – supply pins
Supply voltage VS
VS
-0.3
–
40
V
Load dump
P_1.1.1
Supply voltage VSD
VSD
-0.3
–
48
V
–
P_1.1.2
Supply voltage VSD
VSD_max_extend
-2.8
–
48
V
Series resistor
RVSD = 2.2 Ω,
t = 8 ms 2)
P_1.1.32
Voltage range VDDP
VDDP
-0.3
–
5.5
V
–
P_1.1.3
Voltage range VDDP
VDDP_max_extend
-0.3
–
7
V
P_1.1.41
In case of voltage
transients on VS
with ∆VS/∆t ≥ 1 V/µs;
duration: t ≤ 150 µs;
CVDDP ≤ 570 nF
Voltage range VDDEXT
VDDEXT
-0.3
–
5.5
V
–
Voltage range VDDEXT
VDDEXT_max_extend -0.3
–
7
V
P_1.1.42
In case of voltage
transients on VS
with ∆VS/∆t ≥ 1 V/µs;
duration: t ≤ 150 µs;
CVDDEXT ≤ 570 nF
Voltage range VDDC
VDDC
-0.3
–
1.6
V
–
P_1.1.5
Input voltage at LIN
VLIN
-28
–
40
V
–
P_1.1.7
Input voltage at MON
VMON_maxrate
-28
–
40
V
3)
P_1.1.8
V
4)
P_1.1.38
P_1.1.9
P_1.1.4
Voltages – high-voltage pins
Input voltage at VDH
VVDH_maxrate
-2.8
–
40
Voltage range at GHx
VGH
-8.0
–
48
V
5)
Voltage range at GHx vs. SHx
VGHvsSH
-0.3
–
14
V
–
P_1.1.44
Voltage range at SHx
VSH
-8.0
–
48
V
–
P_1.1.11
Voltage range at SLx
VSL
-8.0
–
48
V
–
P_1.1.48
P_1.1.13
P_1.1.45
Voltage range at GLx
VGL
-8.0
–
48
V
6)
Voltage range at GLx vs. SL
VGLvsSL
-0.3
–
14
V
–
Datasheet
86
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 17
Absolute maximum ratings1) (cont’d)
Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Min.
Typ.
Unit Note or
Test Condition
Max.
VCPx
-0.3
–
48
V
7)
Vin
-0.3
–
VDDP
+ 0.3
V
9)
IVCP
-15
–
–
mA
–
P_1.1.35
Injection current on any port
pin
IGPIONM
-5
–
5
mA
10)
P_1.1.34
Sum of all injected currents in
Normal mode
IGPIOAM_sum
-50
–
50
mA
10)
P_1.1.30
Sum of all injected currents in IGPIOPD_sum
Power-down mode (Stop mode)
-5000 –
50
µA
10)
P_1.1.36
Sum of all injected currents in
Sleep mode
IGPIOSleep_sum
-5
–
5
mA
10)
P_1.1.37
Input voltage VAREF
VAREF
-0.3
–
VDDP
+ 0.3
V
–
P_1.1.17
Input voltage
OP1, OP2
VOAI
-7
–
7
V
–
P_1.1.23
Junction temperature
Tj
-40
–
175
°C
–
P_1.1.18
Storage temperature
Tstg
-55
–
150
°C
–
P_1.1.19
ESD susceptibility
all pins
VESD1
-2
–
2
kV
HBM 11)
P_1.1.20
ESD susceptibility
pins MON, VS, VSD vs.GND
VESD2
-4
–
4
kV
HBM 12)
P_1.1.21
ESD susceptibility
pins LIN vs. GND_LIN
VESD3
-6
–
6
kV
HBM 11)
P_1.1.22
ESD susceptibility CDM
all pins vs. GND
VESD_CDM1
-500
–
500
V
13)
P_1.1.28
ESD susceptibility CDM
pins 1, 12, 13, 24, 25, 36, 37, 48
(corner pins) vs. GND
VESD_CDM2
-750
–
750
V
13)
P_1.1.43
Voltage range at charge pump
pins CP1H, CP1L, CP2H, CP2L,
VCP
Symbol
Values
Number
P_1.1.15
Voltages – GPIOs
Voltage on any port pin8)
VIN < VDDPmax
P_1.1.16
Current at VCP pin
Max. current at VCP pin
Injection current at GPIOs
Other voltages
Temperatures
ESD susceptibility
1) Not subject to production test, specified by design.
Datasheet
87
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
2)
3)
4)
5)
Conditions and minimum values are derived from application conditions for reverse polarity events.
The minimum voltage of -28 V applies only with an external 3.9 kΩ series resistor.
The minimum voltage of -2.8 V applies only with an external 1 kΩ series resistor.
To achieve the maximum ratings on this pin, the following relationships with parameter P_1.1.44 have to be
observed: VGH < VSH + VGHvsSH_min and VSH < VGH + 0.3 V.
6) To achieve the maximum ratings on this pin, the following relationships with parameter P_1.1.45 have to be
observed: VGL < VSL + VGLvsSL_min and VSL < VGL + 0.3 V.
7) These limits can be kept if the maximum current drawn out of the pin does not exceed the limit of 200 µA.
8) See the XTAL parameter specification, when GPIOs (Port pins P2.0 and P2.2) are used as XTAL.
9) Includes TMS and RESET.
10) P_1.1.16 must not been exceeded in the injection current.
11) ESD susceptibility based on the HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF).
12) MON with external circuitry of a series resistor with 3.9 kΩ and 10 nF (at connector); VS with an external ceramic
capacitor with 100 nF; VSD with an external capacitor with 470 nF; VDH with external circuitry of a series resistor with
1 kΩ and 3.3 nF (at pin).
13) ESD susceptibility based on the HBM according to ANSI/ESDA/JEDEC JESD22-C101F.
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect the reliability of the device.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered to be outside the normal operating range. Protection functions
are not designed for continuous repetitive operation.
Datasheet
88
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.1.2
Functional range
Table 18
Functional range
Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Supply voltage in Active mode
Symbol
VS_AM
Values
Number
Min. Typ. Max.
Unit Note or
Test Condition
5.5
V
–
P_1.2.1
1)2)
–
28
Extended supply voltage in Active
mode
VS_AM_extend 28
–
40
V
Extended supply P_1.2.16
range leads to
parameter deviation.
Supply voltage in Active mode for
MOSFET driver supply
VSD_AM
5.4
–
28
V
–
Extended supply voltage in Active
mode for MOSFET driver supply
VSD_AM_extend 28
–
32
V
1)2)5)
Specified supply voltage for LIN
transceiver
VS_AM_LIN
5.5
–
18
V
Parameter
specification.
Extended supply voltage for LIN
transceiver
VS_AM_LIN
4.8
–
28
V
3)
Supply voltage in Active mode with VS_AMmin
reduced functionality (retaining full
operation for microcontroller and
flash)
3.0
–
5.5
V
4)
P_1.2.3
Supply voltage in Sleep mode
3.0
–
28
V
–
P_1.2.4
P_1.2.5
VS_Sleep
P_1.2.18
Extended supply P_1.2.17
range leads to
parameter deviation.
P_1.2.2
Extended supply
P_1.2.14
range leads to
parameter deviation.
Supply voltage transients slew rate ∆VS/∆t
-1
–
1
V/µs
5)
Output sum current for all GPIO pins IGPIO,sum
-50
–
50
mA
5)
P_1.2.7
6)
P_1.2.15
Operating frequency
fsys
5
–
40
MHz
Junction temperature range 1
Tj_extend_1
-40
–
150
°C
–
P_1.2.22
Junction temperature range 2
Tj_extend_2
-40
–
165
°C
5)
Incl. flash
read/write/erase
P_1.2.23
Junction temperature range 3
Tj_extend_3
165
–
175
°C
5)
P_1.2.24
Incl. flash read
1) This operation voltage range is only allowed for a short duration: tmax ≤ 400 ms (continuous operation at this voltage
is not allowed), fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA. In addition, the power dissipation caused by the charge
pump and the MOSFET driver has to be considered. Charge pump and MOSFET driver operation above the specified
voltage range is not allowed.
2) Parameter deviations mean that the electrical parameters of the device may present values outside the range
specified within the minimum and maximum values.
3) Parameter deviations mean that the electrical parameters of the device may present values outside the range
specified within the minimum and maximum values.
4) Functionality is reduced (for example, cranking pulse); parameter deviations are possible: The electrical parameters
of the device may present values outside the range specified within the minimum and maximum values.
5) Not subject to production test, specified by design.
6) Function not specified when limits are exceeded.
Datasheet
89
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.1.3
Current consumption
Table 19
Electrical characteristics
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition
Number
Min. Typ. Max.
Current consumption at VS pin
Current consumption in IVs
Active mode at VS pin
–
30
35
mA
fsys = 20 MHz
P_1.3.1
No loads on pins, LIN in recessive
state1)
Current consumption in IVSD
Active mode at VSD pin
–
–
40
mA
20 kHz
PWM on bridge driver
Current consumption in ISDM_3P
Slow-down mode
–
–
35
mA
P_1.3.19
fsys = 5 MHz;
LIN communication running;
charge pump on (reverse polarity
FET on), external low-side FET
static on (Motor Break mode);
VDDEXT on; all other modules set
to power down;
VS = 13.5 V
Current consumption in ISleep
Sleep mode
–
30
35
µA
System in Sleep mode,
microcontroller not powered,
wake-capable via LIN and MON;
MON connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
-40°C ≤ Tj ≤ 85°C;
VS = 5.5 V to 18 V 2)
P_1.3.3
Current consumption in ISleep_extend_1 –
Sleep mode, extended
temperature 1
90
200
µA
System in Sleep mode,
microcontroller not powered,
wake-capable via LIN and MON;
MON connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
-40°C ≤ Tj ≤ 150°C;
VS = 5.5 V to 18 V 2)
P_1.3.15
Current consumption in ISleep_extend_2 –
Sleep mode, extended
temperature 2
300
500
µA
System in Sleep mode,
microcontroller not powered,
wake-capable via LIN and MON;
MON connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
150°C ≤ Tj ≤ 175°C;
VS = 5.5 V to 18 V 2)
P_1.3.16
Datasheet
90
P_1.3.8
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 19
Electrical characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition
Number
Min. Typ. Max.
Current consumption in ISleep
Sleep mode
–
–
33
µA
System in Sleep mode,
microcontroller not powered,
wake-capable via LIN and MON;
MON connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
-40°C ≤ Tj ≤ 40°C;
VS = 5.5 V to 18 V 2)
P_1.3.9
Current consumption in ICyclic
Sleep mode with cyclic
wake
–
–
110
µA
-40°C ≤ Tj ≤ 85°C;
VS = 5.5 V to 18 V;
tCyclic_ON = 4 ms;
tCyclic_OFF = 2048 ms 2)
P_1.3.4
Current consumption in ICyclic_extend
Sleep mode with cyclic
wake, extended
temperature range
–
–
600
µA
-40°C ≤ Tj ≤ 175°C;
VS = 5.5 V to 18 V;
tCyclic_ON = 4 ms;
tCyclic_OFF = 2048 ms 2)
P_1.3.18
Current consumption in IStop
Stop mode
–
110
160
µA
System in Stop mode,
microcontroller not clocked,
wake-capable via LIN and MON;
MON connected to VS or GND;
GPIOs open (no loads) or
connected to GND;
-40°C ≤ Tj ≤ 85°C;
VS = 5.5 V to 18 V
P_1.3.10
Current consumption in IStop_extend
Stop mode, extended
temperature range 1
–
600
1800 µA
System in Stop mode,
microcontroller not clocked,
wake-capable via LIN and MON;
MON connected to VS or GND;
GPIOs open (no loads) or
connected to GND;
-40°C ≤ Tj ≤ 150°C;
VS = 5.5 V to 18 V
P_1.3.20
1) Current on VS, ADC1/2 active, timer running, LIN active (recessive).
2) Incl. leakage currents from VDH, VSD and MON.
Note:
Datasheet
Within the functional range, the IC operates as described in the circuit description. The electrical
characteristics are specified under the conditions noted in the related electrical characteristics
table.
91
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.1.4
Table 20
Thermal resistance
Thermal resistance
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Junction to soldering point
RthJSP
–
6
–
K/W
1)
Measured to
exposed pad
P_1.4.1
Junction to ambient
RthJA
–
33
–
K/W
1)2)
P_1.4.2
K/W
1)2)
P_1.4.3
ΨJTOP 2s2p –
Junction to top
8
–
1) Not subject to production test, specified by design.
2) According to Jedec JESD51-2,-5,-7 with natural convection on an FR4 2s2p board. Board: 76.2 × 114.3 × 1.5 mm3 with
two inner copper layers (35 µm strong), with thermal dissipation via array under the exposed pad contacting the first
inner copper layer and 300 mm2 of cooling area on the bottom layer (70 µm).
29.1.5
Timing characteristics
The transition times between the system modes are specified here. Generally, the timings are defined from the
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.
Table 21
System timing1)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min. Typ.
Max.
Unit Note or Test Condition
Number
Wake-up time when
running on battery
tstart
–
–
3
ms
Battery ramp-up time until
the start of code execution
P_1.5.6
Wake-up time when
running on battery
tstartSW
–
–
1.5
ms
Battery ramp-up time until
the MCU reset is released;
VS > 3 V and RESET = 1
P_1.5.1
Time to exit sleep
tsleep - exit –
–
1.5
ms
Rising/falling edge of any
wake-up signal (LIN, MON)
until the MCU reset is
released
P_1.5.2
Time to enter sleep
tsleep -
–
330
µs
2)
P_1.5.3
–
entry
1) Not subject to production test, specified by design.
2) Wake events during sleep entry are stored and lead to wake-up after Sleep mode is reached.
Datasheet
92
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.2
Power management unit (PMU)
This chapter includes all electrical characteristics of the power management unit.
29.2.1
PMU I/O supply (VDDP) parameters
This chapter describes electrical parameters which are observable on the SoC level. The pad-supply VDDP and
the transition times between the system modes are specified in the following table.
Table 22
Electrical characteristics
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or
Test Condition
Min. Typ. Max.
Number
Specified output current
IVDDP
0
–
50
mA
1)
P_2.1.1
Specified output current
IVDDP
0
–
30
mA
1)2)
P_2.1.22
Required decoupling
capacitance
CVDDP1
0.47
–
2.2
µF
3)4)5)
Required buffer capacitance for
stability (load jumps)
CVDDP2
1
–
2.2
µF
3)4)6)
P_2.1.20
Output voltage including line and VDDPOUT
load regulation in Active mode
4.9
5.0
5.1
V
7)
Iload < 90 mA;
VS > 5.5 V
P_2.1.3
Output voltage including line and VDDPOUT
load regulation in Active mode
4.9
5.0
5.1
V
2)7)
P_2.1.23
Output voltage including line and VDDPOUTSTOP
load regulation in Stop mode
4.5
5.0
5.5
V
7)
Iload is only internal; P_2.1.21
VS > 5.5 V;
-40°C ≤ Tj ≤ -150°C
Output voltage including line and VDDPOUTSTOP_HT 3.5
load regulation in Stop mode,
extended temperature range
5.0
5.8
V
7)
Iload is only internal; P_2.1.29
VS > 5.5 V;
150°C < Tj ≤ 175°C
ESR < 1 Ω
Iload < 70 mA;
VS > 5.5 V
P_2.1.2
Output drop in Active mode
VSVDDPout
–
50
400
mV
IVDDP = 30 mA8);
3.5 V < VS < 5.0 V
P_2.1.4
Load regulation in Active mode
VVDDPLOR
-50
–
50
mV
2 mA … 90 mA;
C = 570 nF;
-40°C < Tj ≤ 150°C
P_2.1.5
Load regulation in Active mode,
extended temperature range
VVDDPLOR_HT
-70
–
70
mV
2 mA … 90 mA;
C = 570 nF;
150°C < Tj ≤ 175°C
P_2.1.30
Line regulation in Active mode
VVDDPLIR
-50
–
50
mV
VS = 5.5 V … 28 V
P_2.1.6
Overvoltage detection
VDDPOV
5.14
–
5.4
V
VS > 5.5 V;
P_2.1.7
Overvoltage leads to
SUPPLY_NMI
–
735
–
µs
3)9)
P_2.1.24
V
3)
P_2.1.25
P_2.1.26
P_2.1.8
Overvoltage detection filter time tFILT_VDDPOV
Voltage OK detection threshold
10)
VDDPOK
–
3
–
Voltage stable detection range
∆VDDPSTB
-220 –
220
mV
3)
Undervoltage reset
VDDPUV
2.5
2.7
V
–
Datasheet
2.6
93
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 22
Electrical characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Unit Note or
Test Condition
Min. Typ. Max.
Number
Overcurrent diagnostic
IVDDPOC
91
Overcurrent diagnostic filter time tFILT_VDDPOC
Overcurrent diagnostic
shutdown time
Values
–
–
27
tFILT_VDDPOC_SD –
100
220
–
–
mA
–
P_2.1.9
µs
3)9)
P_2.1.27
µs
3)9)11)
P_2.1.28
1) Specified output current for port supply and additional other external loads, already excluding VDDC current.
2) This use case applies when the output current on VDDEXT does not exceed 40 mA.
3) Not subject to production test, specified by design.
4) Ceramic capacitor.
5) Ranges of P_2.1.2 and P_2.1.20 can be added to one ceramic capacitor with ESR < 1 Ω.
6) Ranges of P_2.1.2 and P_2.1.20 can be added to one ceramic capacitor with ESR < 1 Ω.
7) Load current includes internal supply.
8) Output drop for IVDDP without internal supply current.
9) This filter time is derived from the time base tLP_CLK = 1 / fLP_CLK.
10) The absolute voltage value is the sum of parameters VDDP + ∆VDDPSTB.
11) When tFILT_VDDCOC_SD is passed and the overcurrent condition is still present, the device will enter Sleep mode.
Datasheet
94
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.2.2
PMU core supply (VDDC) parameters
This chapter describes electrical parameters which are observable on the SoC level. The core-supply VDDC
and the transition times between the system modes are specified in the following table.
Table 23
Electrical characteristics
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Required decoupling capacitance CVDDC1
Values
Min.
Unit Note or
Test Condition
Typ. Max.
0.1
–
1
Number
µF
1)2)3)
P_2.2.17
ESR < 1 Ω
P_2.2.1
Required buffer capacitance for
stability (load jumps)
CVDDC2
0.33
–
1
µF
2)4)
Output voltage including line
regulation in Active mode
VDDCOUT
1.44
1.5
1.56
V
Iload < 40 mA
P_2.2.2
Reduced output voltage
including line regulation in Stop
mode
VDDCOUT_
0.95
1.1
1.3
V
With internal VDDC
load only:
Iload_internal < 1.5 mA
P_2.2.23
Stop_Red
Load regulation in Active mode
VDDCLOR
-50
–
50
mV
2 mA … 40 mA;
C = 430 nF
P_2.2.3
Line regulation in Active mode
VDDCLIR
-25
–
25
mV
VDDP = 2.5 V … 5.5 V
P_2.2.4
Overvoltage detection
VDDCOV
1.59
1.62 1.68
V
Overvoltage leads to P_2.2.5
SUPPLY_NMI
–
735
µs
1)5)
P_2.2.18
mV
1)
P_2.2.19
mV
1)
P_2.2.20
–
P_2.2.6
mA
–
P_2.2.7
P_2.2.21
P_2.2.22
Overvoltage detection filter time tFILT_VDDCOV
6)
Voltage OK detection range
∆VDDCOK
7)
-280
–
–
280
Voltage stable detection range
∆VDDCSTB
-110
Undervoltage reset
VDDVUV
1.136 1.20 1.264 V
Overcurrent diagnostic
IVDDCOC
45
–
–
110
100
Overcurrent diagnostic filter time tFILT_VDDCOC
–
27
–
µs
1)5)
Overcurrent diagnostic
shutdown time
–
290
–
µs
1)5)8)
1)
2)
3)
4)
5)
6)
7)
8)
tFILT_VDDCOC_SD
Not subject to production test, specified by design.
Ceramic capacitor.
Ranges of P_2.2.1 and P_2.2.17 can be added to one ceramic capacitor with ESR < 1 Ω.
Ranges of P_2.2.1 and P_2.2.17 can be added to one ceramic capacitor with ESR < 1 Ω.
This filter time is derived from the time base tLP_CLK = 1 / fLP_CLK.
This absolute voltage value is the sum of parameters VDDC + ∆VDDCSTB.
This absolute voltage value is the sum of parameters VDDC + ∆VDDCOK.
When tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter Sleep mode.
Datasheet
95
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.2.3
Table 24
VDDEXT voltage regulator (5.0 V) parameters
Electrical characteristics
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
mA
–
P_2.3.1
P_2.3.21
Min. Typ. Max.
Specified output current
IVDDEXT
0
–
20
Specified output current
IVDDEXT
0
–
40
mA
1)
Required decoupling
capacitance
CVDDEXT1
0.1
–
2.2
µF
2)5)3)
Required buffer capacitance for
stability (load jumps)
CVDDEXT2
1
–
2.2
µF
2)5)4)
P_2.3.20
Output voltage including line and VDDEXT
load regulation
4.9
5.0
5.1
V
5)
Iload < 20 mA;
VS > 5.5 V
P_2.3.3
Output voltage including line and VDDEXT
load regulation
4.8
5.0
5.2
V
Iload < 40 mA;
VS > 5.5 V
P_2.3.23
ESR < 1 Ω
P_2.3.22
Output drop in Active mode
VS-VDDEXT
50
300
mV
5)
Iload < 20 mA;
3 V < VS < 5.0 V
P_2.3.4
Output drop in Active mode
VS-VDDEXT
–
400
mV
Iload < 40 mA;
3 V < VS < 5.0 V
P_2.3.14
Load regulation in Active mode
VDDEXTLOR
-50
–
50
mV
2 mA … 40 mA;
C = 200 nF
P_2.3.5
Line regulation in Active mode
VVDDEXTLIR
-50
–
50
mV
VS = 5.5 V … 28 V
P_2.3.6
–
dB
5)
VS = 13.5 V;
f = 0 kHz … 1 kHz;
Vr = 2 Vpp
P_2.3.7
5.4
V
VS > 5.5 V
P_2.3.8
µs
5)6)
P_2.3.24
–
V
5)
P_2.3.25
220
mV
5)
P_2.3.26
P_2.3.9
Power supply ripple rejection in
Active mode
PSSRVDDEXT
50
Overvoltage detection
VVDDEXTOV
5.18 –
Overvoltage detection filter time tFILT_VDDEXTOV
–
–
735
Voltage OK detection threshold
VVDDEXTOK
–
Voltage stable detection range7)
∆VVDDEXTSTB
-220 –
3
–
Undervoltage trigger
VVDDEXTUV
2.6
2.8
3.0
V
8)
Overcurrent diagnostic
IVDDEXTOC
50
–
160
mA
–
P_2.3.10
–
27
–
µs
5)6)
P_2.3.27
µs
5)6)
P_2.3.28
Overcurrent diagnostic filter time tFILT_VDDEXTOC
Overcurrent diagnostic
shutdown time
1)
2)
3)
4)
5)
6)
7)
8)
tFILT_VDDEXTOC_SD –
100
–
This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22.
Ceramic capacitor.
Ranges of P_2.3.22 and P_2.3.20 can be added to one ceramic capacitor with ESR < 1 Ω.
Ranges of P_2.3.22 and P_2.3.20 can be added to one ceramic capacitor with ESR < 1 Ω.
Not subject to production test, specified by design.
This filter time is derived from the time base tLP_CLK = 1 / fLP_CLK.
The absolute voltage value is the sum of parameters VDDEXT + ∆VDDEXTSTB.
When the undervoltage condition is met, the VDDEXT_CTRL.bit.SHORT bit is set.
Datasheet
96
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.2.4
VPRE voltage regulator (PMU subblock) parameters
The PMU VPRE regulator acts as a supply for the VDDP and VDDEXT voltage regulators.
Table 25
Functional range
Parameter
Symbol
Specified output current
IVPRE
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
–
–
110
mA
Number
1)
P_2.4.1
1) Not subject to production test, specified by design.
29.2.4.1 Load-sharing scenario for the VPRE regulator
The figure below shows the load-sharing scenario for VPRE regulator.
VS
VPRE
VDDEXT
VDDEXT
5V
VDDP
5V
CVDDEXT
VDDP
CVDDP
GND (pin 39)
GND (pin 39)
VDDC
1.5 V
VDDC
CVDDC
GND (pin 39)
Figure 32
Datasheet
Load-sharing scenario for the VPRE regulator
97
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.2.5
Power-down voltage regulator (PMU subblock) parameters
The PMU power-down voltage regulator consists of two subblocks:
•
Power-down preregulator: VDD5VPD
•
Power-down core regulator: VDD1V5_PD (Supply used for the GPUDATAxy registers)
Both regulators are used as purely internal supplies. The following table contains all relevant parameters.
Table 26
Functional range
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
–
1.5
V
Number
VDD1V5_PD
Power-on reset threshold
VDD1V5_PD_RSTTH 1.2
1)
P_2.5.1
1) Not subject to production test, specified by design.
Datasheet
98
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.3
System clocks
29.3.1
Parameters of oscillators and PLLs
Table 27
Electrical characteristics of the system clocks
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Unit Note or Test Condition
Number
P_3.1.1
Typ.
Max.
14
18
22
MHz This clock is used during
startup and can be used
when the PLL fails.
70
100
130
kHz
This clock is used for cyclic P_3.1.2
wakes.
2)3)
PMU oscillators (power management unit)
Frequency of LP_CLK
fLP_CLK
Frequency of LP_CLK2 fLP_CLK2
CGU oscillator (clock generation unit microcontroller)
Short-term frequency
deviation1)
fTRIMST
-0.4
–
0.4
%
Within any 10 ms, e.g.,
after synchronization to a
LIN frame. (The PLL
settings must not change
in these 10 ms.)
Absolute accuracy
fTRIMABSA
-1.5
–
1.5
%
Including temperature and P_3.1.4
lifetime deviation;
-40°C ≤ Tj ≤ 150°C
Absolute accuracy,
fTRIMABSA_HT -2.0
extended temperature
range
–
2.0
%
Including temperature and P_3.1.18
lifetime deviation;
150°C ≤ Tj ≤ 175°C
–
10
µs
3)
CGU-OSC start-up time tOSC
–
P_3.1.3
Start-up time OSC from P_3.1.5
Sleep mode, power supply
stable
PLL (Clock generation unit microcontroller) 3)
VCO frequency range
mode 0
fVCO-0
48
–
112
MHz VCOSEL = ”0”
P_3.1.6
VCO frequency range
mode 1
fVCO-1
96
–
160
MHz VCOSEL = ”1”
P_3.1.7
Input frequency range fOSC
4
–
16
MHz –
P_3.1.8
XTAL1 input frequency fOSC
range
4
–
16
MHz –
P_3.1.9
Output frequency
range
fPLL
0.04687 –
80
MHz –
P_3.1.10
Free-running
frequency mode 0
fVCOfree_0
–
38
MHz VCOSEL = ”0”
P_3.1.11
Datasheet
–
99
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 27
Electrical characteristics of the system clocks (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or Test Condition
Number
Free-running
frequency mode 1
fVCOfree_1
–
–
76
MHz VCOSEL = ”1”
P_3.1.12
Input clock high/low
time
thigh/low
10
–
–
ns
–
P_3.1.13
Peak period jitter
tjp
-500
–
500
ps
4)
for K = 1
P_3.1.14
for K = 1
P_3.1.15
Accumulated jitter
jacc
–
–
5
ns
4)
Lock-in time
tL
–
–
200
µs
–
1)
2)
3)
4)
P_3.1.16
The typical oscillator frequency is 5 MHz.
VDDC = 1.5 V, Tj = 25°C.
Not subject to production test, specified by design.
This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance.
29.3.2
Table 28
External clock parameters XTAL1, XTAL2
Functional range
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).1)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Input voltage range limits VIX1_SR
for signal on XTAL1
-1.7 + VDDC
–
1.7
V
2)
P_3.2.1
Input voltage (amplitude) VAX1_SR
on XTAL1
0.3 × VDDC
–
–
V
3)
Peak-to-peak
voltage
P_3.2.2
XTAL1 input current
IIL
–
–
±20
µA
0 V < VIN < VDDI
P_3.2.3
Oscillator frequency
fOSC
4
–
24
MHz Clock signal
P_3.2.4
Oscillator frequency
fOSC
4
–
16
MHz Crystal or
resonator
P_3.2.5
High time
t1
6
–
–
ns
–
P_3.2.6
Low time
t2
6
–
–
ns
–
P_3.2.7
Rise time
t3
–
8
8
ns
–
P_3.2.8
Fall time
t4
–
8
8
ns
–
P_3.2.9
1) This parameter table is not subject to production test, specified by design.
2) Overload conditions must not occur on pin XTAL1.
3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation
and the resulting voltage peaks must remain within the limits defined by VIX1.
Datasheet
100
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.4
Flash memory
This chapter includes the parameters for the 128 kByte embedded flash module.
29.4.1
Table 29
Flash parameters
Flash characteristics1)
VS = 3.0 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit
Note or
Test Condition
Number
Min. Typ. Max.
Programming time per 128 byte
page
tPR
–
32)
3.5
ms
3)
3 V ≤ VS ≤ 28 V
P_4.1.1
Erase time per sector or page
tER
–
42)
4.5
ms
3)
3 V ≤ VS ≤ 28 V
P_4.1.2
Data retention time
tRET
20
–
–
year
1,000 erase/program P_4.1.3
cycles
Data retention time
tRET
50
–
–
year
1,000 erase/program P_4.1.9
cycles
Tj = 30°C 4)
Flash erase endurance for pages
in user sectors
NER
30
–
–
kilocycles Data retention time
5 years
Flash erase endurance for
security pages
NSEC
10
–
–
cycles
Data retention time P_4.1.5
20 years
Drain disturb limit
NDD
32
–
–
kilocycles
6)
Junction temperature range 1
Tj_extend_1 -40
–
150
°C
P_4.1.4
5)
P_4.1.6
P_4.1.10
1)
Junction temperature range 2
Tj_extend_2 -40
–
165
°C
Incl. flash
erase/write/read
P_4.1.11
Junction temperature range 3
Tj_extend_3 165
–
175
°C
1)
P_4.1.12
Incl. flash read
1) Not subject to production test, specified by design.
2) Programming and erase times depend on the internal flash clock source. The control state machine needs a few
system clock cycles. The requirement is only relevant for extremely low system frequencies.
3) While the flash memory is being programmed or erased, flash read operation is not possible to be performed.
4) Determined by extrapolating of lifetime tests.
5) Tj = 25°C.
6) This parameter limits the number of subsequent programming operations within a physical sector without a given
page in this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly.
For normal sector erase/program cycles, this limit will not be violated. For data sectors, the integrated EEPROM
emulation firmware routines handle this limit automatically. For wordline erases in code sectors (without EEPROM
emulation), it is recommended to execute a software-based refresh, which use of the integrated NVMBRNG random
number generator to statistically start a refresh.
Datasheet
101
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.5
Parallel ports (GPIO)
29.5.1
Description of the keep and force currents
VDDP
keeper
current
PU device
PUDSEL
P1.x
P0.x
\PUDSEL
keeper
current
PD device
VSS
Figure 33
Pull-up/down device
UGPIO
Logical 1
7.5 kΩ (equivalent)
(1.5 V / 200 μA)
VIH - VDDP
Undefined
2.33 kΩ (equivalent)
(3.5 V / 1.5 mA)
VIL - VDDP
Logical 0
-IPLF
Figure 34
I
-IPLK
Pull-up keep and force currents
UGPIO
Logical 1
2.33 kΩ (equivalent)
(3.5 V / 1.5 mA)
VIH
Undefined
7.5 kΩ (equivalent)
(1.5 V / 200 μA)
VIL
Logical 0
IPLK
Figure 35
Datasheet
IPLF
I
Pull-down keep and force currents
102
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.5.2
DC parameters of port 0, port 1, TMS, and reset
Note:
Operating conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload
conditions. For signal levels outside these specifications, also refer to the specification of the
maximum allowed current that can be taken out of VDDP.
Current limits for port output drivers1)
Table 30
Port output driver mode Maximum output current
(IOLmax, - IOHmax)
Maximum output current
(IOLnom, - IOHnom)
Number
VDDP ≥ 4.5 V 2.6 V < VDDP < 4.5 V VDDP ≥ 4.5 V 2.6 V < VDDP < 4.5 V
2)
Strong driver
3)
Medium driver
3)
Weak driver
5 mA
3 mA
1.6 mA
1.0 mA
P_5.1.15
3 mA
1.8 mA
1.0 mA
0.8 mA
P_5.1.1
0.5 mA
0.3 mA
0.25 mA
0.15 mA
P_5.1.2
1) Not subject to production test, specified by design.
2) Not available for port pins P0.4, P1.0, P1.1, and P1.2.
3) All P0.x and P1.x pins.
Table 31
DC characteristics of port0 and port1
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Input hysteresis
HYSP0_P1
Input hysteresis
HYSP0_P1_exend –
Input low voltage
VIL
Input low voltage
VIL_extend
Max.
Unit Note or
Test Condition
–
V
1)
0.09 × VDDP –
V
1)
0.3 × VDDP V
2)
4.5 V ≤ VDDP ≤ 5.5 V P_5.1.3
V
1)
2.6 V ≤ VDDP ≤ 4.5 V P_5.1.17
4.5 V ≤ VDDP ≤ 5.5 V P_5.1.4
2.6 V ≤ VDDP ≤ 4.5 V P_5.1.18
Typ.
0.11 × VDDP –
-0.3
-0.3
–
0.42 × VDDP –
Number
Series resistance P_5.1.5
= 0 Ω;
4.5 V ≤ VDDP ≤ 5.5 V
Series resistance P_5.1.16
= 0 Ω;
2.6 V ≤ VDDP ≤ 4.5 V
Input high voltage
VIH
0.7 × VDDP
–
VDDP + 0.3 V
2)
Input high voltage
VIH_extend
–
0.52 × VDDP VDDP + 0.3 V
1)
–
V
3)4)
IOL ≤ IOLmax
P_5.1.6
IOL ≤ IOLnom
P_5.1.7
Output low voltage
VOL
–
1.0
Output low voltage
VOL
–
–
0.4
V
3)5)
Output high voltage
VOH
VDDP - 1.0
–
–
V
3)4)
IOH ≥ IOHmax
P_5.1.8
VDDP - 0.4
–
–
V
3)5)
IOH ≥ IOHnom
P_5.1.9
Input leakage current IOZ_extend1
-500
–
500
nA
-40°C ≤ Tj ≤ 25°C,
0.45 V < VIN < VDDP
P_5.1.20
Input leakage current IOZ1
-5
–
5
µA
6)
25°C < TJ ≤ 85°C,
0.45 V < VIN < VDDP
P_5.1.10
Input leakage current IOZ_extend2
-15
–
15
µA
85°C < TJ ≤ 150°C,
0.45 V < VIN < VDDP
P_5.1.21
Output high voltage
Datasheet
VOH
103
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 31
DC characteristics of port0 and port1 (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
Number
Input leakage current IOZ_extend3
-20
–
20
µA
85°C < TJ ≤ 175°C,
0.45 V < VIN < VDDP
P_5.1.11
Pull level keep
current
IPLK
-200
–
200
µA
7)
VPIN ≥ VIH (up)
VPIN ≤ VIL (down)
P_5.1.12
Pull level force
current
IPLF
-1.5
–
1.5
mA
7)
VPIN ≤ VIL (up)
VPIN ≥ VIH (down)
P_5.1.13
Pin capacitance
CIO
–
–
10
pF
1)
P_5.1.14
tfilt_RESET
–
5
–
µs
1)
P_5.1.19
Reset pin timing
Reset pin input filter
time
1) Not subject to production test, specified by design.
2) Tested at VDDP = 5 V, specified for 4.5 V < VDDP < 5.5 V.
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for
pin groups must be respected.
4) Tested at 4.9 V < VDDP < 5.1 V, IOL = 4 mA, IOH = -4 mA, specified for 4.5 V < VDDP < 5.5 V.
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOL→GND, VOH→VDDP).
Tested at 4.9 V < VDDP < 5.1 V, IOL = 1 mA, IOH = -1 mA.
6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values
are ensured by correlation. For derating, please refer to the following descriptions:
Leakage derating depending on temperature (TJ = junction temperature [°C]):
IOZ = 0.05 × e(1.5 + 0.028×Tj) [µA]. For example, at a temperature of 95°C, the resulting leakage current is 3.2 µA.
Leakage derating depending on the voltage level (DV = VDDP - VPIN [V]):
IOZ = IOZtempmax - (1.6 × DV) [µA]
This voltage derating formula is an approximation which applies for the maximum temperature.
7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the
default pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the
enabled pull device: VPIN ≤ VIL for a pull-up; VPIN ≥ VIH for a pull-down.
These values apply to the fixed pull devices in dedicated pins and to the user-selectable pull devices in generalpurpose IO pins.
Datasheet
104
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.5.3
DC parameters of port 2
These parameters apply to the IO voltage range 4.5 V ≤ VDDP ≤ 5.5 V.
Note:
Table 32
Operating conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload
conditions. For signal levels outside these specifications, also refer to the specification of the
overload current IOV.
DC characteristics of port 2
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Input low voltage
Symbol
VIL
Values
Min.
Typ.
Max.
-0.3
–
0.3 × VDDP V
4.5 V ≤ VDDP ≤ 5.5 V P_5.2.1
V
2)
2.6 V ≤ VDDP ≤ 4.5 V P_5.2.10
VDDP + 0.3 V
1)
4.5 V ≤ VDDP ≤ 5.5 V P_5.2.2
0.52 × VDDP VDDP + 0.3 V
2)
2.6 V ≤ VDDP ≤ 4.5 V P_5.2.11
VIL_extend
-0.3
0.42 × VDDP –
Input high voltage
VIH
0.7 × VDDP
–
VIH_extend
–
Number
1)
Input low voltage
Input high voltage
Unit Note or
Test Condition
–
V
2)
Series
resistance = 0 Ω;
4.5 V ≤ VDDP ≤ 5.5 V
P_5.2.3
0.09 × VDDP –
V
2)
Series
resistance = 0 Ω;
2.6 V ≤ VDDP < 4.5 V
P_5.2.12
–
400
nA
3)
P_5.2.4
Input leakage current, IOZ2_HT_P2_0 -2500
extended temperature
range for port pin P2.0
–
2500
nA
3)
Input leakage current, IOZ2_HT_P2_x -1500
extended temperature
range for all other P2.x
–
1500
nA
3)
Pull-level keep current IPLK
-30
–
30
µA
4)
Pull-level keep current, IPLK_HT_P2
extended temperature
range
-27
–
27
µA
4)
150°C < Tj ≤ 175°C, P_5.2.15
VPIN ≥ VIH (up)
VPIN ≤ VIL (down)
Pull-level force current IPLF
-750
–
750
µA
4)
VPIN ≤ VIL (up)
VPIN ≥ VIH (down)
P_5.2.6
Pin capacitance (digital CIO
inputs/outputs)
–
–
10
pF
2)
P_5.2.7
0.11 × VDDP –
Input hysteresis
HYSP2
Input hysteresis
HYSP2_extend –
Input leakage current
IOZ2
-400
TJ ≤ 85°C,
0 V < VIN < VDDP
85°C < Tj ≤ 175°C, P_5.2.14
0 V < VIN < VDDP
85°C < Tj ≤ 175°C, P_5.2.13
0 V < VIN < VDDP
-40°C < Tj ≤ 150°C, P_5.2.5
VPIN ≥ VIH (up)
VPIN ≤ VIL (down)
1) Tested at VDDP = 5 V, specified for 4.5 V < VDDP < 5.5 V.
2) Not subject to production test, specified by design.
3) An additional error current (IINJ) will flow if an overload current flows through an adjacent pin.
Datasheet
105
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
4) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the
default pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the
enabled pull device: VPIN ≤ VIL for a pull-up; VPIN ≥ VIH for a pull-down.
Datasheet
106
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.6
LIN transceiver
29.6.1
Electrical characteristics
Table 33
Electrical characteristics of the LIN transceiver
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition Number
Min.
Typ.
Max.
0.4 × VS
0.45 × VS 0.53 × VS V
SAE J2602
P_6.1.1
–
Bus receiver interface
Receiver threshold
voltage, recessive to
dominant edge
Vth_dom
Receiver dominant state
VBUSdom -27
Receiver threshold
voltage, dominant to
recessive edge
Receiver recessive state
0.4 × VS
V
LIN spec 2.2 (par. 17)
P_6.1.2
Vth_rec
0.47 × VS 0.55 × VS 0.6 × VS
V
SAE J2602
P_6.1.3
VBUSrec
0.6 × VS
1.15 × VS V
1)
LIN spec 2.2 (par. 18)
P_6.1.4
0.525
× VS
V
2)
LIN spec 2.2 (par. 19)
P_6.1.5
LIN spec 2.2 (par. 20)
P_6.1.6
–
Receiver center voltage
VBUS_CNT 0.475
× VS
0.5 × VS
Receiver hysteresis
VHYS
0.07 × VS 0.12 × VS 0.175
× VS
V
3)
Wake-up threshold
voltage
VBUS,wk
0.4 × VS
0.5 × VS
0.6 × VS
V
–
Dominant time for bus
wake-up (internal analog
filter delay)
tWK,bus
3
–
15
µs
P_6.1.8
The overall dominant
time for bus wake-up is
the sum of tWK,bus and
the adjustable digital
filter time. The digital
filter time can be
adjusted by setting the
PMU.CNF_WAKE_FILTE
R.CNF_LIN_FT register
Bus recessive output
voltage
VBUS,ro
0.8 × VS
–
VS
V
VTxD = high level
Bus dominant output
voltage
VBUS,do
–
–
0.22 × VS V
P_6.1.7
Bus transmitter interface
Datasheet
107
P_6.1.9
Driver dominant voltage P_6.1.78
RL = 500 Ω
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 33
Electrical characteristics of the LIN transceiver (cont’d)
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Bus short circuit current
Symbol
IBUS,sc
Bus short circuit filter time tBUS,sc
Values
Unit Note or Test Condition Number
Min.
Typ.
Max.
40
100
150
mA
Current limitation for
driver-dominant state
driver on VBUS = 18 V;
LIN spec 2.2 (par. 12)
–
5
–
µs
6)
The overall bus short P_6.1.71
circuit filter time is the
sum of tBUS,sc and the
digital filter time. The
digital filter time is 4 µs
(typ.)
-450
1000
µA
VS = 12 V;
0 V < VBUS < 18 V;
LIN spec 2.2 (par. 15)
P_6.1.11
10
20
µA
VS = 0 V; VBUS = 18 V;
LIN spec 2.2 (par. 16)
P_6.1.12
–
–
mA
VS = 18 V; VBUS = 0 V;
LIN spec 2.2 (par. 13)
P_6.1.13
–
20
µA
VS = 8 V; VBUS = 18 V;
LIN spec 2.2 (par. 14)
P_6.1.14
30
47
kΩ
Normal mode,
LIN spec 2.2 (par. 26)
P_6.1.15
IBUS_NO_ -1000
Leakage current (loss of
ground)
GND
Leakage current
IBUS_NO_ –
BAT
Leakage current
IBUS_PAS_ -1
dom
Leakage current
IBUS_PAS_ –
rec
Bus pull-up resistance
RBUS
20
P_6.1.10
AC characteristics - transceiver Normal Slope mode
Propagation delay
td(L),R
bus dominant to RxD LOW
0.1
–
6
µs
LIN spec 2.2 (par. 31)
P_6.1.16
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
–
6
µs
LIN spec 2.2 (par. 31)
P_6.1.17
Receiver delay symmetry
-2
–
2
µs
tsym,R = td(L),R - td(H),R;
LIN spec 2.2 (par. 32)
P_6.1.18
0.396
–
–
tsym,R
Duty cycle D1
tduty1
Normal Slope mode
(for worst case at 20 kbit/s)
Datasheet
108
4)
P_6.1.19
Duty cycle D1
THRec(max) = 0.744 × VS;
THDom(max) = 0.581 × VS;
VS = 5.5 V … 18 V;
tbit = 50 µs;
D1 = tbus_rec(min) / 2 tbit;
LIN spec 2.2 (par. 27)
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 33
Electrical characteristics of the LIN transceiver (cont’d)
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
tduty2
Duty cycle D2
Normal Slope mode
(for worst case at 20 kbit/s)
Values
Unit Note or Test Condition Number
Min.
Typ.
Max.
–
–
0.581
4)
P_6.1.20
Duty cycle D2
THRec(min) = 0.422 × VS;
THDom(min) = 0.284 × VS;
VS = 5.5 V … 18 V;
tbit = 50 µs;
D2 = tbus_rec(max) / 2 tbit;
LIN spec 2.2 (par. 28)
AC characteristics - transceiver Low Slope mode
Propagation delay
td(L),R
bus dominant to RxD LOW
0.1
–
6
µs
LIN spec 2.2 (par. 31)
P_6.1.21
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
–
6
µs
LIN spec 2.2 (par. 31)
P_6.1.22
Receiver delay symmetry
tsym,R
-2
–
2
µs
tsym,R = td(L),R - td(H),R;
LIN spec 2.2 (par. 32)
P_6.1.23
Duty cycle D3
(for worst case at
10.4 kbit/s)
tduty1
0.417
–
–
P_6.1.24
Duty cycle D3
THRec(max) = 0.778 × VS;
THDom(max) = 0.616 × VS;
VS = 5.5 V … 18 V;
tbit = 96 µs;
D3 = tbus_rec(min) / 2 tbit;
LIN spec 2.2 (par. 29)
Duty cycle D4
(for worst case at
10.4 kbit/s)
tduty2
–
–
0.590
4)
4)
P_6.1.25
Duty cycle D4
THRec(min) = 0.389 × VS;
THDom(min) = 0.251 × VS;
VS = 5.5 V … 18 V;
tbit = 96 µs;
D4 = tbus_rec(max) / 2 tbit;
LIN spec 2.2 (par. 30)
AC characteristics - transceiver Fast Slope mode
Propagation delay
td(L),R
bus dominant to RxD LOW
0.1
–
6
µs
–
P_6.1.26
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
–
6
µs
–
P_6.1.27
Receiver delay symmetry
-1.5
–
1.5
µs
tsym,R = td(L),R - td(H),R;
-40°C ≤ Tj ≤ 150°C
P_6.1.28
Receiver delay symmetry- tsym,R_HT -2.0
Extended temperature
range
–
2.0
µs
tsym,R = td(L),R - td(H),R;
150°C < Tj ≤ 175°C
P_6.1.74
Datasheet
tsym,R
109
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 33
Electrical characteristics of the LIN transceiver (cont’d)
Vs = 5.5 V to 18 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition Number
Min.
Typ.
Max.
Propagation delay
td(L),R
bus dominant to RxD LOW
0.1
–
6
µs
–
P_6.1.31
Propagation delay
td(H),R
bus recessive to RxD HIGH
0.1
–
6
µs
–
P_6.1.32
Receiver delay symmetry
tsym,R
-1.0
–
1.5
µs
tsym,R = td(L),R - td(H),R
P_6.1.33
Duty cycle D7 (for worst
case at 115 kbit/s)
for +1 µs receiver delay
symmetry
tduty1
0.399
–
–
Duty cycle D7
P_6.1.34
THRec(max) = 0.744 × VS;
THDom(max) = 0.581 × VS;
VS = 13.5 V;
tbit = 8.7 µs;
D7 = tbus_rec(min) / 2 tbit
Duty cycle D8 (for worst
case at 115 kbit/s)
for +1 µs receiver delay
symmetry
tduty2
–
–
0.578
5)
LIN input capacity
CLIN_IN
–
15
30
pF
6)
P_6.1.69
TxD dominant time out
ttimeout
6
12
20
ms
VTxD = 0 V
P_6.1.36
AC characteristics - Flash mode
5)
Duty cycle D8
P_6.1.35
THRec(min) = 0.422 × VS;
THDom(min) = 0.284 × VS;
VS = 13.5 V;
tbit = 8.7 µs;
D8 = tbus_rec(max) / 2 tbit
Thermal shutdown (junction temperature)
Thermal shutdown
temperature
TjSD
190
200
215
°C
6)
P_6.1.65
Thermal shutdown
hysteresis
∆T
–
10
–
K
6)
P_6.1.66
1)
2)
3)
4)
Maximum limit specified by design.
VBUS_CNT = (Vth_dom +Vth rec)/2.
VHYS = VBUSrec - VBUSdom.
Bus load concerning LIN spec 2.2:
Load 1 = 1 nF / 1 kΩ = CBUS / RBUS
Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS
Load 3 = 10 nF / 500 Ω = CBUS / RBUS
5) Bus load
Load 1 = 1 nF / 500 Ω = CBUS / RBUS.
6) Not subject to production test, specified by design.
Datasheet
110
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.7
High-speed synchronous serial interface
29.7.1
SSC timing parameters
The table below provides the SSC timing in the TLE9879QTW40.
Table 34
SSC master mode timing (operating conditions apply; CL = 50 pF)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
SCLK clock period
1)
t0
Typ.
2 × TSSC –
Unit
Max.
Note or
Number
Test Condition
–
2)
VDDP > 2.7 V
P_7.1.1
VDDP > 2.7 V
P_7.1.2
MTSR delay from SCLK
t1
10
–
–
ns
2)
MRST setup to SCLK
t2
10
–
–
ns
2)
VDDP > 2.7 V
P_7.1.3
ns
2)
VDDP > 2.7 V
P_7.1.4
MRST hold from SCLK
t3
15
–
–
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.
2) Not subject to production test, specified by design.
t0
SCLK 1)
t1
t1
MTSR 1)
t2
t3
Data
valid
MRST 1)
t1
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
Figure 36
Datasheet
SSC master mode timing
111
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.8
Measurement unit
29.8.1
System voltage measurement parameters
Table 35
Supply voltage signal conditioning
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note or Test Condition
Number
Measurement output
voltage range at VAREF5
VA5
0
–
5
V
–
P_8.1.15
Measurement output
voltage range at
VAREF1V2
VA1V2
0
–
1.23 V
–
P_8.1.16
SFR setting 1
P_8.1.41
Battery/supply voltage measurement
Input-to-output voltage
attenuation: VS
ATTVS_1
–
0.055
–
Nominal operating input
voltage range VS
VS,range1
3
–
22
V
1)
SFR setting 1;
max. value corresponds
to typ. ADC full scale
input;
3 V < VS < 28 V
P_8.1.1
Accuracy of VS after
calibration
VS,range1
-312
–
312
mV
SFR setting 1,
VS = 5.5 V to 18 V
P_8.1.70
Input-to-output voltage
attenuation: VS
ATTVS_2
–
0.039
–
SFR setting 2
P_8.1.42
Nominal operating input
voltage range VS
VS,range2
3
–
31
V
1)
SFR setting 2;
max. value corresponds
to typ. ADC full scale
input
3 V < VS < 28 V
P_8.1.40
Accuracy of VS after
calibration
VS,range2
-440 –
440
mV
SFR setting 2,
VS = 5.5 V to 18 V
P_8.1.44
–
P_8.1.21
Drivers supply voltage measurement VSD
Input-to-output voltage
attenuation: VSD
ATTVSD
–
0.039
–
Nominal operating input
voltage range VSD
VSD,range
2.5
–
31
V
1)
P_8.1.2
Accuracy of VSD sense
after calibration
∆VSD
-440 –
440
mV
VS = 5.5 V to 18 V
P_8.1.47
–
–
–
P_8.1.56
Charge pump voltage measurement VCP
Input-to-output voltage
attenuation: VCP
Datasheet
ATTVCP
0.023
112
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 35
Supply voltage signal conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Nominal operating input
voltage range VCP
Symbol
VCP,range
Accuracy of VCP sense after ∆VCP
calibration
Values
Unit Note or Test Condition
Number
Min.
Typ.
Max.
2.5
–
52
V
1)
P_8.1.7
747
mV
VS = 5.5 V to 18 V
P_8.1.62
–
P_8.1.49
-747 –
Monitoring input voltage measurement VMON
Input-to-output voltage
attenuation: VMON
ATTVMON
–
0.039
–
Nominal operating input
voltage range VMON
VMON,range
2.5
–
31
V
1)
P_8.1.8
Accuracy of VMON sense
after calibration
∆VMON
-440
–
440
mV
VS = 5.5 V to 18 V
P_8.1.68
Pad supply voltage measurement VVDDP
Input-to-output voltage
attenuation: VDDP
ATTVDDP
–
0.164
–
–
P_8.1.33
Nominal operating input
voltage range VDDP
VDDP,range
0
–
7.50 V
1)
P_8.1.50
Accuracy of VDDP sense
after calibration
∆VDDP_SENSE
-105
–
105
2)
mV
VS = 5.5 V to 18 V
P_8.1.5
10-bit ADC reference voltage measurement VAREF
Input-to-output voltage
attenuation: VAREF
ATTVAREF
–
0.219
–
–
P_8.1.22
Nominal operating input
voltage range VAREF
VAREF,range
0
–
5.62 V
1)
P_8.1.51
Accuracy of VAREF sense
after calibration
∆VAREF
-79
–
79
VS = 5.5 V to 18 V
P_8.1.48
mV
8-bit ADC reference voltage measurement VBG
Input-to-output voltage
attenuation: VBG
ATTVBG
–
0.75
–
–
P_8.1.57
Nominal operating input
voltage range VBG
VBG,range
0.8
–
1.64 V
1)
P_8.1.52
Value of ADC2-VBG
measurement after
calibration
VBG_PMU
1.01
1.07
1.18 V
-40°C ≤ Tj ≤ 150°C
P_8.1.73
Value of ADC2-VBG
measurement after
calibration, extended
temperature range
VBG_PMU_HT
1.01
1.07
1.44 V
150°C < Tj ≤ 175°C
P_8.1.75
Datasheet
113
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 35
Supply voltage signal conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition
Min.
Typ.
Max.
Number
Core supply voltage measurement VDDC
Input-to-output voltage
attenuation: VDDC
ATTVDDC
–
0.75
–
–
P_8.1.34
Nominal operating input
voltage range VDDC
VDDC,range
0.8
–
1.64 V
1)
P_8.1.53
Accuracy of VDDC sense
after calibration
∆VDDC_SENSE
-22
–
22
VS = 5.5 V to 18 V
P_8.1.6
mV
VDH input voltage measurement VVDH10BITADC
VDH input-to-output
voltage attenuation
ATTVDH_1
–
0.166
–
SFR setting 1
P_8.1.64
VDH input-to-output
voltage attenuation
ATTVDH_2
–
0.224
–
SFR setting 2
P_8.1.65
VDH input-to-output
voltage attenuation
ATTVDH_3
–
0.226
–
1)
SFR setting 2
-40°C ≤ Tj ≤ 85°C
P_8.1.81
Nominal operating input
voltage range VVDH,
attenuation range 1
VVDH,range1
–
–
30
V
SFR setting 1
P_8.1.66
Nominal operating input
voltage range VVDH,
attenuation range 2
VVDH,range2
–
–
20
V
SFR setting 2
P_8.1.67
VVDH 10-bit ADC, range 1
∆VVDHADC10B
-300
–
300
mV
VVDH = 5.5 V to 17.5 V,
-40°C ≤ Tj ≤ 150°C
P_8.1.39
Accuracy of VVDH 10-bit
ADC, ATTVDH_1, extended
temperature range
∆VVDHADC10B
-800
–
800
mV
VVDH = 5.5 V to 17.5 V,
-40°C ≤ Tj ≤ 175°C
P_8.1.77
Accuracy of VVDH 10-bit
ADC, ATTVDH_3
∆VVDHADC10B
-200
–
200
mV
1)
VVDH = 5.5 V to 17.5 V,
-40°C ≤ Tj ≤ 85°C
ATTVDH_3
P_8.1.80
Accuracy of VVDH 10-bit
ADC, ATTVDH_2
∆VVDHADC10B
-400
–
400
mV
VVDH = 5.5 V to 17.5 V,
-40°C ≤ Tj ≤ 150°C
P_8.1.71
Accuracy of VVDH 10-bit
ADC, ATTVDH_2, extended
temperature range
∆VVDHADC10B
-1.5
–
1.5
V
VVDH = 5.5 V to 17.5 V,
-40°C ≤ Tj ≤ 175°C
P_8.1.78
200
390
470
kΩ
PD_N = 1 (on-state)
P_8.1.3
10-bit ADC measurement, Rin_VDH,measure
input resistance for VDH
Datasheet
114
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 35
Supply voltage signal conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Unit Note or Test Condition
Number
Max.
Measurement input
leakage current for VVDH
Ileak_VDH, measure -0.05 –
2.0
µA
PD_N = 0 (off-state),
-40°C ≤ Tj ≤ 150°C
P_8.1.10
Measurement input
leakage current for VVDH,
extended temperature
range
Ileak_VDH,
-0.05 –
4.0
µA
PD_N = 0 (off-state),
150°C ≤ Tj ≤ 175°C
P_8.1.79
measure_HT
1) Not subject to production test, specified by design.
2) Accuracy is valid for a calibrated device.
Datasheet
115
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.8.2
Table 36
Central temperature sensor parameters
Electrical characteristics of the temperature sensor module
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit
Note or Test Condition Number
Min.
Typ.
Max.
a
–
0.666
–
V
1)
Temperature sensitivity b b
–
2.31
–
mV/K
1)
°C
1)2)
-40°C ≤ Tj ≤ 85°C
P_8.2.5
°C
1)2)
125°C < Tj ≤ 175°C
P_8.2.6
°C
1)2)
85°C < Tj ≤ 125°C
P_8.2.7
Output voltage VTEMP at
T0 = 273 K (0°C)
Accuracy_1
Accuracy_2
Accuracy_3
Acc_1
Acc_2
Acc_3
-10
-10
-5
–
–
–
10
10
5
T0 = 273 K (0°C)
P_8.2.2
P_8.2.4
1) Not subject to production test, specified by design.
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1.
Datasheet
116
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.8.3
ADC2 VBG
29.8.3.1 ADC2 reference voltage VBG
Table 37
DC specifications
VS = 3.0 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Reference voltage
VBG
Values
Min.
Typ.
Max.
Unit Note or
Test Condition
1.199
1.211
1.223
V
1)
Number
P_8.3.1
1) Not subject to production test, specified by design.
29.8.3.2 ADC2 specifications
Table 38
DC specifications
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Test Condition
Number
Resolution
RES
–
8
–
bit
Full
P_8.3.18
Guaranteed offset error
EAOFF_8Bit
-2.0
±0.3
2.0
LSB
Not calibrated
P_8.3.19
Gain error
EAGain_8Bit
-2.0
±0.5
2.0
%FSR
Not calibrated
P_8.3.20
Differential non-linearity EADNL_8Bit
(DNL)
-0.8
±0
0.8
LSB
Full;
-40°C ≤ Tj ≤ 150°C
P_8.3.21
Differential non-linearity EADNL_8Bit_HT -1.2
(DNL), extended
temperature range
±0
1.2
LSB
Full;
150°C < Tj ≤ 175°C
P_8.3.28
-1.2
±0
1.2
LSB
Full;
-40°C ≤ Tj ≤ 150°C
P_8.3.22
±0
1.50
LSB
Full;
150°C < Tj ≤ 175°C
P_8.3.29
Integral non-linearity
(INL)
EAINL_8Bit
Integral non-linearity
(INL), extended
temperature range
EAINL_8Bit_HT -1.50
Datasheet
117
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.9
ADC1 reference voltage - VAREF
29.9.1
Electrical characteristics of VAREF
Table 39
Electrical characteristics of VAREF
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition Number
Min.
Typ.
Max.
Required buffer capacitance
CVAREF
0.1
–
1
µF
ESR < 1 Ω
P_9.1.1
Reference output voltage
VAREF
4.95
5
5.05
V
P_9.1.2
DC supply voltage rejection
DCPSRVAREF
30
–
–
dB
VS > 5.5 V
1)
1)
P_9.1.3
Supply voltage ripple rejection ACPSRVAREF
26
–
–
dB
VS = 13.5 V;
f = 0 kHz … 1 kHz;
Vr = 2 Vpp
P_9.1.4
Turn-on time
tso
–
–
200
µs
1)
P_9.1.5
Input resistance at VAREF pin
RIN,VAREF
–
100
–
kΩ
1)
Cext = 100 nF
PD_N to 99.9% of final
value
Input impedance in
P_9.1.20
case of VAREF is applied
from external input
1) Not subject to production test, specified by design.
Datasheet
118
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.9.2
Electrical characteristics of the ADC1 (10-bit)
These parameters describe the conditions for optimum ADC performance.
Note:
Table 40
Operating conditions apply.
A/D converter characteristics
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit
Note or
Number
Test Condition
Min.
Typ.
Max.
Analog reference supply VAREF
VAGND
+ 1.0
–
VDDPA
+ 0.05
V
1)
P_9.2.1
Analog reference
ground
VAGND
VSS
- 0.05
–
1.5
V
–
P_9.2.2
Analog input voltage
range
VAIN
VAGND
–
VAREF
V
2)
P_9.2.3
5
–
24
MHz
3)
P_9.2.4
P_9.2.5
Analog clock frequency fADCI
Conversion time for
10-bit result
tC10
(13 + STC) (13 + STC) (13 + STC) –
× tADCI
× tADCI
× tADCI
+ 2 × tSYS
+ 2 × tSYS + 2 × tSYS
1)4)
Conversion time for
8-bit result
tC8
(11 + STC) (11 + STC) (11 + STC) –
× tADCI
× tADCI
× tADCI
+ 2 × tSYS
+ 2 × tSYS + 2 × tSYS
1)
P_9.2.6
Wake-up time from
analog power-down,
Fast mode
tWAF
–
–
4
µs
1)
P_9.2.7
Wake-up time from
analog power-down,
Slow mode
tWAS
–
–
15
µs
1)5)
P_9.2.8
Total unadjusted error
(8 bit)
TUE8B
-2
±1
2
counts
6)7)
Total unadjusted error
(10 bit)
TUE10B
-12
±6
12
counts
8)9)
DNL error
EADNL
-3
±0.8
3
counts –
P_9.2.10
INL error
EAINL_int_V -5
±0.8
5
counts Reference is
internal VAREF
P_9.2.11
±0.4
10
counts Reference is
internal VAREF
P_9.2.12
±0.5
2
counts –
P_9.2.13
AREF
Gain error
EAGAIN_int_ -10
VAREF
Offset error
EAOFF
-2
Reference is P_9.2.9
internal VAREF
Reference is P_9.2.22
internal VAREF
Total capacitance
of an analog input
CAINT
–
–
10
pF
1)5)10)
Switched capacitance
of an analog input
CAINS
–
–
4
pF
1)5)10)
Datasheet
119
P_9.2.14
P_9.2.15
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 40
A/D converter characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note or
Number
Test Condition
Resistance of
the analog input path
RAIN
–
–
2
kΩ
1)5)10)
P_9.2.16
Total capacitance
of the reference input
CAREFT
–
–
15
pF
1)5)10)
P_9.2.17
Switched capacitance
of the reference input
CAREFS
–
–
7
pF
1)5)10)
P_9.2.18
–
–
2
kΩ
1)5)10)
P_9.2.19
Resistance of
RAREF
the reference input path
1) Not subject to production test, specified by design.
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion results in these cases
will be 0000H or 03FFH, respectively.
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.
4) This parameter includes the sample time (and the additional sample time specified by STC), the time to determine
the digital results and the time to load the result register with the conversion result.
5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a
conversion rate of not more than 500 µs.
6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed
10 mA, and if VAREF and VAGND remain stable during the measurement time.
8) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed
10 mA, and if VAREF and VAGND remain stable during the measurement time.
9) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
10) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature,
supply voltage), typical values can be used for the calculation. At room temperature and nominal supply voltage, the
following typical values can be used:
CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 kΩ.
29.10
Datasheet
Reserved
120
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.11
High-voltage monitoring input
29.11.1
Electrical characteristics
Table 41
Electrical characteristics of the monitoring input
Tj = -40°C to +175°C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ.
Unit Note or Test Condition Number
Max.
MON input pin characteristics
Wake-up/monitoring
threshold voltage
VMONth
Threshold hysteresis
VMONth,hys 0.015 × 0.05 ×
VS
VS
0.1 × VS V
In all modes; without
P_11.1.12
external serial resistor Rs
(with Rs:dV = IPD/PU × Rs);
VS = 5.5 V to 18 V
Threshold hysteresis
VMONth,hys 0.02 ×
VS
0.06 ×
VS
0.12 ×
VS
V
In all modes; without
P_11.1.2
external serial resistor Rs
(with Rs:dV = IPD/PU × Rs);
VS = 18 V to 28 V
Pull-up current
IPU, MON
-20
-10
-1
µA
0.6 × VS
P_11.1.3
Pull-down current
IPD, MON
3
10
20
µA
0.4 × VS
P_11.1.4
Input leakage current
ILK,MON
-2.5
–
2.5
µA
1)
P_11.1.5
tFT,MON
–
500
–
ns
2)
0.4 × VS 0.5 × VS 0.675 × V
VS
Without external serial
resistor Rs
(with Rs:DV = IPD/PU × Rs)
0 V < VMON_IN < 28 V
P_11.1.1
Timing
Wake-up filter time
(internal analog filter
delay)
The overall filter time P_11.1.6
for MON wake-up is the
sum of tFT,MON and the
adjustable digital filter
time. The digital filter
time can be adjusted by
setting the
PMU.CNF_WAKE_FILTER
.CNF_MON_FT register
1) Input leakage is valid for the disabled state.
2) With pull-up, pull-down current disabled.
Datasheet
121
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.12
MOSFET driver
29.12.1
Electrical characteristics
Table 42
Electrical characteristics of the MOSFET driver
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition
Min.
Typ. Max.
Number
MOSFET driver output
Maximum total charge
driver capability
Qtot_max
–
–
100
nC
1)
Maximum total charge
driver capability (threephase PWM)
Qtot_max,20kHz –
–
150
nC
1)
Due to charge pump
P_12.1.120
current capability, six
MOSFETs and additional
external capacitors with a
total charge of maximal
150 nC can be driven
simultaneously at a PWM
frequency of 20 kHz.
VSD,min ≥ 6.5 V for
VGS,min ≥ 7 V
Source current - charge
current (low gate voltage)
high-side driver
ISoumax_HS
230
345
450
mA
VSD ≥ 8 V, CLoad = 10 nF,
ISou = CLoad × slew rate
(= 20% to 50% of VGHx1),
ICHARGE = IDISCHG = 31(max)
Sink current - discharge
current - high-side driver
ISinkmax_HS
230
330
450
mA
VSD ≥ 8 V, CLoad = 10 nF,
P_12.1.79
ISink = CLoad × slew rate
(from 80% to 50% of VGHx1),
ICHARGE = IDISCHG = 31(max)
Source current - charge
current (low gate voltage)
low-side driver
ISoumax_LS
200
295
375
mA
VSD ≥ 8 V, CLoad = 10 nF,
ISou = CLoad × slew rate
(= 20% to 50% of VGLx1),
ICHARGE = IDISCHG = 31(max)
Sink current - discharge
current - low-side driver
ISinkmax_LS
200
314
375
mA
VSD ≥ 8 V, CLoad = 10 nF,
P_12.1.81
ISink = CLoad × slew rate
(from 80% to 50% of VGLx1),
ICHARGE = IDISCHG = 31(max)
Datasheet
122
P_12.1.20
Due to charge pump
current capability, six
MOSFETs and additional
external capacitors with a
total charge of maximal
100 nC can be driven
simultaneously at a PWM
frequency of 25 kHz
P_12.1.78
P_12.1.80
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 42
Electrical characteristics of the MOSFET driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Typ. Max.
Unit Note or Test Condition
Number
High-level output voltage
Gxx vs. Sxx
VGxx1
10
–
14
V
VSD ≥ 8 V,
CLoad = 10 nF,
ICP = 2.5 mA2)
P_12.1.3
High-level output voltage
GHx vs. SHx
VGxx2
8
–
14
V
VSD = 6.4 V1),
CLoad = 10 nF,
ICP = 2.5 mA2)
P_12.1.4
High-level output voltage
GHx vs. SHx
VGxx3
7
–
14
V
VSD = 5.4 V,
CLoad = 10 nF,
ICP = 2.5 mA2)
P_12.1.5
High-level output voltage
GLx vs. GND
VGxx6
8
–
14
V
VSD = 6.4 V1),
CLoad = 10 nF,
ICP = 2.5 mA2)
P_12.1.6
High-level output voltage
GLx vs. GND
VGxx7
7
–
14
V
VSD = 5.4 V,
CLoad = 10 nF,
ICP = 2.5 mA2)
P_12.1.7
Rise time
trise3_3nf
–
200
–
ns
1)
CLoad = 3.3 nF,
P_12.1.8
VSD ≥ 8 V,
25% to 75% of VGxx1, ICHARGE
= IDISCHG = 31(max)
Fall time
tfall3_3nf
–
200
–
ns
1)
CLoad = 3.3 nF,
P_12.1.9
VSD ≥ 8 V,
75% to 25% of VGxx1, ICHARGE
= IDISCHG = 31(max)
Rise time
trisemax
100
250
450
ns
CLoad = 10 nF,
P_12.1.57
VSD ≥ 8 V,
25% to 75% of VGxx1, ICHARGE
= IDISCHG = 31(max)
Fall time
tfallmax
100
250
450
ns
CLoad = 10 nF,
P_12.1.58
VSD ≥ 8 V,
75% to 25% of VGxx1, ICHARGE
= IDISCHG = 31(max)
Rise time
trisemin
1.25
2.5
5
µs
1)
CLoad = 10 nF,
VSD ≥ 8 V,
25% to 75% of VGxx1,
ICHARGE = IDISCHG = 3(min)
P_12.1.14
Fall time
tfallmin
1.25
2.5
5
µs
1)
P_12.1.15
Datasheet
123
CLoad = 10 nF,
VSD ≥ 8 V,
75% to 25% of VGxx1,
ICHARGE = IDISCHG = 3(min)
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 42
Electrical characteristics of the MOSFET driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition
Number
Min.
Typ. Max.
tr_f(diff)LSx
Absolute difference
between rise and fall for all
LSx
–
–
100
ns
CLoad = 10 nF,
P_12.1.35
VSD ≥ 8 V,
25% to 75% of VGxx1, ICHARGE
= IDISCHG = 31(max)
Absolute difference
tr_f(diff)HSx
between rise and fall for all
HSx
–
–
100
ns
CLoad = 10 nF,
P_12.1.36
VSD ≥ 8 V,
25% to 75% of VGxx1, ICHARGE
= IDISCHG = 31(max)
Resistor between GHx/GLx
and GND
RGGND
30
40
50
kΩ
1)
Resistor between SHx and
GND
RSHGN
30
40
50
kΩ
1)3)
Low-RDSON mode
(boosted discharge mode)
RONCCP
–
9
12
Ω
VVSD = 13.5 V,
VVCP = VVSD + 14.0 V;
ICHARGE = IDISCHG = 31(max);
50 mA forced into Gx, Sx
grounded
-40°C ≤ Tj ≤ 150°C
P_12.1.50
Low-RDSON mode
RONCCP_HT
(boosted discharge mode),
extended temperature
range
–
9
14.5
Ω
VVSD = 13.5 V,
VVCP = VVSD + 14.0 V;
ICHARGE = IDISCHG = 31(max);
50 mA forced into Gx, Sx
grounded
150°C < Tj ≤ 175°C
P_12.1.84
Resistance between VDH
and VSD
IBSH
–
4
–
kΩ
1)
P_12.1.24
Input propagation time
(LS on)
tP(ILN)min
–
1.5
3
µs
1)
CLoad = 10 nF,
ICharge = 3(min),
25% of VGxx1
P_12.1.37
Input propagation time
(LS off)
tP(ILF)min
–
1.5
3
µs
1)
P_12.1.38
Datasheet
124
P_12.1.11
P_12.1.10
This resistance is the
resistance between GHx
and GND connected
through a diode to SHx. As
a consequence, the
voltage at SHx can rise up
to 0.6 V typ. before it is
discharged through the
resistor
CLoad = 10 nF,
IDischarge = 3(min),
75% of VGxx1
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 42
Electrical characteristics of the MOSFET driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition
Number
Min.
Typ. Max.
tP(IHN)min
–
1.5
3
µs
1)
CLoad = 10 nF,
ICharge = 3(min),
25% of VGxx1
P_12.1.39
Input propagation time (HS tP(IHF)min
off)
–
1.5
3
µs
1)
CLoad = 10 nF,
IDischarge = 3(min),
75% of VGxx1
P_12.1.40
Input propagation time (LS tP(ILN)max
on)
–
200
350
ns
CLoad = 10 nF,
ICharge = 31(max),
25% of VGxx1
P_12.1.26
Input propagation time (LS tP(ILF)max
off)
–
200
300
ns
CLoad = 10 nF,
IDischarge = 31(max),
75% of VGxx1
P_12.1.27
Input propagation time (HS tP(IHN)max
on)
–
200
350
ns
CLoad = 10 nF,
ICharge = 31(max),
25% of VGxx1
P_12.1.28
Input propagation time (HS tP(IHF)max
off)
–
200
300
ns
CLoad = 10 nF,
IDischarge = 31(max),
75% of VGxx1
P_12.1.29
Absolute input propagation tPon(diff)LSx
time difference between
propagation times for all
LSx (LSx on)
–
–
100
ns
CLoad = 10 nF,
ICharge = 31(max),
25% of VGxx1
P_12.1.30
Absolute input propagation tPoff(diff)LSx
time difference between
propagation times for all
LSx (LSx off)
–
–
100
ns
CLoad = 10 nF,
IDischarge = 31(max),
75% of VGxx1
P_12.1.41
Absolute input propagation tPon(diff)HSx
time difference between
propagation times for all
HSx (HSx on)
–
–
100
ns
CLoad = 10 nF,
ICharge = 31(max),
25% of VGxx1
P_12.1.42
Absolute input propagation tPoff(diff)HSx
time difference between
propagation times for all
HSx (HSx off)
–
–
100
ns
CLoad = 10 nF,
IDischarge = 31(max),
75% of VGxx1
P_12.1.43
Input propagation time
(HS on)
Datasheet
125
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 42
Electrical characteristics of the MOSFET driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Unit Note or Test Condition
Min.
Typ. Max.
–
–
–
0.07
0.35
0.55
0.65
0.90
1.00
1.20
1.40
0.25
0.50
0.75
1.00
1.25
1.5
1.75
2.00
0.40
0.650
0.90
1.25
1.45
1.80
2.10
2.40
Number
Drain source monitoring
Drain source monitoring
threshold
VDSMONVTH
V
DRV_CTRL3.DSMONVTH xxx
000
001
010
011
100
101
110
111
µA
IDISCHG = 1; VSHx = 5.0 V
P_12.1.47
Open load diagnostic currents
Pull-up diagnostic current
IPUDiag
-220
-370 -520
Pull-down diagnostic
current
IPDDiag
650
900
1100 µA
IDISCHG = 1; VSHx = 5.0 V
P_12.1.48
Output voltage
VCP vs. VSD
VCPmin1
8.5
–
–
V
VVSD = 5.4 V,
ICP = 5 mA,
CCP1, CCP2 = 220 nF,
bridge driver enabled
-40°C ≤ Tj ≤ 150°C
P_12.1.53
Output voltage
VCP vs. VSD, extended
temperature range
VCPmin1_HT
8.4
–
–
V
VVSD = 5.4 V,
ICP = 5 mA,
CCP1, CCP2 = 220 nF,
bridge driver enabled
150°C < Tj ≤ 175°C
P_12.1.85
Regulated output voltage
VCP vs. VSD
VCP
12
14
16
V
8 V ≤ VVSD ≤ 28 V,
ICP = 10 mA,
CCP1, CCP2 = 220 nF,
fCP = 250 kHz
P_12.1.49
Turn-on time
tON_VCP
10
24
40
us
8 V ≤ VVSD ≤ 28 V,
(25%) of VCP1)4),
CCP1, CCP2 = 220 nF,
fCP = 250 kHz
P_12.1.59
Rise time
trise_VCP
20
60
88
us
8 V ≤ VVSD ≤ 28 V,
(25% to 75%) of VCP1)5),
CCP1, CCP2 = 220 nF,
fCP = 250 kHz
P_12.1.60
Charge pump
1) Not subject to production test, specified by design.
2) The condition ICP = 2.5 mA emulates a BLDC driver with 6 MOSFETs switching at 20 kHz with a CLoad = 3.3 nF. Test
condition: IGx = -100 µA, ICHARGE = IDISCHARGE = 31 (max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1.
Datasheet
126
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
3) This resistance is connected through a diode between SHx and GHx to ground.
4) This time applies when the DRV_CP_CTRL_STS.bit.CP_EN bit is set.
5) This time applies when the DRV_CP_CLK_CTRL.bit.CPCLK_EN bit is set.
Datasheet
127
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
29.13
Operational amplifier
29.13.1
Electrical characteristics
Table 43
Electrical characteristics of the operational amplifier
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Values
Min.
Differential gain
(uncalibrated)
Typ.
Unit
Max.
Gain settings GAIN: P_13.1.6
00
01
10
11
G
9.5
19
38
57
10
20
40
60
Note or Test Condition Number
10.5
21
42
63
Differential input operating VIX
voltage range OP2 - OP1
-1.5 / G –
1.5 / G
V
G is the gain specified
below
Operating: common mode VCM
input voltage range
(referred to GND: OP2 GND or OP1 - GND
-2.0
–
2.0
V
Input common mode has P_13.1.2
to be checked in
evaluation if it fits the
required range
Max. input voltage range
(referred to GND: OP_2 GND or OP1 - GND
VIX_max
-7.0
–
7.0
V
Max. rating of
operational amplifier
inputs when no
measurement is
performed
Single-ended output
voltage range (linear
range)
VOUT
VZERO
- 1.5
–
VZERO
+ 1.5
V
1)2)
Offset output voltage P_13.1.4
2 V ±1.5 V
Linearity error
EPWM
-15
–
15
mV
P_13.1.5
Maximum deviation
from best-fit straight line
divided by the maximum
value of the differential
output voltage range
(0.5 V - 3.5 V); this
parameter is determined
with G = 10
Linearity error
EPWM_%
-1.0
–
1.0
%
P_13.1.24
Maximum deviation
from best fit straight line
divided by the maximum
value of the differential
output voltage range
(0.5 V - 3.5 V); this
parameter is determined
with G = 10
Datasheet
128
P_13.1.1
P_13.1.3
Rev. 1.0
2020-07-23
TLE9879QTW40
Electrical characteristics
Table 43
Electrical characteristics of the operational amplifier (cont’d)
VS = 5.5 V to 28 V, Tj = -40°C to +175°C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified).
Parameter
Symbol
Gain drift
Values
Unit
Note or Test Condition Number
Min.
Typ.
Max.
-1
–
1
%
Gain drift after
calibration with G = 10
P_13.1.7
Adjusted output offset
voltage
VOOS
-40
10
40
mV
VAIP= VAIN = 0 V and
G = 40,
-40°C < Tj ≤ 150°C
P_13.1.17
Adjusted output offset
voltage, extended
temperature range
VOOS_HT -50
10
50
mV
VAIP= VAIN = 0 V and
G = 40,
150°C < Tj ≤ 175°C
P_13.1.28
58
80
–
dB
CMRR (in dB) = -20*log
P_13.1.8
(differential mode gain /
common mode gain)
VCMI = -2 V … 2 V,
VAIP - VAIN= 0 V,
-40°C ≤ Tj ≤ 150°C
DC input voltage common DC57
mode rejection ratio,
CMRR_
extended temperature
HT
range
80
–
dB
P_13.1.27
CMRR (in dB) = -20*log
(differential mode gain /
common mode gain)
VCMI = -2 V … 2 V,
VAIP - VAIN= 0 V,
150°C ≤ Tj ≤ 175°C
Settling time to 98%
TSET
–
800
1400
ns
2)
Derived from 80% 20% rise fall times for
±2 V overload condition
(3 Tau value of settling
time constant)
P_13.1.9
Current sense amplifier
input resistance at OP1,
OP2
Rin_OP1_ 1
1.25
1.5
kΩ
2)
P_13.1.25
DC input voltage common DCmode rejection ratio
CMRR
OP2
1) Typical VZERO = 0,4 × VAREF.
2) Not subject to production test, specified by design.
Datasheet
129
Rev. 1.0
2020-07-23
TLE9879QTW40
Package information
C
Seating Plane
11 x 0.5 = 5.5
0.22 ±0.05
0.08 C 48x
Coplanarity
12°
0.2 MIN.
-0.035
0°...7°
12°
H
0.125 +0.075
0.5
1.2 MAX.
Package information
0.1±0.05
STAND OFF
1±0.05
30
0.6 ±0.15
(1)
0.08 M A-B D C 48x
9
7
0.2 A-B D 48x
1)
5
0.2 A-B D H 4x
4 2)
D
Exposed Diepad
5
9
7
1)
48
4 2)
B
A
48
1
1
Index Marking
1) Does not include plastic or metal protrusion of 0.25 max. per side
2) Exposed pad for soldering purpose
Figure 37
PG-TQFP-48-8-PO V01
Package outline TQFP-48-10 1)
Green product (RoHS-compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant
with government regulations, the device is available as a green product. Green products are RoHS-compliant
(i.e., Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
Further information on packages
https://www.infineon.com/packages
1) Dimensions in mm
Datasheet
130
Rev. 1.0
2020-07-23
TLE9879QTW40
Revision history
31
Revision history
Revision Date
Rev. 1.0
Datasheet
Changes
2020-07-23 Datasheet initial release.
131
Rev. 1.0
2020-07-23
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2020-07-23
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2020 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
Z8F61925599
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.