WCDSC006
EiceDRIVER™
WCDSC006
Features
•
•
•
•
•
Independent High Side and Low Side TTL logic inputs
0.3 V to 7 V Input pin capability for increased robustness
Integrated bootstrap diode
Maximum bootstrap voltage of 60 V
2 A source/4 A sink current capability for high and low side drivers
Potential applications
•
•
Inductive wireless charger
Qualified according Jedec Standard
Product validation
Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.
Description
The WCDSC006 is a half bridge driver designed to drive both high-side and low-side MOSFETs in a half-bridge
inverter configuration. The floating high-side driver is capable of driving a high-side MOSFET operating up to
60 V bootstrap voltage. The high-side bias voltage is generated using a bootstrap technique. The inputs of the
driver are TTL logic compatible and can withstand input voltages up to 7 V regardless of the VDD voltage. Even
though high-side and low-side power device are driven independently, the driver enforces a 5 ns (typ) deadtime
to prevent shoot-through. The WCDSC006 is available in PG-WSON-10 pins, with exposed pad, connected to
ground, to aid power dissipation.
VIN
4.75V...5.5V
VDD
HB
RGHS
HO
HI
CBOOT
Q2
HS
uController
L
WCDSC00 6
RGLS
LI
Datasheet
RLOAD
LO
PGND
Figure 1
C
Q1
Typical application
www.infineon.com
Please read the Important Notice and Warnings at the end of this document
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
Description
Packages
Ordering information
Base Part Number Package Type
Standard Pack
Form
WCDSC006
Datasheet
PG-WSON-10
Quantity
Tape and Reel 6000
2
Orderable Part
Number
Marking Code
WCDSC006XUMA1 EDrWCDS006
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
Table of contents
Table of contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Potential applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1
Block diagram reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2
2.1
2.2
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3
3.1
3.2
3.3
3.4
3.5
Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Static electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Dynamic electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Thermal mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Input configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Minimum On Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Bootstrap capacitor design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Anti-shoot through protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7
7.1
7.2
7.3
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Boardpads and apertures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Marking code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Datasheet
3
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
1 Block diagram reference
1
Block diagram reference
A simplified functional block diagram is given in the figure below.
HB
VDD
HS Driver
HB UVLO
LS Driver
BANDGAP
&
REFERENCE
LV Domain
VDD3V0
3.3V Regulator
POR
HO
driver
HV Level
Shift
POR
HS
HI
PWM_HS
RIN
DEAD-TIME
CONTROL
PADS
VDD
VDD
PWM_LS
LI
VDD UVLO
RIN
driver
LV Level
Shift
LO
PGND
N.C.
Figure 2
Datasheet
N.C.
VSS
Block diagram
4
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
2 Pin configuration
2
Pin configuration
2.1
Pin assignment
VDD
1
10
LO
HB
2
9
VSS
HO
3
8
LI
HS
4
7
HI
NC
5
6
Exposed Pad
Figure 3
Pin configuration PG-WSON-10, top view
2.2
Pin definitions and functions
Table 1
Pin definitions and functions
Pin
Symbol
Function
1
VDD
Gate drive supply
2
HB
High Side gate driver bootstrap rail
3
HO
High Side gate driver source and sink current output
4
HS
High Side FET source connection
5
NC
Not connected
6
NC
Not connected
7
HI
High Side driver control input
8
LI
Low Side driver control input
9
VSS
Ground return
10
LO
Low Side gate driver source and sink current output
Datasheet
5
NC
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
3 Electrical characteristics and parameters
3
Electrical characteristics and parameters
3.1
Absolute maximum ratings
Table 2
Absolute maximum ratings
Stresses above the listed values may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device
reliability.
Parameter
Symbol
Values
Min.
Unit
Max.
Note or Test
Condition
High Side Bootstrap Voltage DC rating
VHB
–
60
V
Bootstrap Supply Voltage
VHB to VHS
-0.3
7
V
TC = 25°C
Driver Supply Voltage
VDD to VSS
-0.3
7
V
TC = 25°C
Phase voltage to ground
VHS
-(9-VDD) VHB+0.3 V
Input voltage on HI and LI
VHI, VLI
-0.3
6
V
Storage Temperature
TS
-55
150
°C
Junction Temperature
Tj
-55
150
°C
3.2
Recommended operating conditions
Table 3
Recommended operating conditions
The following operating conditions must not be exceeded in order to ensure correct operation and reliability of
the device. All parameters specified in the following tables refer to these operating conditions, unless noted
otherwise.
Parameter
Symbol
Values
Min.
Typ.
Unit
Max.
Phase Voltage to PGND
VHS
-(8-VDD) –
VHB-VDD V
Driver Supply Voltage
VDD
4.75
–
5.5
V
High Side Bootstrap Voltage
VHB
–
–
50
V
Junction Temperature
TJ
-40
–
+125
°C
Input voltage on HI and LI
VHI, VLI
0
–
5.5
V
3.3
Note or Test
Condition
Static electrical characteristics
Table 4
Static electrical characteristics
VDD = VHB = 5 V, VHS = VSS = 0 V, TC = 25°C unless otherwise specified.
The VIN and IIN parameters are referenced to VSS.
Parameter
Symbol
Values
Min.
VDD Supply UVLO Rising Threshold
Datasheet
UVLOVDD
3.7
6
Typ.
4.1
Unit
Max.
4.5
Note or Test
Condition
V
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
3 Electrical characteristics and parameters
Table 4
Static electrical characteristics (continued)
VDD = VHB = 5 V, VHS = VSS = 0 V, TC = 25°C unless otherwise specified.
The VIN and IIN parameters are referenced to VSS.
Parameter
Symbol
Values
Min.
Unit
Typ.
Max.
Note or Test
Condition
VDD Supply UVLO Threshold Hysteresis
UVLOVDD,hys
–
0.2
–
V
VHB Supply UVLO Rising Threshold
UVLOHB
3.5
3.9
4.3
V
VHB Supply UVLO Threshold Hysteresis
UVLOHB,hys
–
0.2
–
V
Boot voltage Quiescent Current
IQHB
–
-
200
µA
VLI = VHI = 0 V
Boot voltage Operating Current
IOHB
–
3.3
-
mA
f = 500 kHz
CLOAD = 1 nF
VDD Quiescent Current
IQDD
–
-
400
µA
VLI = VHI = 0 V
VDD Operating Current
IODD
–
3.6
-
mA
f = 500 kHz
CLOAD = 1 nF
Input voltage high (HI and LI)
VH
2.3
2.6
V
Input voltage low (HI and LI)
VL
1.3
1.5
–
V
Input voltage Hysteresis
VHYST
–
0.8
–
V
Input Pulldown Resistance
RIN
-
200
-
kΩ
Peak Source current (HO and LO)(1)
IOHL
–
2
–
A
Peak Sink Current (HO and LO)(1)
IOLL
–
4
–
A
Pull down resistance
RPD
–
0.43
0.8
Ω
Pull up resistance
RPU
–
1.07
2
Ω
Bootstrap diode dynamic resistance
RD
–
2.7
-
Ω
IVDD-HB = 100 mA
IVDD-HB = 1 mA
Bootstrap forward voltage
VD
–
0.93
1.3
V
IVDD-HB = 100 mA
Bootstrap diode revers recovery time(1)
Trr
–
50
–
ns
IF = 20 mA
IRR = 500 mA
TC = 25°C
Unit
Note or Test
Condition
(1)
No subject of final test
3.4
Dynamic electrical characteristics
Table 5
Dynamic electrical characteristics
VDD = VHB = 5 V, VHS = VSS = 0 V, TC = 25°C unless otherwise specified.
Parameter
Symbol
Values
Min.
Turn on and Turn off propagation delay
of Hi and Low(1)
Datasheet
TLH/THL
–
7
Typ.
40
Max.
-
ns
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
3 Electrical characteristics and parameters
Table 5
Dynamic electrical characteristics (continued)
VDD = VHB = 5 V, VHS = VSS = 0 V, TC = 25°C unless otherwise specified.
Parameter
Symbol
Values
Min.
Typ.
Unit
Note or Test
Condition
Max.
The delay matching LI to LO and HI to
HO, both rising and falling(2)
DELM
–
1
8
ns
Gate Driver;
VLI = 0 V & VHI = 5 V
with no external
deadtime
Minimum dead time between HI, LI(2)
Tdeadtime
–
5
–
ns
CLOAD = 0 nF
Minimum input pulse width that
changes the output
Tpw
–
–
20
ns
HO rise time
THRC
–
3
-
ns
LO rise time
TLRC
–
3
-
ns
HO fall time
THFC
–
2
-
ns
LO fall time
TLFC
–
2
-
ns
(1)
(2)
A transient detector blocks the toggling of the high side output when it detects moving phase node (due to
transition and/or oscillation). It prevents unwanted re-toggling but may increase propagation delay. See
Figure 6 and Figure 7 for more information and link to Understanding the transient detector (References)
for more information.
No subject of final test
3.5
Thermal mechanical characteristics
Table 6
Thermal mechanical characteristics
Parameter
Symbol
Values
Min.
Junction to Case Thermal Resistance
Device on PCB
(1)
CLOAD = 1 nF
RthJC
RthJA
Typ.
Unit
Note or Test
Condition
Max.
–
7
–
°C/W
Bottom
–
20
–
°C/W
Top
–
40
–
°C/W
6 cm2 cooling
area(1)
Device on 40 mm x 40 mm x 1.5 mm epoxy PCB FR4 with 6 cm2 (one layer, 70 µm thick) copper area for
drain connection. PCB vertical in still air.
Datasheet
8
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
4 Timing diagrams
4
Timing diagrams
3.3V/5.0V
3.3V/5.0V
HI
LI
VSS
ΔtIN
VSS
ΔtIN
HB
HO
VDD
LO
HS
tLH
PGND
tHL
tLH
tHL
ΔtOUT
Figure 4
Propagation delay
5.0V
VDD
ΔtOUT
5.0V
4.1V
3.9V
≈
HB
≈
90%~3.7V
HO
10%~0.39V
0V
Figure 5
≈
0V
90%~3.6V
10%~0.38V
UVLO behavior
Transient
detector
Response
Inactive
Active
Slew Rate
Threshold
dv/dt
Figure 6
Transient detector response
Figure 7
Transient detector slew rate thresholds vs. temperature
Datasheet
3.8V
0V
0V
LO
4.0V
≈
9
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
5 Typical characteristics
5
Datasheet
Typical characteristics
10
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
5 Typical characteristics
Datasheet
11
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
5 Typical characteristics
Datasheet
12
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
6 Functional description
6
Functional description
6.1
Introduction
The WCDSC006 is a fast Half-Bridge driver for both high-side and low-side MOSFETs in a wireless charging halfbridge inverter configuration. The focus on robustness at the input and output side additionally gives this
device a safety margin in critical abnormal situations. All outputs are robust against reverse current. The
interaction with the power MOSFET, even reverse reflected power will be handled by the strong internal output
stage. All inputs are compatible with LV-TTL signal levels, signal delays and rise/fall times have been minimized.
6.2
Supply voltage
The absolute maximum supply voltage is 7 V. The minimum operating supply voltage is set by the undervoltage
lockout function to a typical default value of 4.1 V. This lockout function protects power MOSFETs from running
into linear mode with subsequent high power dissipation.
6.3
Driver outputs
This driver output stage has a shoot through protection and current limiting behavior. After a switching event,
current limitation is raised up to achieve the typical current peak for an excellent fast reaction time of the
following power MOS transistor. The output impedance is very low with a typical value below 1.07 Ω for the
sourcing p-channel MOS and 0.43 Ω for the sinking n-channel MOS transistor. Gate Drive Outputs held active low
in case of floating inputs VHI, VLI or during startup or power down once UVLO is not exceeded. Under any
situation, startup, UVLO or shutdown, outputs are held under defined conditions.
6.4
Undervoltage Lockout (UVLO)
The Undervoltage Lockout function ensures that the output can be switched to its high level only if the supply
voltage exceeds the UVLO threshold voltage. Thus it can be guaranteed, that the switch transistor is not
switched on if the driving voltage is too low to completely switch it on, thereby avoiding excessive power
dissipation. The UVLO level is set to a typical value of 4.1 V. The max value of the rising edge is the value that
ensures all the device among the production will be turned on during start up; that means designers have to
provide a voltage higher than 4.5 V to turn on all the devices in the production of their equipment within the
specified temperature range.
On the opposite side the minimum voltage necessary to switch off all the devices is the minimum of the falling
edge. Therefore to be sure that all the devices in production will be turned off, in the specified temperature
range, a voltage lower than 3.5 V has to be provided.
The hysteresis is the voltage gap between rising edge and falling edge. The UVLO function is implemented for
both VDD and HB; this ensures some margin on noise effect, like false turn off. For instance a negative glitch
smaller than the hysteresis will not have effect on the device preventing an unwanted turn off.
6.5
Input configuration
The inputs HI and LI control two PWM channels. The input signal is transferred non-inverted to the
corresponding gate driver outputs HO and LO. All inputs are compatible with LV-TTL threshold levels and
provide a hysteresis of typ. 0.8 V. The hysteresis is independent of the supply voltage VDD. The PWM inputs are
internally pulled down to a logic low voltage level (GND). In case the PWM-controller signals have an undefined
state during the power-up sequence, the gate driver outputs are forced to the "off"-state(low). Table 7 shows
the truth table of the device once the two UVLOs are turned on; in case the VDD-GND voltage or the HB-HS
voltage is below the UVLO threshold the corresponding output will be low.
Datasheet
13
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
6 Functional description
Table 7
Truth table with VDD-GND and HB-HS higher than UVLO threshold
HI
LI
HO
LO
Notes
H
H
n.a.
n.a.
See note on the anti shoot-through protection
H
L
H
L
L
L
L
L
L
H
L
H
X
X
L
L
6.6
Minimum On Time
The minimum On time is the minimum duration of the input pulse which is generating an output pulse.
The upper limit is the pulse width at which all the drivers in production will provide an output signal. In other
words the designer has to provide a pulse width longer than the upper limit of the minimum on time to ensure
an output pulse for every driver of their equipment.
The upper limit of this parameter is determining the maximum switching frequency of the converter according
to the formula:
tSWmax =
(1)
V IN × tONmax × k
V OUT
Where VIN is the input voltage, VOUT is the desired output voltage tONmax is the upper limit of the minimum on
time and k is the transformer ratio.
There is a nonlinear transfer function between the inputs (HI, LI) and the outputs gate signals (HO, LO)
represented in Figure 8.
TONout
40ns
30ns
20ns
Figure 8
30ns
40ns
TONin
Input output transfer characteristic
For input pulses shorter than 20 ns pulse width (the grey area) the driver does not guarantee that the input
pulse will be transferred to the output, depending on the device the input pulse might go through and generate
an output pulse or it might not go through and therefore not generating an output pulse. For input pulses with
pulse width smaller than 30 ns the output pulse is kept to 30 ns, then the response will be linear (shifted by the
propagation delay). This is diagram is illustrative only with typical value. Actual value and pulse width distortion
is subject to process variation. Output pulse width could in some case be shortened or extended to prevent
retoggling. See propagation delay parameter footnote.
Datasheet
14
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
6 Functional description
Table 8
Table 2 Output pulse width vs input pulse width
Input pulse width
Output pulse width
Smaller than 20 ns
•
•
In the case the driver is capable to transfer the pulse, the output pulse
width is 30 ns
In case the driver is not capable of responding the output pulse is 0 ns
Between 20 ns and 30 ns
•
The output pulse width is 30 ns
Above 30 ns
•
The output pulse width is equal to input pulse width
6.7
Bootstrap capacitor design
The bootstrap capacitor is used to power the floating driver of the high side MOSFET. Therefore it has to provide
the surge current and the charge to turn on the high side MOSFET. Normally a criteria to choose the minimum
necessary boot capacitor is based on the gate charge of the high side and allowed ripple voltage across the boot
capacitor, according to the following formula:
CBOOTmin ≥
QG
ΔV
(2)
Where QG is the gate charge of the high side MOSFET and ΔV is the desired ripple voltage. Normally a rule of
thumb for the ripple voltage is to have it smaller than 10% than the bootstrap voltage. This is a simplified
formula which does not consider the leakage current of the floating driver, the bootstrap diode forward voltage
but it is correct for most of the applications.
There is also an upper limit in the selection of the capacitor since a too big capacitor would lead to higher
charging time which could result in startup issues due to the UVLO triggering. This problem can arise if the
switching frequency is very high and therefore the time to charge the bootstrap is too short. For this kind of
issues there is not a clear formula to apply, but some generic rules can be considered compatible with the
CBOOTmin calculation:
•
The higher the switching frequency the smaller should be the bootstrap capacitor
•
The higher the MOSFET RDS(ON) the smaller should be the bootstrap capacitor
• The higher the VDD the smaller should be the bootstrap capacitor (considering a fixed ripple voltage
percentage)
6.8
Anti-shoot through protection
In order to prevent conditions where the high side MOSFET and the low side MOSFET are turned on at the same
time an anti-shoot through logic is implemented with an addition of 3 ns deadtime. In other words the first
input detected high, for instance HI will set the HO output high, meanwhile the LI will be inhibited until the HI
input will not expire, then LI signal will be passed with additional 3 ns deadtime safety.
This logic prevents the HI and LI to be driven by the same signal. In this case the internal logic will select the
“first” pulse coming in (depending on the specific parasitic of the device, the selection of the “first” signal might
change) and inhibit the “second”. This logic is not suitable for driving parallel MOSFET with HO and LO.
6.9
Layout recommendations
The combination of the driver and MOSFETs forms the power trains of the converter. The relative location on
the PCB of those two components together with the input capacitor is essential to reach high level of
performance. The parasitic inductances of the PCB and of the power devices’ packaging (both upper and lower
MOSFETs) can cause serious efficiency degradation due to dynamic effects. Careful layout can help minimize
such unwanted effects. The following advices are meant to lead to an optimized layout:
Datasheet
15
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
6 Functional description
1.
2.
3.
4.
Keep decoupling loops (VDD-GND and HB-HS) as short as possible
Minimize trace inductance, especially on low impedance lines. All power traces (HO, HS, LO, PGND, VDD)
should be short and wide, as much as possible
The HS node should also be short and wide. Minimize the distance between the HS node and both the
high side MOSFET source and the low side MOSFET drain to avoid efficiency losses minimize the current
loop of the output and input power trains. Short the source connection of the lower MOSFET to ground
as close to the transistor pin as feasible. Input capacitors (especially ceramic decoupling) should be
placed as close to the drain of upper and source of lower MOSFETs as possible
To optimize heat spreading, copper should be placed directly underneath the IC whether it has an
exposed pad or not. The copper area can be extended beyond the bottom area of the IC and/or
connected to buried copper plane(s) with thermal vias. This combination of vias for vertical heat escape,
extended copper plane, and buried planes for heat spreading allows the IC to achieve its full thermal
potential
Datasheet
16
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
7 Package information
7
Package information
7.1
Outline dimensions
Datasheet
17
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
7 Package information
Datasheet
18
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
7 Package information
7.2
Datasheet
Boardpads and apertures
19
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
7 Package information
7.3
Datasheet
Marking code
20
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
8 References
8
1.
References
Infineon, Understanding the transient detector, Infineon Technologies AG, Neubiberg 2020
Datasheet
21
V2.2
2020-05-28
EiceDRIVER™
WCDSC006
Revision history
Revision history
Document
version
Date of
release
Description of changes
V2.2
2020-05-28
•
•
Update of typical value of DELM in Dynamic electrical characteristics
Typical characteristics added
V2.1
2020-04-22
•
Update to new template
V2.0
2019-09-17
•
Initial release
Datasheet
22
V2.2
2020-05-28
Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
Edition 2020-05-28
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2020 Infineon Technologies AG
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
IFX-ykn1580889052252
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”) .
With respect to any examples, hints or any typical values
stated herein and/or any information regarding the
application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities of
any kind, including without limitation warranties of
non-infringement of intellectual property rights of any
third party.
In addition, any information given in this document is
subject to customer’s compliance with its obligations
stated in this document and any applicable legal
requirements, norms and standards concerning
customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments to
evaluate the suitability of the product for the intended
application and the completeness of the product
information given in this document with respect to such
application.
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.