TLE9879QXA40
Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications
BF-Step
Data Sheet
Rev. 1.0, 2017-02-02
Automotive Power
TLE9879QXA40
Table of Contents
Table of Contents
1
1.1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3
3.1
3.2
Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4
Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5
5.1
5.2
5.2.1
5.2.2
5.3
5.3.1
5.3.2
5.3.3
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Power Supply Generation Unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
18
19
21
22
22
23
24
6
6.1
6.2
6.2.1
6.3
6.3.1
6.3.2
6.3.2.1
6.3.2.2
System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
25
25
26
27
28
28
28
28
7
7.1
7.2
7.2.1
System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
30
30
30
8
8.1
8.2
8.2.1
ARM Cortex-M3 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
32
33
33
9
9.1
9.2
9.2.1
9.3
9.3.1
DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DMA Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
34
35
35
36
36
10
Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11
11.1
11.2
11.2.1
11.3
Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
2
38
38
38
38
40
Rev. 1.0, 2017-02-02
TLE9879QXA40
Table of Contents
12
12.1
12.2
12.2.1
Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
13.1
13.2
Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
14
14.1
14.2
14.2.1
14.2.2
14.3
14.3.1
14.3.1.1
14.3.2
14.3.2.1
14.3.3
14.3.3.1
GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TLE9879QXA40 Port Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
45
45
45
45
47
48
48
48
50
50
52
52
15
15.1
15.1.1
15.1.2
15.2
15.2.1
15.2.2
General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
53
53
53
53
53
54
55
16
16.1
16.2
16.2.1
Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
56
56
56
56
17
17.1
17.2
17.3
17.3.1
Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Timer3 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57
57
57
57
57
18
18.1
18.2
18.2.1
Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
59
59
59
60
19
19.1
19.2
19.2.1
19.3
UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
61
61
61
61
62
20
20.1
20.2
20.2.1
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
63
63
64
64
Data Sheet
3
41
41
41
41
Rev. 1.0, 2017-02-02
TLE9879QXA40
Table of Contents
21
21.1
21.2
21.2.1
High-Speed Synchronous Serial Interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
65
65
66
66
22
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.1
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2.1
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
22.2.1.1
Block Diagram BEMF Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
67
67
67
68
69
23
23.1
23.2
23.2.1
23.2.2
Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Measurement Core Module Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
70
70
70
70
71
24
24.1
24.2
24.2.1
10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
72
72
72
73
25
25.1
25.2
25.2.1
High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
74
74
74
74
26
26.1
26.2
26.2.1
26.2.2
Bridge Driver (incl. Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
75
75
75
76
76
27
27.1
27.2
27.2.1
Current Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
77
77
77
77
28
28.1
28.2
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
BLDC Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
29
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.1
General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.1.1
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.1.2
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.1.3
Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.1.4
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.1.5
Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.2
Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.2.1
PMU I/O Supply (VDDP) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.2.2
PMU Core Supply (VDDC) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.2.3
VDDEXT Voltage Regulator (5.0V) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.2.4
VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.2.4.1
Load Sharing Scenarios of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
29.2.5
Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Data Sheet
4
81
81
81
84
85
87
87
88
88
90
91
93
93
93
Rev. 1.0, 2017-02-02
TLE9879QXA40
Table of Contents
29.3
29.3.1
29.3.2
29.4
29.4.1
29.5
29.5.1
29.5.2
29.5.3
29.6
29.6.1
29.7
29.7.1
29.8
29.8.1
29.8.2
29.8.3
29.8.3.1
29.8.3.2
29.9
29.9.1
29.9.2
29.10
29.11
29.11.1
29.12
29.12.1
29.13
29.13.1
System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Oscillators and PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
External Clock Parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
DC Parameters of Port 0, Port 1, TMS and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
DC Parameters of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
SSC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
System Voltage Measurement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Central Temperature Sensor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
ADC2-VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ADC2 Reference Voltage VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ADC2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
ADC1 Reference Voltage - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Electrical Characteristics VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
30
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
31
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Data Sheet
5
Rev. 1.0, 2017-02-02
Microcontroller with LIN and BLDC MOSFET Driver for
Automotive Applications
1
TLE9879QXA40
Overview
Summary of Features
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
32 bit ARM Cortex M3 Core
– up to 40 MHz clock frequency
– one clock per machine cycle architecture
On-chip memory
– 128 kByte Flash including
– 4 kByte EEPROM (emulated in Flash)
– 512 Byte 100 Time Programmable Memory (100TP)
– 6 kByte RAM
– Boot ROM for startup firmware and Flash routines
On-chip OSC and PLL for clock generation
– PLL loss-of-lock detection
MOSFET driver including charge pump
10 general-purpose I/O Ports (GPIO)
5 analog inputs, 10-bit A/D Converter (ADC1)
16-bit timers - GPT12, Timer 2, Timer 21 and Timer 3
Capture/compare unit for PWM signal generation (CCU6)
2 full duplex serial interfaces (UART) with LIN support (for UART1 only)
2 synchronous serial channels (SSC)
On-chip debug support via 2-wire SWD
1 LIN 2.2 transceiver
1 high voltage monitoring input
Single power supply from 5.5 V to 27 V
Extended power supply voltage range from 3 V to 28 V
Low-dropout voltage regulators (LDO)
High speed operational amplifier for motor current sensing via shunt
5 V voltage supply for external loads (e.g. Hall sensor)
Core logic supply at 1.5 V
Programmable window watchdog (WDT1) with independent on-chip clock source
Power saving modes
– MCU slow-down Mode
– Sleep Mode
– Stop Mode
– Cyclic wake-up Sleep Mode
Power-on and undervoltage/brownout reset generator
Type
Package
TLE9879QXA40
VQFN-48-31
Data Sheet
VQFN-48-31
Marking
6
Rev. 1.0, 2017-02-02
TLE9879QXA40
Overview
•
•
•
•
•
•
•
Overtemperature protection
Short circuit protection
Loss of clock detection with fail safe mode entry for low system power consumption
Temperature Range Tj = -40 °C to +150 °C
Package VQFN-48 with LTI feature
Green package (RoHS compliant)
AEC qualified
Data Sheet
7
Rev. 1.0, 2017-02-02
TLE9879QXA40
Overview
1.1
Abbreviations
The following acronyms and terms are used within this document. List see in Table 1.
Table 1
Acronyms
Acronyms
Name
AHB
Advanced High-Performance Bus
APB
Advanced Peripheral Bus
CCU6
Capture Compare Unit 6
CGU
Clock Generation Unit
CMU
Cyclic Management Unit
CP
Charge Pump for MOSFET driver
CSA
Current Sense Amplifier
DPP
Data Post Processing
ECC
Error Correction Code
EEPROM
Electrically Erasable Programmable Read Only Memory
EIM
Exceptional Interrupt Measurement
FSM
Finite State Machine
GPIO
General Purpose Input Output
H-Bridge
Half Bridge
ICU
Interrupt Control Unit
IEN
Interrupt Enable
IIR
Infinite Impulse Response
LDM
Load Instruction
LDO
Low DropOut voltage regulator
LIN
Local Interconnect Network
LSB
Least Significant Bit
LTI
Lead Tip Inspection
MCU
Memory Control Unit
MF
Measurement Functions
MSB
Most Significant Bit
MPU
Memory Protection Unit
MRST
Master Receive Slave Transmit
MTSR
Master Transmit Slave Receive
MU
Measurement Unit
NMI
Non Maskable Interrupt
NVIC
Nested Vector Interrupt Controller
NVM
Non-Volatile Memory
OTP
One Time Programmable
OSC
Oscillator
PBA
Peripheral Bridge
Data Sheet
8
Rev. 1.0, 2017-02-02
TLE9879QXA40
Overview
Table 1
Acronyms
Acronyms
Name
PCU
Power Control Unit
PD
Pull Down
PGU
Power supply Generation Unit
PLL
Phase Locked Loop
PPB
Private Peripheral Bus
PU
Pull Up
PWM
Pulse Width Modulation
RAM
Random Access Memory
RCU
Reset Control Unit
RMU
Reset Management Unit
ROM
Read Only Memory
SCU-DM
System Control Unit - Digital Modules
SCU-PM
System Control Unit - Power Modules
SFR
Special Function Register
SOW
Short Open Window (for WDT)
SPI
Serial Peripheral Interface
SSC
Synchronous Serial Channel
STM
Store Instruction
SWD
ARM Serial Wire Debug
TCCR
Temperature Compensation Control Register
TMS
Test Mode Select
TSD
Thermal Shut Down
UART
Universal Asynchronous Receiver Transmitter
VBG
Voltage reference Band Gap
VCO
Voltage Controlled Oscillator
VPRE
Pre Regulator
WDT
Watchdog Timer in SCU-DM
WDT1
Watchdog Timer in SCU-PM
WMU
Wake-up Management Unit
100TP
100 Time Programmable
Data Sheet
9
Rev. 1.0, 2017-02-02
TLE9879QXA40
Block Diagram
2
Block Diagram
TMS
P0.0
TEST / DEBUG
INTERFACE
ARM
CORTEX-M3
µDMA
CONTROLLER
systembus
FLASH
slave
SRAM
slave
ROM
slave
slave
Multilayer AHB Matrix
slave
VAREF
GND_REF
P2.0, P2.2, P2.3, P2.4, P2.5
(AN0, AN2, AN3, AN4, AN5)
Figure 1
Data Sheet
PBA1
SCU_DM
ADC 1
DPP1
GPT12
UART1
UART2
SSC1
SSC2
MOSFET
Driver
CCU6
T2
T21
SCU_DM
WDT
SCU_PM
WDT1/
CLKWDT
CP
µDMA
Controller
PLL
XTAL1
XTAL2
GPIO
P0.1 – P0.4
P1.0 – P1.4
LIN
OP AMP
VCP
VSD
CP2H
CP2L
CP1H
CP1L
PBA0
OP AMP
VDH
GH3
SH3
GL3
GH2
SH2
GL2
GH1
SH1
GL1
SL
MU-VAREF
slave
LIN
GND_LIN
MU
MF / ADC2
DPP2
OP AMP
OP1
OP2
PMU –
Power
Control
System
Functions
VS
RESET
VDDEXT
VDDP
VDDC
MON
MON
T3
Block Diagram TLE9879QXA40
10
Rev. 1.0, 2017-02-02
TLE9879QXA40
25 P0. 2
27 P1.4
28 GND
29 P2. 0/XTAL1
30 P2. 2/XTAL2
31 P2.5
32 P2.4
33 GND_REF
Device Pinout
34 VAREF
3.1
35 P2.3
Device Pinout and Pin Configuration
36 OP2
3
26 P1. 3
Device Pinout and Pin Configuration
OP1 37
24 P0.3
EP
VDDC 38
23 P0.1
EP
GND 39
22 RESET
VDDP 40
21 P0.0
VDDEXT 41
20 TMS
19 GND
GND_LIN 42
TLE 987x
LIN 43
18 P0.4
VDH 44
17 P1.2
VS 45
16 P1.1
SH3 46
15 P1.0
VSD 47
14 MON
CP1H 48
Note:
Figure 2
Data Sheet
GL2 12
GL3 11
SL 10
GH1 9
SH1 8
GH2 7
SH2 6
GH3 5
CP2L 4
VCP 2
CP2H 3
CP1L 1
13 GL1
= Low voltage pins
Device Pinout, TLE9879QXA40
11
Rev. 1.0, 2017-02-02
TLE9879QXA40
Device Pinout and Pin Configuration
3.2
Pin Configuration
After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings:
•
•
•
•
Pull-up device enabled only (PU)
Pull-down device enabled only (PD)
Input with both pull-up and pull-down devices disabled (I)
Output with output stage deactivated = high impedance state (Hi-Z)
The functions and default states of the TLE9879QXA40 external pins are provided in the following table.
Type: indicates the pin type.
•
•
•
•
I/O: Input or output
I: Input only
O: Output only
P: Power supply
Not all alternate functions listed.
Table 2
Symbol
Pin Definitions and Functions
Pin Number Type
Reset
State1)
P0
Function
Port 0
Port 0 is a 5-bit bidirectional general purpose I/O port. Alternate
functions can be assigned and are listed in the port description.
Main function is listed below.
P0.0
21
I/O
I/PU
SWD
Serial Wire Debug Clock
P0.1
23
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.2
25
I/O
I/PD
GPIO
General Purpose IO
Alternate function mapping see Table 8
Note: For a functional SWD connection this
GPIO must be tied to zero!
P0.3
24
I/O
I/PU
GPIO
General Purpose IO
Alternate function mapping see Table 8
P0.4
18
I/O
I/PD
GPIO
General Purpose IO
Alternate function mapping see Table 8
P1
Port 1
Port 1 is a 5-bit bidirectional general purpose I/O port. Alternate
functions can be assigned and are listed in the Port description.
The principal functions are listed below.
P1.0
15
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.1
16
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.2
17
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
P1.3
26
I/O
I
GPIO
General Purpose IO, used for Inrush Transistor
Alternate function mapping see Table 9
P1.4
27
I/O
I
GPIO
General Purpose IO
Alternate function mapping see Table 9
Data Sheet
12
Rev. 1.0, 2017-02-02
TLE9879QXA40
Device Pinout and Pin Configuration
Table 2
Pin Definitions and Functions (cont’d)
Symbol
Pin Number Type
Reset
State1)
P2
Function
Port 2
Port 2 is a 5-bit general purpose input-only port.
Alternate functions can be assigned and are listed in the Port
description. Main function is listed below.
P2.0/XTAL1
29
I/I
I
AN0
ADC analog input 0
Alternate function mapping see Table 10
P2.2/XTAL2
30
I/O
I
AN2
ADC analog input 2
Alternate function mapping see Table 10
P2.3
35
I
I
AN3
ADC analog input 3
Alternate function mapping see Table 10
P2.4
32
I
I
AN4
ADC analog input 4
Alternate function mapping see Table 10
P2.5
31
I
I
AN5
ADC analog input 5
Alternate function mapping see Table 10
VS
45
P
–
Battery supply input
VDDP
40
P
–
2)
Power Supply
I/O port supply (5.0 V). Connect external buffer capacitor.
VDDC
38
P
–
3)
VDDEXT
41
P
–
External voltage supply output (5.0 V, 20 mA)
GND
19
P
–
GND digital
GND
28
P
–
GND digital
GND
39
P
–
GND analog
14
I
–
High Voltage Monitor Input
LIN
43
I/O
–
LIN bus interface input/output
GND_LIN
42
P
–
LIN ground
CP1H
48
P
–
Charge Pump Capacity 1 High, connect external C
CP1L
1
P
–
Charge Pump Capacity 1 Low, connect external C
CP2H
3
P
–
Charge Pump Capacity 2 High, connect external C
CP2L
4
P
–
Charge Pump Capacity 2 Low, connect external C
VCP
2
P
–
Charge Pump Capacity
VSD
47
P
–
Battery supply input for Charge Pump
VDH
44
P
–
Voltage Drain High Side MOSFET Driver
SH3
46
P
–
Source High Side FET 3
SH2
6
P
–
Source High Side FET 2
Core supply (1.5 V during Active Mode).
Do not connect external loads, connect external buffer
capacitor.
Monitor Input
MON
LIN Interface
Charge Pump
MOSFET Driver
Data Sheet
13
Rev. 1.0, 2017-02-02
TLE9879QXA40
Device Pinout and Pin Configuration
Table 2
Pin Definitions and Functions (cont’d)
Symbol
Pin Number Type
Reset
State1)
Function
GH2
7
P
–
Gate High Side FET 2
SH1
8
P
–
Source High Side FET 1
GH1
9
P
–
Gate High Side FET 1
SL
10
P
–
Source Low Side FET
GL2
12
P
–
Gate Low Side FET 2
GL1
13
P
–
Gate Low Side FET 1
GH3
5
P
–
Gate High Side FET 3
GL3
11
P
–
Gate Low Side FET 3
GND_REF
33
P
–
GND for VAREF
VAREF
34
I/O
–
5V ADC1 reference voltage, optional buffer or input
OP1
37
I
–
Negative operational amplifier input
OP2
36
I
–
Positive operational amplifier input
TMS
20
I
I/O
I/PD
TMS
SWD
RESET
22
I/O
–
Reset input, not available during Sleep Mode
EP
–
–
–
Exposed Pad, connect to GND
Others
Test Mode Select input
Serial Wire Debug input/output
1) Only valid for digital IOs
2) Also named VDD5V.
3) Also named VDD1V5.
Data Sheet
14
Rev. 1.0, 2017-02-02
TLE9879QXA40
Modes of Operation
4
Modes of Operation
This highly integrated circuit contains analog and digital functional blocks. An embedded 32-bit microcontroller is
available for system and interface control. On-chip, low-dropout regulators are provided for internal and external
power supply. An internal oscillator provides a cost effective clock that is particularly well suited for LIN
communications. A LIN transceiver is available as a communication interface. Driver stages for a Motor Bridge or
BLDC Motor Bridge with external MOSFET are integrated, featuring PWM capability, protection features and a
charge pump for operation at low supply voltage. A 10-bit SAR ADC is implemented for high precision sensor
measurement. An 8-bit ADC is used for diagnostic measurements.
The Micro Controller Unit supervision and system protection (including a reset feature) is complemented by a
programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated temperature
sensors are available on-chip.
All relevant modules offer power saving modes in order to support automotive applications connected to terminal
30. A wake-up from power-save mode is possible via a LIN bus message, via the monitoring input or using a
programmable time period (cyclic wake-up).
Featuring LTI, the integrated circuit is available in a VQFN-48-31 package with 0.5 mm pitch, and is designed to
withstand the severe conditions of automotive applications.
The TLE9879QXA40 has several operation modes mainly to support low power consumption requirements.
Reset Mode
The Reset Mode is a transition mode used e.g. during power-up of the device after a power-on reset, or after wakeup from Sleep Mode. In this mode, the on-chip power supplies are enabled and all other modules are initialized.
Once the core supply VDDC is stable, the device enters Active Mode. If the watchdog timer WDT1 fails more than
four times, the device performs a fail-safe transition to Sleep Mode.
Active Mode
In Active Mode, all modules are activated and the TLE9879QXA40 is fully operational.
Stop Mode
Stop Mode is one of two major low power modes. The transition to the low power modes is performed by setting
the corresponding bits in the mode control register. In Stop Mode the embedded microcontroller is still powered,
allowing faster wake-up response times. Wake-up from this mode is possible through LIN bus activity, by using
the high-voltage monitoring pin or the corresponding 5V GPIOs.
Stop Mode with Cyclic Wake-Up
The Cyclic Wake-Up Mode is a special operating mode of the Stop Mode. The transition to the Cyclic Wake-Up
Mode is done by first setting the corresponding bits in the mode control register followed by the Stop Mode
command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period), asynchronous
wake events via the activated sources (LIN and/or MON) are available, as in normal Stop Mode.
Sleep Mode
The Sleep Mode is a low-power mode. The transition to the low-power mode is done by setting the corresponding
bits in the MCU mode control register or in case of failure, see below. In Sleep Mode the embedded microcontroller
power supply is deactivated allowing the lowest system power consumption. A wake-up from this mode is possible
by LIN bus activity, the High Voltage Monitor Input pin or Cyclic Wake-up.
Sleep Mode in Case of Failure
Data Sheet
15
Rev. 1.0, 2017-02-02
TLE9879QXA40
Modes of Operation
Sleep Mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case,
MON is enabled as the wake source and Cyclic Wake-Up is activated with 1s of wake time.
Sleep Mode with Cyclic Wake-Up
The Cyclic Wake-Up Mode is a special operating mode of the Sleep Mode. The transition to Cyclic Wake-Up Mode
is performed by first setting the corresponding bits in the mode control register followed by the Sleep and Stop
Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period),
asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Sleep Mode.
When using Sleep Mode with cyclic wake-up the voltage regulator is switched off and started again with the wake.
A limited number of registers is buffered during sleep, and can be used by SW e.g. for counting sleep/wake cycles.
MCU Slow Down Mode
In MCU Slow Down Mode the MCU frequency is reduced for saving power during operation. LIN communication
is still possible. LS MOSFET can be activated.
Wake-Up Source Prioritization
All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up sources,
the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are latched in order
to provide all wake-up events to the application software. The software can clear the wake-up source flags. This
is to ensure that no wake-up event is lost.
As default wake-up source, the MON input is activated after power-on reset only. Additionally, the device is in
Cyclic Wake-Up Mode with the max. configurable dead time setting.
The following table shows the possible power mode configurations including the Stop Mode.
Table 3
Power Mode Configurations
Module/Function
Active Mode Stop Mode
Sleep Mode
Comment
VDDEXT
ON/OFF
ON (no dynamic
load)/OFF
OFF
–
Bridge Driver
ON/OFF
OFF
OFF
LIN TRx
ON/OFF
wake-up only/
OFF
wake-up only/
OFF
–
VS sense
ON/OFF
brownout
detection
brownout detection
POR on VS
brownout det. done in
PCU
GPIO 5V (wake-up)
n.a.
disabled/static
OFF
–
GPIO 5V (active)
ON
ON
OFF
–
WDT1
ON
OFF
OFF
–
CYCLIC WAKE
n.a.
cyclic wake-up/
cyclic sense/OFF
cyclic wake-up/
OFF
–
Measurement
ON1)
OFF
OFF
–
2)
MCU
ON/slowdown/STOP
STOP
OFF
–
CLOCK GEN (MC)
ON
OFF
OFF
–
LP_CLK (18 MHz)
ON
OFF
OFF
WDT1
LP_CLK2 (100 kHz)
ON/OFF
ON/OFF
ON/OFF
for cyclic wake-up
Data Sheet
16
Rev. 1.0, 2017-02-02
TLE9879QXA40
Modes of Operation
1) May not be switched off due to safety reasons
2) MC PLL clock disabled, MC supply reduced to 1.1 V
Wake-Up Levels and Transitions
The wake-up can be triggered by rising, falling or both signal edges for the monitor input, by LIN or by cyclic wakeup.
Data Sheet
17
Rev. 1.0, 2017-02-02
TLE9879QXA40
Power Management Unit (PMU)
5
Power Management Unit (PMU)
5.1
Features
•
•
•
•
•
•
System modes control (startup, sleep, stop and active)
Power management (cyclic wake-up)
Control of system voltage regulators with diagnosis (overload, short, overvoltage)
Fail safe mode detection and operation in case of system errors (watchdog fail)
Wake-up sources configuration and management (LIN, MON, GPIOs)
System error logging
5.2
Introduction
The power management unit is responsible for generating all required voltage supplies for the embedded MCU
(VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure fail-safe
behavior of the system IC by controlling all system modes including the corresponding transitions. Additionally, the
PMU provides well defined sequences for the system mode transitions and generates hierarchical reset priorities.
The reset priorities control the reset behavior of all system functionalities especially the reset behavior of the
embedded MCU. All these functions are controlled by a state machine. The system master functionality of the
PMU make use of an independent logic supply and system clock. For this reason, the PMU has an "Internal logic
supply and system clock" module which works independently of the MCU clock.
Data Sheet
18
Rev. 1.0, 2017-02-02
TLE9879QXA40
Power Management Unit (PMU)
5.2.1
Block Diagram
The following figure shows the structure of the Power Management Unit. Table 4 describes the submodules in
more detail.
VS
Power Down Supply
e.g. for WDT 1
e.g. for cyclic
wake and sense
I
N
T
E
R
N
A
L
LP_CLK
Peripherals
LP_CLK2
B
U
S
PMU-PCU
MON
LIN
P0.0...P0.4
P1.0...P1.4
VDDP
Power Supply Generation Unit
(PGU)
VDDC
LDO for External Supply
VDDEXT
VDDEXT
PMU-SFR
PMU-CMU
PMU-WMU
PMU-RMU
PMU-Control
Power Management Unit
Power_Management_ 7x.vsd
Figure 3
Power Management Unit Block Diagram
Table 4
Description of PMU Submodules
Mod.
Name
Modules
Functions
Power Down
Supply
Independent supply voltage
generation for PMU
This supply is dedicated to the PMU to ensure an
independent operation from generated power supplies
(VDDP, VDDC).
LP_CLK
(= 18 MHz)
- Clock source for all PMU
submodules
- Backup clock source for System
- Clock source for WDT1
This ultra low power oscillator generates the clock for the
PMU.
This clock is also used as backup clock for the system in
case of PLL Clock failure and as an independent clock
source for WDT1.
LP_CLK2
(= 100 kHz)
Clock source for PMU
This ultra low power oscillator generates the clock for the
PMU in Stop Mode and in the cyclic modes.
Peripherals
Peripheral blocks of PMU
These blocks include the analog peripherals to ensure a
stable and fail-safe PMU startup and operation (bandgap,
bias).
Data Sheet
19
Rev. 1.0, 2017-02-02
TLE9879QXA40
Power Management Unit (PMU)
Table 4
Description of PMU Submodules (cont’d)
Mod.
Name
Modules
Functions
Power Supply
Generation
Unit (PGU)
Voltage regulators for VDDP and
VDDC
This block includes the voltage regulators for the pad
supply (VDDP) and the core supply (VDDC).
VDDEXT
Voltage regulator for VDDEXT to
supply external modules (e.g.
sensors)
This voltage regulator is a dedicated supply for external
modules and can also be used for cyclic sense operations
(e.g. with hall sensor).
PMU-SFR
All Extended Special Function
registers that are relevant to the
PMU.
This module contains all registers needed to control and
monitor the PMU.
PMU-PCU
Power Control Unit of the PMU
This block is responsible for controlling all power related
actions within the PGU Module. It also contains all
regulator related diagnostics such as undervoltage and
overvoltage detection as well as overcurrent and short
circuit diagnostics.
PMU-WMU
Wake-Up Management Unit of the
PMU
This block is responsible for controlling all wake-up related
actions within the PMU Module.
PMU-CMU
Cyclic Management Unit of the PMU This block is responsible for controlling all actions in cyclic
mode.
PMU-RMU
Reset Management Unit of the PMU This block generates resets triggered by the PMU such as
undervoltage or short circuit reset, and passes all resets to
the relevant modules and their register.
Data Sheet
20
Rev. 1.0, 2017-02-02
TLE9879QXA40
Power Management Unit (PMU)
5.2.2
PMU Modes Overview
The following state diagram shows the available modes of the device.
V S > 4V and VS ramp up
or
VS < 3V and VS ramp down
LIN-wake or
MON-wake
or
cyclic -wake
start-up
VDDC =stable and
error_supp 2.2 µF Elco1)
CVDDP
Blocking capacitor at VDDP pin
470 nF + 100 nF Ceramic, ESR < 1 Ω
CVDD_EXT
Blocking capacitor at VDDEXT pin
100nF, Ceramic ESR < 1 Ω
CVDDC
Blocking capacitor at VDDC pin
470 nF + 100 nF Ceramic, ESR < 1 Ω
CVAREF
Blocking capacitor at VAREF pin
100 nF, Ceramic ESR < 1 Ω
CLIN
Standard C for LIN slave
220 pF
CVSD
Filter C for charge pump end driver
1 µF
CCPS1
Charge pump capacitor
220 nF
CCP2S
Charge pump capacitor
220 nF
CVCP
Charge pump capacitor
470 nF
CMON
Filter C for ISO pulses
10 nF
CVDH
Capacitor
3.3 nF
CPH1
Capacitor
220 µF
CPH2
Capacitor
220 µF
CPH3
Capacitor
220 µF
COPAFILT
Capacitor
100 nF
CEMCP1
Capacitor
1 nF
CEMCP2
Capacitor
1 nF
CEMCP3
Capacitor
1 nF
CPFILT1, CPFILT2
Capacitor
RMON
Resistor at MON pin
RVSD
2Ω
Limitation of reverse current due to
transient (-2V, 8ms)
max. ratings of the VSD pin has to be
met, alternatively the resistor shall be
replaced by a diode
RVDH
Resistor
1 kΩ
RGATE
Resistor
2Ω
ROPAFILT
Resistor
12 Ω
RSH1
Resistor
optional
RSH2
Resistor
optional
RSH3
Resistor
optional
3.9 kΩ
LPFILT
DVS
–
Reverse-polarity protection diode
–
1) The capacitor must be dimensioned so as to ensure that flash operations modifying the content of the flash are never
interrupted (e.g. in case of power loss).
Data Sheet
79
Rev. 1.0, 2017-02-02
TLE9879QXA40
Application Information
28.2
ESD Immunity According to IEC61000-4-2
Note: Tests for ESD immunity according to IEC61000-4-2 “Gun test” (150pF, 330Ω) has been performed. The
results and test condition will be available in a test report.
Table 16
ESD “Gun Test”
Performed Test
Result
Unit
Remarks
ESD at pin LIN, versus
GND1)
>6
kV
2)
ESD at pin LIN, versus
GND1)
< -6
kV
2)
positive pulse
negative pulse
1) ESD test “ESD GUN” is specified with external components; see application diagram:
CMON = 100 nF, RMON = 1 kΩ, CLIN = 220 pF, CVS = >20 µF ELCO + 100 nF ESR < 1 Ω, CVSD = 1 µF, RVSD = 2 Ω.
2) ESD susceptibility “ESD GUN” according to LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2). To be tested by
external test house (IBEE Zwickau)
Data Sheet
80
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29
Electrical Characteristics
This chapter includes all relevant electrical characteristics of the product TLE9879QXA40.
29.1
General Characteristics
29.1.1
Absolute Maximum Ratings
Table 17
Absolute Maximum Ratings1)
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Voltages – Supply Pins
Supply voltage – VS
VS
-0.3
–
40
V
Load dump
P_1.1.1
Supply voltage – VSD
VSD
-0.3
–
48
V
–
P_1.1.2
Supply voltage – VSD
VSD_max_exten -2.8
–
48
V
Series resistor RVSD = P_1.1.32
2.2 Ω, t = 8 ms 2)
Voltage range – VDDP
VDDP
-0.3
–
5.5
V
–
P_1.1.3
Voltage range – VDDP
VDDP_max_ext -0.3
–
7
V
In case of voltage
transients on VS with
dVS/dt ≥ 1V/µs;
duration: t ≤ 150µs;
CVDDP ≤ 570 nF
P_1.1.41
d
end
Voltage range – VDDEXT
VDDEXT
-0.3
–
5.5
V
–
P_1.1.4
Voltage range – VDDEXT
VDDEXT_max_ -0.3
–
7
V
In case of voltage
transients on VS with
dVS/dt ≥ 1V/µs;
duration: t ≤ 150µs;
CVDDEXT ≤ 570 nF
P_1.1.42
extend
Voltage range – VDDC
VDDC
-0.3
–
1.6
V
–
P_1.1.5
VLIN
-28
–
40
V
–
P_1.1.7
V
3)
P_1.1.8
V
4)
P_1.1.38
P_1.1.9
Voltages – High Voltage Pins
Input voltage at LIN
Input voltage at MON
Input voltage at VDH
VMON_maxrate -28
VVDH_maxrate -2.8
–
–
40
40
Voltage range at GHx
VGH
-8.0
–
48
V
5)
Voltage range at GHx vs. SHx
VGHvsSH
14
–
–
V
–
P_1.1.44
Voltage range at SHx
VSH
-8.0
–
48
V
–
P_1.1.11
Voltage range at GLx
VGL
-8.0
–
48
V
6)
Voltage range at GLx vs. SL
VGLvsSL
14
–
–
V
–
Data Sheet
81
–
P_1.1.13
P_1.1.45
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 17
Absolute Maximum Ratings1) (cont’d)
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Voltage range at charge pump
VCPx
pins CP1H, CP1L, CP2H, CP2L,
VCP
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
-0.3
–
48
V
7)
P_1.1.15
-0.3
–
VDDP
V
VIN < VDDPmax9)
P_1.1.16
Voltages – GPIOs
Voltage on any port pin8)
Vin
+0.3
Current at VCP Pin
IVCP
-15
–
–
mA
–
P_1.1.35
Injection current on any port pin
IGPIONM
-5
–
5
mA
10)
P_1.1.34
Sum of all injected currents in
Normal Mode
IGPIOAM_sum
-50
–
50
mA
10)
P_1.1.30
-5000 –
50
µA
10)
P_1.1.36
5
mA
10)
P_1.1.37
VDDP
V
–
P_1.1.17
Max. current at VCP pin
Injection Current at GPIOs
IGPIOPD_sum
Sum of all injected currents in
Power Down Mode (Stop Mode)
Sum of all injected currents in
Sleep Mode
IGPIOSleep_su -5
–
m
Other Voltages
Input voltage VAREF
VAREF
-0.3
–
+0.3
VOAI
-7
–
7
V
–
P_1.1.23
Junction temperature
Tj
-40
–
150
°C
–
P_1.1.18
Storage temperature
Tstg
-55
–
150
°C
–
P_1.1.19
ESD susceptibility
all pins
VESD1
-2
–
2
kV
HBM 11)
P_1.1.20
ESD susceptibility
pins MON, VS, VSD vs.GND
VESD2
-4
–
4
kV
HBM 12)
P_1.1.21
ESD susceptibility
pins LIN vs. GND_LIN
VESD3
-6
–
6
kV
HBM 11)
P_1.1.22
ESD susceptibility CDM
all pins vs. GND
VESD_CDM1
-500
–
500
V
13)
P_1.1.28
VESD_CDM2
ESD susceptibility CDM
pins 1, 12, 13, 24, 25, 36, 37, 48
(corner pins) vs. GND
-750
–
750
V
13)
P_1.1.43
Input voltage
OP1, OP2
Temperatures
ESD Susceptibility
1) Not subject to production test, specified by design.
2) Conditions and min. value is derived from application condition for reverse polarity event.
3) Min voltage -28V with external 3.9kΩ series resistor only.
Data Sheet
82
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
4) Min voltage -2.8V with external 1kΩ series resistor only.
5) To achieve max. ratings on this pin, Parameter P_1.1.44 has to be taken into account resulting in the following dependency:
VGH < VSH + VGHvsSH_min and additionally VSH < VGH + 0.3V.
6) To achieve max. ratings on this pin, Parameter P_1.1.45 has to be taken into account resulting in the following dependency:
VGL < VSL + VGLvsSL_min and additionally VSL < VGL + 0.3V.
7) These limits can be kept if max current drawn out of pin does not exceed limit of 200 µA.
8) See XTAL parameter specification, when GPIOs (Port Pin P2.0 and P2.2) are used as XTAL.
9) Includes TMS and RESET.
10) Maximum rating for injection current of GPIO with VIN respected.
11) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001 (1.5kΩ, 100pF)
12) MON with external circuitry of a series resistor of 3.9kΩ and 10nF (at connector); VS with an external ceramic capacitor of
100nF; VSD with an external capacitor of 470nF; VDH with external circuitry of a series resistor of 1kΩ and 3.3nF (at pin).
13) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JESD22-C101F
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Data Sheet
83
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.1.2
Functional Range
Table 18
Functional Range
Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
P_1.2.1
Supply voltage in Active Mode
VS_AM
5.5
–
28
V
–
Extended supply voltage in Active
Mode
VS_AM_exte 28
–
40
V
1)
Supply voltage in Active Mode for
MOSFET Driver Supply
VSD_AM
5.4
–
28
V
Extended supply voltage in Active
Mode for MOSFET Driver Supply
VSD_AM_ext 28
–
32
V
1)3)
Functional
with parameter
deviation
P_1.2.17
Specified supply voltage for LIN
Transceiver
VS_AM_LIN
5.5
–
18
V
Parameter
Specification
P_1.2.2
Extended supply voltage for LIN
Transceiver
VS_AM_LIN
4.8
–
28
V
Functional with
parameter
deviation
P_1.2.14
3.0
–
5.5
V
2)
P_1.2.3
3.0
–
28
V
–
P_1.2.4
V/µs
3)
P_1.2.5
mA
3)
P_1.2.7
P_1.2.15
P_1.2.9
nd
end
Supply voltage in Active Mode with
VS_AMmin
reduced functionality (Microcontroller /
Flash with full operation)
Supply voltage in Sleep Mode
Supply voltage transients slew rate
Output sum current for all GPIO pins
VS_Sleep
dVS/dt
IGPIO,sum
-1
–
-50
–
1
50
Functional with P_1.2.16
parameter
deviation
P_1.2.18
Operating frequency
fsys
5
–
40
MHz
4)
Junction temperature
Tj
-40
–
150
°C
–
1) This operation voltage range is only allowed for a short duration: tmax ≤ 400 ms (continuous operation at this voltage is not
allowed), fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA. In addition, the power dissipation caused by the Charge Pump +
MOSFET driver have to be considered.
2) Reduced functionality (e.g. cranking pulse) - Parameter deviation possible.
3) Not subject to production test, specified by design.
4) Function not specified when limits are exceeded.
Data Sheet
84
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.1.3
Current Consumption
Table 19
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min. Typ.
Max.
–
35
Number
Current Consumption @VS pin
Current consumption in
Active Mode at pin VS
IVs
Current consumption in
Active Mode at pin VSD
IVSD
–
–
40
mA
20 kHz
PWM on Bridge Driver
P_1.3.8
Current consumption in
Slow Down Mode
ISDM_3P
–
–
35
mA
fsys = 5 MHz; LIN communication
P_1.3.19
Current consumption in
Sleep Mode
ISleep
–
30
35
µA
System in Sleep Mode,
P_1.3.3
microcontroller not powered, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 85°C;
VS = 5.5 V to 18V;2)
Current consumption in
Sleep Mode extended
range
ISleep_exten –
90
200
µA
System in Sleep Mode,
P_1.3.15
microcontroller not powered, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 150°C;
VS = 5.5 V to 18V;2)
Current consumption in
Sleep Mode
ISleep
–
33
µA
System in Sleep Mode,
P_1.3.9
microcontroller not powered, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND:
TJ = -40°C to 40°C;
VS = 5.5 V to 18V;2)
Data Sheet
30
mA
fsys = 20 MHz
P_1.3.1
no loads on pins, LIN in recessive
state1)
running; charge pump on (reverse
polarity FET on), external Low
Side FET static on (motor break
mode); VDDEXT on; all other
module set to power down;VS =
13.5V
d
–
85
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 19
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min. Typ.
Max.
Number
Current consumption in
Sleep Mode with cyclic
wake
ICyclic
–
–
110
µA
TJ = -40°C to 85°C;
VS = 5.5 V to 18V;
tCyclic_ON = 4ms;
tCyclic_OFF = 2048 ms;2)
Current consumption in
Stop Mode
IStop
–
110
160
µA
P_1.3.10
System in Stop Mode,
microcontroller not clocked, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND; TJ = 40°C to 85°C;
VS = 5.5 V to 18V
Current consumption in
Stop Mode-Extended
temperature range 1
IStop_extend –
600
1800
µA
P_1.3.20
System in Stop Mode,
microcontroller not clocked, Wake
capable via LIN and MON; MON
connected to VS or GND;
GPIOs open (no loads) or
connected to GND;
TJ = -40 °C to 150 °C;
VS = 5.5 V to 18 V
P_1.3.4
1) Current on VS, ADC1/2 active, timer running, LIN active (recessive).
2) Incl. leakage currents form VDH, VSD and MON
Note: Within the functional range, the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
Data Sheet
86
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.1.4
Thermal Resistance
Table 20
Thermal Resistance
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Junction to Soldering Point
RthJSP
–
6
–
K/W
1)
measured to
Exposed Pad
P_1.4.1
Junction to Ambient
RthJA
–
33
–
K/W
2)
P_1.4.2
1) Not subject to production test, specified by design.
2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm³ with 2 inner
copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and
300mm2 cooling area on the bottom layer (70µm).
29.1.5
Timing Characteristics
The transition times between the system modes are specified here. Generally the timings are defined from the
time when the corresponding bits in register PMCON0 are set until the sequence is terminated.
Table 21
System Timing1)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min. Typ.
Max.
Unit
Note / Test Condition
Number
P_1.5.6
Wake-up over battery
tstart
–
–
3
ms
Battery ramp-up time to code
execution
Wake-up over battery
tstartSW
–
–
1.5
ms
Battery ramp-up time to till
P_1.5.1
MCU reset is released; VS > 3
V and RESET = 1
Sleep-Exit
tsleep - exit –
–
1.5
ms
P_1.5.2
Rising/falling edge of any
wake-up signal (LIN, MON) till
MCU reset is released;
Sleep-Entry
tsleep -
–
330
µs
2)
–
P_1.5.3
entry
1) Not subject to production test, specified by design.
2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached.
Data Sheet
87
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.2
Power Management Unit (PMU)
This chapter includes all electrical characteristics of the Power Management Unit
29.2.1
PMU I/O Supply (VDDP) Parameters
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the padsupply VDDP and the transition times between the system modes are specified here.
Table 22
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
IVDDP
Specified output current
IVDDP
Specified output current
CVDDP1
Required decoupling
capacitance
Required buffer capacitance for CVDDP2
stability (load jumps)
Values
Min.
Typ.
Max.
0
–
50
0
–
30
Unit
Note / Test Condition
Number
mA
1)
P_2.1.1
mA
1)2)
P_2.1.22
0.47
–
2.2
µF
3)4)
1
–
2.2
µF
3)4)
P_2.1.2
ESR < 1Ω; the
specified capacitor value
is a typical value.
The specified
capacitor value is a
typical value.
Output voltage including line
and load regulation @ Active
Mode
VDDPOUT
4.9
5.0
5.1
V
5)
Output voltage including line
and load regulation @ Active
Mode
VDDPOUT
4.9
5.0
5.1
V
2)5)
Output voltage including line
and load regulation @ Stop
Mode
VDDPOUTS 4.5
Output drop @ Active Mode
VSVDDPout –
P_2.1.20
Iload < 90mA; VS > 5.5V P_2.1.3
Iload < 70mA; VS >
P_2.1.23
5.5V
5.0
5.5
V
5)
Iload is only internal;
VS > 5.5V
P_2.1.21
50
400
mV
IVDDP = 30mA6);
3.5V < VS < 5.0V
P_2.1.4
Load regulation @ Active Mode VVDDPLOR -50
–
50
mV
2 ... 90mA; C = 570nF
P_2.1.5
Line regulation @ Active Mode VVDDPLIR
-50
–
50
mV
VS = 5.5 ... 28V
P_2.1.6
5.14
–
5.4
V
VS > 5.5V; Overvoltage
P_2.1.7
TOP
VDDPOV
Overvoltage detection
leads to SUPPLY_NMI
Overvoltage detection filter time tFILT_VDDP –
735
–
µs
3)7)
P_2.1.24
3
–
V
3)
P_2.1.25
P_2.1.26
OV
VDDPOK
Voltage OK detection
8)
–
Voltage stable detection range
∆VDDPSTB - 220 –
+ 220 mV
3)
Undervoltage reset
VDDPUV
2.5
2.6
2.7
V
–
P_2.1.8
Overcurrent diagnostic
IVDDPOC
91
–
220
mA
–
P_2.1.9
Data Sheet
88
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 22
Electrical Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Overcurrent diagnostic filter
time
tFILT_VDDP –
Overcurrent diagnostic
shutdown time
tFILT_VDDP –
1)
2)
3)
4)
5)
6)
7)
8)
9)
Unit
Note / Test Condition
Number
Typ.
Max.
27
–
µs
3)7)
P_2.1.27
290
–
µs
3)7)9)
P_2.1.28
OC
OC_SD
Specified output current for port supply and additional other external loads already excluding VDDC current.
This use case applies to cases where output current on VDDEXT is max. 40 mA.
Not subject to production test, specified by design.
Ceramic capacitor.
Load current includes internal supply.
Output drop for IVDDP without internal supply current.
This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
The absolute voltage value is the sum of parameters VDDP + ∆VDDPSTB.
After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present, the device will enter sleep mode.
Data Sheet
89
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.2.2
PMU Core Supply (VDDC) Parameters
This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the coresupply VDDC and the transition times between the system modes are specified here.
Table 23
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Required decoupling capacitance
CVDDC1
0.1
–
1
µF
1)2)
ESR < 1Ω; the
specified capacitor
value is a typical
value.
P_2.2.1
Required buffer capacitance for
stability (load jumps)
CVDDC2
0.33
–
1
µF
2)
the specified
capacitor value is a
typical value.
P_2.2.17
Output voltage including line
regulation @ Active Mode
VDDCOUT
1.44
1.5
1.56
V
Iload < 40mA
P_2.2.2
Reduced output voltage including
line regulation @ Stop Mode
VDDCOUT_ 0.95
1.1
1.3
V
with internal VDDC
load only: Iload_internal
< 1.5mA
P_2.2.23
Load Regulation @ Active Mode
VDDCLOR
-50
–
50
mV
2 ... 40mA; C =430nF P_2.2.3
Line regulation @ Active Mode
VDDCLIR
-25
–
25
mV
VDDP = 2.5 ... 5.5V
Overvoltage detection
VDDCOV
1.59
1.62
1.68
V
Overvoltage leads to P_2.2.5
SUPPLY_NMI
Overvoltage detection filter time
tFILT_VDDC –
735
–
µs
1)3)
P_2.2.18
Voltage OK detection range4)
∆VDDCOK
–
+ 280
mV
1)
P_2.2.19
+ 110
mV
1)
P_2.2.20
Stop_Red
P_2.2.4
OV
5)
- 280
Voltage stable detection range
∆VDDCSTB - 110
Undervoltage reset
VDDVUV
1.136 1.20
1.264
V
–
P_2.2.6
Overcurrent diagnostic
IVDDCOC
45
100
mA
–
P_2.2.7
P_2.2.21
P_2.2.22
Overcurrent diagnostic filter time
tFILT_VDDC –
Overcurrent diagnostic shutdown
time
tFILT_VDDC –
–
–
27
–
µs
1)3)
290
–
µs
1)3)6)
OC
1)
2)
3)
4)
5)
6)
OC_SD
Not subject to production test, specified by design.
Ceramic capacitor.
This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
The absolute voltage value is the sum of parameters VDDC + ∆VDDCSTB.
The absolute voltage value is the sum of parameters VDDC + ∆VDDCOK.
After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode.
Data Sheet
90
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.2.3
VDDEXT Voltage Regulator (5.0V) Parameters
Table 24
Electrical Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ. Max.
Unit
Note /
Test Condition
Number
Specified output current
IVDDEXT
0
–
20
mA
–
P_2.3.1
Specified output current
IVDDEXT
0
–
40
mA
1)
P_2.3.21
3) 2)
Required decoupling capacitance CVDDEXT1
0.1
–
2.2
µF
ESR < 1 Ω; the
specified capacitor
value is a typical
value.
P_2.3.22
Required buffer capacitance for
stability (load jumps)
CVDDEXT2
1
–
2.2
µF
3)2)
the specified
capacitor value is a
typical value.
P_2.3.20
Output voltage including line and
load regulation
VDDEXT
4.9
5.0
5.1
V
3)
P_2.3.3
Output voltage including line and
load regulation
VDDEXT
Output drop @ Active Mode
VS-VDDEXT
50
+300
mV
3)
Iload < 20mA;
3V < VS < 5.0V
P_2.3.4
Output drop @ Active Mode
VS-VDDEXT
–
+400
mV
Iload < 40mA;
3V < VS < 5.0V
P_2.3.14
Load regulation @ Active Mode
VDDEXTLOR
-50
–
50
mV
2 ... 40mA; C =200nF P_2.3.5
Line regulation @ Active Mode
VVDDEXTLIR
-50
–
50
mV
VS = 5.5 ... 28V
3)
Iload
5.5V
4.8
5.0
5.2
V
Iload
P_2.3.23
5.5V
P_2.3.6
Power supply ripple rejection @
Active Mode
PSSRVDDEXT 50
–
–
dB
VS = 13.5V; f =0 ... P_2.3.7
1KHz; Vr=2Vpp
Overvoltage detection
VVDDEXTOV
–
5.4
V
VS > 5.5V
P_2.3.8
P_2.3.24
Overvoltage detection filter time
5.18
tFILT_VDDEXT –
735
–
µs
3)4)
3
–
V
3)
P_2.3.25
P_2.3.26
OV
VVDDEXTOK
Voltage OK detection range
5)
–
–
+ 220
mV
3)
2.6
2.8
3.0
V
6)
P_2.3.9
50
–
160
mA
–
P_2.3.10
27
–
µs
3)4)
P_2.3.27
µs
3)4)
P_2.3.28
Voltage stable detection range
∆VVDDEXTST - 220
Undervoltage trigger
VVDDEXTUV
Overcurrent diagnostic
IVDDEXTOC
Overcurrent diagnostic filter time
tFILT_VDDCOC –
B
Overcurrent diagnostic shutdown tFILT_VDDCOC –
time
_SD
1)
2)
3)
4)
290
–
This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22.
Ceramic capacitor.
Not subject to production test, specified by design.
This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK.
Data Sheet
91
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
5) The absolute voltage value is the sum of parameters VDDEXT + ∆VDDEXTSTB.
6) When the condition is met, the Bit VDDEXT_CTRL.bit.SHORT will be set.
Data Sheet
92
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.2.4
VPRE Voltage Regulator (PMU Subblock) Parameters
The PMU VPRE Regulator acts as a supply of VDDP and VDDEXT voltage regulators.
Table 25
Functional Range
Parameter
Symbol
Specified output current
IVPRE
Values
Min.
Typ.
Max.
–
–
110
Unit
Note / Test Condition Number
mA
1)
P_2.4.1
1) Not subject to production test, specified by design.
29.2.4.1
Load Sharing Scenarios of VPRE Regulator
The figure below shows the possible load sharing scenarios of VPRE regulator.
VS
VPRE
max. 110 mA
VDDEXT
VDDEXT - 5V
1: max. 20 mA
2: max. 40 mA
VDDP - 5V
1: max. 90 mA
2: max. 70 mA
VDDP
CVDDEXT
CVDDP
GND (Pin 39)
GND (Pin 39)
VDDC
VDDC - 1.5V
max. 40 mA
CVDDC
GND (Pin 39)
Load Sharing VPRE – Scenarios 1 & 2
Load_Sharing_VPRE.vsd
Figure 33
Load Sharing Scenarios of VPRE Regulator
29.2.5
Power Down Voltage Regulator (PMU Subblock) Parameters
The PMU Power Down voltage regulator consists of two subblocks:
•
•
Power Down Pre regulator: VDD5VPD
Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers)
Both regulators are used as purely internal supplies. The following table contains all relevant parameters:
Data Sheet
93
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 26
Functional Range
Parameter
Symbol
Values
Min.
Typ.
Max.
–
1.5
Unit
Note / Test Condition Number
V
1)
VDD1V5_PD
Power-On Reset Threshold
VDD1V5_PD_ 1.2
P_2.5.1
RSTTH
1) Not subject to production test, specified by design
Data Sheet
94
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.3
System Clocks
29.3.1
Oscillators and PLL Parameters
Table 27
Electrical Characteristics System Clocks
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Unit
Note / Test Condition
Number
Typ.
Max.
14
18
22
MHz This clock is used at startup P_3.1.1
and can be used in case the
PLL fails
70
100
130
kHz
This clock is used for cyclic P_3.1.2
wake
PMU Oscillators (Power Management Unit)
Frequency of LP_CLK
fLP_CLK
Frequency of LP_CLK2 fLP_CLK2
CGU Oscillator (Clock Generation Unit Microcontroller)
Short term frequency
deviation1)
fTRIMST
-0.4
–
+0.4
%
2)3)
Within any 10 ms, e.g.
after synchronization to a
LIN frame (PLL settings
untouched within 10 ms)
P_3.1.3
Absolute accuracy
fTRIMABSA
-1.5
–
+1.5
%
Including temperature and
lifetime deviation
P_3.1.4
CGU-OSC Start-up
time
tOSC
–
–
10
µs
3)
P_3.1.5
Startup time OSC from
Sleep Mode, power supply
stable
PLL (Clock Generation Unit Microcontroller) 3)
VCO frequency range
Mode 0
fVCO-0
48
–
112
MHz VCOSEL =”0”
P_3.1.6
VCO frequency range
Mode 1
fVCO-1
96
–
160
MHz VCOSEL =”1”
P_3.1.7
Input frequency range
fOSC
4
–
16
MHz –
P_3.1.8
XTAL1 input freq. range fOSC
4
–
16
MHz –
P_3.1.9
0.04687 –
80
MHz –
P_3.1.10
Free-running frequency fVCOfree_0
Mode 0
–
–
38
MHz VCOSEL =”0”
P_3.1.11
Free-running frequency fVCOfree_1
Mode 1
–
–
76
MHz VCOSEL =”1”
P_3.1.12
P_3.1.13
Output freq. range
fPLL
Input clock high/low
time
thigh/low
10
–
–
ns
–
Peak period jitter
tjp
-500
–
500
ps
4)
for K=1
P_3.1.14
Accumulated jitter
jacc
–
–
5
ns
4)
for K=1
P_3.1.15
Lock-in time
tL
–
–
200
µs
–
Data Sheet
95
P_3.1.16
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
1)
2)
3)
4)
The typical oscillator frequency is 5 MHz
VDDC = 1.5 V, Tj = 25°C
Not subject to production test, specified by design.
This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance.
29.3.2
External Clock Parameters XTAL1, XTAL2
Table 28
Functional Range
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)1)
Parameter
Symbol
Values
Max.
Unit Note /
Test Condition
-1.7 + VDDC –
1.7
V
2)
P_3.2.1
0.3 x VDDC
–
–
V
3)
Peak-to-peak
voltage
P_3.2.2
0 V < VIN < VDDI
P_3.2.3
Min.
Input voltage range limits
for signal on XTAL1
VIX1_SR
Input voltage (amplitude) on VAX1_SR
XTAL1
Typ.
Number
XTAL1 input current
IIL
–
–
±20
µA
Oscillator frequency
fOSC
4
–
24
MHz Clock signal
P_3.2.4
Oscillator frequency
fOSC
4
–
16
MHz Crystal or
Resonator
P_3.2.5
High time
t1
6
–
–
ns
–
P_3.2.6
Low time
t2
6
–
–
ns
–
P_3.2.7
Rise time
t3
–
8
8
ns
–
P_3.2.8
Fall time
t4
–
8
8
ns
–
P_3.2.9
1) This parameter table is not subject to production test, specified by design.
2) Overload conditions must not occur on pin XTAL1.
3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and
the resulting voltage peaks must remain within the limits defined by VIX1.
Data Sheet
96
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.4
Flash Memory
This chapter includes the parameters for the 128 kByte embedded flash module.
29.4.1
Flash Parameters
Table 29
Flash Characteristics1)
VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Programming time per 128 byte page
tPR
Typ.
–
Unit
Note /
Number
Test Condition
Max.
3
2)
3.5
ms
3V < VS < 28V
P_4.1.1
2)
4.5
ms
3V < VS < 28V
P_4.1.2
Erase time per sector/page
tER
–
4
Data retention time
tRET
20
–
–
years
1,000 erase /
P_4.1.3
program cycles
Data retention time
tRET
50
–
–
years
1,000 erase /
P_4.1.9
program cycles
Tj = 30°C3)
Flash erase endurance for user sectors NER
30
–
–
kcycles Data retention
time 5 years
Flash erase endurance for security
pages
NSEC
10
–
–
cycles
4)
Drain disturb limit
NDD
32
–
–
kcycles
5)
P_4.1.4
Data retention P_4.1.5
time 20 years
P_4.1.6
1) Not subject for production test, specified by design.
2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system
clock cycles. The requirement is only relevant for extremely low system frequencies.
3) Derived by extrapolation of lifetime tests.
4) Tj = 25 °C.
5) This parameter limits the number of subsequent programming operations within a physical sector without a given page in
this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal
sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM emulation firmware
routines handle this limit automatically, for wordline erases in code sectors (without EEPROM emulation) it is
recommended to execute a software based refresh, which may make use of the integrated random number generator
NVMBRNG to statistically start a refresh.
Data Sheet
97
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.5
Parallel Ports (GPIO)
29.5.1
Description of Keep and Force Current
VDDP
keeper
current
PU Device
PUDSEL
P1.x
P0.x
\PUDSEL
keeper
current
PD Device
VSS
Pull- Up- Down.vsd
Figure 34
Pull-Up/Down Device
UGPIO
Logical "1"
7.5 kOhm (equivalent)
(1.5V / 200uA)
VIH - VDDP
Undefined
2.33 kOhm (equivalent)
(3.5V / 1.5mA)
VIL - VDDP
Logical "0"
-I PLF
Figure 35
Data Sheet
I
-IPLK
Current_Diag.vsd
Pull-Up Keep and Forced Current
98
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
UGPIO
Logical "1"
2.33 kOhm (equivalent)
(3.5V / 1.5mA)
VIH
Undefined
7.5 kOhm (equivalent)
(1.5V / 200uA)
VIL
Logical "0"
IPLK
I
I PLF
Current_Diag-Pull _down.vsd
Figure 36
Pull-Down Keep and Force Current
29.5.2
DC Parameters of Port 0, Port 1, TMS and Reset
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the maximum allowed ocurrent
which can be taken out of VDDP.
Table 30
Current Limits for Port Output Drivers1)
Port Output Driver Mode
Maximum Output Current
(IOLmax , - IOHmax)
VDDP ≥ 4.5V
Strong driver2)
Medium driver
Weak driver
3)
3)
Maximum Output Current
(IOLnom , - IOHnom)
Number
2.6V < VDDP < VDDP ≥ 4.5V
4.5V
2.6V < VDDP <
4.5V
5 mA
3 mA
1.6 mA
1.0 mA
P_5.1.15
3 mA
1.8 mA
1.0 mA
0.8 mA
P_5.1.1
0.5 mA
0.3 mA
0.25 mA
0.15 mA
P_5.1.2
1) Not subject to production test, specified by design.
2) Not available for port pins P0.4, P1.0, P1.1 and P1.2
3) All P0.x and P1.x
Table 31
DC Characteristics Port0, Port1
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Input hysteresis
HYSP0_P1 0.11 x VDDP –
–
V
1)
Input hysteresis
HYSP0_P1 –
–
V
1)
_exend
Data Sheet
0.09 x
VDDP
99
Number
P_5.1.5
Series
resistance = 0 Ω;
4.5V ≤ VDDP ≤
5.5V
P_5.1.16
Series
resistance = 0 Ω;
2.6V ≤ VDDP ≤
4.5V
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 31
DC Characteristics Port0, Port1 (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
Input low voltage
VIL
-0.3
–
0.3 x VDDP V
2)
4.5V ≤ VDDP ≤
5.5V
P_5.1.3
Input low voltage
VIL_extend
-0.3
0.42 x
–
V
1)
2.6V ≤ VDDP ≤
4.5V
P_5.1.17
Input high voltage
VIH
0.7 x VDDP
–
VDDP + 0.3 V
2)
4.5V ≤ VDDP ≤
5.5V
P_5.1.4
Input high voltage
VIH_extend –
0.52 x
VDDP + 0.3 V
1)
2.6V ≤ VDDP ≤
4.5V
P_5.1.18
Output low voltage
VOL
–
–
1.0
V
3) 4)
IOL ≤ IOLmax
P_5.1.6
Output low voltage
VOL
–
–
0.4
V
3) 5)
IOL ≤ IOLnom
P_5.1.7
V
3) 4)
IOH ≥ IOHmax
P_5.1.8
IOH ≥ IOHnom
P_5.1.9
Output high voltage
VOH
VDDP
VDDP - 1.0
VDDP
–
–
–
–
V
3) 5)
IOZ_extend1 -500
–
+500
nA
-40°C ≤ TJ
≤ 25°C,
0.45 V < VIN
< VDDP
P_5.1.20
IOZ1
–
+5
µA
6)
P_5.1.10
Output high voltage
VOH
Input leakage current
Input leakage current
VDDP - 0.4
-5
25°C <
TJ ≤ 85°C,
0.45 V < VIN
< VDDP
Input leakage current
IOZ_extend2 -15
–
+15
µA
85°C < TJ
≤ 150°C,
0.45 V < VIN
< VDDP
P_5.1.11
Pull level keep current
IPLK
-200
–
+200
µA
7)
VPIN ≥ VIH (up)
VPIN ≤ VIL (dn)
P_5.1.12
Pull level force current
IPLF
-1.5
–
+1.5
mA
7)
VPIN ≤ VIL (up)
VPIN ≥ VIH (dn)
P_5.1.13
Pin capacitance
CIO
–
–
10
pF
1)
P_5.1.14
–
5
–
µs
1)
P_5.1.19
Reset Pin Timing
Reset Pin Input Filter Time tfilt_RESET
1) Not subject to production test, specified by design.
2) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.
3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for pin
groups must be respected.
4) Tested at 4.9V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 4.5V < VDDP < 5.5V.
5) As a rule, with decreasing output current the output levels approach the respective supply level (VOL→GND, VOH→VDDP).
Tested at 4.9V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA.
Data Sheet
100
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values are
ensured by correlation. For derating, please refer to the following descriptions:
Leakage derating depending on temperature (TJ = junction temperature [°C]):
IOZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 µA.
Leakage derating depending on voltage level (DV = VDDP - VPIN [V]):
IOZ = IOZtempmax - (1.6 × DV) [µA]
This voltage derating formula is an approximation which applies for maximum temperature.
7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down.
These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose
IO pins.
29.5.3
DC Parameters of Port 2
These parameters apply to the IO voltage range, 4.5 V ≤ VDDP ≤ 5.5 V.
Note: Operating Conditions apply.
Keeping signal levels within the limits specified in this table ensures operation without overload conditions.
For signal levels outside these specifications, also refer to the specification of the overload current IOV.
Table 32
DC Characteristics Port 2
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
Number
Input low voltage
VIL
-0.3
–
0.3 x VDDP V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.2.1
Input low voltage
VIL_extend
-0.3
0.42 x
–
V
2)
2.6V ≤ VDDP ≤
4.5V
P_5.2.10
Input high voltage
VIH
0.7 x VDDP
–
VDDP + 0.3 V
1)
4.5V ≤ VDDP ≤
5.5V
P_5.2.2
Input high voltage
VIH_extend –
0.52 x
VDDP + 0.3 V
2)
P_5.2.11
–
V
2)
–
V
2)
VDDP
VDDP
0.11 x VDDP –
Input hysteresis
HYSP2
Input hysteresis
HYSP2_ext –
end
0.09 x
VDDP
2.6V ≤ VDDP ≤
4.5V
P_5.2.3
Series
resistance = 0 Ω;
4.5V ≤ VDDP ≤
5.5V
P_5.2.12
Series
resistance = 0 Ω;
2.6V ≤ VDDP <
4.5V
Input leakage current
IOZ2
-400
–
+400
nA
TJ ≤ 85°C,
0 V < VIN < VDDP
P_5.2.4
Pull level keep current
IPLK
-30
–
+30
µA
3)
P_5.2.5
Data Sheet
101
VPIN ≥ VIH (up)
VPIN ≤ VIL (dn)
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 32
DC Characteristics Port 2 (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Pull level force current
Symbol
IPLF
Values
Min.
Typ.
Max.
Unit Note /
Test Condition
-750
–
+750
µA
3)
VPIN ≤ VIL (up)
VPIN ≥ VIH (dn)
P_5.2.6
10
pF
2)
P_5.2.7
CIO
–
–
Pin capacitance
(digital inputs/outputs)
1) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V.
Number
2) Not subject to production test, specified by design.
3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default
pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down.
Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled
pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down.
Data Sheet
102
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.6
LIN Transceiver
29.6.1
Electrical Characteristics
Table 33
Electrical Characteristics LIN Transceiver
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit Note / Test Condition
Number
Max.
Bus Receiver Interface
Receiver threshold voltage, Vth_dom
recessive to dominant edge
Receiver dominant state
VBUSdom -27
Receiver threshold voltage, Vth_rec
dominant to recessive edge
Receiver recessive state
0.4 ×VS 0.45 ×VS 0.53 x VS V
VBUSrec
0.47 x
VS
SAE J2602
P_6.1.1
0.4 ×VS
V
LIN Spec 2.2 (Par. 17)
P_6.1.2
0.55 ×VS 0.6 ×VS
V
SAE J2602
P_6.1.3
–
0.6 ×VS –
1)
LIN Spec 2.2 (Par. 18) P_6.1.4
0.525
× VS
V
2)
LIN Spec 2.2 (Par. 19) P_6.1.5
Receiver center voltage
VBUS_CN 0.475
× VS
T
Receiver hysteresis
VHYS
0.07 VS 0.12 ×VS 0.175
× VS
V
3)
LIN Spec 2.2 (Par. 20) P_6.1.6
Wake-up threshold voltage
VBUS,wk
0.4 ×VS 0.5 ×VS
0.6 ×VS
V
–
P_6.1.7
3
–
15
µs
P_6.1.8
The overall dominant
time for bus wake-up is
a sum of tWK,bus +
adjustable digital filter
time. The digital filter
time can be adjusted by
PMU.CNF_WAKE_FIL
TER.CNF_LIN_FT;
0.8 ×VS –
VS
V
VTxD = high Level
P_6.1.9
–
0.22 ×VS V
Driver Dominant
Voltage
RL = 500 Ohm
P_6.1.78
Dominant time for bus wake- tWK,bus
up (internal analog filter
delay)
0.5 ×VS
1.15 ×VS V
Bus Transmitter Interface
Bus recessive output
voltage
VBUS,ro
Bus dominant output voltage VBUS,do
Data Sheet
–
103
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 33
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit Note / Test Condition
Number
P_6.1.10
Bus short circuit current
IBUS,sc
40
100
150
mA
Current Limitation for
driver dominant state
driver on
VBUS = 18 V; LIN Spec
2.2 (Par. 12)
Bus short circuit filter time
tBUS,sc
–
5
–
µs
6)
Leakage current (loss of
ground)
IBUS_NO_ -1000
-450
1000
µA
VS = 12 V; 0 < VBUS <
P_6.1.11
18 V; LIN Spec 2.2 (Par.
15)
Leakage current
IBUS_NO_ –
10
20
µA
VS = 0 V; VBUS = 18 V;
GND
IBUS_PAS -1
–
–
mA
VS = 18 V; VBUS = 0 V;
LIN Spec 2.2 (Par. 13)
P_6.1.13
–
20
µA
VS = 8 V; VBUS = 18 V;
P_6.1.14
_dom
Leakage current
IBUS_PAS –
LIN Spec 2.2 (Par. 14)
_rec
Bus pull-up resistance
RBUS
P_6.1.12
LIN Spec 2.2 (Par. 16)
BAT
Leakage current
The overall bus short P_6.1.71
circuit filter time is a sum
of tBUS,sc + digital filter
time. The digital filter
time is 4 µs (typ.)
20
30
47
kΩ
Normal mode LIN Spec P_6.1.15
2.2 (Par. 26)
AC Characteristics - Transceiver Normal Slope Mode
td(L),R
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.16
td(H),R
Propagation delay
bus recessive to RxD HIGH
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.17
µs
tsym,R = td(L),R - td(H),R;
LIN Spec 2.2 (Par. 32)
P_6.1.18
4)
P_6.1.19
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
tsym,R
-2
–
2
Duty cycle D1
Normal Slope Mode
(for worst case at 20 kbit/s)
tduty1
0.396
–
–
Data Sheet
104
duty cycle 1
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS; VS = 5.5 …
18 V;
tbit = 50 µs;
D1 = tbus_rec(min)/2 tbit;
LIN Spec 2.2 (Par. 27)
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 33
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Duty cycle D2
Normal Slope Mode
(for worst case at 20 kbit/s)
Symbol
tduty2
Values
Unit Note / Test Condition
Min.
Typ.
Max.
–
–
0.581
Number
4)
P_6.1.20
duty cycle 2
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS;
VS = 5.5 … 18 V;
tbit = 50 µs;
D2 = tbus_rec(max)/2 tbit;
LIN Spec 2.2 (Par. 28)
AC Characteristics - Transceiver Low Slope Mode
td(L),R
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.21
td(H),R
Propagation delay
bus recessive to RxD HIGH
0.1
–
6
µs
LIN Spec 2.2
(Param. 31)
P_6.1.22
µs
tsym,R = td(L),R - td(H),R;
LIN Spec 2.2 (Par. 32)
P_6.1.23
4)
P_6.1.24
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
tsym,R
-2
–
2
Duty cycle D3
(for worst case at
10.4 kbit/s)
tduty1
0.417
–
–
duty cycle 3
THRec(max) =
0.778 ×VS;
THDom(max) =
0.616 ×VS; VS = 5.5 …
18 V;
tbit = 96 µs;
D3 = tbus_rec(min)/2 tbit;
LIN Spec 2.2 (Par. 29)
Duty cycle D4
(for worst case at
10.4 kbit/s)
tduty2
–
–
0.590
4)
duty cycle 4
P_6.1.25
THRec(min) = 0.389 ×VS;
THDom(min) =
0.251 ×VS;
VS = 5.5 … 18 V;
tbit = 96 µs;
D4 = tbus_rec(max)/2 tbit;
LIN Spec 2.2 (Par. 30)
AC Characteristics - Transceiver Fast Slope Mode
td(L),R
0.1
–
6
µs
–
P_6.1.26
td(H),R
Propagation delay
bus recessive to RxD HIGH
0.1
–
6
µs
–
P_6.1.27
-1.5
–
1.5
µs
tsym,R = td(L),R - td(H),R;
P_6.1.28
0.1
–
6
µs
–
P_6.1.31
Propagation delay
bus dominant to RxD LOW
Receiver delay symmetry
tsym,R
AC Characteristics - Flash Mode
Propagation delay
bus dominant to RxD LOW
Data Sheet
td(L),R
105
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 33
Electrical Characteristics LIN Transceiver (cont’d)
Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Propagation delay
td(H),R
bus recessive to RxD HIGH
Receiver delay symmetry
tsym,R
Values
Unit Note / Test Condition
Number
Min.
Typ.
Max.
0.1
–
6
µs
–
P_6.1.32
-1.0
–
1.5
µs
tsym,R = td(L),R - td(H),R;
P_6.1.33
5)
Duty cycle D7 (for worst
case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
tduty1
0.399
–
–
duty cycle D7
P_6.1.34
THRec(max) =
0.744 ×VS;
THDom(max) =
0.581 ×VS; VS = 13.5 V;
tbit = 8.7 µs;
D7 = tbus_rec(min)/2 tbit;
Duty cycle D8 (for worst
case at 115 kbit/s)
for +1 µs Receiver delay
symmetry
tduty2
–
–
0.578
5)
LIN input capacity
CLIN_IN
–
15
30
pF
6)
P_6.1.69
TxD dominant time out
ttimeout
6
12
20
ms
VTxD = 0 V
P_6.1.36
200
215
°C
6)
P_6.1.65
K
6)
P_6.1.66
duty cycle 8
P_6.1.35
THRec(min) = 0.422 ×VS;
THDom(min) =
0.284 ×VS;VS = 13.5 V;
tbit = 8.7 µs;
D8 = tbus_rec(max)/2 tbit;
Thermal Shutdown (Junction Temperature)
Thermal shutdown temp.
Thermal shutdown hyst.
1)
2)
3)
4)
TjSD
∆T
190
–
10
–
Maximum limit specified by design.
VBUS_CNT = (Vth_dom +Vth rec)/2
VHYS = VBUSrec - VBUSdom
Bus load concerning LIN Spec 2.2:
Load 1 = 1 nF / 1 kΩ = CBUS / RBUS
Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS
Load 3 = 10 nF / 500 Ω = CBUS / RBUS
5) Bus load
Load 1 = 1 nF / 500 Ω = CBUS / RBUS
6) Not subject to production test, specified by design.
Data Sheet
106
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.7
High-Speed Synchronous Serial Interface
29.7.1
SSC Timing Parameters
The table below provides the SSC timing in the TLE9879QXA40.
Table 34
SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Note /
Number
Test Condition
–
2)
VDDP > 2.7 V
P_7.1.1
–
ns
2)
VDDP > 2.7 V
P_7.1.2
ns
2)
VDDP > 2.7 V
P_7.1.3
MRST hold from SCLK
t3
15
–
–
ns
1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period.
2)
VDDP > 2.7 V
P_7.1.4
1)
t0
SCLK clock period
t1
MTSR delay from SCLK
10
t2
MRST setup to SCLK
2 * TSSC –
–
10
–
–
2) Not subject to production test, specified by design.
t0
SCLK1)
t1
t1
MTSR1)
t2
t3
Data
valid
MRST1)
t1
1) This timing is based on the following setup: CON.PH = CON.PO = 0.
SSC_Tmg1
Figure 37
Data Sheet
SSC Master Mode Timing
107
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.8
Measurement Unit
29.8.1
System Voltage Measurement Parameters
Table 35
Supply Voltage Signal Conditioning
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Number
Min.
Typ.
Max.
0
–
5
V
–
P_8.1.15
0
–
1.23
V
–
P_8.1.16
ATTVS_1
–
0.055
–
SFR setting 1
P_8.1.41
Nominal operating input
voltage range VS
VS,range1
3
–
22
V
1)
P_8.1.1
Accuracy of VS after
calibration
VS,range1
-220
–
220
mV
SFR setting 1, VS = 5.5 V P_8.1.70
to 18V
Input to output voltage
attenuation:
ATTVS_2
–
0.039
–
Nominal operating input
voltage range VS
VS,range2
3
–
31
V
1)
Accuracy of VS after
calibration
VS,range2
-370
–
370
mV
SFR setting 2, VS = 5.5V
to 18V
P_8.1.44
–
P_8.1.21
Measurement output
VA5
voltage range @ VAREF5
Measurement output
voltage range @
VAREF1V2
VA1V2
Battery / Supply Voltage Measurement
Input to output voltage
attenuation:
VS
SFR setting 1;
Max. value corresponds
to typ. ADC full scale
input; 3V < VS < 28V
SFR setting 2
P_8.1.42
VS
P_8.1.40
SFR setting 2;
Max. value corresponds
to typ. ADC full scale input
3V < VS < 28V
Driver Supply Voltage Measurement VSD
ATTVSD
–
0.039
–
Nominal operating input
voltage range VSD
VSD,range
2.5
–
31
V
1)
P_8.1.2
Accuracy of VSD sense
after calibration
∆VSD
-440 –
440
mV
VS = 5.5V to 18V
P_8.1.47
Input to output voltage
attenuation:
VSD
Data Sheet
108
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 35
Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Unit Note / Test Condition
Typ.
Max.
Number
Charge Pump Voltage Measurement VCP
ATTVCP
–
0.023
–
Nominal operating input
voltage range VCP
VCP,range
2.5
–
52
Accuracy of VCP sense
after calibration
∆VCP
-747 –
747
Input to output voltage
attenuation:
–
P_8.1.56
V
1)
P_8.1.7
mV
VS = 5.5V to 18V
P_8.1.62
–
P_8.1.49
VCP
Monitoring Input Voltage Measurement VMON
ATTVMON
–
0.039
–
Nominal operating input
voltage range VMON
VMON,range
2.5
–
31
V
1)
P_8.1.8
Accuracy of VMON sense
after calibration
∆VMON
-440
–
440
mV
VS = 5.5V to 18V
P_8.1.68
ATTVDDP
–
0.164
–
–
P_8.1.33
Nominal operating input
voltage range VDDP
VDDP,range
0
–
7.50
V
1)
P_8.1.50
Accuracy of VDDP sense
after calibration
∆VDDP_SENSE
-105
–
105
mV
2)
P_8.1.5
–
P_8.1.22
Input to output voltage
attenuation:
VMON
Pad Supply Voltage Measurement VVDDP
Input-to-output voltage
attenuation:
VDDP
VS = 5.5 to 18V
10-Bit ADC Reference Voltage Measurement VAREF
ATTVAREF
–
0.219
–
Nominal operating input
voltage range VAREF
VAREF,range
0
–
5.62
V
1)
P_8.1.51
Accuracy of VAREF sense
after calibration
∆VAREF
-79
–
79
mV
VS = 5.5V to 18V
P_8.1.48
–
P_8.1.57
1)
P_8.1.52
Input to output voltage
attenuation:
VAREF
8-Bit ADC Reference Voltage Measurement VBG
Input-to-output voltage
attenuation:
ATTVBG
–
0.75
–
VBG,range
0.8
–
1.64
VBG
Nominal operating input
voltage range VBG
Data Sheet
109
V
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 35
Supply Voltage Signal Conditioning (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
1.01
1.07
1.18
ATTVDDC
–
0.75
–
Nominal operating input
voltage range VDDC
VDDC,range
0.8
–
1.64
Accuracy of VDDC sense
after calibration
∆VDDC_SENSE
-22
–
22
Value of ADC2-VBG
measurement after
calibration
VBG_PMU
Unit Note / Test Condition
Number
V
P_8.1.73
Core supply Voltage Measurement VDDC
Input-to-output voltage
attenuation:
–
P_8.1.34
V
1)
P_8.1.53
mV
VS = 5.5 to 18V
P_8.1.6
VDDC
VDH Input Voltage Measurement VVDH10BITADC
VDH Input to output
voltage attenuation:
ATTVDH_1
–
0.166
–
SFR setting 1
P_8.1.64
VDH Input to output
voltage attenuation:
ATTVDH_2
–
0.224
–
SFR setting 2
P_8.1.65
VDH Input to output
voltage attenuation:
ATTVDH_3
-
0.226
-
1)
SFR setting 2
Tj = -40..85°C
P_8.1.75
VVDH,range1
Nominal operating input
voltage range VVDH, Range
1
–
–
30
SFR setting 1
P_8.1.66
VVDH,range2
Nominal operating input
voltage range VVDH, Range
2
–
–
20
SFR setting 2
P_8.1.67
VVDH 10-bit ADC, Range 1 ∆VVDHADC10B
-300
–
300
mV
VDH= 5.5 to 17.5V,
Tj = -40..150°C
P_8.1.39
VVDH 10-bit ADC, Range 3 ∆VVDHADC10B
-200
–
200
mV
1)
P_8.1.71
VDH= 5.5V to 17.5V,
Tj = -40..85°C
ATTVDH_3
VVDH 10-bit ADC, Range 2 ∆VVDHADC10B_ex -400
–
400
mV
VDH= 5.5V to 17.5V,
Tj = -40..150°C
P_8.1.74
390
470
kΩ
PD_N=1 (on-state)
P_8.1.3
2.0
µA
PD_N=0 (off-state),
P_8.1.10
tend_T
10-Bit ADC measurement
input resistance for VDH
Rin_VDH,measure
Measurement input
leakage current for VVDH
Ileak_VDH, measure -0.05 –
200
1) Not subject to production test, specified by design.
2) Accuracy is valid for a calibrated device.
Data Sheet
110
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.8.2
Central Temperature Sensor Parameters
Table 36
Electrical Characteristics Temperature Sensor Module
VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Output voltage VTEMP at
T0=273 K (0°C)
a
Temperature sensitivity b
b
Accuracy_1
Accuracy_2
Accuracy_3
Values
Min.
Typ.
Max.
–
0.666
–
Unit
Note / Test Condition
Number
V
1)
P_8.2.2
T0=273 K (0°C)
Acc_1
Acc_2
Acc_3
–
-10
-10
-5
2.31
–
–
–
–
10
10
5
mV/K
1)
°C
2)1)
-40°C < Tj < 85°C
P_8.2.5
°C
2)1)
125°C < Tj < 150°C
P_8.2.6
°C
2)1)
85°C < Tj < 125°C
P_8.2.7
P_8.2.4
1) Not subject to production test, specified by design
2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1
Data Sheet
111
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.8.3
ADC2-VBG
29.8.3.1
ADC2 Reference Voltage VBG
Table 37
DC Specifications
VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
VBG
Reference Voltage
Values
Min.
Typ.
Max.
1.199
1.211
1.223
Unit
Note /
Test Condition
Number
V
1)
P_8.3.1
1) Not subject to production test, spedesign
29.8.3.2
ADC2 Specifications
Table 38
DC Specifications
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit
Note /
Test Condition
Number
Min.
Typ.
Max.
–
8
–
Bits
Full
P_8.3.18
±0.3
2.0
LSB
not calibrated
P_8.3.19
±0.5
2.0
%FSR
not calibrated
P_8.3.20
±0
0.8
LSB
Full
P_8.3.21
±0
1.2
LSB
–
P_8.3.22
Resolution
RES
Guaranteed offset error
EAOFF_8 -2.0
Bit
Gain error
EAGain_8 -2.0
Bit
Differential non-linearity
(DNL)
EADNL_8 -0.8
Bit
Integral non-linearity (INL) EAINL_8Bi -1.2
t
Data Sheet
112
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.9
ADC1 Reference Voltage - VAREF
29.9.1
Electrical Characteristics VAREF
Table 39
Electrical Characteristics VAREF
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Number
Required buffer
capacitance
CVAREF
0.1
–
1
µF
ESR < 1Ω
P_9.1.1
Reference output voltage
VAREF
4.95
5
5.05
V
VS > 5.5V
P_9.1.2
P_9.1.3
DC supply voltage
rejection
DCPSRVAREF 30
–
–
dB
1)
Supply voltage ripple
rejection
ACPSRVAREF 26
–
–
dB
1)
Turn ON time
tso
–
–
200
µs
1)
–
100
–
kΩ
1)
Input resistance at VAREF RIN,VAREF
Pin
–
VS = 13.5V; f = 0 ... 1KHz; P_9.1.4
Vr = 2Vpp
Cext = 100nF
P_9.1.5
PD_N to 99.9% of final value
input impedance in case of P_9.1.20
VAREF is applied from
external
1) Not subject to production test, specified by design.
Data Sheet
113
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.9.2
Electrical Characteristics ADC1 (10-Bit)
These parameters describe the conditions for optimum ADC performance.
Note: Operating Conditions apply.
Table 40
A/D Converter Characteristics
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Analog reference supply VAREF
Values
Min.
Typ.
Max.
VAGND
–
VDDPA
+ 1.0
Analog reference ground VAGND
VSS
Unit
Note /
Test Condition
Number
V
1)
P_9.2.1
+ 0.05
–
1.5
V
–
P_9.2.2
- 0.05
Analog input voltage
range
VAIN
VAGND
–
VAREF
V
2)
P_9.2.3
Analog clock frequency
fADCI
5
–
24
MHz
3)
P_9.2.4
(13 + STC) (13 + STC (13 + STC –
× tADCI
) × tADCI
) × tADCI
+ 2 x tSYS
+ 2 x tSYS + 2 x tSYS
1)4)
P_9.2.5
(11 + STC) (11 + STC (11 + STC –
× tADCI
) × tADCI
) × tADCI
+ 2 × tSYS + 2 × tSYS + 2 × tSYS
1)
P_9.2.6
tWAF
–
–
4
µs
1)
P_9.2.7
tWAS
Wakeup time from
analog powerdown, slow
mode
–
–
15
µs
1)5)
P_9.2.8
Total unadjusted error (8 TUE8B
bit)
-2
±1
+2
counts
6)7)
Reference is
internal VAREF
P_9.2.9
Total unadjusted error
(10 bit)
TUE10B
-12
±6
+12
counts
7)8)
P_9.2.22
DNL error
EADNL
-3
±0.8
+3
counts –
P_9.2.10
INL error
EAINL_int_V -5
±0.8
+5
counts Reference is
internal VAREF
P_9.2.11
±0.4
+10
counts Reference is
internal VAREF
P_9.2.12
±0.5
+2
counts –
P_9.2.13
Conversion time for 10bit result
tC10
Conversion time for 8-bit tC8
result
Wakeup time from
analog powerdown, fast
mode
AREF
Gain error
EAGAIN_int_ -10
VAREF
Offset error
EAOFF
-2
Reference is
internal VAREF
Total capacitance
of an analog input
CAINT
–
–
10
pF
1)5)9)
Switched capacitance
of an analog input
CAINS
–
–
4
pF
1)5)9)
P_9.2.15
Resistance of
the analog input path
RAIN
–
–
2
kΩ
1)5)9)
P_9.2.16
Data Sheet
114
P_9.2.14
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 40
A/D Converter Characteristics (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note /
Test Condition
Number
Total capacitance
of the reference input
CAREFT
–
–
15
pF
1)5)9)
P_9.2.17
Switched capacitance
of the reference input
CAREFS
–
–
7
pF
1)5)9)
P_9.2.18
Resistance of
the reference input path
RAREF
–
–
2
kΩ
1)5)9)
P_9.2.19
1) Not subject to production test, specified by design.
2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these cases will
be 0000H or 03FFH, respectively.
3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting.
4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the
digital result and the time to load the result register with the conversion result.
5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion
rate of not more than 500 µs.
6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed
10 mA, and if VAREF and VAGND remain stable during the measurement time.
8) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual
errors.
All error specifications are based on measurement methods standardized by IEEE 1241.2000.
9) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply
voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical
values can be used:
CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 kΩ.
29.10
Data Sheet
Reserved
115
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.11
High-Voltage Monitoring Input
29.11.1
Electrical Characteristics
Table 41
Electrical Characteristics Monitoring Input
Tj = -40 °C to +150 °C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
0.4*VS
0.5*VS
0.6*VS
Unit
Note / Test Condition
Number
MON Input Pin characteristics
Wake-up/monitoring
threshold voltage
VMONth
V
Without external serial
resistor Rs (with Rs:DV =
IPD/PU * Rs); VS = 5.5V to
18V
P_11.1.1
Wake-up/monitoring
threshold voltage
extended range
VMONth_ext 0.44*VS 0.53*V 0.64*VS V
P_11.1.11
end
S
Without external serial
resistor Rs (with Rs:DV =
IPD/PU * Rs)
Threshold hysteresis
VMONth,hys 0.015*
VS
VS
0.05*
0.1*VS
V
P_11.1.12
In all modes; without
external serial resistor Rs
(with Rs:dV = IPD/PU * Rs);
VS = 5.5V to 18V;
Threshold hysteresis
VMONth,hys 0.02*VS 0.06*
VS
0.12*VS V
P_11.1.2
In all modes; without
external serial resistor Rs
(with Rs:dV = IPD/PU * Rs);
VS = 18V to 28V;
Pull-up current
IPU, MON
-20
-10
-1
µA
0.6*VS
P_11.1.3
Pull-down current
IPD, MON
3
10
20
µA
0.4*VS
P_11.1.4
Input leakage current
ILK,MON
-2.5
–
2.5
µA
1)
P_11.1.5
tFT,MON
–
500
–
ns
2)
0 V < VMON_IN < 28 V
Timing
Wake-up filter time
(internal analog filter
delay)
The overall filter time for P_11.1.6
MON wake-up is a sum of
tFT,MON + adjustable digital
filter time. The digital filter
time can be adjusted by
PMU.CNF_WAKE_FILTE
R.CNF_MON_FT;
1) Input leakage is valid for disabled state.
2) With pull-up, pull down current disabled.
Data Sheet
116
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.12
MOSFET Driver
29.12.1
Electrical Characteristics
Table 42
Electrical Characteristics MOSFET Driver
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
Number
MOSFET Driver Output
Maximum total charge driver
capability
Qtot_max
–
–
100
nC
1)
Source current - Charge
current - High Side Driver
ISoumax_HS
230
345
450
mA
VSD ≥ 8 V, CLoad = 10 nF, P_12.1.78
ISou = CLoad * slew rate ( =
20%-50% of VGHx1),
ICHARGE = IDISCHG =
P_12.1.20
Due to Charge Pump
currrent capability only 3 x
MOSFETs + additional
external capacitors with a
total charge of max. 100nC
can be driven
simultaneous at a PWM
frequency of 25 kHz.
31(max)
Sink current - Discharge
current-High Side Driver
ISinkmax_HS
230
330
450
mA
VSD ≥ 8 V, CLoad = 10 nF, P_12.1.79
ISink = CLoad * slew rate ( =
50%-20% of VGHx1),
ICHARGE = IDISCHG =
31(max)
Source current - Charge
current - Low Side Driver
ISoumax_LS
200
295
375
mA
VSD ≥ 8 V, CLoad = 10 nF, P_12.1.80
ISou = CLoad * slew rate ( =
20%-50% of VGLx1),
ICHARGE = IDISCHG =
31(max)
Sink current - Discharge
current-Low Side Driver
ISinkmax_LS
200
314
375
mA
VSD ≥ 8 V, CLoad = 10 nF, P_12.1.81
ISink = CLoad * slew rate ( =
50%-20% of VGHx1),
ICHARGE = IDISCHG =
31(max)
High level output voltage
Gxx vs. Sxx
VGxx1
10
–
14
V
VSD ≥ 8V, CLoad = 10 nF,
ICP=2.5 mA2).
P_12.1.3
High level output voltage
GHx vs. SHx
VGxx2
8
–
–
V
VSD = 6.4 V1), CLoad = 10
P_12.1.4
High level output voltage
GHx vs. SHx
VGxx3
Data Sheet
nF,
ICP=2.5 mA2)
7
–
–
117
V
VSD = 5.4 V, CLoad = 10 nF, P_12.1.5
ICP=2.5 mA2)
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 42
Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
8
–
VSD = 6.4 V1), CLoad = 10
Number
High level output voltage
GLx vs. GND
VGxx6
High level output voltage
GLx vs. GND
VGxx7
7
–
–
V
VSD = 5.4 V, CLoad = 10 nF, P_12.1.7
ICP=2.5 mA2)
Rise time
trise3_3nf
–
200
–
ns
1)
–
V
P_12.1.6
nF,
ICP=2.5 mA2)
P_12.1.8
CLoad = 3.3 nF,
VSD ≥ 8 V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
Fall time
tfall3_3nf
–
200
–
ns
1)
Rise time
trisemax
100
250
450
ns
P_12.1.57
CLoad = 10 nF,
VSD ≥ 8 V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
Fall time
tfallmax
100
250
450
ns
P_12.1.58
CLoad = 10 nF,
VSD ≥ 8 V,
75-25% of VGxx1, ICHARGE =
IDISCHG = 31(max)
Rise time
trisemin
1.25
2.5
5
µs
1)
Fall time
tfallmin
1.25
2.5
5
µs
1)
Absolute rise - fall time
difference for all LSx
tr_f(diff)LSx
–
–
100
ns
P_12.1.35
CLoad = 10 nF,
VSD ≥ 8 V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
Absolute rise - fall time
difference for all HSx
tr_f(diff)HSx
–
–
100
ns
P_12.1.36
CLoad = 10 nF,
VSD ≥ 8 V,
25-75% of VGxx1, ICHARGE =
IDISCHG = 31(max)
Resistor between GHx/GLx
and GND
RGGND
30
40
50
kΩ
1)
Data Sheet
118
P_12.1.9
CLoad = 3.3 nF,
VSD ≥ 8 V,
75-25% of VGxx1, ICHARGE =
IDISCHG = 31(max)
P_12.1.14
CLoad = 10 nF,
VSD ≥ 8 V,
25-75% of VGxx1,
ICHARGE = IDISCHG = 3(min)
P_12.1.15
CLoad = 10 nF,
VSD ≥ 8 V,
75-25% of VGxx1,
ICHARGE = IDISCHG = 3(min)
–
P_12.1.11
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 42
Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
Resistor between SHx and
GND
RSHGN
30
40
50
kΩ
1)3)
Low RDSON mode
(boosted discharge mode)
RONCCP
–
9
12
Ω
VVSD = 13.5 V,
VVCP = VVSD + 14.0 V;
ICHARGE = IDISCHG =
Number
P_12.1.10
This resistance is the
resistance between GHx
and GND connected
through a diode to SHx. As
a consequence, the
voltage at SHx can rise up
to 0,6V typ. before it is
discharged through the
resistor.
P_12.1.50
31(max); 50mA forced into
Gx, Sx grounded
Resistance between VDH
and VSD
IBSH
–
4
–
kΩ
1)
P_12.1.24
Input propagation time (LS
on)
tP(ILN)min
–
1.5
3
µs
1)
CLoad = 10 nF,
ICharge =3(min),
25% of VGxx1
P_12.1.37
Input propagation time (LS
off)
tP(ILF)min
–
1.5
3
µs
1)
CLoad = 10 nF,
P_12.1.38
Input propagation time (HS
on)
tP(IHN)min
–
1.5
3
µs
1)
CLoad = 10 nF,
ICharge =3(min)
25% of VGxx1
P_12.1.39
Input propagation time (HS
off)
tP(IHF)min
–
1.5
3
µs
1)
CLoad = 10 nF,
IDisharge =3(min),
75% of VGxx1
P_12.1.40
Input propagation time (LS
on)
tP(ILN)max
–
200
350
ns
CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.26
Input propagation time (LS
off)
tP(ILF)max
–
200
300
ns
CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.27
Input propagation time (HS
on)
tP(IHN)max
–
200
350
ns
CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.28
Input propagation time (HS
off)
tP(IHF)max
–
200
300
ns
CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.29
Data Sheet
IDischarge =3(min),
75% of VGxx1
119
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 42
Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Number
Min.
Typ. Max.
Absolute input propagation
tPon(diff)LSx
time difference between
propagation times for all LSx
(LSx on)
–
–
100
ns
CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.30
tPoff(diff)LSx
Absolute input propagation
time difference between
propagation times for all LSx
(LSx off)
–
–
100
ns
CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.41
tPon(diff)HSx
Absolute input propagation
time difference between
propagation times for all HSx
(HSx on)
–
–
100
ns
CLoad = 10 nF,
ICharge =31(max),
25% of VGxx1
P_12.1.42
tPoff(diff)HSx
Absolute input propagation
time difference between
propagation times for all HSx
(HSx off)
–
–
100
ns
CLoad = 10 nF,
IDischarge =31(max),
75% of VGxx1
P_12.1.43
–
–
–
V
P_12.1.46
0.07
0.35
0.55
0.65
0.90
1.00
1.20
1.40
0.25
0.50
0.75
1.00
1.25
1.5
1.75
2.00
0.40
0.650
0.90
1.25
1.45
1.80
2.10
2.40
DRV_CTRL3.DSMONVT
H xxx
000
001
010
011
100
101
110
111
Drain source monitoring
Drain source monitoring
threshold
VDSMONVTH
Open load diagnosis currents
Pull-up diagnosis current
IPUDiag
-220
-370 -520
µA
IDISCHG = 1; VSHx = 5.0 V
P_12.1.47
Pull-down diagnosis current
IPDDiag
650
900
1100
µA
IDISCHG = 1; VSHx = 5.0 V
P_12.1.48
VCPmin1
8.5
–
–
V
VVSD = 5.4V,
ICP=5 mA,
CCP1, CCP2 = 220 nF,
P_12.1.53
Charge pump
Output voltage
VCP vs. VSD
Bridge Driver enabled
Regulated output voltage
VCP vs. VSD
Data Sheet
VCP
12
14
120
16
V
8 V ≤ VVSD ≤ 28,
ICP=10mA,
CCP1, CCP2=220 nF,
fCP=250kHz
P_12.1.49
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 42
Electrical Characteristics MOSFET Driver (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Unit Note / Test Condition
Min.
Typ. Max.
Number
Turn ON Time
tON_VCP
10
24
40
us
8 V ≤ VVSD ≤ 28,
ICP=2.5mA,
(25%) of VCP1)4),
CCP1, CCP2=220 nF,
fCP=250kHz
P_12.1.59
Rise time
trise_VCP
20
60
88
us
8 V ≤ VVSD ≤ 28,
ICP=2.5mA,
(25-75%) of VCP1)5),
CCP1, CCP2=220 nF,
fCP=250kHz
P_12.1.60
1) Not subject to production test.
2) The condition ICP = 2,5 mA emulates an BLDC Driver with 6 MOSFET switching at 20 KHz with a CLoad=3.3nF. Test
condition: IGx = - 100 µA, ICHARGE = IDISCHARGE = 31(max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1.
3) This resistance is connected through a diode between SHx and GHx to ground.
4) This time applies when Bit DRV_CP_CTRL_STS.bit.CP_EN is set
5) This time applies when Bit DRV_CP_CLK_CTRL.bit.CPCLK_EN is set
Data Sheet
121
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
29.13
Operational Amplifier
29.13.1
Electrical Characteristics
Table 43
Electrical Characteristics Operational Amplifier
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Differential gain
(uncalibrated)
G
Differential input operating
voltage range OP2 - OP1
VIX
Operating. common mode VCM
input voltage range (referred
to GND (OP2 - GND) or
(OP1 - GND)
Max. input voltage range
(referred to GND (OP_2 GND) or (OP1 - GND)
VIX_max
Single ended output voltage VOUT
range (linear range)
Values
Unit
Min.
Typ.
Max.
9.5
19
38
57
10
20
40
60
10.5
21
42
63
Note / Test Condition
Number
Gain settings GAIN: P_13.1.6
00
01
10
11
-1.5 / G –
1.5 / G
V
G is the Gain specified
below
-2.0
–
2.0
V
Input common mode has P_13.1.2
to be checked in
evaluation if it fits the
required range
-7.0
–
7.0
V
Max. rating of operational P_13.1.3
amplifier inputs, where
measurement is not done
VZERO
–
VZERO
V
1)2)
typ. output offset
voltage 2 V ± 1.5V
- 1.5
+ 1.5
P_13.1.1
P_13.1.4
Linearity error
EPWM
-15
–
15
mV
Maximum deviation from P_13.1.5
best fit straight line
divided by max. value of
differential output voltage
range (0.5V - 3.5V); this
parameter is determined
at G = 10.
Linearity error
EPWM_% -1.0
–
1.0
%
Maximum deviation from P_13.1.24
best fit straight line
divided by max. value of
differential output voltage
range (0.5V - 3.5V); this
parameter is determined
at G = 10.
-1
–
1
%
Gain drift after calibration P_13.1.7
at G = 10.
-40
10
40
mV
VAIP= VAIN = 0 V and
Gain drift
Adjusted output offset
voltage
Data Sheet
VOOS
P_13.1.17
G = 40.
122
Rev. 1.0, 2017-02-02
TLE9879QXA40
Electrical Characteristics
Table 43
Electrical Characteristics Operational Amplifier (cont’d)
VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin
(unless otherwise specified)
Parameter
Symbol
Values
Min.
Typ.
Max.
Unit
Note / Test Condition
Number
P_13.1.8
DC input voltage common
mode rejection ratio
DCCMRR
58
80
–
dB
CMRR (in dB)=-20*log
(differential mode gain/
common mode gain)
VCMI= -2V... 2V,
VAIP-VAIN=0V
Settling time to 98%
TSET
–
800
1400
ns
Derived from 80 - 20 %
P_13.1.9
rise fall times for ± 2V
overload condition (3 Tau
value of settling time
constant)2)
Current Sense Amplifier
Input Resistance @ OP1,
OP2
Rin_OP1_ 1
1.25
1.5
kΩ
2)
Data Sheet
–
P_13.1.25
OP2
123
Rev. 1.0, 2017-02-02
TLE9879QXA40
Package Outlines
Package Outlines
0.9 MAX.
(0.65)
0.
13
±
+0.03
1)
0.4 x 45°
Index Marking
C
0.15 ±0.05
0.1 ±0.05
48
13
(0
(0.2)
0.05 MAX.
2)
37
1
12
1) Vertical burr 0.03 max., all sides
2) These four metal areas have exposed diepad potential
Figure 38
36
25
24
SEATING PLANE
7 ±0.1
6.8
48x
0.08
0.5
0.5 ±0.07
0.1±0.03
B
26
0.
6.8
11 x 0.5 = 5.5
(6)
A
(5.2)
7 ±0.1
0.
05
30
.3
0.23 ±0.05
5)
(5.2)
Index Marking
48x
0.1 M A B C
(6)
PG-VQFN-48-29, -31-PO V05
Package outline VQFN-48-31 (with LTI)
Notes
1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”:
http://www.infineon.com/products.
2. Dimensions in mm.
Data Sheet
124
Rev. 1.0, 2017-02-02
TLE9879QXA40
Revision History
31
Revision History
Revision History
Page or Item
Subjects (major changes since previous revision)
Rev. 1.0, 2017-02-02
all
Data Sheet
Initial release.
125
Rev. 1.0, 2017-02-02
Please read the Important Notice and Warnings at the end of this document
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2017-02-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2017 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics ("Beschaffenheitsgarantie").
With respect to any examples, hints or any typical
values stated herein and/or any information regarding
the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities
of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer's compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer's products and any use of the product of
Infineon Technologies in customer's applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer's technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to
such application.
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or any
consequences of the use thereof can reasonably be
expected to result in personal injury.