0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
TLE9879QXA40XUMA2

TLE9879QXA40XUMA2

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    VQFN48_7X7MM

  • 描述:

    TLE9879QXA40XUMA2

  • 数据手册
  • 价格&库存
TLE9879QXA40XUMA2 数据手册
TLE9879QXA40 Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications BF-Step Data Sheet Rev. 1.0, 2017-02-02 Automotive Power TLE9879QXA40 Table of Contents Table of Contents 1 1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 3.1 3.2 Device Pinout and Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Device Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 5 5.1 5.2 5.2.1 5.2.2 5.3 5.3.1 5.3.2 5.3.3 Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PMU Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Supply Generation Unit (PGU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulator 5.0V (VDDP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Regulator 1.5V (VDDC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Voltage Regulator 5.0V (VDDEXT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 18 18 19 21 22 22 23 24 6 6.1 6.2 6.2.1 6.3 6.3.1 6.3.2 6.3.2.1 6.3.2.2 System Control Unit - Digital Modules (SCU-DM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Low Precision Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . High Precision Oscillator Circuit (OSC_HP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Input Clock Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Crystal Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 25 25 26 27 28 28 28 28 7 7.1 7.2 7.2.1 System Control Unit - Power Modules (SCU-PM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 30 30 30 8 8.1 8.2 8.2.1 ARM Cortex-M3 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 32 33 33 9 9.1 9.2 9.2.1 9.3 9.3.1 DMA Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DMA Mode Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 34 35 35 36 36 10 Address Space Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 11 11.1 11.2 11.2.1 11.3 Memory Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . NVM Module (Flash Memory) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 2 38 38 38 38 40 Rev. 1.0, 2017-02-02 TLE9879QXA40 Table of Contents 12 12.1 12.2 12.2.1 Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 13.1 13.2 Watchdog Timer (WDT1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 14 14.1 14.2 14.2.1 14.2.2 14.3 14.3.1 14.3.1.1 14.3.2 14.3.2.1 14.3.3 14.3.3.1 GPIO Ports and Peripheral I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 0 and Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TLE9879QXA40 Port Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 0 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Port 2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 45 45 45 47 48 48 48 50 50 52 52 15 15.1 15.1.1 15.1.2 15.2 15.2.1 15.2.2 General Purpose Timer Units (GPT12) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features Block GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features Block GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram GPT1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram GPT2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 53 53 53 53 54 55 16 16.1 16.2 16.2.1 Timer2 and Timer21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer2 and Timer21 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 56 56 56 17 17.1 17.2 17.3 17.3.1 Timer3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer3 Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 57 57 57 57 18 18.1 18.2 18.2.1 Capture/Compare Unit 6 (CCU6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Feature Set Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 59 59 60 19 19.1 19.2 19.2.1 19.3 UART1/UART2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UART Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 61 61 61 62 20 20.1 20.2 20.2.1 LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 63 64 64 Data Sheet 3 41 41 41 41 Rev. 1.0, 2017-02-02 TLE9879QXA40 Table of Contents 21 21.1 21.2 21.2.1 High-Speed Synchronous Serial Interface (SSC1/SSC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 65 66 66 22 Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22.2.1.1 Block Diagram BEMF Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 67 67 68 69 23 23.1 23.2 23.2.1 23.2.2 Measurement Core Module (incl. ADC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Measurement Core Module Modes Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 70 70 70 71 24 24.1 24.2 24.2.1 10-Bit Analog Digital Converter (ADC1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 72 72 73 25 25.1 25.2 25.2.1 High-Voltage Monitor Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 74 74 74 26 26.1 26.2 26.2.1 26.2.2 Bridge Driver (incl. Charge Pump) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 75 75 76 76 27 27.1 27.2 27.2.1 Current Sense Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 77 77 77 28 28.1 28.2 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 BLDC Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 ESD Immunity According to IEC61000-4-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 29 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1 General Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1.3 Current Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1.4 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.1.5 Timing Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2 Power Management Unit (PMU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.1 PMU I/O Supply (VDDP) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.2 PMU Core Supply (VDDC) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.3 VDDEXT Voltage Regulator (5.0V) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.4 VPRE Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.4.1 Load Sharing Scenarios of VPRE Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29.2.5 Power Down Voltage Regulator (PMU Subblock) Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 4 81 81 81 84 85 87 87 88 88 90 91 93 93 93 Rev. 1.0, 2017-02-02 TLE9879QXA40 Table of Contents 29.3 29.3.1 29.3.2 29.4 29.4.1 29.5 29.5.1 29.5.2 29.5.3 29.6 29.6.1 29.7 29.7.1 29.8 29.8.1 29.8.2 29.8.3 29.8.3.1 29.8.3.2 29.9 29.9.1 29.9.2 29.10 29.11 29.11.1 29.12 29.12.1 29.13 29.13.1 System Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Oscillators and PLL Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 External Clock Parameters XTAL1, XTAL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Flash Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Flash Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Parallel Ports (GPIO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Description of Keep and Force Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 DC Parameters of Port 0, Port 1, TMS and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 DC Parameters of Port 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 LIN Transceiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 High-Speed Synchronous Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 SSC Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 Measurement Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 System Voltage Measurement Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Central Temperature Sensor Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 ADC2-VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ADC2 Reference Voltage VBG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ADC2 Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ADC1 Reference Voltage - VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Electrical Characteristics VAREF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Electrical Characteristics ADC1 (10-Bit) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 High-Voltage Monitoring Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 MOSFET Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Operational Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 30 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 31 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 Data Sheet 5 Rev. 1.0, 2017-02-02 Microcontroller with LIN and BLDC MOSFET Driver for Automotive Applications 1 TLE9879QXA40 Overview Summary of Features • • • • • • • • • • • • • • • • • • • • • • 32 bit ARM Cortex M3 Core – up to 40 MHz clock frequency – one clock per machine cycle architecture On-chip memory – 128 kByte Flash including – 4 kByte EEPROM (emulated in Flash) – 512 Byte 100 Time Programmable Memory (100TP) – 6 kByte RAM – Boot ROM for startup firmware and Flash routines On-chip OSC and PLL for clock generation – PLL loss-of-lock detection MOSFET driver including charge pump 10 general-purpose I/O Ports (GPIO) 5 analog inputs, 10-bit A/D Converter (ADC1) 16-bit timers - GPT12, Timer 2, Timer 21 and Timer 3 Capture/compare unit for PWM signal generation (CCU6) 2 full duplex serial interfaces (UART) with LIN support (for UART1 only) 2 synchronous serial channels (SSC) On-chip debug support via 2-wire SWD 1 LIN 2.2 transceiver 1 high voltage monitoring input Single power supply from 5.5 V to 27 V Extended power supply voltage range from 3 V to 28 V Low-dropout voltage regulators (LDO) High speed operational amplifier for motor current sensing via shunt 5 V voltage supply for external loads (e.g. Hall sensor) Core logic supply at 1.5 V Programmable window watchdog (WDT1) with independent on-chip clock source Power saving modes – MCU slow-down Mode – Sleep Mode – Stop Mode – Cyclic wake-up Sleep Mode Power-on and undervoltage/brownout reset generator Type Package TLE9879QXA40 VQFN-48-31 Data Sheet VQFN-48-31 Marking 6 Rev. 1.0, 2017-02-02 TLE9879QXA40 Overview • • • • • • • Overtemperature protection Short circuit protection Loss of clock detection with fail safe mode entry for low system power consumption Temperature Range Tj = -40 °C to +150 °C Package VQFN-48 with LTI feature Green package (RoHS compliant) AEC qualified Data Sheet 7 Rev. 1.0, 2017-02-02 TLE9879QXA40 Overview 1.1 Abbreviations The following acronyms and terms are used within this document. List see in Table 1. Table 1 Acronyms Acronyms Name AHB Advanced High-Performance Bus APB Advanced Peripheral Bus CCU6 Capture Compare Unit 6 CGU Clock Generation Unit CMU Cyclic Management Unit CP Charge Pump for MOSFET driver CSA Current Sense Amplifier DPP Data Post Processing ECC Error Correction Code EEPROM Electrically Erasable Programmable Read Only Memory EIM Exceptional Interrupt Measurement FSM Finite State Machine GPIO General Purpose Input Output H-Bridge Half Bridge ICU Interrupt Control Unit IEN Interrupt Enable IIR Infinite Impulse Response LDM Load Instruction LDO Low DropOut voltage regulator LIN Local Interconnect Network LSB Least Significant Bit LTI Lead Tip Inspection MCU Memory Control Unit MF Measurement Functions MSB Most Significant Bit MPU Memory Protection Unit MRST Master Receive Slave Transmit MTSR Master Transmit Slave Receive MU Measurement Unit NMI Non Maskable Interrupt NVIC Nested Vector Interrupt Controller NVM Non-Volatile Memory OTP One Time Programmable OSC Oscillator PBA Peripheral Bridge Data Sheet 8 Rev. 1.0, 2017-02-02 TLE9879QXA40 Overview Table 1 Acronyms Acronyms Name PCU Power Control Unit PD Pull Down PGU Power supply Generation Unit PLL Phase Locked Loop PPB Private Peripheral Bus PU Pull Up PWM Pulse Width Modulation RAM Random Access Memory RCU Reset Control Unit RMU Reset Management Unit ROM Read Only Memory SCU-DM System Control Unit - Digital Modules SCU-PM System Control Unit - Power Modules SFR Special Function Register SOW Short Open Window (for WDT) SPI Serial Peripheral Interface SSC Synchronous Serial Channel STM Store Instruction SWD ARM Serial Wire Debug TCCR Temperature Compensation Control Register TMS Test Mode Select TSD Thermal Shut Down UART Universal Asynchronous Receiver Transmitter VBG Voltage reference Band Gap VCO Voltage Controlled Oscillator VPRE Pre Regulator WDT Watchdog Timer in SCU-DM WDT1 Watchdog Timer in SCU-PM WMU Wake-up Management Unit 100TP 100 Time Programmable Data Sheet 9 Rev. 1.0, 2017-02-02 TLE9879QXA40 Block Diagram 2 Block Diagram TMS P0.0 TEST / DEBUG INTERFACE ARM CORTEX-M3 µDMA CONTROLLER systembus FLASH slave SRAM slave ROM slave slave Multilayer AHB Matrix slave VAREF GND_REF P2.0, P2.2, P2.3, P2.4, P2.5 (AN0, AN2, AN3, AN4, AN5) Figure 1 Data Sheet PBA1 SCU_DM ADC 1 DPP1 GPT12 UART1 UART2 SSC1 SSC2 MOSFET Driver CCU6 T2 T21 SCU_DM WDT SCU_PM WDT1/ CLKWDT CP µDMA Controller PLL XTAL1 XTAL2 GPIO P0.1 – P0.4 P1.0 – P1.4 LIN OP AMP VCP VSD CP2H CP2L CP1H CP1L PBA0 OP AMP VDH GH3 SH3 GL3 GH2 SH2 GL2 GH1 SH1 GL1 SL MU-VAREF slave LIN GND_LIN MU MF / ADC2 DPP2 OP AMP OP1 OP2 PMU – Power Control System Functions VS RESET VDDEXT VDDP VDDC MON MON T3 Block Diagram TLE9879QXA40 10 Rev. 1.0, 2017-02-02 TLE9879QXA40 25 P0. 2 27 P1.4 28 GND 29 P2. 0/XTAL1 30 P2. 2/XTAL2 31 P2.5 32 P2.4 33 GND_REF Device Pinout 34 VAREF 3.1 35 P2.3 Device Pinout and Pin Configuration 36 OP2 3 26 P1. 3 Device Pinout and Pin Configuration OP1 37 24 P0.3 EP VDDC 38 23 P0.1 EP GND 39 22 RESET VDDP 40 21 P0.0 VDDEXT 41 20 TMS 19 GND GND_LIN 42 TLE 987x LIN 43 18 P0.4 VDH 44 17 P1.2 VS 45 16 P1.1 SH3 46 15 P1.0 VSD 47 14 MON CP1H 48 Note: Figure 2 Data Sheet GL2 12 GL3 11 SL 10 GH1 9 SH1 8 GH2 7 SH2 6 GH3 5 CP2L 4 VCP 2 CP2H 3 CP1L 1 13 GL1 = Low voltage pins Device Pinout, TLE9879QXA40 11 Rev. 1.0, 2017-02-02 TLE9879QXA40 Device Pinout and Pin Configuration 3.2 Pin Configuration After reset, all pins are configured as input (except supply and LIN pins) with one of the following settings: • • • • Pull-up device enabled only (PU) Pull-down device enabled only (PD) Input with both pull-up and pull-down devices disabled (I) Output with output stage deactivated = high impedance state (Hi-Z) The functions and default states of the TLE9879QXA40 external pins are provided in the following table. Type: indicates the pin type. • • • • I/O: Input or output I: Input only O: Output only P: Power supply Not all alternate functions listed. Table 2 Symbol Pin Definitions and Functions Pin Number Type Reset State1) P0 Function Port 0 Port 0 is a 5-bit bidirectional general purpose I/O port. Alternate functions can be assigned and are listed in the port description. Main function is listed below. P0.0 21 I/O I/PU SWD Serial Wire Debug Clock P0.1 23 I/O I/PU GPIO General Purpose IO Alternate function mapping see Table 8 P0.2 25 I/O I/PD GPIO General Purpose IO Alternate function mapping see Table 8 Note: For a functional SWD connection this GPIO must be tied to zero! P0.3 24 I/O I/PU GPIO General Purpose IO Alternate function mapping see Table 8 P0.4 18 I/O I/PD GPIO General Purpose IO Alternate function mapping see Table 8 P1 Port 1 Port 1 is a 5-bit bidirectional general purpose I/O port. Alternate functions can be assigned and are listed in the Port description. The principal functions are listed below. P1.0 15 I/O I GPIO General Purpose IO Alternate function mapping see Table 9 P1.1 16 I/O I GPIO General Purpose IO Alternate function mapping see Table 9 P1.2 17 I/O I GPIO General Purpose IO Alternate function mapping see Table 9 P1.3 26 I/O I GPIO General Purpose IO, used for Inrush Transistor Alternate function mapping see Table 9 P1.4 27 I/O I GPIO General Purpose IO Alternate function mapping see Table 9 Data Sheet 12 Rev. 1.0, 2017-02-02 TLE9879QXA40 Device Pinout and Pin Configuration Table 2 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset State1) P2 Function Port 2 Port 2 is a 5-bit general purpose input-only port. Alternate functions can be assigned and are listed in the Port description. Main function is listed below. P2.0/XTAL1 29 I/I I AN0 ADC analog input 0 Alternate function mapping see Table 10 P2.2/XTAL2 30 I/O I AN2 ADC analog input 2 Alternate function mapping see Table 10 P2.3 35 I I AN3 ADC analog input 3 Alternate function mapping see Table 10 P2.4 32 I I AN4 ADC analog input 4 Alternate function mapping see Table 10 P2.5 31 I I AN5 ADC analog input 5 Alternate function mapping see Table 10 VS 45 P – Battery supply input VDDP 40 P – 2) Power Supply I/O port supply (5.0 V). Connect external buffer capacitor. VDDC 38 P – 3) VDDEXT 41 P – External voltage supply output (5.0 V, 20 mA) GND 19 P – GND digital GND 28 P – GND digital GND 39 P – GND analog 14 I – High Voltage Monitor Input LIN 43 I/O – LIN bus interface input/output GND_LIN 42 P – LIN ground CP1H 48 P – Charge Pump Capacity 1 High, connect external C CP1L 1 P – Charge Pump Capacity 1 Low, connect external C CP2H 3 P – Charge Pump Capacity 2 High, connect external C CP2L 4 P – Charge Pump Capacity 2 Low, connect external C VCP 2 P – Charge Pump Capacity VSD 47 P – Battery supply input for Charge Pump VDH 44 P – Voltage Drain High Side MOSFET Driver SH3 46 P – Source High Side FET 3 SH2 6 P – Source High Side FET 2 Core supply (1.5 V during Active Mode). Do not connect external loads, connect external buffer capacitor. Monitor Input MON LIN Interface Charge Pump MOSFET Driver Data Sheet 13 Rev. 1.0, 2017-02-02 TLE9879QXA40 Device Pinout and Pin Configuration Table 2 Pin Definitions and Functions (cont’d) Symbol Pin Number Type Reset State1) Function GH2 7 P – Gate High Side FET 2 SH1 8 P – Source High Side FET 1 GH1 9 P – Gate High Side FET 1 SL 10 P – Source Low Side FET GL2 12 P – Gate Low Side FET 2 GL1 13 P – Gate Low Side FET 1 GH3 5 P – Gate High Side FET 3 GL3 11 P – Gate Low Side FET 3 GND_REF 33 P – GND for VAREF VAREF 34 I/O – 5V ADC1 reference voltage, optional buffer or input OP1 37 I – Negative operational amplifier input OP2 36 I – Positive operational amplifier input TMS 20 I I/O I/PD TMS SWD RESET 22 I/O – Reset input, not available during Sleep Mode EP – – – Exposed Pad, connect to GND Others Test Mode Select input Serial Wire Debug input/output 1) Only valid for digital IOs 2) Also named VDD5V. 3) Also named VDD1V5. Data Sheet 14 Rev. 1.0, 2017-02-02 TLE9879QXA40 Modes of Operation 4 Modes of Operation This highly integrated circuit contains analog and digital functional blocks. An embedded 32-bit microcontroller is available for system and interface control. On-chip, low-dropout regulators are provided for internal and external power supply. An internal oscillator provides a cost effective clock that is particularly well suited for LIN communications. A LIN transceiver is available as a communication interface. Driver stages for a Motor Bridge or BLDC Motor Bridge with external MOSFET are integrated, featuring PWM capability, protection features and a charge pump for operation at low supply voltage. A 10-bit SAR ADC is implemented for high precision sensor measurement. An 8-bit ADC is used for diagnostic measurements. The Micro Controller Unit supervision and system protection (including a reset feature) is complemented by a programmable window watchdog. A cyclic wake-up circuit, supply voltage supervision and integrated temperature sensors are available on-chip. All relevant modules offer power saving modes in order to support automotive applications connected to terminal 30. A wake-up from power-save mode is possible via a LIN bus message, via the monitoring input or using a programmable time period (cyclic wake-up). Featuring LTI, the integrated circuit is available in a VQFN-48-31 package with 0.5 mm pitch, and is designed to withstand the severe conditions of automotive applications. The TLE9879QXA40 has several operation modes mainly to support low power consumption requirements. Reset Mode The Reset Mode is a transition mode used e.g. during power-up of the device after a power-on reset, or after wakeup from Sleep Mode. In this mode, the on-chip power supplies are enabled and all other modules are initialized. Once the core supply VDDC is stable, the device enters Active Mode. If the watchdog timer WDT1 fails more than four times, the device performs a fail-safe transition to Sleep Mode. Active Mode In Active Mode, all modules are activated and the TLE9879QXA40 is fully operational. Stop Mode Stop Mode is one of two major low power modes. The transition to the low power modes is performed by setting the corresponding bits in the mode control register. In Stop Mode the embedded microcontroller is still powered, allowing faster wake-up response times. Wake-up from this mode is possible through LIN bus activity, by using the high-voltage monitoring pin or the corresponding 5V GPIOs. Stop Mode with Cyclic Wake-Up The Cyclic Wake-Up Mode is a special operating mode of the Stop Mode. The transition to the Cyclic Wake-Up Mode is done by first setting the corresponding bits in the mode control register followed by the Stop Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period), asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Stop Mode. Sleep Mode The Sleep Mode is a low-power mode. The transition to the low-power mode is done by setting the corresponding bits in the MCU mode control register or in case of failure, see below. In Sleep Mode the embedded microcontroller power supply is deactivated allowing the lowest system power consumption. A wake-up from this mode is possible by LIN bus activity, the High Voltage Monitor Input pin or Cyclic Wake-up. Sleep Mode in Case of Failure Data Sheet 15 Rev. 1.0, 2017-02-02 TLE9879QXA40 Modes of Operation Sleep Mode is activated after 5 consecutive watchdog failures or in case of supply failure (5 times). In this case, MON is enabled as the wake source and Cyclic Wake-Up is activated with 1s of wake time. Sleep Mode with Cyclic Wake-Up The Cyclic Wake-Up Mode is a special operating mode of the Sleep Mode. The transition to Cyclic Wake-Up Mode is performed by first setting the corresponding bits in the mode control register followed by the Sleep and Stop Mode command. In addition to the cyclic wake-up behavior (wake-up after a programmable time period), asynchronous wake events via the activated sources (LIN and/or MON) are available, as in normal Sleep Mode. When using Sleep Mode with cyclic wake-up the voltage regulator is switched off and started again with the wake. A limited number of registers is buffered during sleep, and can be used by SW e.g. for counting sleep/wake cycles. MCU Slow Down Mode In MCU Slow Down Mode the MCU frequency is reduced for saving power during operation. LIN communication is still possible. LS MOSFET can be activated. Wake-Up Source Prioritization All wake-up sources have the same priority. In order to handle the asynchronous nature of the wake-up sources, the first wake-up signal will initiate the wake-up sequence. Nevertheless all wake-up sources are latched in order to provide all wake-up events to the application software. The software can clear the wake-up source flags. This is to ensure that no wake-up event is lost. As default wake-up source, the MON input is activated after power-on reset only. Additionally, the device is in Cyclic Wake-Up Mode with the max. configurable dead time setting. The following table shows the possible power mode configurations including the Stop Mode. Table 3 Power Mode Configurations Module/Function Active Mode Stop Mode Sleep Mode Comment VDDEXT ON/OFF ON (no dynamic load)/OFF OFF – Bridge Driver ON/OFF OFF OFF LIN TRx ON/OFF wake-up only/ OFF wake-up only/ OFF – VS sense ON/OFF brownout detection brownout detection POR on VS brownout det. done in PCU GPIO 5V (wake-up) n.a. disabled/static OFF – GPIO 5V (active) ON ON OFF – WDT1 ON OFF OFF – CYCLIC WAKE n.a. cyclic wake-up/ cyclic sense/OFF cyclic wake-up/ OFF – Measurement ON1) OFF OFF – 2) MCU ON/slowdown/STOP STOP OFF – CLOCK GEN (MC) ON OFF OFF – LP_CLK (18 MHz) ON OFF OFF WDT1 LP_CLK2 (100 kHz) ON/OFF ON/OFF ON/OFF for cyclic wake-up Data Sheet 16 Rev. 1.0, 2017-02-02 TLE9879QXA40 Modes of Operation 1) May not be switched off due to safety reasons 2) MC PLL clock disabled, MC supply reduced to 1.1 V Wake-Up Levels and Transitions The wake-up can be triggered by rising, falling or both signal edges for the monitor input, by LIN or by cyclic wakeup. Data Sheet 17 Rev. 1.0, 2017-02-02 TLE9879QXA40 Power Management Unit (PMU) 5 Power Management Unit (PMU) 5.1 Features • • • • • • System modes control (startup, sleep, stop and active) Power management (cyclic wake-up) Control of system voltage regulators with diagnosis (overload, short, overvoltage) Fail safe mode detection and operation in case of system errors (watchdog fail) Wake-up sources configuration and management (LIN, MON, GPIOs) System error logging 5.2 Introduction The power management unit is responsible for generating all required voltage supplies for the embedded MCU (VDDC, VDDP) and the external supply (VDDEXT). The power management unit is designed to ensure fail-safe behavior of the system IC by controlling all system modes including the corresponding transitions. Additionally, the PMU provides well defined sequences for the system mode transitions and generates hierarchical reset priorities. The reset priorities control the reset behavior of all system functionalities especially the reset behavior of the embedded MCU. All these functions are controlled by a state machine. The system master functionality of the PMU make use of an independent logic supply and system clock. For this reason, the PMU has an "Internal logic supply and system clock" module which works independently of the MCU clock. Data Sheet 18 Rev. 1.0, 2017-02-02 TLE9879QXA40 Power Management Unit (PMU) 5.2.1 Block Diagram The following figure shows the structure of the Power Management Unit. Table 4 describes the submodules in more detail. VS Power Down Supply e.g. for WDT 1 e.g. for cyclic wake and sense I N T E R N A L LP_CLK Peripherals LP_CLK2 B U S PMU-PCU MON LIN P0.0...P0.4 P1.0...P1.4 VDDP Power Supply Generation Unit (PGU) VDDC LDO for External Supply VDDEXT VDDEXT PMU-SFR PMU-CMU PMU-WMU PMU-RMU PMU-Control Power Management Unit Power_Management_ 7x.vsd Figure 3 Power Management Unit Block Diagram Table 4 Description of PMU Submodules Mod. Name Modules Functions Power Down Supply Independent supply voltage generation for PMU This supply is dedicated to the PMU to ensure an independent operation from generated power supplies (VDDP, VDDC). LP_CLK (= 18 MHz) - Clock source for all PMU submodules - Backup clock source for System - Clock source for WDT1 This ultra low power oscillator generates the clock for the PMU. This clock is also used as backup clock for the system in case of PLL Clock failure and as an independent clock source for WDT1. LP_CLK2 (= 100 kHz) Clock source for PMU This ultra low power oscillator generates the clock for the PMU in Stop Mode and in the cyclic modes. Peripherals Peripheral blocks of PMU These blocks include the analog peripherals to ensure a stable and fail-safe PMU startup and operation (bandgap, bias). Data Sheet 19 Rev. 1.0, 2017-02-02 TLE9879QXA40 Power Management Unit (PMU) Table 4 Description of PMU Submodules (cont’d) Mod. Name Modules Functions Power Supply Generation Unit (PGU) Voltage regulators for VDDP and VDDC This block includes the voltage regulators for the pad supply (VDDP) and the core supply (VDDC). VDDEXT Voltage regulator for VDDEXT to supply external modules (e.g. sensors) This voltage regulator is a dedicated supply for external modules and can also be used for cyclic sense operations (e.g. with hall sensor). PMU-SFR All Extended Special Function registers that are relevant to the PMU. This module contains all registers needed to control and monitor the PMU. PMU-PCU Power Control Unit of the PMU This block is responsible for controlling all power related actions within the PGU Module. It also contains all regulator related diagnostics such as undervoltage and overvoltage detection as well as overcurrent and short circuit diagnostics. PMU-WMU Wake-Up Management Unit of the PMU This block is responsible for controlling all wake-up related actions within the PMU Module. PMU-CMU Cyclic Management Unit of the PMU This block is responsible for controlling all actions in cyclic mode. PMU-RMU Reset Management Unit of the PMU This block generates resets triggered by the PMU such as undervoltage or short circuit reset, and passes all resets to the relevant modules and their register. Data Sheet 20 Rev. 1.0, 2017-02-02 TLE9879QXA40 Power Management Unit (PMU) 5.2.2 PMU Modes Overview The following state diagram shows the available modes of the device. V S > 4V and VS ramp up or VS < 3V and VS ramp down LIN-wake or MON-wake or cyclic -wake start-up VDDC =stable and error_supp 2.2 µF Elco1) CVDDP Blocking capacitor at VDDP pin 470 nF + 100 nF Ceramic, ESR < 1 Ω CVDD_EXT Blocking capacitor at VDDEXT pin 100nF, Ceramic ESR < 1 Ω CVDDC Blocking capacitor at VDDC pin 470 nF + 100 nF Ceramic, ESR < 1 Ω CVAREF Blocking capacitor at VAREF pin 100 nF, Ceramic ESR < 1 Ω CLIN Standard C for LIN slave 220 pF CVSD Filter C for charge pump end driver 1 µF CCPS1 Charge pump capacitor 220 nF CCP2S Charge pump capacitor 220 nF CVCP Charge pump capacitor 470 nF CMON Filter C for ISO pulses 10 nF CVDH Capacitor 3.3 nF CPH1 Capacitor 220 µF CPH2 Capacitor 220 µF CPH3 Capacitor 220 µF COPAFILT Capacitor 100 nF CEMCP1 Capacitor 1 nF CEMCP2 Capacitor 1 nF CEMCP3 Capacitor 1 nF CPFILT1, CPFILT2 Capacitor RMON Resistor at MON pin RVSD 2Ω Limitation of reverse current due to transient (-2V, 8ms) max. ratings of the VSD pin has to be met, alternatively the resistor shall be replaced by a diode RVDH Resistor 1 kΩ RGATE Resistor 2Ω ROPAFILT Resistor 12 Ω RSH1 Resistor optional RSH2 Resistor optional RSH3 Resistor optional 3.9 kΩ LPFILT DVS – Reverse-polarity protection diode – 1) The capacitor must be dimensioned so as to ensure that flash operations modifying the content of the flash are never interrupted (e.g. in case of power loss). Data Sheet 79 Rev. 1.0, 2017-02-02 TLE9879QXA40 Application Information 28.2 ESD Immunity According to IEC61000-4-2 Note: Tests for ESD immunity according to IEC61000-4-2 “Gun test” (150pF, 330Ω) has been performed. The results and test condition will be available in a test report. Table 16 ESD “Gun Test” Performed Test Result Unit Remarks ESD at pin LIN, versus GND1) >6 kV 2) ESD at pin LIN, versus GND1) < -6 kV 2) positive pulse negative pulse 1) ESD test “ESD GUN” is specified with external components; see application diagram: CMON = 100 nF, RMON = 1 kΩ, CLIN = 220 pF, CVS = >20 µF ELCO + 100 nF ESR < 1 Ω, CVSD = 1 µF, RVSD = 2 Ω. 2) ESD susceptibility “ESD GUN” according to LIN EMC Test Specification, Section 4.3 (IEC 61000-4-2). To be tested by external test house (IBEE Zwickau) Data Sheet 80 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29 Electrical Characteristics This chapter includes all relevant electrical characteristics of the product TLE9879QXA40. 29.1 General Characteristics 29.1.1 Absolute Maximum Ratings Table 17 Absolute Maximum Ratings1) Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Voltages – Supply Pins Supply voltage – VS VS -0.3 – 40 V Load dump P_1.1.1 Supply voltage – VSD VSD -0.3 – 48 V – P_1.1.2 Supply voltage – VSD VSD_max_exten -2.8 – 48 V Series resistor RVSD = P_1.1.32 2.2 Ω, t = 8 ms 2) Voltage range – VDDP VDDP -0.3 – 5.5 V – P_1.1.3 Voltage range – VDDP VDDP_max_ext -0.3 – 7 V In case of voltage transients on VS with dVS/dt ≥ 1V/µs; duration: t ≤ 150µs; CVDDP ≤ 570 nF P_1.1.41 d end Voltage range – VDDEXT VDDEXT -0.3 – 5.5 V – P_1.1.4 Voltage range – VDDEXT VDDEXT_max_ -0.3 – 7 V In case of voltage transients on VS with dVS/dt ≥ 1V/µs; duration: t ≤ 150µs; CVDDEXT ≤ 570 nF P_1.1.42 extend Voltage range – VDDC VDDC -0.3 – 1.6 V – P_1.1.5 VLIN -28 – 40 V – P_1.1.7 V 3) P_1.1.8 V 4) P_1.1.38 P_1.1.9 Voltages – High Voltage Pins Input voltage at LIN Input voltage at MON Input voltage at VDH VMON_maxrate -28 VVDH_maxrate -2.8 – – 40 40 Voltage range at GHx VGH -8.0 – 48 V 5) Voltage range at GHx vs. SHx VGHvsSH 14 – – V – P_1.1.44 Voltage range at SHx VSH -8.0 – 48 V – P_1.1.11 Voltage range at GLx VGL -8.0 – 48 V 6) Voltage range at GLx vs. SL VGLvsSL 14 – – V – Data Sheet 81 – P_1.1.13 P_1.1.45 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 17 Absolute Maximum Ratings1) (cont’d) Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Voltage range at charge pump VCPx pins CP1H, CP1L, CP2H, CP2L, VCP Values Unit Note / Test Condition Number Min. Typ. Max. -0.3 – 48 V 7) P_1.1.15 -0.3 – VDDP V VIN < VDDPmax9) P_1.1.16 Voltages – GPIOs Voltage on any port pin8) Vin +0.3 Current at VCP Pin IVCP -15 – – mA – P_1.1.35 Injection current on any port pin IGPIONM -5 – 5 mA 10) P_1.1.34 Sum of all injected currents in Normal Mode IGPIOAM_sum -50 – 50 mA 10) P_1.1.30 -5000 – 50 µA 10) P_1.1.36 5 mA 10) P_1.1.37 VDDP V – P_1.1.17 Max. current at VCP pin Injection Current at GPIOs IGPIOPD_sum Sum of all injected currents in Power Down Mode (Stop Mode) Sum of all injected currents in Sleep Mode IGPIOSleep_su -5 – m Other Voltages Input voltage VAREF VAREF -0.3 – +0.3 VOAI -7 – 7 V – P_1.1.23 Junction temperature Tj -40 – 150 °C – P_1.1.18 Storage temperature Tstg -55 – 150 °C – P_1.1.19 ESD susceptibility all pins VESD1 -2 – 2 kV HBM 11) P_1.1.20 ESD susceptibility pins MON, VS, VSD vs.GND VESD2 -4 – 4 kV HBM 12) P_1.1.21 ESD susceptibility pins LIN vs. GND_LIN VESD3 -6 – 6 kV HBM 11) P_1.1.22 ESD susceptibility CDM all pins vs. GND VESD_CDM1 -500 – 500 V 13) P_1.1.28 VESD_CDM2 ESD susceptibility CDM pins 1, 12, 13, 24, 25, 36, 37, 48 (corner pins) vs. GND -750 – 750 V 13) P_1.1.43 Input voltage OP1, OP2 Temperatures ESD Susceptibility 1) Not subject to production test, specified by design. 2) Conditions and min. value is derived from application condition for reverse polarity event. 3) Min voltage -28V with external 3.9kΩ series resistor only. Data Sheet 82 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 4) Min voltage -2.8V with external 1kΩ series resistor only. 5) To achieve max. ratings on this pin, Parameter P_1.1.44 has to be taken into account resulting in the following dependency: VGH < VSH + VGHvsSH_min and additionally VSH < VGH + 0.3V. 6) To achieve max. ratings on this pin, Parameter P_1.1.45 has to be taken into account resulting in the following dependency: VGL < VSL + VGLvsSL_min and additionally VSL < VGL + 0.3V. 7) These limits can be kept if max current drawn out of pin does not exceed limit of 200 µA. 8) See XTAL parameter specification, when GPIOs (Port Pin P2.0 and P2.2) are used as XTAL. 9) Includes TMS and RESET. 10) Maximum rating for injection current of GPIO with VIN respected. 11) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001 (1.5kΩ, 100pF) 12) MON with external circuitry of a series resistor of 3.9kΩ and 10nF (at connector); VS with an external ceramic capacitor of 100nF; VSD with an external capacitor of 470nF; VDH with external circuitry of a series resistor of 1kΩ and 3.3nF (at pin). 13) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JESD22-C101F Notes 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not designed for continuous repetitive operation. Data Sheet 83 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.1.2 Functional Range Table 18 Functional Range Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number P_1.2.1 Supply voltage in Active Mode VS_AM 5.5 – 28 V – Extended supply voltage in Active Mode VS_AM_exte 28 – 40 V 1) Supply voltage in Active Mode for MOSFET Driver Supply VSD_AM 5.4 – 28 V Extended supply voltage in Active Mode for MOSFET Driver Supply VSD_AM_ext 28 – 32 V 1)3) Functional with parameter deviation P_1.2.17 Specified supply voltage for LIN Transceiver VS_AM_LIN 5.5 – 18 V Parameter Specification P_1.2.2 Extended supply voltage for LIN Transceiver VS_AM_LIN 4.8 – 28 V Functional with parameter deviation P_1.2.14 3.0 – 5.5 V 2) P_1.2.3 3.0 – 28 V – P_1.2.4 V/µs 3) P_1.2.5 mA 3) P_1.2.7 P_1.2.15 P_1.2.9 nd end Supply voltage in Active Mode with VS_AMmin reduced functionality (Microcontroller / Flash with full operation) Supply voltage in Sleep Mode Supply voltage transients slew rate Output sum current for all GPIO pins VS_Sleep dVS/dt IGPIO,sum -1 – -50 – 1 50 Functional with P_1.2.16 parameter deviation P_1.2.18 Operating frequency fsys 5 – 40 MHz 4) Junction temperature Tj -40 – 150 °C – 1) This operation voltage range is only allowed for a short duration: tmax ≤ 400 ms (continuous operation at this voltage is not allowed), fsys = 24 MHz, IVDDP = 10 mA, IVDDEXT = 5 mA. In addition, the power dissipation caused by the Charge Pump + MOSFET driver have to be considered. 2) Reduced functionality (e.g. cranking pulse) - Parameter deviation possible. 3) Not subject to production test, specified by design. 4) Function not specified when limits are exceeded. Data Sheet 84 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.1.3 Current Consumption Table 19 Electrical Characteristics VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. – 35 Number Current Consumption @VS pin Current consumption in Active Mode at pin VS IVs Current consumption in Active Mode at pin VSD IVSD – – 40 mA 20 kHz PWM on Bridge Driver P_1.3.8 Current consumption in Slow Down Mode ISDM_3P – – 35 mA fsys = 5 MHz; LIN communication P_1.3.19 Current consumption in Sleep Mode ISleep – 30 35 µA System in Sleep Mode, P_1.3.3 microcontroller not powered, Wake capable via LIN and MON; MON connected to VS or GND; GPIOs open (no loads) or connected to GND: TJ = -40°C to 85°C; VS = 5.5 V to 18V;2) Current consumption in Sleep Mode extended range ISleep_exten – 90 200 µA System in Sleep Mode, P_1.3.15 microcontroller not powered, Wake capable via LIN and MON; MON connected to VS or GND; GPIOs open (no loads) or connected to GND: TJ = -40°C to 150°C; VS = 5.5 V to 18V;2) Current consumption in Sleep Mode ISleep – 33 µA System in Sleep Mode, P_1.3.9 microcontroller not powered, Wake capable via LIN and MON; MON connected to VS or GND; GPIOs open (no loads) or connected to GND: TJ = -40°C to 40°C; VS = 5.5 V to 18V;2) Data Sheet 30 mA fsys = 20 MHz P_1.3.1 no loads on pins, LIN in recessive state1) running; charge pump on (reverse polarity FET on), external Low Side FET static on (motor break mode); VDDEXT on; all other module set to power down;VS = 13.5V d – 85 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 19 Electrical Characteristics (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Number Current consumption in Sleep Mode with cyclic wake ICyclic – – 110 µA TJ = -40°C to 85°C; VS = 5.5 V to 18V; tCyclic_ON = 4ms; tCyclic_OFF = 2048 ms;2) Current consumption in Stop Mode IStop – 110 160 µA P_1.3.10 System in Stop Mode, microcontroller not clocked, Wake capable via LIN and MON; MON connected to VS or GND; GPIOs open (no loads) or connected to GND; TJ = 40°C to 85°C; VS = 5.5 V to 18V Current consumption in Stop Mode-Extended temperature range 1 IStop_extend – 600 1800 µA P_1.3.20 System in Stop Mode, microcontroller not clocked, Wake capable via LIN and MON; MON connected to VS or GND; GPIOs open (no loads) or connected to GND; TJ = -40 °C to 150 °C; VS = 5.5 V to 18 V P_1.3.4 1) Current on VS, ADC1/2 active, timer running, LIN active (recessive). 2) Incl. leakage currents form VDH, VSD and MON Note: Within the functional range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. Data Sheet 86 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.1.4 Thermal Resistance Table 20 Thermal Resistance Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Junction to Soldering Point RthJSP – 6 – K/W 1) measured to Exposed Pad P_1.4.1 Junction to Ambient RthJA – 33 – K/W 2) P_1.4.2 1) Not subject to production test, specified by design. 2) According to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board. Board: 76.2x114.3x1.5mm³ with 2 inner copper layers (35µm thick), with thermal via array under the exposed pad contacting the first inner copper layer and 300mm2 cooling area on the bottom layer (70µm). 29.1.5 Timing Characteristics The transition times between the system modes are specified here. Generally the timings are defined from the time when the corresponding bits in register PMCON0 are set until the sequence is terminated. Table 21 System Timing1) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number P_1.5.6 Wake-up over battery tstart – – 3 ms Battery ramp-up time to code execution Wake-up over battery tstartSW – – 1.5 ms Battery ramp-up time to till P_1.5.1 MCU reset is released; VS > 3 V and RESET = 1 Sleep-Exit tsleep - exit – – 1.5 ms P_1.5.2 Rising/falling edge of any wake-up signal (LIN, MON) till MCU reset is released; Sleep-Entry tsleep - – 330 µs 2) – P_1.5.3 entry 1) Not subject to production test, specified by design. 2) Wake events during Sleep-Entry are stored and lead to wake-up after Sleep Mode is reached. Data Sheet 87 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.2 Power Management Unit (PMU) This chapter includes all electrical characteristics of the Power Management Unit 29.2.1 PMU I/O Supply (VDDP) Parameters This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the padsupply VDDP and the transition times between the system modes are specified here. Table 22 Electrical Characteristics VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol IVDDP Specified output current IVDDP Specified output current CVDDP1 Required decoupling capacitance Required buffer capacitance for CVDDP2 stability (load jumps) Values Min. Typ. Max. 0 – 50 0 – 30 Unit Note / Test Condition Number mA 1) P_2.1.1 mA 1)2) P_2.1.22 0.47 – 2.2 µF 3)4) 1 – 2.2 µF 3)4) P_2.1.2 ESR < 1Ω; the specified capacitor value is a typical value. The specified capacitor value is a typical value. Output voltage including line and load regulation @ Active Mode VDDPOUT 4.9 5.0 5.1 V 5) Output voltage including line and load regulation @ Active Mode VDDPOUT 4.9 5.0 5.1 V 2)5) Output voltage including line and load regulation @ Stop Mode VDDPOUTS 4.5 Output drop @ Active Mode VSVDDPout – P_2.1.20 Iload < 90mA; VS > 5.5V P_2.1.3 Iload < 70mA; VS > P_2.1.23 5.5V 5.0 5.5 V 5) Iload is only internal; VS > 5.5V P_2.1.21 50 400 mV IVDDP = 30mA6); 3.5V < VS < 5.0V P_2.1.4 Load regulation @ Active Mode VVDDPLOR -50 – 50 mV 2 ... 90mA; C = 570nF P_2.1.5 Line regulation @ Active Mode VVDDPLIR -50 – 50 mV VS = 5.5 ... 28V P_2.1.6 5.14 – 5.4 V VS > 5.5V; Overvoltage P_2.1.7 TOP VDDPOV Overvoltage detection leads to SUPPLY_NMI Overvoltage detection filter time tFILT_VDDP – 735 – µs 3)7) P_2.1.24 3 – V 3) P_2.1.25 P_2.1.26 OV VDDPOK Voltage OK detection 8) – Voltage stable detection range ∆VDDPSTB - 220 – + 220 mV 3) Undervoltage reset VDDPUV 2.5 2.6 2.7 V – P_2.1.8 Overcurrent diagnostic IVDDPOC 91 – 220 mA – P_2.1.9 Data Sheet 88 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 22 Electrical Characteristics (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Overcurrent diagnostic filter time tFILT_VDDP – Overcurrent diagnostic shutdown time tFILT_VDDP – 1) 2) 3) 4) 5) 6) 7) 8) 9) Unit Note / Test Condition Number Typ. Max. 27 – µs 3)7) P_2.1.27 290 – µs 3)7)9) P_2.1.28 OC OC_SD Specified output current for port supply and additional other external loads already excluding VDDC current. This use case applies to cases where output current on VDDEXT is max. 40 mA. Not subject to production test, specified by design. Ceramic capacitor. Load current includes internal supply. Output drop for IVDDP without internal supply current. This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK. The absolute voltage value is the sum of parameters VDDP + ∆VDDPSTB. After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present, the device will enter sleep mode. Data Sheet 89 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.2.2 PMU Core Supply (VDDC) Parameters This chapter describes all electrical parameters which are observable on SoC level. For this purpose only the coresupply VDDC and the transition times between the system modes are specified here. Table 23 Electrical Characteristics VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Required decoupling capacitance CVDDC1 0.1 – 1 µF 1)2) ESR < 1Ω; the specified capacitor value is a typical value. P_2.2.1 Required buffer capacitance for stability (load jumps) CVDDC2 0.33 – 1 µF 2) the specified capacitor value is a typical value. P_2.2.17 Output voltage including line regulation @ Active Mode VDDCOUT 1.44 1.5 1.56 V Iload < 40mA P_2.2.2 Reduced output voltage including line regulation @ Stop Mode VDDCOUT_ 0.95 1.1 1.3 V with internal VDDC load only: Iload_internal < 1.5mA P_2.2.23 Load Regulation @ Active Mode VDDCLOR -50 – 50 mV 2 ... 40mA; C =430nF P_2.2.3 Line regulation @ Active Mode VDDCLIR -25 – 25 mV VDDP = 2.5 ... 5.5V Overvoltage detection VDDCOV 1.59 1.62 1.68 V Overvoltage leads to P_2.2.5 SUPPLY_NMI Overvoltage detection filter time tFILT_VDDC – 735 – µs 1)3) P_2.2.18 Voltage OK detection range4) ∆VDDCOK – + 280 mV 1) P_2.2.19 + 110 mV 1) P_2.2.20 Stop_Red P_2.2.4 OV 5) - 280 Voltage stable detection range ∆VDDCSTB - 110 Undervoltage reset VDDVUV 1.136 1.20 1.264 V – P_2.2.6 Overcurrent diagnostic IVDDCOC 45 100 mA – P_2.2.7 P_2.2.21 P_2.2.22 Overcurrent diagnostic filter time tFILT_VDDC – Overcurrent diagnostic shutdown time tFILT_VDDC – – – 27 – µs 1)3) 290 – µs 1)3)6) OC 1) 2) 3) 4) 5) 6) OC_SD Not subject to production test, specified by design. Ceramic capacitor. This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK. The absolute voltage value is the sum of parameters VDDC + ∆VDDCSTB. The absolute voltage value is the sum of parameters VDDC + ∆VDDCOK. After tFILT_VDDCOC_SD is passed and the overcurrent condition is still present the device will enter sleep mode. Data Sheet 90 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.2.3 VDDEXT Voltage Regulator (5.0V) Parameters Table 24 Electrical Characteristics VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Specified output current IVDDEXT 0 – 20 mA – P_2.3.1 Specified output current IVDDEXT 0 – 40 mA 1) P_2.3.21 3) 2) Required decoupling capacitance CVDDEXT1 0.1 – 2.2 µF ESR < 1 Ω; the specified capacitor value is a typical value. P_2.3.22 Required buffer capacitance for stability (load jumps) CVDDEXT2 1 – 2.2 µF 3)2) the specified capacitor value is a typical value. P_2.3.20 Output voltage including line and load regulation VDDEXT 4.9 5.0 5.1 V 3) P_2.3.3 Output voltage including line and load regulation VDDEXT Output drop @ Active Mode VS-VDDEXT 50 +300 mV 3) Iload < 20mA; 3V < VS < 5.0V P_2.3.4 Output drop @ Active Mode VS-VDDEXT – +400 mV Iload < 40mA; 3V < VS < 5.0V P_2.3.14 Load regulation @ Active Mode VDDEXTLOR -50 – 50 mV 2 ... 40mA; C =200nF P_2.3.5 Line regulation @ Active Mode VVDDEXTLIR -50 – 50 mV VS = 5.5 ... 28V 3) Iload 5.5V 4.8 5.0 5.2 V Iload P_2.3.23 5.5V P_2.3.6 Power supply ripple rejection @ Active Mode PSSRVDDEXT 50 – – dB VS = 13.5V; f =0 ... P_2.3.7 1KHz; Vr=2Vpp Overvoltage detection VVDDEXTOV – 5.4 V VS > 5.5V P_2.3.8 P_2.3.24 Overvoltage detection filter time 5.18 tFILT_VDDEXT – 735 – µs 3)4) 3 – V 3) P_2.3.25 P_2.3.26 OV VVDDEXTOK Voltage OK detection range 5) – – + 220 mV 3) 2.6 2.8 3.0 V 6) P_2.3.9 50 – 160 mA – P_2.3.10 27 – µs 3)4) P_2.3.27 µs 3)4) P_2.3.28 Voltage stable detection range ∆VVDDEXTST - 220 Undervoltage trigger VVDDEXTUV Overcurrent diagnostic IVDDEXTOC Overcurrent diagnostic filter time tFILT_VDDCOC – B Overcurrent diagnostic shutdown tFILT_VDDCOC – time _SD 1) 2) 3) 4) 290 – This use case requires the reduced utilization of VDDP output current by 20 mA, see P_2.1.22. Ceramic capacitor. Not subject to production test, specified by design. This filter time and its variation is derived from the time base tLP_CLK = 1 / fLP_CLK. Data Sheet 91 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 5) The absolute voltage value is the sum of parameters VDDEXT + ∆VDDEXTSTB. 6) When the condition is met, the Bit VDDEXT_CTRL.bit.SHORT will be set. Data Sheet 92 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.2.4 VPRE Voltage Regulator (PMU Subblock) Parameters The PMU VPRE Regulator acts as a supply of VDDP and VDDEXT voltage regulators. Table 25 Functional Range Parameter Symbol Specified output current IVPRE Values Min. Typ. Max. – – 110 Unit Note / Test Condition Number mA 1) P_2.4.1 1) Not subject to production test, specified by design. 29.2.4.1 Load Sharing Scenarios of VPRE Regulator The figure below shows the possible load sharing scenarios of VPRE regulator. VS VPRE max. 110 mA VDDEXT VDDEXT - 5V 1: max. 20 mA 2: max. 40 mA VDDP - 5V 1: max. 90 mA 2: max. 70 mA VDDP CVDDEXT CVDDP GND (Pin 39) GND (Pin 39) VDDC VDDC - 1.5V max. 40 mA CVDDC GND (Pin 39) Load Sharing VPRE – Scenarios 1 & 2 Load_Sharing_VPRE.vsd Figure 33 Load Sharing Scenarios of VPRE Regulator 29.2.5 Power Down Voltage Regulator (PMU Subblock) Parameters The PMU Power Down voltage regulator consists of two subblocks: • • Power Down Pre regulator: VDD5VPD Power Down Core regulator: VDD1V5_PD (Supply used for GPUDATAxy registers) Both regulators are used as purely internal supplies. The following table contains all relevant parameters: Data Sheet 93 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 26 Functional Range Parameter Symbol Values Min. Typ. Max. – 1.5 Unit Note / Test Condition Number V 1) VDD1V5_PD Power-On Reset Threshold VDD1V5_PD_ 1.2 P_2.5.1 RSTTH 1) Not subject to production test, specified by design Data Sheet 94 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.3 System Clocks 29.3.1 Oscillators and PLL Parameters Table 27 Electrical Characteristics System Clocks VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Unit Note / Test Condition Number Typ. Max. 14 18 22 MHz This clock is used at startup P_3.1.1 and can be used in case the PLL fails 70 100 130 kHz This clock is used for cyclic P_3.1.2 wake PMU Oscillators (Power Management Unit) Frequency of LP_CLK fLP_CLK Frequency of LP_CLK2 fLP_CLK2 CGU Oscillator (Clock Generation Unit Microcontroller) Short term frequency deviation1) fTRIMST -0.4 – +0.4 % 2)3) Within any 10 ms, e.g. after synchronization to a LIN frame (PLL settings untouched within 10 ms) P_3.1.3 Absolute accuracy fTRIMABSA -1.5 – +1.5 % Including temperature and lifetime deviation P_3.1.4 CGU-OSC Start-up time tOSC – – 10 µs 3) P_3.1.5 Startup time OSC from Sleep Mode, power supply stable PLL (Clock Generation Unit Microcontroller) 3) VCO frequency range Mode 0 fVCO-0 48 – 112 MHz VCOSEL =”0” P_3.1.6 VCO frequency range Mode 1 fVCO-1 96 – 160 MHz VCOSEL =”1” P_3.1.7 Input frequency range fOSC 4 – 16 MHz – P_3.1.8 XTAL1 input freq. range fOSC 4 – 16 MHz – P_3.1.9 0.04687 – 80 MHz – P_3.1.10 Free-running frequency fVCOfree_0 Mode 0 – – 38 MHz VCOSEL =”0” P_3.1.11 Free-running frequency fVCOfree_1 Mode 1 – – 76 MHz VCOSEL =”1” P_3.1.12 P_3.1.13 Output freq. range fPLL Input clock high/low time thigh/low 10 – – ns – Peak period jitter tjp -500 – 500 ps 4) for K=1 P_3.1.14 Accumulated jitter jacc – – 5 ns 4) for K=1 P_3.1.15 Lock-in time tL – – 200 µs – Data Sheet 95 P_3.1.16 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 1) 2) 3) 4) The typical oscillator frequency is 5 MHz VDDC = 1.5 V, Tj = 25°C Not subject to production test, specified by design. This parameter is valid for PLL operation with an external clock source and thus reflects the real PLL performance. 29.3.2 External Clock Parameters XTAL1, XTAL2 Table 28 Functional Range VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)1) Parameter Symbol Values Max. Unit Note / Test Condition -1.7 + VDDC – 1.7 V 2) P_3.2.1 0.3 x VDDC – – V 3) Peak-to-peak voltage P_3.2.2 0 V < VIN < VDDI P_3.2.3 Min. Input voltage range limits for signal on XTAL1 VIX1_SR Input voltage (amplitude) on VAX1_SR XTAL1 Typ. Number XTAL1 input current IIL – – ±20 µA Oscillator frequency fOSC 4 – 24 MHz Clock signal P_3.2.4 Oscillator frequency fOSC 4 – 16 MHz Crystal or Resonator P_3.2.5 High time t1 6 – – ns – P_3.2.6 Low time t2 6 – – ns – P_3.2.7 Rise time t3 – 8 8 ns – P_3.2.8 Fall time t4 – 8 8 ns – P_3.2.9 1) This parameter table is not subject to production test, specified by design. 2) Overload conditions must not occur on pin XTAL1. 3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by VIX1. Data Sheet 96 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.4 Flash Memory This chapter includes the parameters for the 128 kByte embedded flash module. 29.4.1 Flash Parameters Table 29 Flash Characteristics1) VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Programming time per 128 byte page tPR Typ. – Unit Note / Number Test Condition Max. 3 2) 3.5 ms 3V < VS < 28V P_4.1.1 2) 4.5 ms 3V < VS < 28V P_4.1.2 Erase time per sector/page tER – 4 Data retention time tRET 20 – – years 1,000 erase / P_4.1.3 program cycles Data retention time tRET 50 – – years 1,000 erase / P_4.1.9 program cycles Tj = 30°C3) Flash erase endurance for user sectors NER 30 – – kcycles Data retention time 5 years Flash erase endurance for security pages NSEC 10 – – cycles 4) Drain disturb limit NDD 32 – – kcycles 5) P_4.1.4 Data retention P_4.1.5 time 20 years P_4.1.6 1) Not subject for production test, specified by design. 2) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. The requirement is only relevant for extremely low system frequencies. 3) Derived by extrapolation of lifetime tests. 4) Tj = 25 °C. 5) This parameter limits the number of subsequent programming operations within a physical sector without a given page in this sector being (re-)programmed. The drain disturb limit is applicable if wordline erase is used repeatedly. For normal sector erase/program cycles this limit will not be violated. For data sectors the integrated EEPROM emulation firmware routines handle this limit automatically, for wordline erases in code sectors (without EEPROM emulation) it is recommended to execute a software based refresh, which may make use of the integrated random number generator NVMBRNG to statistically start a refresh. Data Sheet 97 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.5 Parallel Ports (GPIO) 29.5.1 Description of Keep and Force Current VDDP keeper current PU Device PUDSEL P1.x P0.x \PUDSEL keeper current PD Device VSS Pull- Up- Down.vsd Figure 34 Pull-Up/Down Device UGPIO Logical "1" 7.5 kOhm (equivalent) (1.5V / 200uA) VIH - VDDP Undefined 2.33 kOhm (equivalent) (3.5V / 1.5mA) VIL - VDDP Logical "0" -I PLF Figure 35 Data Sheet I -IPLK Current_Diag.vsd Pull-Up Keep and Forced Current 98 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics UGPIO Logical "1" 2.33 kOhm (equivalent) (3.5V / 1.5mA) VIH Undefined 7.5 kOhm (equivalent) (1.5V / 200uA) VIL Logical "0" IPLK I I PLF Current_Diag-Pull _down.vsd Figure 36 Pull-Down Keep and Force Current 29.5.2 DC Parameters of Port 0, Port 1, TMS and Reset Note: Operating Conditions apply. Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the maximum allowed ocurrent which can be taken out of VDDP. Table 30 Current Limits for Port Output Drivers1) Port Output Driver Mode Maximum Output Current (IOLmax , - IOHmax) VDDP ≥ 4.5V Strong driver2) Medium driver Weak driver 3) 3) Maximum Output Current (IOLnom , - IOHnom) Number 2.6V < VDDP < VDDP ≥ 4.5V 4.5V 2.6V < VDDP < 4.5V 5 mA 3 mA 1.6 mA 1.0 mA P_5.1.15 3 mA 1.8 mA 1.0 mA 0.8 mA P_5.1.1 0.5 mA 0.3 mA 0.25 mA 0.15 mA P_5.1.2 1) Not subject to production test, specified by design. 2) Not available for port pins P0.4, P1.0, P1.1 and P1.2 3) All P0.x and P1.x Table 31 DC Characteristics Port0, Port1 VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Input hysteresis HYSP0_P1 0.11 x VDDP – – V 1) Input hysteresis HYSP0_P1 – – V 1) _exend Data Sheet 0.09 x VDDP 99 Number P_5.1.5 Series resistance = 0 Ω; 4.5V ≤ VDDP ≤ 5.5V P_5.1.16 Series resistance = 0 Ω; 2.6V ≤ VDDP ≤ 4.5V Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 31 DC Characteristics Port0, Port1 (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Input low voltage VIL -0.3 – 0.3 x VDDP V 2) 4.5V ≤ VDDP ≤ 5.5V P_5.1.3 Input low voltage VIL_extend -0.3 0.42 x – V 1) 2.6V ≤ VDDP ≤ 4.5V P_5.1.17 Input high voltage VIH 0.7 x VDDP – VDDP + 0.3 V 2) 4.5V ≤ VDDP ≤ 5.5V P_5.1.4 Input high voltage VIH_extend – 0.52 x VDDP + 0.3 V 1) 2.6V ≤ VDDP ≤ 4.5V P_5.1.18 Output low voltage VOL – – 1.0 V 3) 4) IOL ≤ IOLmax P_5.1.6 Output low voltage VOL – – 0.4 V 3) 5) IOL ≤ IOLnom P_5.1.7 V 3) 4) IOH ≥ IOHmax P_5.1.8 IOH ≥ IOHnom P_5.1.9 Output high voltage VOH VDDP VDDP - 1.0 VDDP – – – – V 3) 5) IOZ_extend1 -500 – +500 nA -40°C ≤ TJ ≤ 25°C, 0.45 V < VIN < VDDP P_5.1.20 IOZ1 – +5 µA 6) P_5.1.10 Output high voltage VOH Input leakage current Input leakage current VDDP - 0.4 -5 25°C < TJ ≤ 85°C, 0.45 V < VIN < VDDP Input leakage current IOZ_extend2 -15 – +15 µA 85°C < TJ ≤ 150°C, 0.45 V < VIN < VDDP P_5.1.11 Pull level keep current IPLK -200 – +200 µA 7) VPIN ≥ VIH (up) VPIN ≤ VIL (dn) P_5.1.12 Pull level force current IPLF -1.5 – +1.5 mA 7) VPIN ≤ VIL (up) VPIN ≥ VIH (dn) P_5.1.13 Pin capacitance CIO – – 10 pF 1) P_5.1.14 – 5 – µs 1) P_5.1.19 Reset Pin Timing Reset Pin Input Filter Time tfilt_RESET 1) Not subject to production test, specified by design. 2) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V. 3) The maximum deliverable output current of a port driver depends on the selected output driver mode. The limit for pin groups must be respected. 4) Tested at 4.9V < VDDP < 5.1V, IOL = 4mA, IOH = -4mA, specified for 4.5V < VDDP < 5.5V. 5) As a rule, with decreasing output current the output levels approach the respective supply level (VOL→GND, VOH→VDDP). Tested at 4.9V < VDDP < 5.1V, IOL = 1mA, IOH = -1mA. Data Sheet 100 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 6) The given values are worst-case values. In production tests, this leakage current is only tested at 150°C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 × e(1.5 + 0.028×TJ) [µA]. For example, at a temperature of 95°C the resulting leakage current is 3.2 µA. Leakage derating depending on voltage level (DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 × DV) [µA] This voltage derating formula is an approximation which applies for maximum temperature. 7) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down. These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins. 29.5.3 DC Parameters of Port 2 These parameters apply to the IO voltage range, 4.5 V ≤ VDDP ≤ 5.5 V. Note: Operating Conditions apply. Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Table 32 DC Characteristics Port 2 VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Input low voltage VIL -0.3 – 0.3 x VDDP V 1) 4.5V ≤ VDDP ≤ 5.5V P_5.2.1 Input low voltage VIL_extend -0.3 0.42 x – V 2) 2.6V ≤ VDDP ≤ 4.5V P_5.2.10 Input high voltage VIH 0.7 x VDDP – VDDP + 0.3 V 1) 4.5V ≤ VDDP ≤ 5.5V P_5.2.2 Input high voltage VIH_extend – 0.52 x VDDP + 0.3 V 2) P_5.2.11 – V 2) – V 2) VDDP VDDP 0.11 x VDDP – Input hysteresis HYSP2 Input hysteresis HYSP2_ext – end 0.09 x VDDP 2.6V ≤ VDDP ≤ 4.5V P_5.2.3 Series resistance = 0 Ω; 4.5V ≤ VDDP ≤ 5.5V P_5.2.12 Series resistance = 0 Ω; 2.6V ≤ VDDP < 4.5V Input leakage current IOZ2 -400 – +400 nA TJ ≤ 85°C, 0 V < VIN < VDDP P_5.2.4 Pull level keep current IPLK -30 – +30 µA 3) P_5.2.5 Data Sheet 101 VPIN ≥ VIH (up) VPIN ≤ VIL (dn) Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 32 DC Characteristics Port 2 (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Pull level force current Symbol IPLF Values Min. Typ. Max. Unit Note / Test Condition -750 – +750 µA 3) VPIN ≤ VIL (up) VPIN ≥ VIH (dn) P_5.2.6 10 pF 2) P_5.2.7 CIO – – Pin capacitance (digital inputs/outputs) 1) Tested at VDDP = 5V, specified for 4.5V < VDDP < 5.5V. Number 2) Not subject to production test, specified by design. 3) Keep current: Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: VPIN ≥ VIH for a pull-up; VPIN ≤ VIL for a pull-down. Force current: Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: VPIN ≤ VIL for a pull-up; VPIN≥ VIH for a pull-down. Data Sheet 102 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.6 LIN Transceiver 29.6.1 Electrical Characteristics Table 33 Electrical Characteristics LIN Transceiver Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Note / Test Condition Number Max. Bus Receiver Interface Receiver threshold voltage, Vth_dom recessive to dominant edge Receiver dominant state VBUSdom -27 Receiver threshold voltage, Vth_rec dominant to recessive edge Receiver recessive state 0.4 ×VS 0.45 ×VS 0.53 x VS V VBUSrec 0.47 x VS SAE J2602 P_6.1.1 0.4 ×VS V LIN Spec 2.2 (Par. 17) P_6.1.2 0.55 ×VS 0.6 ×VS V SAE J2602 P_6.1.3 – 0.6 ×VS – 1) LIN Spec 2.2 (Par. 18) P_6.1.4 0.525 × VS V 2) LIN Spec 2.2 (Par. 19) P_6.1.5 Receiver center voltage VBUS_CN 0.475 × VS T Receiver hysteresis VHYS 0.07 VS 0.12 ×VS 0.175 × VS V 3) LIN Spec 2.2 (Par. 20) P_6.1.6 Wake-up threshold voltage VBUS,wk 0.4 ×VS 0.5 ×VS 0.6 ×VS V – P_6.1.7 3 – 15 µs P_6.1.8 The overall dominant time for bus wake-up is a sum of tWK,bus + adjustable digital filter time. The digital filter time can be adjusted by PMU.CNF_WAKE_FIL TER.CNF_LIN_FT; 0.8 ×VS – VS V VTxD = high Level P_6.1.9 – 0.22 ×VS V Driver Dominant Voltage RL = 500 Ohm P_6.1.78 Dominant time for bus wake- tWK,bus up (internal analog filter delay) 0.5 ×VS 1.15 ×VS V Bus Transmitter Interface Bus recessive output voltage VBUS,ro Bus dominant output voltage VBUS,do Data Sheet – 103 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 33 Electrical Characteristics LIN Transceiver (cont’d) Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number P_6.1.10 Bus short circuit current IBUS,sc 40 100 150 mA Current Limitation for driver dominant state driver on VBUS = 18 V; LIN Spec 2.2 (Par. 12) Bus short circuit filter time tBUS,sc – 5 – µs 6) Leakage current (loss of ground) IBUS_NO_ -1000 -450 1000 µA VS = 12 V; 0 < VBUS < P_6.1.11 18 V; LIN Spec 2.2 (Par. 15) Leakage current IBUS_NO_ – 10 20 µA VS = 0 V; VBUS = 18 V; GND IBUS_PAS -1 – – mA VS = 18 V; VBUS = 0 V; LIN Spec 2.2 (Par. 13) P_6.1.13 – 20 µA VS = 8 V; VBUS = 18 V; P_6.1.14 _dom Leakage current IBUS_PAS – LIN Spec 2.2 (Par. 14) _rec Bus pull-up resistance RBUS P_6.1.12 LIN Spec 2.2 (Par. 16) BAT Leakage current The overall bus short P_6.1.71 circuit filter time is a sum of tBUS,sc + digital filter time. The digital filter time is 4 µs (typ.) 20 30 47 kΩ Normal mode LIN Spec P_6.1.15 2.2 (Par. 26) AC Characteristics - Transceiver Normal Slope Mode td(L),R 0.1 – 6 µs LIN Spec 2.2 (Param. 31) P_6.1.16 td(H),R Propagation delay bus recessive to RxD HIGH 0.1 – 6 µs LIN Spec 2.2 (Param. 31) P_6.1.17 µs tsym,R = td(L),R - td(H),R; LIN Spec 2.2 (Par. 32) P_6.1.18 4) P_6.1.19 Propagation delay bus dominant to RxD LOW Receiver delay symmetry tsym,R -2 – 2 Duty cycle D1 Normal Slope Mode (for worst case at 20 kbit/s) tduty1 0.396 – – Data Sheet 104 duty cycle 1 THRec(max) = 0.744 ×VS; THDom(max) = 0.581 ×VS; VS = 5.5 … 18 V; tbit = 50 µs; D1 = tbus_rec(min)/2 tbit; LIN Spec 2.2 (Par. 27) Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 33 Electrical Characteristics LIN Transceiver (cont’d) Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Duty cycle D2 Normal Slope Mode (for worst case at 20 kbit/s) Symbol tduty2 Values Unit Note / Test Condition Min. Typ. Max. – – 0.581 Number 4) P_6.1.20 duty cycle 2 THRec(min) = 0.422 ×VS; THDom(min) = 0.284 ×VS; VS = 5.5 … 18 V; tbit = 50 µs; D2 = tbus_rec(max)/2 tbit; LIN Spec 2.2 (Par. 28) AC Characteristics - Transceiver Low Slope Mode td(L),R 0.1 – 6 µs LIN Spec 2.2 (Param. 31) P_6.1.21 td(H),R Propagation delay bus recessive to RxD HIGH 0.1 – 6 µs LIN Spec 2.2 (Param. 31) P_6.1.22 µs tsym,R = td(L),R - td(H),R; LIN Spec 2.2 (Par. 32) P_6.1.23 4) P_6.1.24 Propagation delay bus dominant to RxD LOW Receiver delay symmetry tsym,R -2 – 2 Duty cycle D3 (for worst case at 10.4 kbit/s) tduty1 0.417 – – duty cycle 3 THRec(max) = 0.778 ×VS; THDom(max) = 0.616 ×VS; VS = 5.5 … 18 V; tbit = 96 µs; D3 = tbus_rec(min)/2 tbit; LIN Spec 2.2 (Par. 29) Duty cycle D4 (for worst case at 10.4 kbit/s) tduty2 – – 0.590 4) duty cycle 4 P_6.1.25 THRec(min) = 0.389 ×VS; THDom(min) = 0.251 ×VS; VS = 5.5 … 18 V; tbit = 96 µs; D4 = tbus_rec(max)/2 tbit; LIN Spec 2.2 (Par. 30) AC Characteristics - Transceiver Fast Slope Mode td(L),R 0.1 – 6 µs – P_6.1.26 td(H),R Propagation delay bus recessive to RxD HIGH 0.1 – 6 µs – P_6.1.27 -1.5 – 1.5 µs tsym,R = td(L),R - td(H),R; P_6.1.28 0.1 – 6 µs – P_6.1.31 Propagation delay bus dominant to RxD LOW Receiver delay symmetry tsym,R AC Characteristics - Flash Mode Propagation delay bus dominant to RxD LOW Data Sheet td(L),R 105 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 33 Electrical Characteristics LIN Transceiver (cont’d) Vs = 5.5V to 18V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Propagation delay td(H),R bus recessive to RxD HIGH Receiver delay symmetry tsym,R Values Unit Note / Test Condition Number Min. Typ. Max. 0.1 – 6 µs – P_6.1.32 -1.0 – 1.5 µs tsym,R = td(L),R - td(H),R; P_6.1.33 5) Duty cycle D7 (for worst case at 115 kbit/s) for +1 µs Receiver delay symmetry tduty1 0.399 – – duty cycle D7 P_6.1.34 THRec(max) = 0.744 ×VS; THDom(max) = 0.581 ×VS; VS = 13.5 V; tbit = 8.7 µs; D7 = tbus_rec(min)/2 tbit; Duty cycle D8 (for worst case at 115 kbit/s) for +1 µs Receiver delay symmetry tduty2 – – 0.578 5) LIN input capacity CLIN_IN – 15 30 pF 6) P_6.1.69 TxD dominant time out ttimeout 6 12 20 ms VTxD = 0 V P_6.1.36 200 215 °C 6) P_6.1.65 K 6) P_6.1.66 duty cycle 8 P_6.1.35 THRec(min) = 0.422 ×VS; THDom(min) = 0.284 ×VS;VS = 13.5 V; tbit = 8.7 µs; D8 = tbus_rec(max)/2 tbit; Thermal Shutdown (Junction Temperature) Thermal shutdown temp. Thermal shutdown hyst. 1) 2) 3) 4) TjSD ∆T 190 – 10 – Maximum limit specified by design. VBUS_CNT = (Vth_dom +Vth rec)/2 VHYS = VBUSrec - VBUSdom Bus load concerning LIN Spec 2.2: Load 1 = 1 nF / 1 kΩ = CBUS / RBUS Load 2 = 6.8 nF / 660 Ω = CBUS / RBUS Load 3 = 10 nF / 500 Ω = CBUS / RBUS 5) Bus load Load 1 = 1 nF / 500 Ω = CBUS / RBUS 6) Not subject to production test, specified by design. Data Sheet 106 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.7 High-Speed Synchronous Serial Interface 29.7.1 SSC Timing Parameters The table below provides the SSC timing in the TLE9879QXA40. Table 34 SSC Master Mode Timing (Operating Conditions apply; CL = 50 pF) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Unit Max. Note / Number Test Condition – 2) VDDP > 2.7 V P_7.1.1 – ns 2) VDDP > 2.7 V P_7.1.2 ns 2) VDDP > 2.7 V P_7.1.3 MRST hold from SCLK t3 15 – – ns 1) TSSCmin = TCPU = 1/fCPU. If fCPU = 20 MHz, t0 = 100 ns. TCPU is the CPU clock period. 2) VDDP > 2.7 V P_7.1.4 1) t0 SCLK clock period t1 MTSR delay from SCLK 10 t2 MRST setup to SCLK 2 * TSSC – – 10 – – 2) Not subject to production test, specified by design. t0 SCLK1) t1 t1 MTSR1) t2 t3 Data valid MRST1) t1 1) This timing is based on the following setup: CON.PH = CON.PO = 0. SSC_Tmg1 Figure 37 Data Sheet SSC Master Mode Timing 107 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.8 Measurement Unit 29.8.1 System Voltage Measurement Parameters Table 35 Supply Voltage Signal Conditioning VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. 0 – 5 V – P_8.1.15 0 – 1.23 V – P_8.1.16 ATTVS_1 – 0.055 – SFR setting 1 P_8.1.41 Nominal operating input voltage range VS VS,range1 3 – 22 V 1) P_8.1.1 Accuracy of VS after calibration VS,range1 -220 – 220 mV SFR setting 1, VS = 5.5 V P_8.1.70 to 18V Input to output voltage attenuation: ATTVS_2 – 0.039 – Nominal operating input voltage range VS VS,range2 3 – 31 V 1) Accuracy of VS after calibration VS,range2 -370 – 370 mV SFR setting 2, VS = 5.5V to 18V P_8.1.44 – P_8.1.21 Measurement output VA5 voltage range @ VAREF5 Measurement output voltage range @ VAREF1V2 VA1V2 Battery / Supply Voltage Measurement Input to output voltage attenuation: VS SFR setting 1; Max. value corresponds to typ. ADC full scale input; 3V < VS < 28V SFR setting 2 P_8.1.42 VS P_8.1.40 SFR setting 2; Max. value corresponds to typ. ADC full scale input 3V < VS < 28V Driver Supply Voltage Measurement VSD ATTVSD – 0.039 – Nominal operating input voltage range VSD VSD,range 2.5 – 31 V 1) P_8.1.2 Accuracy of VSD sense after calibration ∆VSD -440 – 440 mV VS = 5.5V to 18V P_8.1.47 Input to output voltage attenuation: VSD Data Sheet 108 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 35 Supply Voltage Signal Conditioning (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Unit Note / Test Condition Typ. Max. Number Charge Pump Voltage Measurement VCP ATTVCP – 0.023 – Nominal operating input voltage range VCP VCP,range 2.5 – 52 Accuracy of VCP sense after calibration ∆VCP -747 – 747 Input to output voltage attenuation: – P_8.1.56 V 1) P_8.1.7 mV VS = 5.5V to 18V P_8.1.62 – P_8.1.49 VCP Monitoring Input Voltage Measurement VMON ATTVMON – 0.039 – Nominal operating input voltage range VMON VMON,range 2.5 – 31 V 1) P_8.1.8 Accuracy of VMON sense after calibration ∆VMON -440 – 440 mV VS = 5.5V to 18V P_8.1.68 ATTVDDP – 0.164 – – P_8.1.33 Nominal operating input voltage range VDDP VDDP,range 0 – 7.50 V 1) P_8.1.50 Accuracy of VDDP sense after calibration ∆VDDP_SENSE -105 – 105 mV 2) P_8.1.5 – P_8.1.22 Input to output voltage attenuation: VMON Pad Supply Voltage Measurement VVDDP Input-to-output voltage attenuation: VDDP VS = 5.5 to 18V 10-Bit ADC Reference Voltage Measurement VAREF ATTVAREF – 0.219 – Nominal operating input voltage range VAREF VAREF,range 0 – 5.62 V 1) P_8.1.51 Accuracy of VAREF sense after calibration ∆VAREF -79 – 79 mV VS = 5.5V to 18V P_8.1.48 – P_8.1.57 1) P_8.1.52 Input to output voltage attenuation: VAREF 8-Bit ADC Reference Voltage Measurement VBG Input-to-output voltage attenuation: ATTVBG – 0.75 – VBG,range 0.8 – 1.64 VBG Nominal operating input voltage range VBG Data Sheet 109 V Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 35 Supply Voltage Signal Conditioning (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. 1.01 1.07 1.18 ATTVDDC – 0.75 – Nominal operating input voltage range VDDC VDDC,range 0.8 – 1.64 Accuracy of VDDC sense after calibration ∆VDDC_SENSE -22 – 22 Value of ADC2-VBG measurement after calibration VBG_PMU Unit Note / Test Condition Number V P_8.1.73 Core supply Voltage Measurement VDDC Input-to-output voltage attenuation: – P_8.1.34 V 1) P_8.1.53 mV VS = 5.5 to 18V P_8.1.6 VDDC VDH Input Voltage Measurement VVDH10BITADC VDH Input to output voltage attenuation: ATTVDH_1 – 0.166 – SFR setting 1 P_8.1.64 VDH Input to output voltage attenuation: ATTVDH_2 – 0.224 – SFR setting 2 P_8.1.65 VDH Input to output voltage attenuation: ATTVDH_3 - 0.226 - 1) SFR setting 2 Tj = -40..85°C P_8.1.75 VVDH,range1 Nominal operating input voltage range VVDH, Range 1 – – 30 SFR setting 1 P_8.1.66 VVDH,range2 Nominal operating input voltage range VVDH, Range 2 – – 20 SFR setting 2 P_8.1.67 VVDH 10-bit ADC, Range 1 ∆VVDHADC10B -300 – 300 mV VDH= 5.5 to 17.5V, Tj = -40..150°C P_8.1.39 VVDH 10-bit ADC, Range 3 ∆VVDHADC10B -200 – 200 mV 1) P_8.1.71 VDH= 5.5V to 17.5V, Tj = -40..85°C ATTVDH_3 VVDH 10-bit ADC, Range 2 ∆VVDHADC10B_ex -400 – 400 mV VDH= 5.5V to 17.5V, Tj = -40..150°C P_8.1.74 390 470 kΩ PD_N=1 (on-state) P_8.1.3 2.0 µA PD_N=0 (off-state), P_8.1.10 tend_T 10-Bit ADC measurement input resistance for VDH Rin_VDH,measure Measurement input leakage current for VVDH Ileak_VDH, measure -0.05 – 200 1) Not subject to production test, specified by design. 2) Accuracy is valid for a calibrated device. Data Sheet 110 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.8.2 Central Temperature Sensor Parameters Table 36 Electrical Characteristics Temperature Sensor Module VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Output voltage VTEMP at T0=273 K (0°C) a Temperature sensitivity b b Accuracy_1 Accuracy_2 Accuracy_3 Values Min. Typ. Max. – 0.666 – Unit Note / Test Condition Number V 1) P_8.2.2 T0=273 K (0°C) Acc_1 Acc_2 Acc_3 – -10 -10 -5 2.31 – – – – 10 10 5 mV/K 1) °C 2)1) -40°C < Tj < 85°C P_8.2.5 °C 2)1) 125°C < Tj < 150°C P_8.2.6 °C 2)1) 85°C < Tj < 125°C P_8.2.7 P_8.2.4 1) Not subject to production test, specified by design 2) Accuracy with reference to on-chip temperature calibration measurement, valid for Mode1 Data Sheet 111 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.8.3 ADC2-VBG 29.8.3.1 ADC2 Reference Voltage VBG Table 37 DC Specifications VS = 3.0 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol VBG Reference Voltage Values Min. Typ. Max. 1.199 1.211 1.223 Unit Note / Test Condition Number V 1) P_8.3.1 1) Not subject to production test, spedesign 29.8.3.2 ADC2 Specifications Table 38 DC Specifications VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. – 8 – Bits Full P_8.3.18 ±0.3 2.0 LSB not calibrated P_8.3.19 ±0.5 2.0 %FSR not calibrated P_8.3.20 ±0 0.8 LSB Full P_8.3.21 ±0 1.2 LSB – P_8.3.22 Resolution RES Guaranteed offset error EAOFF_8 -2.0 Bit Gain error EAGain_8 -2.0 Bit Differential non-linearity (DNL) EADNL_8 -0.8 Bit Integral non-linearity (INL) EAINL_8Bi -1.2 t Data Sheet 112 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.9 ADC1 Reference Voltage - VAREF 29.9.1 Electrical Characteristics VAREF Table 39 Electrical Characteristics VAREF VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Required buffer capacitance CVAREF 0.1 – 1 µF ESR < 1Ω P_9.1.1 Reference output voltage VAREF 4.95 5 5.05 V VS > 5.5V P_9.1.2 P_9.1.3 DC supply voltage rejection DCPSRVAREF 30 – – dB 1) Supply voltage ripple rejection ACPSRVAREF 26 – – dB 1) Turn ON time tso – – 200 µs 1) – 100 – kΩ 1) Input resistance at VAREF RIN,VAREF Pin – VS = 13.5V; f = 0 ... 1KHz; P_9.1.4 Vr = 2Vpp Cext = 100nF P_9.1.5 PD_N to 99.9% of final value input impedance in case of P_9.1.20 VAREF is applied from external 1) Not subject to production test, specified by design. Data Sheet 113 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.9.2 Electrical Characteristics ADC1 (10-Bit) These parameters describe the conditions for optimum ADC performance. Note: Operating Conditions apply. Table 40 A/D Converter Characteristics VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Analog reference supply VAREF Values Min. Typ. Max. VAGND – VDDPA + 1.0 Analog reference ground VAGND VSS Unit Note / Test Condition Number V 1) P_9.2.1 + 0.05 – 1.5 V – P_9.2.2 - 0.05 Analog input voltage range VAIN VAGND – VAREF V 2) P_9.2.3 Analog clock frequency fADCI 5 – 24 MHz 3) P_9.2.4 (13 + STC) (13 + STC (13 + STC – × tADCI ) × tADCI ) × tADCI + 2 x tSYS + 2 x tSYS + 2 x tSYS 1)4) P_9.2.5 (11 + STC) (11 + STC (11 + STC – × tADCI ) × tADCI ) × tADCI + 2 × tSYS + 2 × tSYS + 2 × tSYS 1) P_9.2.6 tWAF – – 4 µs 1) P_9.2.7 tWAS Wakeup time from analog powerdown, slow mode – – 15 µs 1)5) P_9.2.8 Total unadjusted error (8 TUE8B bit) -2 ±1 +2 counts 6)7) Reference is internal VAREF P_9.2.9 Total unadjusted error (10 bit) TUE10B -12 ±6 +12 counts 7)8) P_9.2.22 DNL error EADNL -3 ±0.8 +3 counts – P_9.2.10 INL error EAINL_int_V -5 ±0.8 +5 counts Reference is internal VAREF P_9.2.11 ±0.4 +10 counts Reference is internal VAREF P_9.2.12 ±0.5 +2 counts – P_9.2.13 Conversion time for 10bit result tC10 Conversion time for 8-bit tC8 result Wakeup time from analog powerdown, fast mode AREF Gain error EAGAIN_int_ -10 VAREF Offset error EAOFF -2 Reference is internal VAREF Total capacitance of an analog input CAINT – – 10 pF 1)5)9) Switched capacitance of an analog input CAINS – – 4 pF 1)5)9) P_9.2.15 Resistance of the analog input path RAIN – – 2 kΩ 1)5)9) P_9.2.16 Data Sheet 114 P_9.2.14 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 40 A/D Converter Characteristics (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number Total capacitance of the reference input CAREFT – – 15 pF 1)5)9) P_9.2.17 Switched capacitance of the reference input CAREFS – – 7 pF 1)5)9) P_9.2.18 Resistance of the reference input path RAREF – – 2 kΩ 1)5)9) P_9.2.19 1) Not subject to production test, specified by design. 2) VAIN may exceed VAGND or VAREFx up to the absolute maximum ratings. However, the conversion result in these cases will be 0000H or 03FFH, respectively. 3) The limit values for fADCI must not be exceeded when selecting the peripheral frequency and the prescaler setting. 4) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. 5) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 µs. 6) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual errors. All error specifications are based on measurement methods standardized by IEEE 1241.2000. 7) The specified TUE is valid only if the absolute sum of input overload currents (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the measurement time. 8) The total unadjusted error TUE is the maximum deviation from the ideal ADC transfer curve, not the sum of individual errors. All error specifications are based on measurement methods standardized by IEEE 1241.2000. 9) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation. At room temperature and nominal supply voltage the following typical values can be used: CAINTtyp = 12 pF, CAINStyp = 5 pF, RAINtyp = 1.0 kΩ, CAREFTtyp = 15 pF, CAREFStyp = 10 pF, RAREFtyp = 1.0 kΩ. 29.10 Data Sheet Reserved 115 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.11 High-Voltage Monitoring Input 29.11.1 Electrical Characteristics Table 41 Electrical Characteristics Monitoring Input Tj = -40 °C to +150 °C; VS = 5.5 V to 28 V, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. 0.4*VS 0.5*VS 0.6*VS Unit Note / Test Condition Number MON Input Pin characteristics Wake-up/monitoring threshold voltage VMONth V Without external serial resistor Rs (with Rs:DV = IPD/PU * Rs); VS = 5.5V to 18V P_11.1.1 Wake-up/monitoring threshold voltage extended range VMONth_ext 0.44*VS 0.53*V 0.64*VS V P_11.1.11 end S Without external serial resistor Rs (with Rs:DV = IPD/PU * Rs) Threshold hysteresis VMONth,hys 0.015* VS VS 0.05* 0.1*VS V P_11.1.12 In all modes; without external serial resistor Rs (with Rs:dV = IPD/PU * Rs); VS = 5.5V to 18V; Threshold hysteresis VMONth,hys 0.02*VS 0.06* VS 0.12*VS V P_11.1.2 In all modes; without external serial resistor Rs (with Rs:dV = IPD/PU * Rs); VS = 18V to 28V; Pull-up current IPU, MON -20 -10 -1 µA 0.6*VS P_11.1.3 Pull-down current IPD, MON 3 10 20 µA 0.4*VS P_11.1.4 Input leakage current ILK,MON -2.5 – 2.5 µA 1) P_11.1.5 tFT,MON – 500 – ns 2) 0 V < VMON_IN < 28 V Timing Wake-up filter time (internal analog filter delay) The overall filter time for P_11.1.6 MON wake-up is a sum of tFT,MON + adjustable digital filter time. The digital filter time can be adjusted by PMU.CNF_WAKE_FILTE R.CNF_MON_FT; 1) Input leakage is valid for disabled state. 2) With pull-up, pull down current disabled. Data Sheet 116 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.12 MOSFET Driver 29.12.1 Electrical Characteristics Table 42 Electrical Characteristics MOSFET Driver VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Number MOSFET Driver Output Maximum total charge driver capability Qtot_max – – 100 nC 1) Source current - Charge current - High Side Driver ISoumax_HS 230 345 450 mA VSD ≥ 8 V, CLoad = 10 nF, P_12.1.78 ISou = CLoad * slew rate ( = 20%-50% of VGHx1), ICHARGE = IDISCHG = P_12.1.20 Due to Charge Pump currrent capability only 3 x MOSFETs + additional external capacitors with a total charge of max. 100nC can be driven simultaneous at a PWM frequency of 25 kHz. 31(max) Sink current - Discharge current-High Side Driver ISinkmax_HS 230 330 450 mA VSD ≥ 8 V, CLoad = 10 nF, P_12.1.79 ISink = CLoad * slew rate ( = 50%-20% of VGHx1), ICHARGE = IDISCHG = 31(max) Source current - Charge current - Low Side Driver ISoumax_LS 200 295 375 mA VSD ≥ 8 V, CLoad = 10 nF, P_12.1.80 ISou = CLoad * slew rate ( = 20%-50% of VGLx1), ICHARGE = IDISCHG = 31(max) Sink current - Discharge current-Low Side Driver ISinkmax_LS 200 314 375 mA VSD ≥ 8 V, CLoad = 10 nF, P_12.1.81 ISink = CLoad * slew rate ( = 50%-20% of VGHx1), ICHARGE = IDISCHG = 31(max) High level output voltage Gxx vs. Sxx VGxx1 10 – 14 V VSD ≥ 8V, CLoad = 10 nF, ICP=2.5 mA2). P_12.1.3 High level output voltage GHx vs. SHx VGxx2 8 – – V VSD = 6.4 V1), CLoad = 10 P_12.1.4 High level output voltage GHx vs. SHx VGxx3 Data Sheet nF, ICP=2.5 mA2) 7 – – 117 V VSD = 5.4 V, CLoad = 10 nF, P_12.1.5 ICP=2.5 mA2) Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 42 Electrical Characteristics MOSFET Driver (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. 8 – VSD = 6.4 V1), CLoad = 10 Number High level output voltage GLx vs. GND VGxx6 High level output voltage GLx vs. GND VGxx7 7 – – V VSD = 5.4 V, CLoad = 10 nF, P_12.1.7 ICP=2.5 mA2) Rise time trise3_3nf – 200 – ns 1) – V P_12.1.6 nF, ICP=2.5 mA2) P_12.1.8 CLoad = 3.3 nF, VSD ≥ 8 V, 25-75% of VGxx1, ICHARGE = IDISCHG = 31(max) Fall time tfall3_3nf – 200 – ns 1) Rise time trisemax 100 250 450 ns P_12.1.57 CLoad = 10 nF, VSD ≥ 8 V, 25-75% of VGxx1, ICHARGE = IDISCHG = 31(max) Fall time tfallmax 100 250 450 ns P_12.1.58 CLoad = 10 nF, VSD ≥ 8 V, 75-25% of VGxx1, ICHARGE = IDISCHG = 31(max) Rise time trisemin 1.25 2.5 5 µs 1) Fall time tfallmin 1.25 2.5 5 µs 1) Absolute rise - fall time difference for all LSx tr_f(diff)LSx – – 100 ns P_12.1.35 CLoad = 10 nF, VSD ≥ 8 V, 25-75% of VGxx1, ICHARGE = IDISCHG = 31(max) Absolute rise - fall time difference for all HSx tr_f(diff)HSx – – 100 ns P_12.1.36 CLoad = 10 nF, VSD ≥ 8 V, 25-75% of VGxx1, ICHARGE = IDISCHG = 31(max) Resistor between GHx/GLx and GND RGGND 30 40 50 kΩ 1) Data Sheet 118 P_12.1.9 CLoad = 3.3 nF, VSD ≥ 8 V, 75-25% of VGxx1, ICHARGE = IDISCHG = 31(max) P_12.1.14 CLoad = 10 nF, VSD ≥ 8 V, 25-75% of VGxx1, ICHARGE = IDISCHG = 3(min) P_12.1.15 CLoad = 10 nF, VSD ≥ 8 V, 75-25% of VGxx1, ICHARGE = IDISCHG = 3(min) – P_12.1.11 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 42 Electrical Characteristics MOSFET Driver (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Resistor between SHx and GND RSHGN 30 40 50 kΩ 1)3) Low RDSON mode (boosted discharge mode) RONCCP – 9 12 Ω VVSD = 13.5 V, VVCP = VVSD + 14.0 V; ICHARGE = IDISCHG = Number P_12.1.10 This resistance is the resistance between GHx and GND connected through a diode to SHx. As a consequence, the voltage at SHx can rise up to 0,6V typ. before it is discharged through the resistor. P_12.1.50 31(max); 50mA forced into Gx, Sx grounded Resistance between VDH and VSD IBSH – 4 – kΩ 1) P_12.1.24 Input propagation time (LS on) tP(ILN)min – 1.5 3 µs 1) CLoad = 10 nF, ICharge =3(min), 25% of VGxx1 P_12.1.37 Input propagation time (LS off) tP(ILF)min – 1.5 3 µs 1) CLoad = 10 nF, P_12.1.38 Input propagation time (HS on) tP(IHN)min – 1.5 3 µs 1) CLoad = 10 nF, ICharge =3(min) 25% of VGxx1 P_12.1.39 Input propagation time (HS off) tP(IHF)min – 1.5 3 µs 1) CLoad = 10 nF, IDisharge =3(min), 75% of VGxx1 P_12.1.40 Input propagation time (LS on) tP(ILN)max – 200 350 ns CLoad = 10 nF, ICharge =31(max), 25% of VGxx1 P_12.1.26 Input propagation time (LS off) tP(ILF)max – 200 300 ns CLoad = 10 nF, IDischarge =31(max), 75% of VGxx1 P_12.1.27 Input propagation time (HS on) tP(IHN)max – 200 350 ns CLoad = 10 nF, ICharge =31(max), 25% of VGxx1 P_12.1.28 Input propagation time (HS off) tP(IHF)max – 200 300 ns CLoad = 10 nF, IDischarge =31(max), 75% of VGxx1 P_12.1.29 Data Sheet IDischarge =3(min), 75% of VGxx1 119 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 42 Electrical Characteristics MOSFET Driver (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Number Min. Typ. Max. Absolute input propagation tPon(diff)LSx time difference between propagation times for all LSx (LSx on) – – 100 ns CLoad = 10 nF, ICharge =31(max), 25% of VGxx1 P_12.1.30 tPoff(diff)LSx Absolute input propagation time difference between propagation times for all LSx (LSx off) – – 100 ns CLoad = 10 nF, IDischarge =31(max), 75% of VGxx1 P_12.1.41 tPon(diff)HSx Absolute input propagation time difference between propagation times for all HSx (HSx on) – – 100 ns CLoad = 10 nF, ICharge =31(max), 25% of VGxx1 P_12.1.42 tPoff(diff)HSx Absolute input propagation time difference between propagation times for all HSx (HSx off) – – 100 ns CLoad = 10 nF, IDischarge =31(max), 75% of VGxx1 P_12.1.43 – – – V P_12.1.46 0.07 0.35 0.55 0.65 0.90 1.00 1.20 1.40 0.25 0.50 0.75 1.00 1.25 1.5 1.75 2.00 0.40 0.650 0.90 1.25 1.45 1.80 2.10 2.40 DRV_CTRL3.DSMONVT H xxx 000 001 010 011 100 101 110 111 Drain source monitoring Drain source monitoring threshold VDSMONVTH Open load diagnosis currents Pull-up diagnosis current IPUDiag -220 -370 -520 µA IDISCHG = 1; VSHx = 5.0 V P_12.1.47 Pull-down diagnosis current IPDDiag 650 900 1100 µA IDISCHG = 1; VSHx = 5.0 V P_12.1.48 VCPmin1 8.5 – – V VVSD = 5.4V, ICP=5 mA, CCP1, CCP2 = 220 nF, P_12.1.53 Charge pump Output voltage VCP vs. VSD Bridge Driver enabled Regulated output voltage VCP vs. VSD Data Sheet VCP 12 14 120 16 V 8 V ≤ VVSD ≤ 28, ICP=10mA, CCP1, CCP2=220 nF, fCP=250kHz P_12.1.49 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 42 Electrical Characteristics MOSFET Driver (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Unit Note / Test Condition Min. Typ. Max. Number Turn ON Time tON_VCP 10 24 40 us 8 V ≤ VVSD ≤ 28, ICP=2.5mA, (25%) of VCP1)4), CCP1, CCP2=220 nF, fCP=250kHz P_12.1.59 Rise time trise_VCP 20 60 88 us 8 V ≤ VVSD ≤ 28, ICP=2.5mA, (25-75%) of VCP1)5), CCP1, CCP2=220 nF, fCP=250kHz P_12.1.60 1) Not subject to production test. 2) The condition ICP = 2,5 mA emulates an BLDC Driver with 6 MOSFET switching at 20 KHz with a CLoad=3.3nF. Test condition: IGx = - 100 µA, ICHARGE = IDISCHARGE = 31(max), IDISCHARGEDIV2_N = 1 and ICHARGEDIV2_N = 1. 3) This resistance is connected through a diode between SHx and GHx to ground. 4) This time applies when Bit DRV_CP_CTRL_STS.bit.CP_EN is set 5) This time applies when Bit DRV_CP_CLK_CTRL.bit.CPCLK_EN is set Data Sheet 121 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics 29.13 Operational Amplifier 29.13.1 Electrical Characteristics Table 43 Electrical Characteristics Operational Amplifier VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Differential gain (uncalibrated) G Differential input operating voltage range OP2 - OP1 VIX Operating. common mode VCM input voltage range (referred to GND (OP2 - GND) or (OP1 - GND) Max. input voltage range (referred to GND (OP_2 GND) or (OP1 - GND) VIX_max Single ended output voltage VOUT range (linear range) Values Unit Min. Typ. Max. 9.5 19 38 57 10 20 40 60 10.5 21 42 63 Note / Test Condition Number Gain settings GAIN: P_13.1.6 00 01 10 11 -1.5 / G – 1.5 / G V G is the Gain specified below -2.0 – 2.0 V Input common mode has P_13.1.2 to be checked in evaluation if it fits the required range -7.0 – 7.0 V Max. rating of operational P_13.1.3 amplifier inputs, where measurement is not done VZERO – VZERO V 1)2) typ. output offset voltage 2 V ± 1.5V - 1.5 + 1.5 P_13.1.1 P_13.1.4 Linearity error EPWM -15 – 15 mV Maximum deviation from P_13.1.5 best fit straight line divided by max. value of differential output voltage range (0.5V - 3.5V); this parameter is determined at G = 10. Linearity error EPWM_% -1.0 – 1.0 % Maximum deviation from P_13.1.24 best fit straight line divided by max. value of differential output voltage range (0.5V - 3.5V); this parameter is determined at G = 10. -1 – 1 % Gain drift after calibration P_13.1.7 at G = 10. -40 10 40 mV VAIP= VAIN = 0 V and Gain drift Adjusted output offset voltage Data Sheet VOOS P_13.1.17 G = 40. 122 Rev. 1.0, 2017-02-02 TLE9879QXA40 Electrical Characteristics Table 43 Electrical Characteristics Operational Amplifier (cont’d) VS = 5.5 V to 28 V, Tj = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise specified) Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition Number P_13.1.8 DC input voltage common mode rejection ratio DCCMRR 58 80 – dB CMRR (in dB)=-20*log (differential mode gain/ common mode gain) VCMI= -2V... 2V, VAIP-VAIN=0V Settling time to 98% TSET – 800 1400 ns Derived from 80 - 20 % P_13.1.9 rise fall times for ± 2V overload condition (3 Tau value of settling time constant)2) Current Sense Amplifier Input Resistance @ OP1, OP2 Rin_OP1_ 1 1.25 1.5 kΩ 2) Data Sheet – P_13.1.25 OP2 123 Rev. 1.0, 2017-02-02 TLE9879QXA40 Package Outlines Package Outlines 0.9 MAX. (0.65) 0. 13 ± +0.03 1) 0.4 x 45° Index Marking C 0.15 ±0.05 0.1 ±0.05 48 13 (0 (0.2) 0.05 MAX. 2) 37 1 12 1) Vertical burr 0.03 max., all sides 2) These four metal areas have exposed diepad potential Figure 38 36 25 24 SEATING PLANE 7 ±0.1 6.8 48x 0.08 0.5 0.5 ±0.07 0.1±0.03 B 26 0. 6.8 11 x 0.5 = 5.5 (6) A (5.2) 7 ±0.1 0. 05 30 .3 0.23 ±0.05 5) (5.2) Index Marking 48x 0.1 M A B C (6) PG-VQFN-48-29, -31-PO V05 Package outline VQFN-48-31 (with LTI) Notes 1. You can find all of our packages, sorts of packing and others in our Infineon Internet Page “Products”: http://www.infineon.com/products. 2. Dimensions in mm. Data Sheet 124 Rev. 1.0, 2017-02-02 TLE9879QXA40 Revision History 31 Revision History Revision History Page or Item Subjects (major changes since previous revision) Rev. 1.0, 2017-02-02 all Data Sheet Initial release. 125 Rev. 1.0, 2017-02-02 Please read the Important Notice and Warnings at the end of this document Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™. Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2017-02-02 Published by Infineon Technologies AG 81726 Munich, Germany © 2017 Infineon Technologies AG. All Rights Reserved. Do you have a question about any aspect of this document? Email: erratum@infineon.com IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
TLE9879QXA40XUMA2 价格&库存

很抱歉,暂时无法提供与“TLE9879QXA40XUMA2”相匹配的价格&库存,您可以联系我们找货

免费人工找货