0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
XC2388E136F128LRAAKXUMA1

XC2388E136F128LRAAKXUMA1

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    LQFP144

  • 描述:

    IC MCU 16/32BIT 1.06MB 144LQFP

  • 数据手册
  • 价格&库存
XC2388E136F128LRAAKXUMA1 数据手册
16/32-Bit Architecture XC2387E, XC2388E 16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family Derivatives / Premium Line Data Sheet V1.3 2014-07 Microcontrollers Edition 2014-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2014 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 16/32-Bit Architecture XC2387E, XC2388E 16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC2000 Family Derivatives / Premium Line Data Sheet V1.3 2014-07 Microcontrollers XC2387E, XC2388E XC2000 Family Derivatives / Premium Line XC238xE Data Sheet Revision History: V1.3 2014-07 Previous Versions: V1.2 2012-06 V1.1 2011-10 V1.0 2010-12 Page Subjects (major changes since last revision) 9 Added XC2388E-136FxxLR to Basic Device Types 10 Moved XC2388E-136FxxL from Basic to Special Device Types 141 Added package type PG-LQFP-144-23 Trademarks C166™, TriCore™ and DAVE™ are trademarks of Infineon Technologies AG. We Listen to Your Comments Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com Data Sheet 4 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Table of Contents Table of Contents 1 1.1 1.2 1.3 Summary of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Basic Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Special Device Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Definition of Feature Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 2.1 2.2 General Device Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Pin Configuration and Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Identification Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Subsystem and Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . External Bus Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Central Processing Unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Protection Unit (MPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Memory Checker Module (MCHK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Interrupt System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . On-Chip Debug Support (OCDS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Unit (CC2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Capture/Compare Units CCU6x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Purpose Timer (GPT12E) Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . Real Time Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A/D Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Universal Serial Interface Channel Modules (USIC) . . . . . . . . . . . . . . . . . MultiCAN Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . System Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Watchdog Timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parallel Ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Instruction Set Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 52 57 58 60 60 61 62 63 65 67 71 73 74 76 77 77 78 79 80 81 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.2 4.2.1 4.2.2 4.2.3 Electrical Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Absolut Maximum Rating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Voltage Range Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pad Timing Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters for Upper Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . DC Parameters for Lower Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 84 84 85 87 87 87 88 90 92 94 Data Sheet 5 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Table of Contents 4.3 4.4 4.5 4.6 4.6.1 4.6.2 4.6.2.1 4.6.2.2 4.6.2.3 4.6.3 4.6.4 4.6.5 4.6.5.1 4.6.6 4.6.7 4.6.8 Analog/Digital Converter Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 System Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Definition of Internal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Phase Locked Loop (PLL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Wakeup Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Selecting and Changing the Operating Frequency . . . . . . . . . . . . . 115 External Clock Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Pad Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 External Bus Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Bus Cycle Control with the READY Input . . . . . . . . . . . . . . . . . . . . 127 Synchronous Serial Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 129 FlexRay Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Debug Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 5 5.1 5.2 5.3 Package and Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Quality Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data Sheet 6 141 141 143 144 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Summary of Features 16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC238xE (XC2000 Family) 1 Summary of Features For a quick overview and easy reference, the features of the XC238xE are summarized here. • • • • • • • High-performance CPU with five-stage pipeline and MPU – 7.8 ns instruction cycle at 128 MHz CPU clock (single-cycle execution) – One-cycle 32-bit addition and subtraction with 40-bit result – One-cycle multiplication (16 × 16 bit) – Background division (32 / 16 bit) in 21 cycles – One-cycle multiply-and-accumulate (MAC) instructions – Enhanced Boolean bit manipulation facilities – Zero-cycle jump execution – Additional instructions to support HLL and operating systems – Register-based design with multiple variable register banks – Fast context switching support with two additional local register banks – 16 Kbytes of two-way set-associative Instruction Cache (ICache) – 16 Mbytes total linear address space for code and data – 1024 Bytes on-chip special function register area (C166 Family compatible) – Integrated Memory Protection Unit (MPU) Interrupt system with 16 priority levels providing 112 interrupt nodes – Selectable external inputs for interrupt generation and wake-up – Fastest sample-rate 7.8 ns Sixteen-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space Clock generation from internal or external clock sources, using on-chip PLL or prescaler Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas On-chip memory modules – 8 Kbytes on-chip stand-by RAM (SBRAM) – 2 Kbytes on-chip dual-port RAM (DPRAM) – 24 Kbytes on-chip data SRAM (DSRAM) – Up to 64 Kbytes on-chip program/data SRAM (PSRAM) – Up to 1 088 Kbytes on-chip program memory (Flash memory) – Memory content protection through Error Correction Code (ECC) On-Chip Peripheral Modules Data Sheet 7 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Summary of Features – – – – • • • • • • • • • Multi-functional general purpose timer unit with 5 timers 16-channel general purpose capture/compare unit (CAPCOM2) Up to four capture/compare units for flexible PWM signal generation (CCU6x) Two synchronizable 12-bit A/D Converters with up to 24 channels, conversion time below 1 μs, optional data preprocessing (data reduction, range check), broken wire detection – Up to 8 serial interface channels to be used as UART, LIN, high-speed synchronous channel (SPI), IIC bus interface (10-bit addressing, 400 kbit/s), IIS interface – On-chip MultiCAN interface (Rev. 2.0B active) with up to 64 message objects (Full CAN/Basic CAN) on up to 3 CAN nodes and gateway functionality – FlexRay™ module (E-Ray) according to protocol specification V2.1, 2 nodes (XC2388E) – On-chip system timer and on-chip real time clock Up to 12 Mbytes external address space for code and data – Programmable external bus characteristics for different address ranges – Multiplexed or demultiplexed external address/data buses – Selectable address bus width – 16-bit or 8-bit data bus width – Five programmable chip-select signals Single power supply from 3.0 V to 5.5 V Power reduction and wake-up modes with flexible power management Programmable watchdog timer and oscillator watchdog Up to 118 general purpose I/O lines On-chip bootstrap loaders Supported by a full range of development tools including C compilers, macroassembler packages, emulators, evaluation boards, HLL debuggers, simulators, logic analyzer disassemblers, programming boards On-chip debug support via Device Access Port (DAP) or JTAG interface 144-pin Green LQFP package, 0.5 mm (19.7 mil) pitch Data Sheet 8 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Summary of Features Ordering Information The ordering code for an Infineon microcontroller provides an exact reference to a specific product. This ordering code identifies: • • • the function set of the corresponding product type the temperature range: – SAF-…: -40°C to 85°C – SAH-…: -40°C to 110°C – SAK-…: -40°C to 125°C the package and the type of delivery. For ordering codes for the XC238xE please contact your sales representative or local distributor. This document describes several derivatives of the XC238xE group: Basic Device Types are readily available and Special Device Types are only available on request. As this document refers to all of these derivatives, some descriptions may not apply to a specific product, in particular to the special device types. For simplicity the term XC238xE is used for all derivatives throughout this document. 1.1 Basic Device Types Basic device types are available and can be ordered through Infineon’s direct and/or distribution channels. Table 1 Synopsis of XC238xE Basic Device Types 1) Derivative Program PSRAM Memory DSRAM3) Capt./Comp. ADC4) Interfaces4) Modules Chan. 2) XC2388E-136FxxLR 1 088 Kbytes 64 Kbytes CC2 16 + 8 3 CAN Nodes 24 Kbytes CCU60/1/2/3 8 Serial Chan. 2 FlexRay Nodes 1) xx is a placeholder for the available speed grade (in MHz). 2) Specific information about the on-chip Flash memory in Table 3. 3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM. 4) Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1). Data Sheet 9 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Summary of Features 1.2 Special Device Types Special device types are only available for high-volume applications on request. Table 2 Synopsis of XC238xE Special Device Types Derivative1) Program Memory2) XC2387E-72FxxL 576 Kbytes 64 Kbytes CC2 16 + 8 3 CAN Nodes 24 Kbytes CCU60/1/2/3 6 Serial Chan. PSRAM DSRAM3) Capt./Comp. ADC4) Interfaces4) Modules Chan. XC2387E-104FxxL 832 Kbytes 64 Kbytes CC2 16 + 8 3 CAN Nodes 24 Kbytes CCU60/1/2/3 6 Serial Chan. XC2387E-136FxxL 1 088 Kbytes XC2388E-72FxxL 64 Kbytes CC2 16 + 8 3 CAN Nodes 24 Kbytes CCU60/1/2/3 6 Serial Chan. 576 Kbytes 64 Kbytes CC2 16 + 8 3 CAN Nodes 24 Kbytes CCU60/1/2/3 8 Serial Chan. 2 FlexRay Nodes XC2388E-104FxxL 832 Kbytes 64 Kbytes CC2 16 + 8 3 CAN Nodes 24 Kbytes CCU60/1/2/3 8 Serial Chan. 2 FlexRay Nodes XC2388E-136FxxL 1 088 Kbytes 64 Kbytes CC2 16 + 8 3 CAN Nodes 24 Kbytes CCU60/1/2/3 8 Serial Chan. 2 FlexRay Nodes 1) xx is a placeholder for the available speed grade (in MHz). 2) Specific information about the on-chip Flash memory in Table 3. 3) All derivatives additionally provide 8 Kbytes SBRAM and 2 Kbytes DPRAM. 4) Specific information about the available channels in Table 5. Analog input channels are listed for each Analog/Digital Converter module separately (ADC0 + ADC1). Data Sheet 10 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Summary of Features 1.3 Definition of Feature Variants The XC238xE types are offered with several Flash memory sizes. Table 3 describes the location of the available memory areas for each Flash memory size. Table 3 Flash Memory Allocation Total Flash Size Flash Area A1) Flash Area B Flash Area C 1 088 Kbytes C0’0000H … C0’EFFFH C1’0000H … D0’FFFFH n.a. 832 Kbytes C0’0000H … C0’EFFFH C1’0000H … CB’FFFFH D0’0000H … D0’FFFFH 576 Kbytes C0’0000H … C0’EFFFH C1’0000H … C7’FFFFH D0’0000H … D0’FFFFH 1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH). Table 4 Flash Memory Module Allocation (in Kbytes) Total Flash Size Flash 01) Flash 1 Flash 2 Flash 3 Flash 4 1 088 Kbytes 256 256 256 256 64 832 Kbytes 256 256 256 --- 64 576 Kbytes 256 256 --- --- 64 1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0’F000H to C0’FFFFH). The XC238xE types are offered with different interface options. Table 5 lists the available channels for each option. Table 5 Interface Channel Association Total Number Available Channels 16 ADC0 channels CH0 … CH15 8 ADC1 channels CH0 … CH7 (overlay: CH8 … CH11) 3 CAN nodes CAN0, CAN1, CAN2 64 message objects 8 serial channels U0C0, U0C1, U1C0, U1C1, U2C0, U2C1, U3C0, U3C1 6 serial channels U0C0, U0C1, U1C0, U1C1, U2C0, U2C1 2 FlexRay nodes FR0, FR1 Data Sheet 11 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information 2 General Device Information The XC238xE series (16/32-Bit Single-Chip Microcontroller with 32-Bit Performance) is a part of the Infineon XC2000 Family of full-feature singlechip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 128 million instructions per second) with extended peripheral functionality and enhanced IO capabilities. Optimized peripherals can be adapted flexibly to meet the application requirements. These derivatives utilize clock generation via PLL and internal or external clock sources. On-chip memory modules include program Flash, program RAM, and data RAM. VAREFVAGND VDDIM VDDI1 VDDP VSS (2) (1) (1) (4) (9) (4) Port 0 8 bit XTAL1 XTAL2 Port 1 8 bit ESR0 ESR1 ESR2 Port 2 14 bit Port 11 6 bit Port 3 8 bit Port 10 16 bit Port 4 8 bit Port 9 8 bit Port 6 4 bit Port 15 8 bit Port 7 5 bit Port 5 16 bit Port 8 6 bit PORST TRST DAP/JTAG Debug 2 bit 2 / 4 bit TESTM via Port Pins MC_HE_ LOGSYMB 144 Figure 1 Data Sheet Logic Symbol 12 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information 2.1 Pin Configuration and Definition 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 V DDPB P8 .5 P8 .6 ESR 0 ESR 2 ESR1 PORST XTAL1 XTA L2 P1.7 P9 .7 P1 .6 P9 .6 P1 .5 P1 0.15 P1 .4 P1 0.14 V DDI1 P9.5 P9.4 P1 .3 P1 0.13 P9 .3 P1 0.12 P1 .2 P9 .2 P1 0.11 P1 0.10 P1 .1 P1 0.9 P9 .1 P1 0.8 P9 .0 P1 .0 V DDPB V SS The pins of the XC238xE are described in detail in Table 6, which includes all alternate functions. For further explanations please refer to the footnotes at the end of the table. The following figure summarizes all pins, showing their locations on the four sides of the package. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP-144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDDP B P3.7 P0.7 P10.7 P3.6 P10.6 P0.6 P3.5 P10.5 P3.4 P10.4 P3.3 P0.5 P10.3 P2.10 P3.2 P2.13 VDDI1 P0.4 P10.2 P3.1 P0.3 P10.1 P3.0 P10.0 P0.2 P2.9 P4.7 P2.8 P0.1 P2.7 P4.6 P4.5 P0.0 VDDP B VSS P5.4 P5.5 P5 .6 P5 .7 P5.8 P5.9 P5 .1 0 P5 .1 1 P5 .1 2 P5 .1 3 P5 .1 4 P5 .1 5 P2 .1 2 P2 .1 1 P1 1.5 V DDI1 P2.0 P2.1 P1 1.4 P2.2 P1 1.3 P4.0 P2.3 P1 1.2 P4.1 P2.4 P1 1.1 P1 1.0 P2.5 P4.2 P2.6 P4.4 P4.3 V DDPB V SS V DDPB 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 V SS V DDPB TESTM P7.2 P8.4 TRST P8.3 P7.0 P7.3 P8.2 P7.1 P7.4 P8.1 V DDI1 VDDIM P6.0 P6.1 P6.2 P6.3 V DDPA P15.0 P15.1 P15.2 P15.3 P15.4 P15.5 P15.6 P15.7 V ARE F1 V ARE F0 V AGND P5.0 P5.1 P5.2 P5.3 V DDPB MC_HE_PIN144 Figure 2 Data Sheet XC238xE Pin Configuration (top view) 13 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Key to Pin Definitions • • Ctrl.: The output signal for a port pin is selected by bit field PC in the associated register Px_IOCRy. Output O0 is selected by setting the respective bit field PC to 1x00B, output O1 is selected by 1x01B, etc. Output signal OH is controlled by hardware. Type: Indicates the pad type and its power supply domain (A, B, M, 1). – St: Standard pad – Sp: Special pad e.g. XTALx – DP: Double pad - can be used as standard or high speed pad – In: Input only pad – PS: Power supply pad Table 6 Pin Definitions and Functions Pin Symbol Ctrl. Type Function 3 TESTM I In/B 4 P7.2 O0 / I St/B Bit 2 of Port 7, General Purpose Input/Output EMUX0 O1 5 Testmode Enable Enables factory test modes, must be held HIGH for normal operation (connect to VDDPB). An internal pull-up device will hold this pin high when nothing is driving it. St/B External Analog MUX Control Output 0 (ADC1) CCU62_CCP I OS0A St/B CCU62 Position Input 0 TDI_C IH St/B JTAG Test Data Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. P8.4 O0 / I St/B Bit 4 of Port 8, General Purpose Input/Output CCU60_COU O1 T61 St/B CCU60 Channel 1 Output CCU62_CC6 1 O2 St/B CCU62 Channel 1 Output TMS_D IH St/B JTAG Test Mode Selection Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. CCU62_CC6 1INB I St/B CCU62 Channel 1 Input Data Sheet 14 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 6 TRST I In/B 7 P8.3 O0 / I St/B 8 Test-System Reset Input For normal system operation, pin TRST should be held low. A high level at this pin at the rising edge of PORST activates the XC238xE’s debug system. In this case, pin TRST must be driven low once to reset the debug system. An internal pull-down device will hold this pin low when nothing is driving it. Bit 3 of Port 8, General Purpose Input/Output CCU60_COU O1 T60 St/B CCU60 Channel 0 Output CCU62_CC6 0 O2 St/B CCU62 Channel 0 Output TDI_D IH St/B JTAG Test Data Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it. CCU62_CC6 0INB I St/B CCU62 Channel 0 Input P7.0 O0 / I St/B Bit 0 of Port 7, General Purpose Input/Output T3OUT O1 St/B GPT12E Timer T3 Toggle Latch Output T6OUT O2 St/B GPT12E Timer T6 Toggle Latch Output TDO_A OH / IH St/B JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. ESR2_1 I St/B ESR2 Trigger Input 1 Data Sheet 15 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 9 P7.3 O0 / I St/B Bit 3 of Port 7, General Purpose Input/Output EMUX1 10 11 Type Function O1 St/B External Analog MUX Control Output 1 (ADC1) U0C1_DOUT O2 St/B USIC0 Channel 1 Shift Data Output U0C0_DOUT O3 St/B USIC0 Channel 0 Shift Data Output CCU62_CCP I OS1A St/B CCU62 Position Input 1 TMS_C IH St/B JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it. U0C1_DX0F I St/B USIC0 Channel 1 Shift Data Input P8.2 O0 / I St/B Bit 2 of Port 8, General Purpose Input/Output CCU60_CC6 2 O1 St/B CCU60 Channel 2 Output TxDC1 O2 St/B CAN Node 1 Transmit Data Output U1C1_DOUT O3 St/B USIC1 Channel 1 Shift Data output CCU60_CC6 2INB I St/B CCU60 Channel 2 Input P7.1 O0 / I St/B Bit 1 of Port 7, General Purpose Input/Output EXTCLK O1 St/B Programmable Clock Signal Output CCU62_CTR APA I St/B CCU62 Emergency Trap Input BRKIN_C I St/B OCDS Break Signal Input Data Sheet 16 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 12 P7.4 O0 / I St/B Bit 4 of Port 7, General Purpose Input/Output EMUX2 13 16 Type Function O1 St/B External Analog MUX Control Output 2 (ADC1) U0C1_DOUT O2 St/B USIC0 Channel 1 Shift Data Output U0C1_SCLK OUT St/B USIC0 Channel 1 Shift Clock Output CCU62_CCP I OS2A St/B CCU62 Position Input 2 TCK_C IH St/B DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. U0C0_DX0D I St/B USIC0 Channel 0 Shift Data Input U0C1_DX1E I St/B USIC0 Channel 1 Shift Clock Input P8.1 O0 / I St/B Bit 1 of Port 8, General Purpose Input/Output CCU60_CC6 1 O1 St/B CCU60 Channel 1 Output CCU60_CC6 1INB I St/B CCU60 Channel 1 Input RxDC1F I St/B CAN Node 1 Receive Data Input P6.0 O0 / I DA/A Bit 0 of Port 6, General Purpose Input/Output EMUX0 O1 DA/A External Analog MUX Control Output 0 (ADC0) TxDC2 O2 DA/A CAN Node 2 Transmit Data Output BRKOUT O3 DA/A OCDS Break Signal Output O3 ADCx_REQG I TyG DA/A External Request Gate Input for ADC0/1 U1C1_DX0E DA/A USIC1 Channel 1 Shift Data Input Data Sheet I 17 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 17 P6.1 O0 / I DA/A Bit 1 of Port 6, General Purpose Input/Output EMUX1 O1 DA/A External Analog MUX Control Output 1 (ADC0) T3OUT O2 DA/A GPT12E Timer T3 Toggle Latch Output 18 19 Type Function U1C1_DOUT O3 DA/A USIC1 Channel 1 Shift Data Output ADCx_REQT I RyE DA/A External Request Trigger Input for ADC0/1 RxDC2E I DA/A CAN Node 2 Receive Data Input ESR1_6 I DA/A ESR1 Trigger Input 6 P6.2 O0 / I DA/A Bit 2 of Port 6, General Purpose Input/Output EMUX2 O1 DA/A External Analog MUX Control Output 2 (ADC0) T6OUT O2 DA/A GPT12E Timer T6 Toggle Latch Output U1C1_SCLK OUT O3 DA/A USIC1 Channel 1 Shift Clock Output U1C1_DX1C I DA/A USIC1 Channel 1 Shift Clock Input P6.3 O0 / I DA/A Bit 3 of Port 6, General Purpose Input/Output T3OUT O2 DA/A GPT12E Timer T3 Toggle Latch Output U1C1_SELO 0 O3 DA/A USIC1 Channel 1 Select/Control 0 Output U1C1_DX2D I DA/A USIC1 Channel 1 Shift Control Input ADCx_REQT I RyF DA/A External Request Trigger Input for ADC0/1 P15.0 I In/A Bit 0 of Port 15, General Purpose Input ADC1_CH0 I In/A Analog Input Channel 0 for ADC1 22 P15.1 I In/A Bit 1 of Port 15, General Purpose Input ADC1_CH1 I In/A Analog Input Channel 1 for ADC1 23 P15.2 I In/A Bit 2 of Port 15, General Purpose Input ADC1_CH2 I In/A Analog Input Channel 2 for ADC1 21 24 T5INA I In/A GPT12E Timer T5 Count/Gate Input P15.3 I In/A Bit 3 of Port 15, General Purpose Input ADC1_CH3 I In/A Analog Input Channel 3 for ADC1 T5EUDA I In/A GPT12E Timer T5 External Up/Down Control Input Data Sheet 18 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 25 P15.4 I In/A Bit 4 of Port 15, General Purpose Input ADC1_CH4 I In/A Analog Input Channel 4 for ADC1 T6INA I In/A GPT12E Timer T6 Count/Gate Input P15.5 I In/A Bit 5 of Port 15, General Purpose Input 26 27 28 29 30 31 32 33 34 35 ADC1_CH5 I In/A Analog Input Channel 5 for ADC1 T6EUDA I In/A GPT12E Timer T6 External Up/Down Control Input P15.6 I In/A Bit 6 of Port 15, General Purpose Input ADC1_CH6 I In/A Analog Input Channel 6 for ADC1 P15.7 I In/A Bit 7 of Port 15, General Purpose Input ADC1_CH7 I In/A Analog Input Channel 7 for ADC1 VAREF1 VAREF0 VAGND - PS/A Reference Voltage for A/D Converter ADC1 - PS/A Reference Voltage for A/D Converter ADC0 - PS/A Reference Ground for A/D Converters ADC0/1 P5.0 I In/A Bit 0 of Port 5, General Purpose Input ADC0_CH0 I In/A Analog Input Channel 0 for ADC0 P5.1 I In/A Bit 1 of Port 5, General Purpose Input ADC0_CH1 I In/A Analog Input Channel 1 for ADC0 P5.2 I In/A Bit 2 of Port 5, General Purpose Input ADC0_CH2 I In/A Analog Input Channel 2 for ADC0 TDI_A I In/A JTAG Test Data Input P5.3 I In/A Bit 3 of Port 5, General Purpose Input ADC0_CH3 I In/A Analog Input Channel 3 for ADC0 T3INA I In/A GPT12E Timer T3 Count/Gate Input Data Sheet 19 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 39 P5.4 I In/A Bit 4 of Port 5, General Purpose Input ADC0_CH4 I In/A Analog Input Channel 4 for ADC0 CCU63_T12 HRB I In/A External Run Control Input for T12 of CCU63 T3EUDA I In/A GPT12E Timer T3 External Up/Down Control Input TMS_A I In/A JTAG Test Mode Selection Input 40 41 42 43 44 P5.5 I In/A Bit 5 of Port 5, General Purpose Input ADC0_CH5 I In/A Analog Input Channel 5 for ADC0 CCU60_T12 HRB I In/A External Run Control Input for T12 of CCU60 P5.6 I In/A Bit 6 of Port 5, General Purpose Input ADC0_CH6 I In/A Analog Input Channel 6 for ADC0 P5.7 I In/A Bit 7 of Port 5, General Purpose Input ADC0_CH7 I In/A Analog Input Channel 7 for ADC0 P5.8 I In/A Bit 8 of Port 5, General Purpose Input ADC0_CH8 I In/A Analog Input Channel 8 for ADC0 ADC1_CH8 I In/A Analog Input Channel 8 for ADC1 CCU6x_T12H I RC In/A External Run Control Input for T12 of CCU60/1/2/3 CCU6x_T13H I RC In/A External Run Control Input for T13 of CCU60/1/2/3 U2C0_DX0F I In/A USIC2 Channel 0 Shift Data Input P5.9 I In/A Bit 9 of Port 5, General Purpose Input ADC0_CH9 I In/A Analog Input Channel 9 for ADC0 ADC1_CH9 I In/A Analog Input Channel 9 for ADC1 CC2_T7IN I In/A CAPCOM2 Timer T7 Count Input Data Sheet 20 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 45 P5.10 I In/A Bit 10 of Port 5, General Purpose Input ADC0_CH10 I In/A Analog Input Channel 10 for ADC0 ADC1_CH10 I In/A Analog Input Channel 10 for ADC1 BRKIN_A I In/A OCDS Break Signal Input U2C1_DX0F I In/A USIC2 Channel 1 Shift Data Input CCU61_T13 HRA I In/A External Run Control Input for T13 of CCU61 46 47 48 P5.11 I In/A Bit 11 of Port 5, General Purpose Input ADC0_CH11 I In/A Analog Input Channel 11 for ADC0 ADC1_CH11 I In/A Analog Input Channel 11 for ADC1 P5.12 I In/A Bit 12 of Port 5, General Purpose Input ADC0_CH12 I In/A Analog Input Channel 12 for ADC0 P5.13 I In/A Bit 13 of Port 5, General Purpose Input ADC0_CH13 I In/A Analog Input Channel 13 for ADC0 ERU_0B1 I St/B External Request Unit Channel 0 Input B1 CCU63_T13 HRF I In/A External Run Control Input for T13 of CCU63 49 P5.14 I In/A Bit 14 of Port 5, General Purpose Input ADC0_CH14 I In/A Analog Input Channel 14 for ADC0 50 P5.15 I In/A Bit 15 of Port 5, General Purpose Input ADC0_CH15 I In/A Analog Input Channel 15 for ADC0 RxDC2F I In/A CAN Node 2 Receive Data Input P2.12 O0 / I St/B Bit 12 of Port 2, General Purpose Input/Output U0C0_SELO 4 O1 St/B USIC0 Channel 0 Select/Control 4 Output U0C1_SELO 3 O2 St/B USIC0 Channel 1 Select/Control 3 Output TXDC2 O3 St/B CAN Node 2 Transmit Data Output READY IH St/B External Bus Interface READY Input 51 Data Sheet 21 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 52 P2.11 O0 / I St/B Bit 11 of Port 2, General Purpose Input/Output U0C0_SELO 2 O1 St/B USIC0 Channel 0 Select/Control 2 Output U0C1_SELO 2 O2 St/B USIC0 Channel 1 Select/Control 2 Output U3C1_DOUT O3 St/B USIC3 Channel 1 Shift Data Output BHE/WRH OH St/B External Bus Interf. High-Byte Control Output Can operate either as Byte High Enable (BHE) or as Write strobe for High Byte (WRH). P11.5 O0 / I St/B Bit 5 of Port 11, General Purpose Input/Output CCU61_CC6 0 O1 St/B CCU61 Channel 0 Output CCU61_COU O2 T63 St/B CCU61 Channel 3 Output U3C1_SELO 1 O3 St/B USIC3 Channel 1 Select/Control 1 Output CCU61_CC6 0INB I St/B CCU61 Channel 0 Input U3C1_DX2B I St/B USIC3 Channel 1 Shift Control Input P2.0 O0 / I St/B Bit 0 of Port 2, General Purpose Input/Output CCU63_CC6 0 O2 St/B CCU63 Channel 0 Output AD13 OH / IH St/B External Bus Interface Address/Data Line 13 RxDC0C I St/B CAN Node 0 Receive Data Input CCU63_CC6 0INB I St/B CCU63 Channel 0 Input T5INB I St/B GPT12E Timer T5 Count/Gate Input 53 55 Data Sheet Type Function 22 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 56 P2.1 O0 / I St/B Bit 1 of Port 2, General Purpose Input/Output TxDC0 O1 St/B CAN Node 0 Transmit Data Output CCU63_CC6 1 O2 St/B CCU63 Channel 1 Output AD14 OH / IH St/B External Bus Interface Address/Data Line 14 CCU63_CC6 1INB I St/B CCU63 Channel 1 Input T5EUDB I St/B GPT12E Timer T5 External Up/Down Control Input ESR1_5 I St/B ESR1 Trigger Input 5 ERU_0A0 I St/B External Request Unit Channel 0 Input A0 P11.4 O0 / I St/B Bit 4 of Port 11, General Purpose Input/Output CCU61_CC6 2 O1 St/B CCU61 Channel 2 Output U3C1_DOUT O2 St/B USIC3 Channel 1 Shift Data Output CCU61_CC6 2INB I St/B CCU61 Channel 2 Input U3C1_DX0B I St/B USIC3 Channel 1 Shift Data Input 57 58 Type Function P2.2 O0 / I St/B Bit 2 of Port 2, General Purpose Input/Output TxDC1 O1 St/B CAN Node 1 Transmit Data Output CCU63_CC6 2 O2 St/B CCU63 Channel 2 Output AD15 OH / IH St/B External Bus Interface Address/Data Line 15 CCU63_CC6 2INB I St/B CCU63 Channel 2 Input ESR2_5 I St/B ESR2 Trigger Input 5 ERU_1A0 I St/B External Request Unit Channel 1 Input A0 Data Sheet 23 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 59 P11.3 O0 / I St/B 60 61 62 Type Function Bit 3 of Port 11, General Purpose Input/Output CCU61_COU O1 T63 St/B CCU61 Channel 3 Output CCU61_COU O2 T62 St/B CCU61 Channel 2 Output CCU61_T13 HRF I St/B External Run Control Input for T13 of CCU61 P4.0 O0 / I St/B Bit 0 of Port 4, General Purpose Input/Output CC2_CC24 O3 / I St/B CAPCOM2 CC24IO Capture Inp./ Compare Out. CS0 OH External Bus Interface Chip Select 0 Output P2.3 O0 / I St/B St/B Bit 3 of Port 2, General Purpose Input/Output U0C0_DOUT O1 St/B USIC0 Channel 0 Shift Data Output CCU63_COU O2 T63 St/B CCU63 Channel 3 Output CC2_CC16 O3 / I St/B CAPCOM2 CC16IO Capture Inp./ Compare Out. A16 OH St/B External Bus Interface Address Line 16 ESR2_0 I St/B ESR2 Trigger Input 0 U0C0_DX0E I St/B USIC0 Channel 0 Shift Data Input U0C1_DX0D I St/B USIC0 Channel 1 Shift Data Input RxDC0A I St/B CAN Node 0 Receive Data Input P11.2 O0 / I St/B Bit 2 of Port 11, General Purpose Input/Output CCU61_CC6 1 O1 St/B CCU61 Channel 1 Output U3C1_DOUT O2 St/B USIC3 Channel 1 Shift Data Output CCU63_CCP I OS2A St/B CCU63 Position Input 2 CCU61_CC6 1INB St/B CCU61 Channel 1 Input Data Sheet I 24 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 63 P4.1 O0 / I St/B Bit 1 of Port 4, General Purpose Input/Output U3C0_SELO 3 O1 St/B USIC3 Channel Select/Control 3 Output TxDC2 O2 St/B CAN Node 2 Transmit Data Output CC2_CC25 O3 / I St/B CAPCOM2 CC25IO Capture Inp./ Compare Out. CS1 OH St/B External Bus Interface Chip Select 1 Output CCU62_CCP I OS0B St/B CCU62 Position Input 0 T4EUDB I St/B GPT12E Timer T4 External Up/Down Control Input ESR1_8 I St/B ESR1 Trigger Input 8 P2.4 O0 / I St/B 64 65 Type Function Bit 4 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CC2_CC17 O3 / I St/B CAPCOM2 CC17IO Capture Inp./ Compare Out. A17 OH St/B External Bus Interface Address Line 17 ESR1_0 I St/B ESR1 Trigger Input 0 U0C0_DX0F I St/B USIC0 Channel 0 Shift Data Input RxDC1A I St/B CAN Node 1 Receive Data Input P11.1 O0 / I St/B Bit 1 of Port 11, General Purpose Input/Output CCU61_COU O1 T61 St/B CCU61 Channel 1 Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output U3C1_SELO 0 O3 St/B USIC3 Channel 1 Select/Control 0 Output CCU63_CCP I OS1A St/B CCU63 Position Input 1 CCU61_CTR APD I St/B CCU61 Emergency Trap Input U3C1_DX2A I St/B USIC3 Channel 1 Shift Control Input Data Sheet 25 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 66 P11.0 O0 / I St/B 67 68 Type Function Bit 0 of Port 11, General Purpose Input/Output CCU61_COU O1 T60 St/B CCU61 Channel 0 Output U3C1_SCLK OUT St/B USIC3 Channel 1 Shift Clock Output CCU63_CCP I OS0A St/B CCU63 Position Input 0 RxDC0F St/B CAN Node 0 Receive Data Input O2 I U3C1_DX1A I St/B USIC3 Channel 1 Shift Clock Input ESR1_7 I St/B ESR1 Trigger Input 7 P2.5 O0 / I St/B Bit 5 of Port 2, General Purpose Input/Output U0C0_SCLK OUT O1 St/B USIC0 Channel 0 Shift Clock Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CC2_CC18 O3 / I St/B CAPCOM2 CC18IO Capture Inp./ Compare Out. A18 OH St/B External Bus Interface Address Line 18 U0C0_DX1D I St/B USIC0 Channel 0 Shift Clock Input ESR1_10 I St/B ESR1 Trigger Input 10 U3C1_DX0D I St/B USIC3 Channel 1 Shift Data Input P4.2 O0 / I St/B Bit 2 of Port 4, General Purpose Input/Output U3C0_SCLK OUT O1 St/B USIC3 Channel 0 Shift Clock Output TxDC2 O2 St/B CAN Node 2 Transmit Data Output CC2_CC26 O3 / I St/B CAPCOM2 CC26IO Capture Inp./ Compare Out. CS2 OH St/B External Bus Interface Chip Select 2 Output T2INA I St/B GPT12E Timer T2 Count/Gate Input CCU62_CCP I OS1B St/B CCU62 Position Input 1 U3C0_DX1B St/B USIC3 Channel 0 Shift Clock Input Data Sheet I 26 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 69 P2.6 O0 / I St/B Bit 6 of Port 2, General Purpose Input/Output U0C0_SELO 0 O1 St/B USIC0 Channel 0 Select/Control 0 Output U0C1_SELO 1 O2 St/B USIC0 Channel 1 Select/Control 1 Output CC2_CC19 O3 / I St/B CAPCOM2 CC19IO Capture Inp./ Compare Out. A19 OH St/B External Bus Interface Address Line 19 70 71 Type Function U0C0_DX2D I St/B USIC0 Channel 0 Shift Control Input RxDC0D I St/B CAN Node 0 Receive Data Input ESR2_6 I St/B ESR2 Trigger Input 6 P4.4 O0 / I St/B Bit 4 of Port 4, General Purpose Input/Output U3C0_SELO 2 O1 USIC3 Channel 0 Select/Control 2 Output CC2_CC28 O3 / I St/B CAPCOM2 CC28IO Capture Inp./ Compare Out. CS4 OH St/B External Bus Interface Chip Select 4 Output CLKIN2 I St/B Clock Signal Input 2 U3C0_DX2C I St/B USIC3 Channel 0 Shift Control Input P4.3 O0 / I St/B U0C1_DOUT O1 St/B St/B Bit 3 of Port 4, General Purpose Input/Output USIC0 Channel 1 Shift Data Output CC2_CC27 O3 / I St/B CAPCOM2 CC27IO Capture Inp./ Compare Out. CS3 OH St/B External Bus Interface Chip Select 3 Output RxDC2A I St/B CAN Node 2 Receive Data Input T2EUDA I St/B GPT12E Timer T2 External Up/Down Control Input CCU62_CCP I OS2B St/B CCU62 Position Input 2 Data Sheet 27 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 75 P0.0 O0 / I St/B 76 St/B USIC1 Channel 0 Shift Data Output CCU61_CC6 0 O3 St/B CCU61 Channel 0 IOutput A0 OH St/B External Bus Interface Address Line 0 U1C0_DX0A I St/B USIC1 Channel 0 Shift Data Input CCU61_CC6 0INA I St/B CCU61 Channel 0 Input ESR1_11 I St/B ESR1 Trigger Input 11 P4.5 O0 / I St/B CC2_CC29 St/B O3 / I St/B Bit 5 of Port 4, General Purpose Input/Output USIC3 Channel 0 Shift Data Output CAPCOM2 CC29IO Capture Inp./Compare Out. CCU61_CCP I OS0A St/B CCU61 Position Input 0 U3C0_DX0B I St/B USIC3 Channel 0 Shift Data Input ESR2_10 I St/B ESR2 Trigger Input 10 P4.6 O0 / I St/B U3C0_DOUT O1 78 Bit 0 of Port 0, General Purpose Input/Output U1C0_DOUT O1 U3C0_DOUT O1 77 Type Function St/B Bit 6 of Port 4, General Purpose Input/Output USIC3 Channel 0 Shift Data Output CC2_CC30 O3 / I St/B CAPCOM2 CC30IO Capture Inp./ Compare Out. T4INA I St/B GPT12E Timer T4 Count/Gate Input CCU61_CCP I OS1A St/B CCU61 Position Input 1 P2.7 O0 / I St/B Bit 7 of Port 2, General Purpose Input/Output U0C1_SELO 0 O1 St/B USIC0 Channel 1 Select/Control 0 Output U0C0_SELO 1 O2 St/B USIC0 Channel 0 Select/Control 1 Output CC2_CC20 O3 / I St/B CAPCOM2 CC20IO Capture Inp./ Compare Out. A20 OH St/B External Bus Interface Address Line 20 U0C1_DX2C I St/B USIC0 Channel 1 Shift Control Input RxDC1C I St/B CAN Node 1 Receive Data Input ESR2_7 I St/B ESR2 Trigger Input 7 Data Sheet 28 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 79 P0.1 O0 / I St/B 80 Type Function Bit 1 of Port 0, General Purpose Input/Output U1C0_DOUT O1 St/B USIC1 Channel 0 Shift Data Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CCU61_CC6 1 O3 St/B CCU61 Channel 1 Output A1 OH St/B External Bus Interface Address Line 1 U1C0_DX0B I St/B USIC1 Channel 0 Shift Data Input CCU61_CC6 1INA I St/B CCU61 Channel 1 Input U1C0_DX1A I St/B USIC1 Channel 0 Shift Clock Input P2.8 O0 / I DP/B Bit 8 of Port 2, General Purpose Input/Output U0C1_SCLK OUT O1 DP/B USIC0 Channel 1 Shift Clock Output EXTCLK O2 DP/B Programmable Clock Signal Output 1) 81 CC2_CC21 O3 / I DP/B CAPCOM2 CC21IO Capture Inp./ Compare Out. A21 OH DP/B External Bus Interface Address Line 21 U0C1_DX1D I DP/B USIC0 Channel 1 Shift Clock Input P4.7 O0 / I St/B Bit 7 of Port 4, General Purpose Input/Output CC2_CC31 O3 / I St/B CAPCOM2 CC31IO Capture Inp./ Compare Out. T4EUDA I St/B GPT12E Timer T4 External Up/Down Control Input CCU61_CCP I OS2A St/B CCU61 Position Input 2 Data Sheet 29 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 82 P2.9 O0 / I St/B 83 Type Function Bit 9 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output TxDC1 O2 St/B CAN Node 1 Transmit Data Output CC2_CC22 O3 / I St/B CAPCOM2 CC22IO Capture Inp./ Compare Out. A22 OH St/B External Bus Interface Address Line 22 CLKIN1 I St/B Clock Signal Input 1 TCK_A IH St/B DAP0/JTAG Clock Input If JTAG pos. A is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 0 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. P0.2 O0 / I St/B Bit 2 of Port 0, General Purpose Input/Output U1C0_SCLK OUT O1 St/B USIC1 Channel 0 Shift Clock Output TxDC0 O2 St/B CAN Node 0 Transmit Data Output CCU61_CC6 2 O3 St/B CCU61 Channel 2 Output A2 OH St/B External Bus Interface Address Line 2 U1C0_DX1B I St/B USIC1 Channel 0 Shift Clock Input CCU61_CC6 2INA I St/B CCU61 Channel 2 Input Data Sheet 30 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 84 P10.0 O0 / I St/B 85 86 Type Function Bit 0 of Port 10, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output CCU60_CC6 0 O2 St/B CCU60 Channel 0 Output AD0 OH / IH St/B External Bus Interface Address/Data Line 0 CCU60_CC6 0INA I St/B CCU60 Channel 0 Input ESR1_2 I St/B ESR1 Trigger Input 2 U0C0_DX0A I St/B USIC0 Channel 0 Shift Data Input U0C1_DX0A I St/B USIC0 Channel 1 Shift Data Input P3.0 O0 / I St/B Bit 0 of Port 3, General Purpose Input/Output U2C0_DOUT O1 St/B USIC2 Channel 0 Shift Data Output ESR1_1 I St/B ESR1 Trigger Input 1 U2C0_DX0A I St/B USIC2 Channel 0 Shift Data Input U2C0_DX1A I St/B USIC2 Channel 0 Shift Clock Input P10.1 O0 / I St/B Bit 1 of Port 10, General Purpose Input/Output U0C0_DOUT O1 St/B USIC0 Channel 0 Shift Data Output CCU60_CC6 1 O2 St/B CCU60 Channel 1 Output AD1 OH / IH St/B External Bus Interface Address/Data Line 1 CCU60_CC6 1INA I St/B CCU60 Channel 1 Input U0C0_DX1A I St/B USIC0 Channel 0 Shift Clock Input U0C0_DX0B I St/B USIC0 Channel 0 Shift Data Input Data Sheet 31 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 87 P0.3 O0 / I St/B Bit 3 of Port 0, General Purpose Input/Output U1C0_SELO 0 O1 St/B USIC1 Channel 0 Select/Control 0 Output U1C1_SELO 1 O2 St/B USIC1 Channel 1 Select/Control 1 Output CCU61_COU O3 T60 St/B CCU61 Channel 0 Output A3 St/B External Bus Interface Address Line 3 88 89 OH Type Function U1C0_DX2A I St/B USIC1 Channel 0 Shift Control Input RxDC0B I St/B CAN Node 0 Receive Data Input P3.1 O0 / I St/B Bit 1 of Port 3, General Purpose Input/Output U2C0_DOUT O1 St/B USIC2 Channel 0 Shift Data Output U2C0_DX0B I St/B USIC2 Channel 0 Shift Data Input P10.2 O0 / I St/B Bit 2 of Port 10, General Purpose Input/Output U0C0_SCLK OUT O1 St/B USIC0 Channel 0 Shift Clock Output CCU60_CC6 2 O2 St/B CCU60 Channel 2 Output U3C0_SELO 1 O3 St/B USIC3 Channel 0 Select/Control 1 Output AD2 OH / IH St/B External Bus Interface Address/Data Line 2 CCU60_CC6 2INA I St/B CCU60 Channel 2 Input U0C0_DX1B I St/B USIC0 Channel 0 Shift Clock Input U3C0_DX2B I St/B USIC3 Channel 0 Shift Control Input Data Sheet 32 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 90 P0.4 O0 / I St/B Bit 4 of Port 0, General Purpose Input/Output U1C1_SELO 0 O1 St/B USIC1 Channel 1 Select/Control 0 Output U1C0_SELO 1 O2 St/B USIC1 Channel 0 Select/Control 1 Output CCU61_COU O3 T61 St/B CCU61 Channel 1 Output A4 St/B External Bus Interface Address Line 4 92 93 94 OH Type Function U1C1_DX2A I St/B USIC1 Channel 1 Shift Control Input RxDC1B I St/B CAN Node 1 Receive Data Input ESR2_8 I St/B ESR2 Trigger Input 8 P2.13 O0 / I St/B Bit 13 of Port 2, General Purpose Input/Output U2C1_SELO 2 O1 St/B USIC2 Channel 1 Select/Control 2 Output RxDC2D I St/B CAN Node 2 Receive Data Input P3.2 O0 / I St/B Bit 2 of Port 3, General Purpose Input/Output U2C0_SCLK OUT O1 St/B USIC2 Channel 0 Shift Clock Output U2C0_DX1B I St/B USIC2 Channel 0 Shift Clock Input P2.10 O0 / I St/B Bit 10 of Port 2, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output U0C0_SELO 3 O2 St/B USIC0 Channel 0 Select/Control 3 Output CC2_CC23 O3 / I St/B CAPCOM2 CC23IO Capture Inp./ Compare Out. A23 OH St/B External Bus Interface Address Line 23 U0C1_DX0E I St/B USIC0 Channel 1 Shift Data Input CAPINA I St/B GPT12E Register CAPREL Capture Input U3C1_DX0A I St/B USIC3 Channel 1 Shift Data Input Data Sheet 33 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 95 P10.3 O0 / I St/B 96 97 Type Function Bit 3 of Port 10, General Purpose Input/Output CCU60_COU O2 T60 St/B CCU60 Channel 0 Output AD3 OH / IH St/B External Bus Interface Address/Data Line 3 U0C0_DX2A I St/B USIC0 Channel 0 Shift Control Input U0C1_DX2A I St/B USIC0 Channel 1 Shift Control Input U3C0_DX0A I St/B USIC3 Channel 0 Shift Data Input P0.5 O0 / I St/B Bit 5 of Port 0, General Purpose Input/Output U1C1_SCLK OUT O1 St/B USIC1 Channel 1 Shift Clock Output U1C0_SELO 2 O2 St/B USIC1 Channel 0 Select/Control 2 Output CCU61_COU O3 T62 St/B CCU61 Channel 2 Output A5 OH St/B External Bus Interface Address Line 5 U1C1_DX1A I St/B USIC1 Channel 1 Shift Clock Input U1C0_DX1C I St/B USIC1 Channel 0 Shift Clock Input P3.3 O0 / I St/B Bit 3 of Port 3, General Purpose Input/Output U2C0_SELO 0 O1 St/B USIC2 Channel 0 Select/Control 0 Output U2C1_SELO 1 O2 St/B USIC2 Channel 1 Select/Control 1 Output U2C0_DX2A I St/B USIC2 Channel 0 Shift Control Input Data Sheet 34 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 98 P10.4 O0 / I St/B Bit 4 of Port 10, General Purpose Input/Output U0C0_SELO 3 O1 St/B USIC0 Channel 0 Select/Control 3 Output CCU60_COU O2 T61 St/B CCU60 Channel 1 Output U3C0_DOUT O3 St/B USIC3 Channel 0 Shift Data Output AD4 OH / IH St/B External Bus Interface Address/Data Line 4 U0C0_DX2B I St/B USIC0 Channel 0 Shift Control Input U0C1_DX2B I St/B USIC0 Channel 1 Shift Control Input ESR1_9 I St/B ESR1 Trigger Input 9 P3.4 O0 / I St/B Bit 4 of Port 3, General Purpose Input/Output U2C1_SELO 0 O1 St/B USIC2 Channel 1 Select/Control 0 Output U2C0_SELO 1 O2 St/B USIC2 Channel 0 Select/Control 1 Output U0C0_SELO 4 O3 St/B USIC0 Channel 0 Select/Control 4 Output U2C1_DX2A I St/B USIC2 Channel 1 Shift Control Input P10.5 O0 / I St/B Bit 5 of Port 10, General Purpose Input/Output U0C1_SCLK OUT O1 St/B USIC0 Channel 1 Shift Clock Output CCU60_COU O2 T62 St/B CCU60 Channel 2 Output U2C0_DOUT O3 St/B USIC2 Channel 0 Shift Data Output AD5 OH / IH St/B External Bus Interface Address/Data Line 5 U0C1_DX1B I St/B USIC0 Channel 1 Shift Clock Input 99 100 Data Sheet Type Function 35 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 101 P3.5 O0 / I St/B Bit 5 of Port 3, General Purpose Input/Output U2C1_SCLK OUT O1 St/B USIC2 Channel 1 Shift Clock Output U2C0_SELO 2 O2 St/B USIC2 Channel 0 Select/Control 2 Output U0C0_SELO 5 O3 St/B USIC0 Channel 0 Select/Control 5 Output U2C1_DX1A I St/B USIC2 Channel 1 Shift Clock Input P0.6 O0 / I St/B 102 103 Type Function Bit 6 of Port 0, General Purpose Input/Output U1C1_DOUT O1 St/B USIC1 Channel 1 Shift Data Output TxDC1 O2 St/B CAN Node 1 Transmit Data Output CCU61_COU O3 T63 St/B CCU61 Channel 3 Output A6 OH St/B External Bus Interface Address Line 6 U1C1_DX0A I St/B USIC1 Channel 1 Shift Data Input CCU61_CTR APA I St/B CCU61 Emergency Trap Input U1C1_DX1B I St/B USIC1 Channel 1 Shift Clock Input P10.6 O0 / I St/B Bit 6 of Port 10, General Purpose Input/Output U0C0_DOUT O1 St/B USIC0 Channel 0 Shift Data Output U1C0_SELO 0 O3 St/B USIC1 Channel 0 Select/Control 0 Output AD6 OH / IH St/B External Bus Interface Address/Data Line 6 U0C0_DX0C I St/B USIC0 Channel 0 Shift Data Input U1C0_DX2D I St/B USIC1 Channel 0 Shift Control Input CCU60_CTR APA I St/B CCU60 Emergency Trap Input Data Sheet 36 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 104 P3.6 O0 / I St/B 105 106 107 Type Function Bit 6 of Port 3, General Purpose Input/Output U2C1_DOUT O1 St/B USIC2 Channel 1 Shift Data Output U0C0_SELO 6 O3 St/B USIC0 Channel 0 Select/Control 6 Output U2C1_DX0A I St/B USIC2 Channel 1 Shift Data Input U2C1_DX1B I St/B USIC2 Channel 1 Shift Clock Input P10.7 O0 / I St/B Bit 7 of Port 10, General Purpose Input/Output U0C1_DOUT O1 St/B USIC0 Channel 1 Shift Data Output CCU60_COU O2 T63 St/B CCU60 Channel 3 Output AD7 OH / IH St/B External Bus Interface Address/Data Line 7 U0C1_DX0B I St/B USIC0 Channel 1 Shift Data Input CCU60_CCP I OS0A St/B CCU60 Position Input 0 T4INB I St/B GPT12E Timer T4 Count/Gate Input P0.7 O0 / I St/B Bit 7 of Port 0, General Purpose Input/Output U1C1_DOUT O1 St/B USIC1 Channel 1 Shift Data Output U1C0_SELO 3 O2 St/B USIC1 Channel 0 Select/Control 3 Output A7 OH St/B External Bus Interface Address Line 7 U1C1_DX0B I St/B USIC1 Channel 1 Shift Data Input CCU61_CTR APB I St/B CCU61 Emergency Trap Input P3.7 O0 / I St/B Bit 7 of Port 3, General Purpose Input/Output U2C1_DOUT O1 St/B USIC2 Channel 1 Shift Data Output U2C0_SELO 3 O2 St/B USIC2 Channel 0 Select/Control 3 Output U0C0_SELO 7 O3 St/B USIC0 Channel 0 Select/Control 7 Output U2C1_DX0B I St/B USIC2 Channel 1 Shift Data Input Data Sheet 37 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 111 P1.0 O0 / I St/B Bit 0 of Port 1, General Purpose Input/Output U1C0_MCLK OUT O1 St/B USIC1 Channel 0 Master Clock Output U1C0_SELO 4 O2 St/B USIC1 Channel 0 Select/Control 4 Output A8 OH St/B External Bus Interface Address Line 8 ESR1_3 I St/B ESR1 Trigger Input 3 112 Type Function ERU_0B0 I St/B External Request Unit Channel 0 Input B0 CCU62_CTR APB I St/B CCU62 Emergency Trap Input T6INB I St/B GPT12E Timer T6 Count/Gate Input P9.0 O0 / I St/B Bit 0 of Port 9, General Purpose Input/Output CCU63_CC6 0 O1 St/B CCU63 Channel 0 Output CCU63_CC6 0INA I St/B CCU63 Channel 0 Input T6EUDB I St/B GPT12E Timer T6 External Up/Down Control Input Data Sheet 38 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 113 P10.8 O0 / I St/B Bit 8 of Port 10, General Purpose Input/Output U0C0_MCLK OUT O1 St/B USIC0 Channel 0 Master Clock Output U0C1_SELO 0 O2 St/B USIC0 Channel 1 Select/Control 0 Output U2C1_DOUT O3 St/B USIC2 Channel 1 Shift Data Output AD8 St/B External Bus Interface Address/Data Line 8 CCU60_CCP I OS1A St/B CCU60 Position Input 1 U0C0_DX1C St/B USIC0 Channel 0 Shift Clock Input 114 OH / IH I Type Function BRKIN_B I St/B OCDS Break Signal Input T3EUDB I St/B GPT12E Timer T3 External Up/Down Control Input ERAY_RxDA I St/B ERAY Receive Data Input Channel A ESR2_11 I St/B ESR2 Trigger Input 11 P9.1 O0 / I DP/B Bit 1 of Port 9, General Purpose Input/Output CCU63_CC6 1 O1 DP/B CCU63 Channel 1 Output ERAY_TxDB O3 DP/B ERAY Transmit Data Output Channel B CCU63_CC6 1INA I DP/B CCU63 Channel 1 Input Data Sheet 39 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 115 P10.9 O0 / I DP/B Bit 9 of Port 10, General Purpose Input/Output U0C0_SELO 4 O1 DP/B USIC0 Channel 0 Select/Control 4 Output U0C1_MCLK OUT O2 DP/B USIC0 Channel 1 Master Clock Output 116 Type Function ERAY_TxDA O3 DP/B ERAY Transmit Data Output Channel A AD9 OH / IH DP/B External Bus Interface Address/Data Line 9 CCU60_CCP I OS2A DP/B CCU60 Position Input 2 TCK_B IH DP/B DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. T3INB I DP/B GPT12E Timer T3 Count/Gate Input P1.1 O0 / I St/B Bit 1 of Port 1, General Purpose Input/Output CCU62_COU O1 T62 St/B CCU62 Channel 2 Output U1C0_SELO 5 O2 St/B USIC1 Channel 0 Select/Control 5 Output U2C1_DOUT O3 St/B USIC2 Channel 1 Shift Data Output A9 OH St/B External Bus Interface Address Line 9 ESR2_3 I St/B ESR2 Trigger Input 3 ERU_1B0 I St/B External Request Unit Channel 1 Input B0 U2C1_DX0C I St/B USIC2 Channel 1 Shift Data Input Data Sheet 40 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 117 P10.10 O0 / I St/B Bit 10 of Port 10, General Purpose Input/Output U0C0_SELO 0 O1 St/B USIC0 Channel 0 Select/Control 0 Output CCU60_COU O2 T63 St/B CCU60 Channel 3 Output ERAY_TxEN A O3 St/B ERAY Transmit Enable Output Channel A AD10 OH / IH St/B External Bus Interface Address/Data Line 10 U0C0_DX2C I St/B USIC0 Channel 0 Shift Control Input U0C1_DX1A I St/B USIC0 Channel 1 Shift Clock Input TDI_B IH St/B JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. P10.11 O0 / I St/B Bit 11 of Port 10, General Purpose Input/Output U1C0_SCLK OUT O1 St/B USIC1 Channel 0 Shift Clock Output BRKOUT O2 St/B OCDS Break Signal Output U3C0_SELO 0 O3 St/B USIC3 Channel 0 Select/Control 0 Output AD11 OH / IH St/B External Bus Interface Address/Data Line 11 U1C0_DX1D I St/B USIC1 Channel 0 Shift Clock Input RxDC2B I St/B CAN Node 2 Receive Data Input TMS_B IH St/B JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. U3C0_DX2A I St/B USIC3 Channel 0 Shift Control Input 118 Data Sheet Type Function 41 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 119 P9.2 O0 / I St/B Bit 2 of Port 9, General Purpose Input/Output CCU63_CC6 2 O1 St/B CCU63 Channel 2 Output ERAY_TxEN B O3 St/B ERAY Transmit Enable Output Channel B CCU63_CC6 2INA I St/B CCU63 Channel 2 Input CAPINB I St/B GPT12E Register CAPREL Capture Input 120 Type Function P1.2 O0 / I St/B Bit 2 of Port 1, General Purpose Input/Output CCU62_CC6 2 O1 St/B CCU62 Channel 2 Output U1C0_SELO 6 O2 St/B USIC1 Channel 0 Select/Control 6 Output U2C1_SCLK OUT O3 St/B USIC2 Channel 1 Shift Clock Output A10 OH St/B External Bus Interface Address Line 10 ESR1_4 I St/B ESR1 Trigger Input 4 ERU_2A0 I St/B External Request Unit Channel 2 Input A0 CCU61_T12 HRB I St/B External Run Control Input for T12 of CCU61 CCU62_CC6 2INA I St/B CCU62 Channel 2 Input U2C1_DX0D I St/B USIC2 Channel 1 Shift Data Input U2C1_DX1C I St/B USIC2 Channel 1 Shift Clock Input Data Sheet 42 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 121 P10.12 O0 / I St/B 122 123 Type Function Bit 12 of Port 10, General Purpose Input/Output U1C0_DOUT O1 St/B USIC1 Channel 0 Shift Data Output TxDC2 O2 St/B CAN Node 2 Transmit Data Output TDO_B OH / IH St/B JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it. AD12 OH / IH St/B External Bus Interface Address/Data Line 12 U1C0_DX0C I St/B USIC1 Channel 0 Shift Data Input U1C0_DX1E I St/B USIC1 Channel 0 Shift Clock Input P9.3 O0 / I St/B Bit 3 of Port 9, General Purpose Input/Output CCU63_COU O1 T60 St/B CCU63 Channel 0 Output BRKOUT O2 St/B OCDS Break Signal Output P10.13 O0 / I St/B Bit 13 of Port 10, General Purpose Input/Output U1C0_DOUT O1 St/B USIC1 Channel 0 Shift Data Output U1C0_SELO 3 O3 St/B USIC1 Channel 0 Select/Control 3 Output WR/WRL OH St/B External Bus Interface Write Strobe Output Active for each external write access, when WR, active for ext. writes to the low byte, when WRL. U1C0_DX0D I St/B USIC1 Channel 0 Shift Data Input Data Sheet 43 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 124 P1.3 O0 / I St/B 125 126 Type Function Bit 3 of Port 1, General Purpose Input/Output CCU62_COU O1 T63 St/B CCU62 Channel 3 Output U1C0_SELO 7 O2 St/B USIC1 Channel 0 Select/Control 7 Output U2C0_SELO 4 O3 St/B USIC2 Channel 0 Select/Control 4 Output A11 OH St/B External Bus Interface Address Line 11 ESR2_4 I St/B ESR2 Trigger Input 4 ERU_3A0 I St/B External Request Unit Channel 3 Input A0 CCU62_T12 HRB I St/B External Run Control Input for T12 of CCU62 P9.4 O0 / I St/B Bit 4 of Port 9, General Purpose Input/Output CCU63_COU O1 T61 St/B CCU63 Channel 1 Output U2C0_DOUT O2 St/B USIC2 Channel 0 Shift Data Output CCU62_COU O3 T63 St/B CCU62 Channel 3 Output P9.5 O0 / I St/B Bit 5 of Port 9, General Purpose Input/Output CCU63_COU O1 T62 St/B CCU63 Channel 2 Output U2C0_DOUT O2 St/B USIC2 Channel 0 Shift Data Output CCU62_COU O3 T62 St/B CCU62 Channel 2 Output U2C0_DX0E I St/B USIC2 Channel 0 Shift Data Input CCU60_CCP I OS2B St/B CCU60 Position Input 2 Data Sheet 44 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 128 P10.14 O0 / I St/B Bit 14 of Port 10, General Purpose Input/Output U1C0_SELO 1 O1 St/B USIC1 Channel 0 Select/Control 1 Output U0C1_DOUT O2 St/B USIC0 Channel 1 Shift Data Output U3C0_SCLK OUT O3 St/B USIC3 Channel 0 Shift Clock Output RD OH St/B External Bus Interface Read Strobe Output ESR2_2 I St/B ESR2 Trigger Input 2 U0C1_DX0C I St/B USIC0 Channel 1 Shift Data Input U3C0_DX1A I St/B USIC3 Channel 0 Shift Clock Input P1.4 O0 / I St/B 129 130 Type Function Bit 4 of Port 1, General Purpose Input/Output CCU62_COU O1 T61 St/B CCU62 Channel 1 Output U1C1_SELO 4 O2 St/B USIC1 Channel 1 Select/Control 4 Output U2C0_SELO 5 O3 St/B USIC2 Channel 0 Select/Control 5 Output A12 OH St/B External Bus Interface Address Line 12 U2C0_DX2B I St/B USIC2 Channel 0 Shift Control Input P10.15 O0 / I St/B Bit 15 of Port 10, General Purpose Input/Output U1C0_SELO 2 O1 St/B USIC1 Channel 0 Select/Control 2 Output U0C1_DOUT O2 St/B USIC0 Channel 1 Shift Data Output U1C0_DOUT O3 St/B USIC1 Channel 0 Shift Data Output ALE OH St/B External Bus Interf. Addr. Latch Enable Output U0C1_DX1C I St/B USIC0 Channel 1 Shift Clock Input Data Sheet 45 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 131 P1.5 O0 / I St/B 132 133 Type Function Bit 5 of Port 1, General Purpose Input/Output CCU62_COU O1 T60 St/B CCU62 Channel 0 Output U1C1_SELO 3 O2 St/B USIC1 Channel 1 Select/Control 3 Output BRKOUT O3 St/B OCDS Break Signal Output A13 OH St/B External Bus Interface Address Line 13 U2C0_DX0C I St/B USIC2 Channel 0 Shift Data Input P9.6 O0 / I St/B Bit 6 of Port 9, General Purpose Input/Output CCU63_COU O1 T63 St/B CCU63 Channel 3 Output CCU63_COU O2 T62 St/B CCU63 Channel 2 Output CCU62_COU O3 T61 St/B CCU62 Channel 1 Output CCU63 _CTRAPA I St/B CCU63 Emergency Trap Input CCU60_CCP I OS1B St/B CCU60 Position Input 1 ERAY_RxDB I St/B ERAY Receive Data Input Channel B P1.6 O0 / I St/B Bit 6 of Port 1, General Purpose Input/Output CCU62_CC6 1 O1 / I St/B CCU62 Channel 1 Output U1C1_SELO 2 O2 St/B USIC1 Channel 1 Select/Control 2 Output U2C0_DOUT O3 St/B USIC2 Channel 0 Shift Data Output A14 OH St/B External Bus Interface Address Line 14 U2C0_DX0D I St/B USIC2 Channel 0 Shift Data Input CCU62_CC6 1INA I St/B CCU62 Channel 1 Input Data Sheet 46 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 134 P9.7 O0 / I St/B 135 Type Function Bit 7 of Port 9, General Purpose Input/Output CCU62_COU O1 T60 St/B CCU62 Channel 0 Output CCU62_COU O2 T63 St/B CCU62 Channel 3 Output CCU63_CTR APB I St/B CCU63 Emergency Trap Input U2C0_DX1D I St/B USIC2 Channel 0 Shift Clock Input CCU60_CCP I OS0B St/B CCU60 Position Input 0 P1.7 O0 / I St/B Bit 7 of Port 1, General Purpose Input/Output CCU62_CC6 0 O1 St/B CCU62 Channel 0 Output U1C1_MCLK OUT O2 St/B USIC1 Channel 1 Master Clock Output U2C0_SCLK OUT O3 St/B USIC2 Channel 0 Shift Clock Output A15 OH St/B External Bus Interface Address Line 15 U2C0_DX1C I St/B USIC2 Channel 0 Shift Clock Input CCU62_CC6 0INA I St/B CCU62 Channel 0 Input 136 XTAL2 O Sp/M Crystal Oscillator Amplifier Output 137 XTAL1 I Sp/M Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core supply voltage VDDIM. ESR2_9 I St/B Data Sheet ESR2 Trigger Input 9 47 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 138 PORST I In/B 139 ESR1 O0 / I St/B External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it. RxDC0E I St/B CAN Node 0 Receive Data Input U1C0_DX0F I St/B USIC1 Channel 0 Shift Data Input U1C0_DX2C I St/B USIC1 Channel 0 Shift Control Input U1C1_DX0C I St/B USIC1 Channel 1 Shift Data Input U1C1_DX2B I St/B USIC1 Channel 1 Shift Control Input U2C1_DX2C I St/B USIC2 Channel 1 Shift Control Input ESR2 O0 / I St/B External Service Request 2 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it. RxDC1E I St/B CAN Node 1 Receive Data Input CCU60_CTR APC I St/B CCU60 Emergency Trap Input CCU61_CTR APC I St/B CCU61 Emergency Trap Input CCU62_CTR APC I St/B CCU62 Emergency Trap Input CCU63_CTR APC I St/B CCU63 Emergency Trap Input U1C1_DX0D I St/B USIC1 Channel 1 Shift Data Input U1C1_DX2C I St/B USIC1 Channel 1 Shift Control Input U2C1_DX0E I St/B USIC2 Channel 1 Shift Data Input U2C1_DX2B I St/B USIC2 Channel 1 Shift Control Input 140 Data Sheet Power On Reset Input A low level at this pin resets the XC238xE completely. A spike filter suppresses input pulses 100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it. 48 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. 141 ESR0 O0 / I St/B External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up. U1C0_DX0E I St/B USIC1 Channel 0 Shift Data Input U1C0_DX2B I St/B USIC1 Channel 0 Shift Control Input P8.6 O0 / I St/B 142 143 Type Function Bit 6 of Port 8, General Purpose Input/Output CCU60_COU O1 T63 St/B CCU60 Channel 3 Output MCHK_MAT CH O3 St/B Memory Checker Match Output CCU60_CTR APB I St/B CCU60 Emergency Trap Input BRKIN_D I St/B OCDS Break Signal Input CCU62_CTR APD I St/B CCU62 Emergency Trap Input P8.5 O0 / I St/B Bit 5 of Port 8, General Purpose Input/Output CCU60_COU O1 T62 St/B CCU60 Channel 2 Output CCU62_CC6 2 O2 St/B CCU62 Channel 2 Output TCK_D IH St/B DAP0/JTAG Clock Input If JTAG pos. D is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. CCU62_CC6 2INB I St/B CCU62 Channel 2 Input 15 VDDIM - PS/M Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details. 14, 54, 91, 127 VDDI1 - PS/1 Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All VDDI1 pins must be connected to each other. Data Sheet 49 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information Table 6 Pin Definitions and Functions (cont’d) Pin Symbol Ctrl. Type Function 20 VDDPA - PS/A Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent VDDP/VSS pin pairs as close as possible to the pins. Note: The A/D Converters and ports P5, P6 and P15 are fed from supply voltage VDDPA. VDDPB 2, 36, 38, 72, 74, 108, 110, 144 1, 37, 73, 109 VSS - PS/B Digital Pad Supply Voltage for Domain B Connect decoupling capacitors to adjacent VDDP/VSS pin pairs as close as possible to the pins. Note: The on-chip voltage regulators and all ports except P5, P6 and P15 are fed from supply voltage VDDPB. - PS/-- Digital Ground All VSS pins must be connected to the ground-line or ground-plane. Note: Also the exposed pad is connected internally to VSS. To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground. For thermal aspects, please refer to the Data Sheet. Board layout examples are given in an application note. 1) To generate the reference clock output for bus timing measurement, fSYS must be selected as source for EXTCLK and P2.8 must be selected as output pin. Also the high-speed clock pad must be enabled. This configuration is referred to as reference clock output signal CLKOUT. Data Sheet 50 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line General Device Information 2.2 Identification Registers The identification registers describe the current version of the XC238xE and of its modules. Table 7 XC238xE Identification Registers Short Name Value Address SCU_IDMANUF 1820H 00’F07EH SCU_IDCHIP 4801H 00’F07CH SCU_IDMEM 310FH 00’F07AH SCU_IDPROG 1313H 00’F078H JTAG_ID 101B’F083H --- Data Sheet 51 Notes Step AA V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Functional Description 3 Functional Description The architecture of the XC238xE combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication. The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources. This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC238xE. The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC238xE. 3.1 Memory Subsystem and Organization The memory space of the XC238xE is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space. Table 8 XC238xE Memory Map 1) Address Area Start Loc. End Loc. Area Size2) IMB register space FF’FF00H FF’FFFFH 256 Bytes Reserved F0’0000H FF’FEFFH < 1 Mbyte Minus IMB registers Reserved for EPSRAM E9’0000H EF’FFFFH 448 Kbytes Mirrors EPSRAM Emulated PSRAM E8’0000H E8’FFFFH up to 64 Kbytes With Flash timing Reserved for PSRAM E1’0000H E7’FFFFH 448 Kbytes Mirrors PSRAM PSRAM E0’0000H E0’FFFFH up to 64 Kbytes Program SRAM Reserved for Flash D1’0000H DF’FFFFH 448 Kbytes Flash 4 D0’0000H D0’FFFFH 64 Kbytes Flash 3 CC’0000H CF’FFFFH 256 Kbytes Flash 2 C8’0000H CB’FFFFH 256 Kbytes Flash 1 C4’0000H C7’FFFFH 256 Kbytes Flash 0 C0’0000H C3’FFFFH 256 Kbytes3) External memory area 40’0000H BF’FFFFH 8 Mbytes External IO area4) 21’0000H 3F’FFFFH 1 984 Kbytes Data Sheet 52 Notes Minus res. seg. V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Functional Description Table 8 XC238xE Memory Map (cont’d)1) Address Area Start Loc. End Loc. Area Size2) Notes MultiCAN alternate regs. 20’8000H 20’AFFFH 12 Kbytes Accessed via EBC FlexRay registers 20’7000H 20’7FFFH 4 Kbytes Accessed via EBC Reserved 20’6800H 20’6FFFH 2 Kbytes MultiCAN registers 20’0000H 20’3FFFH 16 Kbytes External memory area 01’0000H 1F’FFFFH 1984 Kbytes SFR area 00’FE00H 00’FFFFH 0.5 Kbytes Dualport RAM (DPRAM) 00’F600H 00’FDFFH 2 Kbytes Reserved for DPRAM 00’F200H 00’F5FFH 1 Kbytes ESFR area 00’F000H 00’F1FFH 0.5 Kbytes XSFR area 00’E000H 00’EFFFH 4 Kbytes Data SRAM (DSRAM) 00’8000H 00’DFFFH 24 Kbytes External memory area 00’0000H 00’7FFFH 32 Kbytes Accessed via EBC 1) Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses. 2) The areas marked with “ VDDP or VIN < VSS) the voltage on VDDP pins with respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings. Table 12 Absolute Maximum Rating Parameters Parameter Symbol Values Unit Min. Typ. Max. Note / Test Condition Output current on a pin when high value is driven IOH SR -30 − − mA Output current on a pin when low value is driven IOL SR − − 30 mA -10 − 10 mA 1) − − 100 mA 1) IOV SR Absolute sum of overload Σ|IOV| Overload current currents SR Junction Temperature TJ SR -40 TST SR -65 VDDP SR -0.5 − 150 °C − 150 °C − 6.0 V VIN SR − VDDP V Storage Temperature Digital supply voltage for IO pads and voltage regulators Voltage on any pin with respect to ground (Vss) -0.5 VIN ≤ VDDP(max) + 0.5 1) Overload condition occurs if the input voltage VIN is out of the absolute maximum rating range. In this case the current must be limited to the listed values by design measures. Data Sheet 84 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.1.2 Operating Conditions The following operating conditions must not be exceeded to ensure correct operation of the XC238xE. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed. Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable. Table 13 Operating Conditions Parameter Symbol Voltage Regulator Buffer Capacitance for DMP_M CEVRM Voltage Regulator Buffer Capacitance for DMP_1 CEVR1 External Load Capacitance CL SR Values Unit Note / Test Condition 4.7 μF 1) − 2.2 μF 1)2) 203) − pF pin out driver= default Min. Typ. Max. 1.0 − 0.68 − SR SR 4) System frequency Overload current for analog inputs6) fSYS SR − IOVA SR -2 Overload current for digital IOVD SR -5 inputs6) Overload current coupling KOVA factor for analog inputs7) CC − − Overload current coupling KOVD CC factor for digital I/O pins − − Data Sheet 85 − 128 MHz 5) − 5 mA not subject to production test − 5 mA not subject to production test 2.5 x 10-4 1.5 x 10-3 - IOV < 0 mA; 1.0 x 10-6 1.0 x 10-4 - 1.0 x 10-2 3.0 x 10-2 IOV < 0 mA; 1.0 x 10-4 5.0 x 10-3 IOV > 0 mA; not subject to production test IOV > 0 mA; not subject to production test not subject to production test not subject to production test V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 13 Operating Conditions (cont’d) Parameter Symbol Values Min. Typ. Max. Σ|IOV| SR − − 50 Digital core supply voltage VDDIM for domain M8) CC − 1.5 − Digital core supply voltage VDDI1 for domain 18) CC − 1.5 − Absolute sum of overload currents Unit Note / Test Condition mA not subject to production test Digital supply voltage for IO pads and voltage regulators VDDP SR 3.0 − 5.5 V Operation 3.1 − − V Power up9) Digital ground voltage VSS SR − 0 − V 1) To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each VDDIM and VDDI1 pin to keep the resistance of the board tracks below 2 Ω. Connect all VDDI1 pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time. 2) Use one Capacitor for each pin. 3) This is the reference load. For bigger capacitive loads, use the derating factors listed in the PAD properties section. 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (CL). 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L. 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: VOV > VIHmax (IOV > 0) or VOV < VILmin ((IOV < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by VDDIM). 7) An overload current (IOV) through a pin injects a certain error current (IINJ) into the adjacent pins. This error current adds to the respective pins leakage current (IOZ). The amount of error current depends on the overload current and is defined by the overload coupling factor KOV. The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it.The total current through a pin is |ITOT| = |IOZ| + (|IOV| KOV). The additional error current may distort the input voltage on analog inputs. 8) Value is controlled by on-chip regulator 9) To ensure a stable power up sequence, the external supply voltage must reach or exceed a level of 3.1 V during power up for at least 0.5 ms. For normal operation the complete specified voltage range is available. Data Sheet 86 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.1.3 Voltage Range Definition The XC238xE timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables. Table 14 Upper Voltage Range Definition Parameter Symbol Values Min. Digital supply voltage for IO pads and voltage regulators Table 15 VDDP SR 4.5 4.75 Note / Test Condition 5.5 V 5.25 V fSYS ≤ 100 MHz fSYS ≤ 128 MHz Max. 5 5 Lower Voltage Range Definition Parameter Symbol Digital supply voltage for IO pads and voltage regulators VDDP SR 3.0 Values Min. 4.1.4 Unit Typ. Unit Typ. Max. 3.3 4.5 Note / Test Condition V Pad Timing Definition If not otherwise noted, all timing parameters are tested and are valid for the corresponding output pins operating in strong driver, fast edge mode. See also “Pad Properties” on Page 118. 4.1.5 Parameter Interpretation The parameters listed in the following include both the characteristics of the XC238xE and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column “Symbol”: CC (Controller Characteristics): The logic of the XC238xE provides signals with the specified characteristics. SR (System Requirement): The external system must provide signals with the specified characteristics to the XC238xE. Data Sheet 87 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.2 DC Parameters These parameters are static or average values that may be exceeded during switching transitions (e.g. output current). Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage. The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application. The pads of the XC238xE are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in Section 4.6.4. Supply Voltage Restrictions The XC238xE can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range. Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range. During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms. During power-on sequences, the supply voltages may only change with a maximum speed of dV/dt < 5 V/μs, i.e. the target supply voltage may be reached earliest after approx. 1 μs. Note: To limit the speed of supply voltage changes, the employment of external buffer capacitors at pins VDDPA/VDDPB is recommended. Data Sheet 88 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Pullup/Pulldown Device Behavior Most pins of the XC238xE feature pullup or pulldown devices. For some special pins these are fixed; for the port pins they can be selected by the application. The specified current values indicate how to load the respective pin depending on the intended signal level. Figure 10 shows the current paths. The shaded resistors shown in the figure may be required to compensate system pull currents that do not match the given limit values. VDDP Pullup Pulldown VSS MC_XC2X_PULL Figure 10 Data Sheet Pullup/Pulldown Current Definition 89 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.2.1 DC Parameters for Upper Voltage Area Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Note: Operating Conditions apply. Table 16 is valid under the following conditions: VDDP ≥ 4.5 V; VDDPtyp = 5 V; VDDP ≤ 5.5 V Table 16 DC Characteristics for Upper Voltage Range Parameter Symbol Values Pin capacitance (digital inputs/outputs). To be doubled for double bond pins.1) CIO CC Input Hysteresis2) HYS CC 0.11 x Unit Note / Test Condition Min. Typ. Max. − − 10 pF not subject to production test − − V RS = 0 Ω VDDP Absolute input leakage current on pins of analog ports3) |IOZ1| CC − 10 200 nA VIN > 0 V; VIN < VDDP Absolute input leakage current for all other pins. To be doubled for double bond pins.3)1)4) |IOZ2| CC − 0.2 5 μA − 0.2 15 μA TJ ≤ 110 °C; VIN < VDDP; VIN > VSS TJ ≤ 150 °C; VIN < VDDP; VIN > VSS − − μA 6) 6) Pull Level Force Current5) |IPLF| SR 250 Pull Level Keep Current7) |IPLK| SR − − 30 μA Input high voltage (all except XTAL1) VIH SR 0.7 x − VDDP V Input low voltage (all except XTAL1) VIL SR Output High voltage8) VOH CC VDDP VDDP + 0.3 − -0.3 0.3 x V VDDP − − V IOH ≥ IOHmax − − V IOH ≥ IOHnom9) - 1.0 VDDP - 0.4 Data Sheet 90 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 16 DC Characteristics for Upper Voltage Range (cont’d) Parameter Symbol Values Min. Output Low Voltage8) VOL CC Typ. Unit Note / Test Condition IOL ≤ IOLmax IOL ≤ IOLnom9) Max. − − 1.0 V − − 0.4 V 1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2. 2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 3) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple (VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level (DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation which applies for maximum temperature. 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: VPIN ≤ VILmax for a pullup; VPIN ≥ VIHmin for a pulldown. 6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins. 7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: VPIN ≥ VIHmin for a pullup; VPIN ≤ VILmax for a pulldown. 8) The maximum deliverable output current of a port driver depends on the selected output driver mode. This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage is determined by the external circuit. 9) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. Data Sheet 91 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.2.2 DC Parameters for Lower Voltage Area Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current IOV. Note: Operating Conditions apply. Table 17 is valid under the following conditions: VDDP ≥ 3.0 V; VDDPtyp = 3.3 V; VDDP ≤ 4.5 V Table 17 DC Characteristics for Lower Voltage Range Parameter Symbol Values Pin capacitance (digital inputs/outputs). To be doubled for double bond pins.1) CIO CC Input Hysteresis2) HYS CC 0.07 x Unit Note / Test Condition Min. Typ. Max. − − 10 pF not subject to production test − − V RS = 0 Ω VDDP Absolute input leakage current on pins of analog ports3) |IOZ1| CC − 10 200 nA VIN > VSS; VIN < VDDP Absolute input leakage current for all other pins. To be doubled for double bond pins.3)1)4) |IOZ2| CC − 0.2 2.5 μA − 0.2 8 μA TJ ≤ 110 °C; VIN < VDDP; VIN > VSS TJ ≤ 150 °C; VIN < VDDP; VIN > VSS − − Pull Level Force Current5) |IPLF| SR 150 6) Pull Level Keep Current7) |IPLK| SR − − 10 μA Input high voltage (all except XTAL1) VIH SR 0.7 x − VDDP V Input low voltage (all except XTAL1) VIL SR Output High voltage8) VOH CC VDDP VDDP + 0.3 − -0.3 6) 0.3 x V VDDP − − V IOH ≥ IOHmax − − V IOH ≥ IOHnom9) - 1.0 VDDP - 0.4 Data Sheet 92 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 17 DC Characteristics for Lower Voltage Range (cont’d) Parameter Symbol Values Min. Output Low Voltage8) VOL CC Typ. Unit Note / Test Condition IOL ≤ IOLmax IOL ≤ IOLnom10) Max. − − 1.0 V − − 0.4 V 1) Because each double bond pin is connected to two pads (standard pad and high-speed pad), it has twice the normal value. For a list of affected pins refer to the pin definitions table in chapter 2. 2) Not subject to production test - verified by design/characterization. Hysteresis is implemented to avoid metastable states and switching due to internal ground bounce. It cannot suppress switching due to external system noise under all conditions. 3) If the input voltage exceeds the respective supply voltage due to ground bouncing (VIN < VSS) or supply ripple (VIN > VDDP), a certain amount of current may flow through the protection diodes. This current adds to the leakage current. An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Please refer to the definition of the overload coupling factor KOV. 4) The given values are worst-case values. In production test, this leakage current is only tested at 125 °C; other values are ensured by correlation. For derating, please refer to the following descriptions: Leakage derating depending on temperature (TJ = junction temperature [°C]): IOZ = 0.05 x e(1.5 + 0.028 x TJ>) [μA]. For example, at a temperature of 95 °C the resulting leakage current is 3.2 μA. Leakage derating depending on voltage level (DV = VDDP - VPIN [V]): IOZ = IOZtempmax - (1.6 x DV) (μA]. This voltage derating formula is an approximation which applies for maximum temperature. 5) Drive the indicated minimum current through this pin to change the default pin level driven by the enabled pull device: VPIN = VIH for a pulldown. 6) These values apply to the fixed pull-devices in dedicated pins and to the user-selectable pull-devices in general purpose IO pins. 7) Limit the current through this pin to the indicated value so that the enabled pull device can keep the default pin level: VPIN >= VIH for a pullup; VPIN VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. 10) As a rule, with decreasing output current the output levels approach the respective supply level (VOL->VSS, VOH->VDDP). However, only the levels for nominal output currents are verified. Data Sheet 93 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.2.3 Power Consumption The power consumed by the XC238xE depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components: • • The switching current IS depends on the device activity The leakage current ILK depends on the device temperature To determine the actual power consumption, always both components, switching current IS and leakage current ILK must be added: IDDP = IS + ILK. Note: The power consumption values are not subject to production test. They are verified by design/characterization. To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered. The given power consumption parameters and their values refer to specific operating conditions: • • • Active mode: Regular operation, i.e. peripherals are active, code execution out of Flash. Stopover mode: Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped. Standby mode: Voltage domain DMP_1 switched off completely, power supply control switched off. Voltage domain DMP_M is supplied by the ultra low power embedded voltage regulator (ULPEVR). The standard regulator (EVR_M) is switched off. Note: The maximum values cover the complete specified operating range of all manufactured devices. The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity. After a power reset, the decoupling capacitors for VDDIM and VDDI1 are charged with the maximum possible current. For additional information, please refer to Section 5.2, Thermal Considerations. Note: Operating Conditions apply. Data Sheet 94 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 18 Switching Power Consumption Parameter Symbol Values Unit Note / Test Condition mA 3)4) 150 μA Upper voltage range 100 110 μA Lower voltage range 1.6 4 mA Min. Typ. Max. − 10 + 1.0 x 15 + 1.5 x fSYS2) fSYS2) ISSB CC − 130 − Power supply current in ISSO CC − stopover mode, EVVRs on ISACT Power supply current (active) with all peripherals CC active1) and EVVRs on Power supply current in standby mode5) 1) Except for the FlexRay module. If the FlexRay module is active, it adds 10-15 mA, depending on the module activity. 2) fSYS in MHz. 3) The pad supply voltage pins (VDDPB) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 1.0 x fSYS. 4) Please consider the additional conditions described in section "Active Mode Power Supply Current". 5) These values are valid if the voltage validation circuits for VDDPB (SWD) and VDDIM (PVC_M) are off. Leaving SWD and PVC_M active adds another 90 μA. Active Mode Power Supply Current The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC238xE’s subsystem. Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers. A small current is consumed because the drivers’ input stages are switched. The IO power domains can be supplied separately. Power domain A (VDDPA) supplies the A/D converters and Port 6. Power domain B (VDDPB) supplies the on-chip EVVRs and all other ports. During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from VDDPA. In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to (3 + 1.0×fSYS) mA. Data Sheet 95 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters I S [m A ] IS AC Tm ax 220 200 180 I S A C T typ 160 140 120 100 80 60 40 20 f S Y S [M H z] 20 40 60 80 100 1 20 140 M C _ X C 2 X I_ IS Figure 11 Supply Current in Active Mode as a Function of Frequency Note: Operating Conditions apply. Data Sheet 96 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 19 Leakage Power Consumption Parameter Leakage supply current (DMP_1 off)1) Leakage supply current (DMP_1 powered)1) Symbol ILK0 CC ILK1 CC Values Unit Note / Test Condition 35 μA 115 330 μA − 270 880 μA − 420 1 450 μA − 0.03 0.05 mA − 0.7 1.7 mA − 3.0 8.3 mA − 6.4 18.5 mA TJ= 25 °C2) TJ= 85 °C2) TJ= 125 °C2) TJ= 150 °C2) TJ= 25 °C2) TJ= 85 °C2) TJ= 125 °C2) TJ= 150 °C2) Min. Typ. Max. − 20 − 1) The supply current caused by leakage depends mainly on the junction temperature and the supply voltage. The temperature difference between the junction temperature TJ and the ambient temperature TA must be taken into account. As this fraction of the supply current does not depend on device activity, it must be added to other power consumption values. 2) All inputs (including pins configured as inputs) are set at 0 V to 0.1 V or at VDDP - 0.1 V to VDDP and all outputs (including pins configured as outputs) are disconnected. Note: A fraction of the leakage current flows through domain DMP_A (pin VDDPA). This current can be calculated as 7 000 × e-α, with α = 5 000 / (273 + 1.3×TJ). For TJ = 150°C, this results in a current of 160 μA. The leakage power consumption can be calculated according to the following formula: ILK0 = 500 000 + e-α, with α = 3 000 / (273 + B×TJ) must be tagged “PWR_Management” Parameter B must be replaced by • • 1.0 for typical values 1.6 for maximum values ILK1 = 580 000 + e-α, with α = 5 000 / (273 + B×TJ) Parameter B must be replaced by • • 1.1 for typical values 1.4 for maximum values Data Sheet 97 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters ILK [mA] 20 ILK1max 18 16 14 12 10 8 ILK1typ 6 4 2 -50 ILK0max ILK0typ 0 50 100 150 TJ [°C] MC_XC2XI_ILK150 Figure 12 Leakage Supply Current as a Function of Temperature Data Sheet 98 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.3 Analog/Digital Converter Parameters These parameters describe the conditions for optimum ADC performance. Note: Operating Conditions apply. Table 20 ADC Parameters for All Voltage Ranges Parameter Symbol Switched capacitance at an analog input CAINSW Values Min. Typ. Max. − 9 20 Unit Note / Test Condition pF not subject to production test CC 1) Total capacitance at an analog input CAINT − 20 30 pF CC not subject to production test 1) Switched capacitance at the reference input CAREFSW − 15 30 pF CC not subject to production test 1) Total capacitance at the reference input CAREFT − 20 40 pF CC not subject to production test 1) Broken wire detection delay against VAGND2) tBWG CC − − 50 3) Broken wire detection delay against VAREF2) tBWR CC − − 50 4) Conversion time for 8-bit result2) tc8 CC (10 + STC) x tADCI + 2 x tSYS Conversion time for 10-bit tc10 CC result2) (12 + STC) x tADCI + 2 x tSYS Conversion time for 12-bit tc12 CC result2) (16 + STC) x tADCI + 2 x tSYS Analog reference ground Analog input voltage range Analog reference voltage − 1.5 V VAIN SR VAGND − VAREF V VAREF VAGND − VDDPA V SR + 1.0 VAGND VSS SR - 0.05 5) + 0.05 1) These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation. Data Sheet 99 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock tADCI depend on programming. 3) The broken wire detection delay against VAGND is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 µs. Result below 10% (66H). 4) The broken wire detection delay against VAREF is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 µs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332H). 5) VAIN may exceed VAGND or VAREF up to the absolute maximum ratings. However, the conversion result in these cases will be X000H or X3FFH, respectively. Table 21 ADC Parameters for Upper Voltage Range Parameter Symbol Values Input resistance of the selected analog channel RAIN CC − Min. Typ. Max. 0.9 1.5 Unit Note / Test Condition kΩ not subject to production test 1) Input resistance of the reference input RAREF − 0.5 1 kΩ CC not subject to production test 1) Differential Non-Linearity Error 2)3)4)5) |EADNL| CC − 1.5 3.0 LSB not subject to production test Gain Error 2)3)4)5) |EAGAIN| − CC 0.5 3.5 LSB not subject to production test Integral Non-Linearity |EAINL| CC − 1.5 3.0 LSB not subject to production test |EAOFF| CC − 1.0 4.0 LSB not subject to production test − 2.5 4 LSB 6) fADCI SR 2 − 20 MHz Std. reference input (VAREF) 2 − 17.5 MHz Alt. reference input (CH0) Wakeup time from analog tWAF CC − powerdown, fast mode − 7 μs Wakeup time from analog tWAS CC − powerdown, slow mode − 11.5 μs 2)3)4)5) Offset Error 2)3)4)5) Total Unadjusted Error 3)4) |TUE| CC Analog clock frequency Data Sheet 100 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 1) These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation. 2) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error. 3) If a reduced analog reference voltage between 1 V and VDDPA / 2 is used, there is an additional decrease of the ADC speed and accuracy. 4) If the analog reference voltage is below VDDPA but still in the range of VDDPA / 2 and VDDPA, the ADC errors increase. Reducing the reference voltage by a factor k (k < 1) increases TUE, DNL, INL, Gain and Offset errors by a factor 1/k. 5) If the analog reference voltage is above VDDPA, the ADC errors increase. 6) TUE is based on 12-bit conversions. TUE is tested at VAREF = VDDPA = 5.0 V, VAGND = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the measurement time. Table 22 ADC Parameters for Lower Voltage Range Parameter Symbol Values Min. Input resistance of the selected analog channel RAIN CC − Typ. Max. 1.4 2.5 Unit Note / Test Condition kΩ not subject to production test 1) Input resistance of the reference input RAREF − 0.8 1.7 kΩ CC not subject to production test 1) Differential Non-Linearity Error 2)3)4)5) |EADNL| CC − 1.5 3.0 LSB not subject to production test Gain Error 2)3)4)5) |EAGAIN| − CC 0.5 3.5 LSB not subject to production test Integral Non-Linearity |EAINL| CC − 1.5 3.0 LSB not subject to production test |EAOFF| CC − 1.0 4.0 LSB not subject to production test − 2.5 4 LSB 6) fADCI SR 2 − 16.7 MHz Std. reference input (VAREF) 2 − 12.1 MHz Alt. reference input (CH0) 2)3)4)5) Offset Error 2)3)4)5) Total Unadjusted Error 3)4) |TUE| CC Analog clock frequency Data Sheet 101 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 22 ADC Parameters for Lower Voltage Range (cont’d) Parameter Symbol Values Min. Unit Typ. Max. Wakeup time from analog tWAF CC − powerdown, fast mode − 8.5 μs Wakeup time from analog tWAS CC − powerdown, slow mode − 15 μs Note / Test Condition 1) These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation. 2) The sum of DNL/INL/GAIN/OFF errors does not exceed the related TUE total unadjusted error. 3) If a reduced analog reference voltage between 1 V and VDDPA / 2 is used, there is an additional decrease of the ADC speed and accuracy. 4) If the analog reference voltage is below VDDPA but still in the range of VDDPA / 2 and VDDPA, the ADC errors increase. Reducing the reference voltage by a factor k (k < 1) increases TUE, DNL, INL, Gain and Offset errors by a factor 1/k. 5) If the analog reference voltage is above VDDPA, the ADC errors increase. 6) TUE is based on 12-bit conversions. TUE is tested at VAREF = VDDPA = 3.3 V, VAGND = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see IOV specification) does not exceed 10 mA, and if VAREF and VAGND remain stable during the measurement time. RSource V AIN R AIN, On C AINT - C AINS C Ext A/D Converter CAINS MCS05570 Figure 13 Data Sheet Equivalent Circuitry for Analog Inputs 102 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Sample time and conversion time of the XC238xE’s A/D converters are programmable. The timing above can be calculated using Table 23. The limit values for fADCI must not be exceeded when selecting the prescaler value. Table 23 A/D Converter Computation Table GLOBCTR.5-0 (DIVA) A/D Converter Analog Clock fADCI INPCRx.7-0 (STC) 000000B fSYS fSYS / 2 fSYS / 3 fSYS / (DIVA+1) fSYS / 63 fSYS / 64 00H 000001B 000010B : 111110B 111111B 01H 02H : FEH FFH Sample Time1) tS tADCI × 2 tADCI × 3 tADCI × 4 tADCI × (STC+2) tADCI × 256 tADCI × 257 1) The selected sample time is doubled if broken wire detection is active (due to the presampling phase). Converter Timing Example A: Assumptions: Analog clock Sample time fSYS fADCI tS = 128 MHz (i.e. tSYS = 7.8 ns), DIVA = 06H, STC = 00H = fSYS / 7 = 18.3 MHz, i.e. tADCI = 54.7 ns = tADCI × 2 = 109.4 ns Conversion 12-bit: tC10 = 16 × tADCI + 2 × tSYS = 16 × 54.7 ns + 2 × 7.8 ns = 0.891 μs Conversion 10-bit: tC8 = 12 × tADCI + 2 × tSYS = 12 × 54.7 ns + 2 × 7.8 ns = 0.672 μs Converter Timing Example B: Assumptions: Analog clock Sample time fSYS fADCI tS = 40 MHz (i.e. tSYS = 25 ns), DIVA = 02H, STC = 03H = fSYS / 3 = 13.3 MHz, i.e. tADCI = 75 ns = tADCI × 5 = 375 ns Conversion 12-bit: tC10 = 19 × tADCI + 2 × tSYS = 19 × 75 ns + 2 × 25 ns = 1.475 μs Conversion 10-bit: tC8 Data Sheet = 15 × tADCI + 2 × tSYS = 15 × 75 ns + 2 × 25 ns = 1.175 μs 103 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.4 System Parameters The following parameters specify several aspects which are important when integrating the XC238xE into an application system. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 24 Various System Parameters Parameter Symbol Values Min. Typ. Max. Unit Note / Test Condition ΔTJ ≤ 10 °C Short-term deviation of internal clock source frequency1) ΔfINT CC -1 − 1 % Internal clock source frequency fINT CC 4.8 5.0 5.2 MHz Wakeup clock source frequency2) fWU CC 400 − 700 kHz FREQSEL= 00 210 − 390 kHz FREQSEL= 01 140 − 260 kHz FREQSEL= 10 110 − 200 kHz FREQSEL= 11 2.5 3.7 ms fWU = 500 kHz 3.1 4.0 5.2 ms 1.9 2.4 3.6 ms fWU = 140 kHz fWU = 500 kHz − 12 / μs Startup time from poweron with code execution from Flash tSPO CC 1.9 Startup time from standby tSSB CC mode with code execution from Flash Startup time from stopover tSSO CC 11 / fWU3) mode with code execution from PSRAM Core voltage (PVC) supervision level VPVC CC VLV fWU3) VLV - 0.03 VLV V 5) V Lower voltage range5) V Upper voltage range5) + 0.07 4) Supply watchdog (SWD) supervision level VSWD CC VLV - 0.106) VLV 104 VLV + 0.15 VLV - 0.15 Data Sheet VLV VLV + 0.15 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 1) The short-term frequency deviation refers to a timeframe of a few hours and is measured relative to the current frequency at the beginning of the respective timeframe. This parameter is useful to determine a time span for re-triggering a LIN synchronization. 2) This parameter is tested for the fastest and the slowest selection. The medium selections are not subject to production test - verified by design/characterization 3) fWU in MHz 4) This value includes a hysteresis of approximately 50 mV for rising voltage. 5) VLV = selected PVC/SWD voltage level 6) The limit VLV - 0.10 V is valid for the OK1 level. The limit for the OK2 level is VLV - 0.15 V. Conditions for tSPO Timing Measurement The time required for the transition from Power-On to Base mode is called tSPO. It is measured under the following conditions: Precondition: The pad supply is valid, i.e. VDDPB is above 3.0 V and remains above 3.0 V even though the XC238xE is starting up. See also VDDPB requirements in Table 13. Start condition: Power-on reset is removed (PORST = 1). End condition: External pin toggle caused by first user instruction executed from FLASH after startup. Conditions for tSSB Timing Measurement The time required for the transition from Standby to Base mode is called tSSB. It is measured under the following conditions: Precondition: The Standby mode has been entered using the procedure defined in the Programmer’s Guide. Start condition: Pin toggle on ESR pin triggering the startup sequence. End condition: External pin toggle caused by first user instruction executed from FLASH after startup. Conditions for tSSO Timing Measurement The time required for the transition from Stopover to Stopover Waked-Up mode is called tSSO. It is measured under the following conditions: Precondition: The Stopover mode has been entered using the procedure defined in the Programmer’s Guide. Start condition: Pin toggle on ESR pin triggering the startup sequence. End condition: External pin toggle caused by first user instruction executed from PSRAM after startup. Data Sheet 105 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Coding of bit fields LEVxV in SWD Configuration Registers After power-on the supply watch dog is preconfigured to operate in the lower voltage range. Table 25 Coding of bit fields LEVxV in Register SWDCON0 Code Voltage Level Notes1) 0000B - out of valid operation range 0001B 3.0 V LEV1V: reset request 0010B - 0101B 3.1 V- 3.4 V step width is 0.1 V 0110B 3.6 V 0111B 4.0 V 1000B 4.2 V 1001B 4.5 V LEV2V: no request 1010B - 1110B 4.6 V - 5.0 V step width is 0.1 V 1111B 5.5 V 1) The indicated default levels for LEV1V and LEV2V are selected automatically after a power-on reset. Coding of bit fields LEVxV in PVC Configuration Registers The core voltages are controlled internally to the nominal value of 1.5 V; a variation of ±10 % is allowed. These operation conditions limit the possible PVC monitoring values to the predefined reset values shown in Table 26. Table 26 Coding of bit fields LEVxV in Registers PVCyCONz Code Voltage Level Notes1) 000B-011B - out of valid operation range 100B 1.35 V LEV1V: reset request 101B 1.45 V LEV2V: interrupt request2) 110B - 111B - out of valid operation range 1) The indicated default levels for LEV1V and LEV2V are selected automatically after a power-on reset. 2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and the PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use this warning level. Data Sheet 106 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.5 Flash Memory Parameters The XC238xE is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XC238xE’s Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 27 Flash Parameters Parameter Symbol Values Min. Unit Note / Test Condition Typ. Max. NPP SR − − 51) − − 1 2) Flash erase endurance for NSEC SR 10 security pages − − cycle tRET ≥ 20 years s Flash wait states3) NWSFLAS 1 − − H SR 2 − − 3 − − 4 − − fSYS ≤ 8 MHz fSYS ≤ 13 MHz fSYS ≤ 17 MHz fSYS > 17 MHz fSYS ≤ 80 MHz fSYS > 80 MHz; fSYS ≤ 128 MHz Parallel Flash module program/erase limit depending on Flash read activity NFL_RD ≤ 1 NFL_RD > 1 Flash wait state extension4) NWSFLE 0 − − SR 1 − − Erase time per sector/page tER CC − 75) 8.0 ms Programming time per page tPR CC − 35) 3.5 ms Data retention time tRET CC 20 − − year s Drain disturb limit Data Sheet − NDD SR 32 107 − NEr ≤ 1 000 cycles cycle s V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 27 Flash Parameters (cont’d) Parameter Symbol Values Min. Number of erase cycles Unit Note / Test Condition Typ. Max. NER SR − − 15 000 cycle tRET ≥ 5 years; s Valid when using Flash module 4 for data storage. − − 1 000 cycle tRET ≥ 20 years s 1) All Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed. 2) Flash module 4 can be erased/programmed while code is executed and/or data is read from any other Flash module. 3) Value of IMB_IMBCTRL.WSFLASH. 4) Value of IMB_IMBCTRL.WSFLE. Set bit STMEM0.SFAR = 1 before selecting a system frequency above 80 MHz to avoid an inadvertent waitstate violation after an application reset (caused by the default setting). 5) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies. Access to the XC238xE Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access. Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates. Flash access via the cacheable Flash address space requires one additional waitstate in case of a cache miss, while the cache access (in case of a cache hit) requires no waitstate at all. Data Sheet 108 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6 AC Parameters These parameters describe the dynamic behavior of the XC238xE. 4.6.1 Testing Waveforms These values are used for characterization and production testing (except pin XTAL1). Output delay Output delay Hold time Hold time 0.8 V DDP 0.7 V DDP Input Signal (driven by tester) 0.3 V DDP 0.2 V DDP Output Signal (measured) Output timings refer to the rising edge of CLKOUT. Input timings are calculated from the time, when the input signal reaches V IH or V IL, respectively. MCD05556C Figure 14 Input Output Waveforms VLoad + 0.1 V V OH - 0.1 V Timing Reference Points V Load - 0.1 V V OL + 0.1 V For timing purposes a port pin is no longer floating when a 100 mV change from load voltage occurs, but begins to float when a 100 mV change from the loaded V OH /V OL level occurs (IOH / IOL = 20 mA). MCA05565 Figure 15 Data Sheet Floating Waveforms 109 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.2 Definition of Internal Timing The internal operation of the XC238xE is controlled by the internal system clock fSYS. Because the system clock signal fSYS can be generated from a number of internal and external sources using different mechanisms, the duration of the system clock periods (TCSs) and their variation (as well as the derived external timing) depend on the mechanism used to generate fSYS. This must be considered when calculating the timing for the XC238xE. Phase Locked Loop Operation (1:N) fI N f SYS TCS Direct Clock Drive (1:1) fI N f SYS TCS Prescaler Operation (N:1) fI N f SYS TCS M C_XC2X_CLOCKGEN Figure 16 Generation Mechanisms for the System Clock Note: The example of PLL operation shown in Figure 16 uses a PLL factor of 1:4; the example of prescaler operation uses a divider factor of 2:1. The specification of the external timing (AC Characteristics) depends on the period of the system clock (TCS). Data Sheet 110 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Direct Drive When direct drive operation is selected (SYSCON0.CLKSEL = 11B), the system clock is derived directly from the input clock signal CLKIN1: fSYS = fIN. The frequency of fSYS is the same as the frequency of fIN. In this case the high and low times of fSYS are determined by the duty cycle of the input clock fIN. Selecting Bypass Operation from the XTAL11) input and using a divider factor of 1 results in a similar configuration. Prescaler Operation When prescaler operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 1B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1): fSYS = fOSC / K1. If a divider factor of 1 is selected, the frequency of fSYS equals the frequency of fOSC. In this case the high and low times of fSYS are determined by the duty cycle of the input clock fOSC (external or internal). The lowest system clock frequency results from selecting the maximum value for the divider factor K1: fSYS = fOSC / 1024. 4.6.2.1 Phase Locked Loop (PLL) When PLL operation is selected (SYSCON0.CLKSEL = 10B, PLLCON0.VCOBY = 0B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor F (fSYS = fIN × F). F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1): (F = N / (P × K2)). The input clock can be derived either from an external source at XTAL1 or from the onchip clock source. The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly. Adjustment to the input clock continuously changes the frequency of fSYS so that it is locked to fIN. The slight variation causes a jitter of fSYS which in turn affects the duration of individual TCSs. 1) Voltages on XTAL1 must comply to the core supply voltage VDDIM. Data Sheet 111 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances. The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 17). This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible. The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal fSYS. The number of VCO cycles is K2 × T, where T is the number of consecutive fSYS cycles (TCS). The maximum accumulated jitter (long-term jitter) DTmax is defined by: DTmax [ns] = ±(220 / (K2 × fSYS) + 4.3) This maximum value is applicable, if either the number of clock cycles T > (fSYS / 1.2) or the prescaler value K2 > 17. In all other cases for a timeframe of T × TCS the accumulated jitter DT is determined by: DT [ns] = DTmax × [(1 - 0.058 × K2) × (T - 1) / (0.83 × fSYS - 1) + 0.058 × K2] fSYS in [MHz] in all formulas. Example, for a period of 3 TCSs @ 33 MHz and K2 = 4: Dmax = ±(220 / (4 × 33) + 4.3) = 5.97 ns (Not applicable directly in this case!) D3 = 5.97 × [(1 - 0.058 × 4) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 4] = 5.97 × [0.768 × 2 / 26.39 + 0.232] = 1.7 ns Example, for a period of 3 TCSs @ 33 MHz and K2 = 2: Dmax = ±(220 / (2 × 33) + 4.3) = 7.63 ns (Not applicable directly in this case!) D3 = 7.63 × [(1 - 0.058 × 2) × (3 - 1) / (0.83 × 33 - 1) + 0.058 × 2] = 7.63 × [0.884 × 2 / 26.39 + 0.116] = 1.4 ns Data Sheet 112 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Acc. jitter D T ns ±9 fSYS = 33 MHz fSYS = 66 MHz fSYS = 128 MHz fVCO = 66 MHz ±8 ±7 f VCO = 132 MHz ±6 f VCO = 256 MHz ±5 ±4 ±3 ±2 ±1 Cycles T 0 1 20 40 60 80 100 MC_XC2F_JITTER Figure 17 Approximated Accumulated PLL Jitter Note: The specified PLL jitter values are valid if the capacitive load per pin does not exceed CL = 20 pF. The maximum peak-to-peak noise on the pad supply voltage (measured between VDDPB pin 144 and VSS pin 1) is limited to a peak-to-peak voltage of VPP = 50 mV. This can be achieved by appropriate blocking of the supply voltage as close as possible to the supply pins and using PCB supply and ground planes. Data Sheet 113 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters PLL Frequency Band Selection Different frequency bands can be selected for the VCO so that the operation of the PLL can be adjusted to a wide range of input and output frequencies: Table 28 System PLL Parameters Parameter Symbol Values Min. VCO output frequency (VCO controlled) VCO output frequency (VCO free-running) Unit Note / Test Condition Typ. Max. − 110 MHz VCOSEL = 00B 100 − 200 MHz VCOSEL = 01B 200 − 280 MHz VCOSEL = 10B fVCO CC 10 − 40 MHz VCOSEL = 00B 20 − 80 MHz VCOSEL = 01B 40 − 160 MHz VCOSEL = 10B fVCO CC 50 FlexRay PLL Parameters This PLL unit is dedicated for usage with the FlexRay module. FlexRay operation requires a high precision clock signal to fulfil the protocol timing requirements. If the system clock is generated by use of a crystal it is mandatory to adjust the crystal parameters in your target system. Please refer also to Chapter 4.6.3 for details. Table 29 PLL Low-Jitter Parameters Parameter Symbol Values Min. Unit Typ. Max. VCO output frequency (VCO controlled) fVCA CC 480 − 480 MHz VCO output frequency (VCO free-running) fVCA CC 80 − 340 MHz Note / Test Condition Note: Set bit STMEM0.SFAR = 1 before selecting a system frequency above 80 MHz to avoid an inadvertent waitstate violation after an application reset (caused by the default setting). Data Sheet 114 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.2.2 Wakeup Clock When wakeup operation is selected (SYSCON0.CLKSEL = 00B), the system clock is derived from the low-frequency wakeup clock source: fSYS = fWU. In this mode, a basic functionality can be maintained without requiring an external clock source and while minimizing the power consumption. 4.6.2.3 Selecting and Changing the Operating Frequency When selecting a clock source and the clock generation method, the required parameters must be carefully written to the respective bitfields, to avoid unintended intermediate states. Many applications change the frequency of the system clock (fSYS) during operation in order to optimize system performance and power consumption. Changing the operating frequency also changes the switching currents, which influences the power supply. To ensure proper operation of the on-chip EVRs while they generate the core voltage, the operating frequency shall only be changed in certain steps. This prevents overshoots and undershoots of the supply voltage. To avoid the indicated problems, recommended sequences are provided which ensure the intended operation of the clock system interacting with the power system. Please refer to the Programmer’s Guide. Data Sheet 115 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.3 External Clock Input Parameters These parameters specify the external clock generation for the XC238xE. The clock can be generated in two ways: • • By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2 By supplying an external clock signal – This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 or CLKIN2 (IO voltage domain) If connected to CLKIN1 or CLKIN2, the input signal must reach the defined input levels VIL and VIH. If connected to XTAL1, a minimum amplitude VAX1 (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator. Note: The given clock timing parameters (t1 … t4) are only valid for an external clock input signal. Note: Operating Conditions apply. Table 30 External Clock Input Characteristics Parameter Symbol Values Min. 1) Oscillator frequency XTAL1 input current absolute value XTAL13) Note / Test Condition Typ. Max. fOSC SR 4 − 40 MHz Input = clock signal 4 − 20 MHz Input = crystal or ceramic resonator2) − − 20 μA 6 − − ns 6 − − ns − − 8 ns − − 8 ns 0.3 x − − V 4 to 16 MHz − − V 16 to 25 MHz − − V 25 to 40 MHz − 1.7 V 4) |IIL| CC t1 SR Input clock low time t2 SR t3 SR Input clock rise time Input clock fall time t4 SR Input voltage amplitude on VAX1 SR Input clock high time Unit VDDIM 0.4 x VDDIM 0.5 x VDDIM Input voltage range limits for signal on XTAL1 Data Sheet VIX1 SR -1.7 + VDDIM 116 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 1) The FlexRay PLL is optimized for an input frequency of 20 MHz. 2) For frequencies above 16 MHz, it is mandatory to measure the oscillation allowance. Please refer to the general note below. 3) The amplitude voltage VAX1 refers to the offset voltage VOFF. This offset voltage must be stable during the operation and the resulting voltage peaks must remain within the limits defined by VIX1. 4) Overload conditions must not occur on pin XTAL1. Note: For crystal or ceramic resonator operation, it is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for oscillator operation. The manufacturers of crystals and ceramic resonators offer an oscillator evaluation service. This evaluation checks the crystal/resonator specification limits to ensure a reliable oscillator operation. t1 VOFF t3 0.9 V AX1 0.1 V AX1 VAX1 t2 t4 tOSC = 1/fOSC MC_ EXTCLOCK Figure 18 Data Sheet External Clock Drive XTAL1 117 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.4 Pad Properties The output pad drivers of the XC238xE can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME. The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted. In general, the performance of a pad driver depends on the available supply voltage VDDP. Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Data Sheet 118 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 31 is valid under the following conditions: VDDP ≥ 4.5 V; VDDPtyp = 5 V; VDDP ≤ 5.5 V; CL ≥ 20 pF; CL ≤ 100 pF; Table 31 Standard Pad Parameters for Upper Voltage Range Parameter Symbol Min. Typ. Max. Maximum output driver current (absolute value)1) IOmax − − CC − Nominal output driver current (absolute value) IOnom CC Rise and Fall times (10% - tRF CC 90%) Values Unit Note / Test Condition 10 mA Strong driver − 4.0 mA Medium driver − − 0.5 mA Weak driver − − 2.5 mA Strong driver − − 1.0 mA Medium driver − − 0.1 mA Weak driver − − 4.2 + 0.14 x ns Strong driver; Sharp edge − − 11.6 + ns 0.22 x Strong driver; Medium edge − − 20.6 + ns 0.22 x − − 23 + 0.6 x CL CL Strong driver; Slow edge CL ns Medium driver ns Weak driver CL − − 212 + 1.9 x CL 1) The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and ΣIOH) must remain below 50 mA. Data Sheet 119 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 32 is valid under the following conditions: VDDP ≥ 3.0 V; VDDPtyp = 3.3 V; VDDP ≤ 4.5 V; CL ≥ 20 pF; CL ≤ 100 pF; Table 32 Standard Pad Parameters for Lower Voltage Range Parameter Symbol Min. Typ. Max. Maximum output driver current (absolute value)1) IOmax − − CC − Nominal output driver current (absolute value) IOnom CC Rise and Fall times (10% - tRF CC 90%) Values Unit Note / Test Condition 10 mA Strong driver − 2.5 mA Medium driver − − 0.5 mA Weak driver − − 2.5 mA Strong driver − − 1.0 mA Medium driver − − 0.1 mA Weak driver − − 6.2 + 0.24 x ns Strong driver; Sharp edge − − 24 + 0.3 x ns Strong driver; Medium edge − − 34 + 0.3 x ns Strong driver; Slow edge − − 37 + 0.65 x ns Medium driver ns Weak driver CL CL CL CL − − 500 + 2.5 x CL 1) The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣIOL and ΣIOH) must remain below 50 mA. Data Sheet 120 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.5 External Bus Timing The following parameters specify the behavior of the XC238xE bus interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Bus Interface Performance Limits The output frequency at the bus interface pins is limited by the performance of the output drivers. The fast clock driver (used for CLKOUT) can drive 80-MHz signals, the standard drivers can drive 40-MHz signals Therefore, the speed of the EBC must be limited, either by limiting the system frequency to fSYS ≤ 80 MHz or by adding waitstates so that signal transitions have a minimum distance of 12.5 ns. For a description of the bus protocol and the programming of its variable timing parameters, please refer to the User’s Manual. Table 33 EBC Parameters Parameter Symbol CLKOUT Cycle Time 1) t5 CC t6 CC t7 CC t8 CC t9 CC CLKOUT high time CLKOUT low time CLKOUT rise time CLKOUT fall time Values Min. Typ. Unit Max. − 1 / fSYS − 2 − 2 − − − − 3 − − 3 Note / Test Condition ns − ns 1) The CLKOUT cycle time is influenced by PLL jitter. For longer periods the relative deviation decreases (see PLL deviation formula). t9 t5 t6 t7 t8 CLKOUT MC_X_EBCCLKOUT Figure 19 Data Sheet CLKOUT Signal Timing 121 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting fSYS as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin. Variable Memory Cycles External bus cycles of the XC238xE are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.). The duration of the access phase can optionally be controlled by the external module using the READY handshake input. This table provides a summary of the phases and the ranges for their length. Table 34 Programmable Bus Cycle Phases (see timing diagrams) Bus Cycle Phase Parameter Valid Values Unit Address setup phase, the standard duration of this tpAB phase (1 … 2 TCS) can be extended by 0 … 3 TCS if the address window is changed 1 … 2 (5) TCS Command delay phase tpC 0…3 TCS Write Data setup/MUX Tristate phase tpD 0…1 TCS Access phase tpE 1 … 32 TCS Address/Write Data hold phase tpF 0…3 TCS Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing). Note: Operating Conditions apply; CL = 20 pF. Data Sheet 122 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 35 EBC External Bus Timing for Upper Voltage Range Parameter Symbol Values Unit Min. Typ. Max. Output valid delay for RD, t10 CC WR(L/H) − 7 13 ns t11 CC − 7 14 ns Address output valid delay t12 CC for A23 ... A0 − 8 14 ns Address output valid delay t13 CC for AD15 ... AD0 (MUX mode) − 8 15 ns t14 CC Data output valid delay for t15 CC − 7 13 ns − 8 15 ns − 8 15 ns t20 CC -2 6 8 ns Output hold time for BHE, t21 CC ALE -2 6 10 ns Address output hold time for AD15 ... AD0 t23 CC -3 6 8 ns Output hold time for CS t24 CC t25 CC -3 6 11 ns -3 6 8 ns Input setup time for t30 SR READY, D15 ... D0, AD15 ... AD0 25 15 − ns Input hold time READY, t31 SR D15 ... D0, AD15 ... AD01) 0 -7 − ns Output valid delay for BHE, ALE Output valid delay for CS Note / Test Condition AD15 ... AD0 (write data, MUX mode) Data output valid delay for t16 CC D15 ... D0 (write data, DEMUX mode) Output hold time for RD, WR(L/H) Data output hold time for D15 ... D0 and AD15 ... AD0 1) Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD. Data Sheet 123 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 36 EBC External Bus Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. Output valid delay for RD, t10 CC WR(L/H) − 11 20 ns t11 CC − 10 21 ns Address output valid delay t12 CC for A23 ... A0 − 11 22 ns Address output valid delay t13 CC for AD15 ... AD0 (MUX mode) − 10 22 ns t14 CC Data output valid delay for t15 CC − 10 13 ns − 10 22 ns − 10 22 ns t20 CC -2 8 10 ns Output hold time for BHE, t21 CC ALE -2 8 10 ns Address output hold time for AD15 ... AD0 t23 CC -3 8 10 ns Output hold time for CS t24 CC t25 CC -3 8 11 ns -3 8 10 ns Input setup time for t30 SR READY, D15 ... D0, AD15 ... AD0 29 17 − ns Input hold time READY, t31 SR D15 ... D0, AD15 ... AD01) 0 -9 − ns Output valid delay for BHE, ALE Output valid delay for CS Note / Test Condition AD15 ... AD0 (write data, MUX mode) Data output valid delay for t16 CC D15 ... D0 (write data, DEMUX mode) Output hold time for RD, WR(L/H) Data output hold time for D15 ... D0 and AD15 ... AD0 1) Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD. Data Sheet 124 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters tpAB tpC tpD tpE tpF CLKOUT t21 t11 ALE t11/ t12/t14 A23-A16, BHE, CSx t24 High Address t20 t10 RD WR(L/H) t31 t13 AD15-AD0 (read) t23 Low Address Data In t13 AD15-AD0 (write) t30 t15 Low Address t25 Data Out MC_X_EBCMUX Figure 20 Data Sheet Multiplexed Bus Cycle 125 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters tpAB tpC tpD tpE tpF CLKOUT t21 t11 ALE t11/ t12/t14 t24 A23-A0, BHE, CSx Address t20 t10 RD WR(L/H) t31 t30 D15-D0 (read) Data In t16 D15-D0 (write) t25 Data Out MC_X_EBCDEMUX Figure 21 Data Sheet Demultiplexed Bus Cycle 126 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.5.1 Bus Cycle Control with the READY Input The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected. Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT. An asynchronous READY signal puts no timing constraints on the input signal but incurs a minimum of one waitstate due to the additional synchronization stage. The minimum duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time. An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR). If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle. Data Sheet 127 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters tpD tpE tpRDY tpF CLKOUT t10 t20 RD, WR t31 t30 D15-D0 (read) Data In t25 D15-D0 (write) Data Out t31 t30 READY Synchronous Not Rdy t31 t30 READY Asynchron. t31 t30 READY t31 t30 Not Rdy READY MC_X_EBCREADY Figure 22 READY Timing Note: If the READY input is sampled inactive at the indicated sampling point (“Not Rdy”) a READY-controlled waitstate is inserted (tpRDY), sampling the READY input active at the indicated sampling point (“Ready”) terminates the currently running bus cycle. Note the different sampling points for synchronous and asynchronous READY. This example uses one mandatory waitstate (see tpE) before the READY input value is used. Data Sheet 128 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.6 Synchronous Serial Interface Timing The following parameters are applicable for a USIC channel operated in SSC mode. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply; CL = 20 pF. Table 37 USIC SSC Master Mode Timing for Upper Voltage Range Parameter Symbol Values Unit Min. Typ. Max. Slave select output SELO t1 CC active to first SCLKOUT transmit edge tSYS − − ns Slave select output SELO t2 CC inactive after last SCLKOUT receive edge tSYS − − ns t3 CC -6 − 9 ns Receive data input setup t4 SR time to SCLKOUT receive edge 31 − − ns t5 SR -4 − − ns Data output DOUT valid time Data input DX0 hold time from SCLKOUT receive edge Note / Test Condition - 8 1) - 6 1) 1) tSYS = 1 / fSYS Table 38 USIC SSC Master Mode Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. Slave select output SELO t1 CC active to first SCLKOUT transmit edge tSYS − − ns Slave select output SELO t2 CC inactive after last SCLKOUT receive edge tSYS − − ns -7 − 11 ns Data output DOUT valid time Data Sheet t3 CC Note / Test Condition - 10 1) - 9 1) 129 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 38 USIC SSC Master Mode Timing for Lower Voltage Range (cont’d) Parameter Symbol Values Unit Min. Typ. Max. Receive data input setup t4 SR time to SCLKOUT receive edge 40 − − ns t5 SR -5 − − ns Data input DX0 hold time from SCLKOUT receive edge Note / Test Condition 1) tSYS = 1 / fSYS Table 39 USIC SSC Slave Mode Timing for Upper Voltage Range Parameter Symbol Values Unit Min. Typ. Max. t10 SR 7 − − ns Select input DX2 hold after t11 SR last clock input DX1 receive edge1) 7 − − ns Receive data input setup time to shift clock receive edge1) t12 SR 7 − − ns Data input DX0 hold time from clock input DX1 receive edge1) t13 SR 5 − − ns Data output DOUT valid time t14 CC 7 − 33 ns Select input DX2 setup to first clock input DX1 transmit edge1) Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 130 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 40 USIC SSC Slave Mode Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. t10 SR 7 − − ns Select input DX2 hold after t11 SR last clock input DX1 receive edge1) 7 − − ns Receive data input setup time to shift clock receive edge1) t12 SR 7 − − ns Data input DX0 hold time from clock input DX1 receive edge1) t13 SR 5 − − ns Data output DOUT valid time t14 CC 8 − 41 ns Select input DX2 setup to first clock input DX1 transmit edge1) Note / Test Condition 1) These input timings are valid for asynchronous input signal handling of slave select input, shift clock input, and receive data input (bits DXnCR.DSEN = 0). Data Sheet 131 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Master Mode Timing t1 Select Output SELOx t2 Inactive Inactive Active Clock Output SCLKOUT Receive Edge First Transmit Edge Last Receive Edge Transmit Edge t3 t3 Data Output DOUT t4 Data Input DX0 t4 t5 Data valid t5 Data valid Slave Mode Timing t10 Select Input DX2 Clock Input DX1 t11 Active Inactive Receive Edge First Transmit Edge t12 Data Input DX0 Inactive t12 t13 Data valid t 14 Last Receive Edge Transmit Edge t 13 Data valid t14 Data Output DOUT Transmit Edge: with this clock edge, transmit data is shifted to transmit data output. Receive Edge: with this clock edge, receive data at receive data input is latched . Drawn for BRGH.SCLKCFG = 00B. Also valid for for SCLKCFG = 01B with inverted SCLKOUT signal. USIC_SSC_TMGX.VSD Figure 23 USIC - SSC Master/Slave Mode Timing Note: This timing diagram shows a standard configuration where the slave select signal is low-active and the serial clock signal is not shifted and not inverted. Data Sheet 132 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.7 FlexRay Interface Timing The following parameters are applicable to the FlexRay channels. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply. Table 41 is valid under the following conditions: notdefined Table 41 ERAY FlexRay Interface Timing Parameter Symbol Values Min. Time span from last BSS to FES without the influence of quartz tolerance (d10Bit_TX)1) TxD data valid from fsample flip flop txd_reg => TxDA, TxDB (dTxAsym)2)3) Time span between last BSS and FES without influence of quartz tolerance (d10Bit_RX)1)4) t60 CC 997.75 − t61_minus_ − t62 Typ. Unit Max. Note / Test Condition 1002.2 ns 5 fOSCDD − 1.5 CL ≤ 15 pF − 1046.0 ns ns = 20 MHz; CL ≤ 15 pF CC t63 SR 966.5 fOSCDD = 20 MHz RxD capture by fsample t64_minus_ − (RxDA/RxDB => sampling t65 CC flip-flop) (dRxAsym)4) − 3.5 ns 1) PLL jitter included. 2) Refers to delays caused by the asymmetries of the output drivers of the digital logic and the GPIO pad drivers. Quartz tolerance and PLL jitter are not included. 3) TxD output drivers have an asymmetry of rising and falling edges of |tF - tR| ≤ 1 ns. 4) Valid for output slopes of the Bus Driver of dRxSlope ≤ 5 ns at CL = 15 pF, 20% × VDDP to 80% × VDDP, according to the FlexRay Electrical Physical Layer Specification V2.1 B. Data Sheet 133 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD TXD t60 tsample TXD 0.9 VDD 0.1 VDD t61 t62 Last CRC Byte BSS (Byte Start Sequence) FES (Frame End Sequence) 0.7 VDD 0.3 VDD RXD t63 tsample 0.7 VDD RXD 0.3 VDD t64 t65 E-RAY_TIMING_16 Figure 24 Data Sheet FlexRay Timing 134 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters 4.6.8 Debug Interface Timing The debugger can communicate with the XC238xE either via the 2-pin DAP interface or via the standard JTAG interface. Debug via DAP The following parameters are applicable for communication through the DAP debug interface. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply; CL= 20 pF. Table 42 DAP Interface Timing for Upper Voltage Range Parameter DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Symbol t11 SR t12 SR t13 SR t14 SR t15 SR t16 SR Values Unit Note / Test Condition Min. Typ. Max. 251) − − ns 8 − − ns 8 − − ns − − 4 ns − − 4 ns 6 − − ns pad_type= stan dard DAP1 hold after DAP0 rising edge t17 SR 6 − − ns pad_type= stan dard DAP1 valid per DAP0 clock period2) t19 CC 17 20 − ns pad_type= stan dard 1) The debug interface cannot operate faster than the overall system, therefore t11 ≥ tSYS. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. Data Sheet 135 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 43 DAP Interface Timing for Lower Voltage Range Parameter Symbol t11 SR t12 SR t13 SR t14 SR t15 SR t16 SR DAP0 clock period DAP0 high time DAP0 low time DAP0 clock rise time DAP0 clock fall time DAP1 setup to DAP0 rising edge Values Unit Note / Test Condition Min. Typ. Max. 251) − − ns 8 − − ns 8 − − ns − − 4 ns − − 4 ns 6 − − ns pad_type= stan dard DAP1 hold after DAP0 rising edge t17 SR 6 − − ns pad_type= stan dard DAP1 valid per DAP0 clock period2) t19 CC 12 17 − ns pad_type= stan dard 1) The debug interface cannot operate faster than the overall system, therefore t11 ≥ tSYS. 2) The Host has to find a suitable sampling point by analyzing the sync telegram response. t 11 0.9 VDDP 0.5 VDDP t15 t12 t 14 0.1 VDDP t13 MC_DAP0 Figure 25 Data Sheet Test Clock Timing (DAP0) 136 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters DAP0 t1 6 t1 7 DAP1 MC_ DAP1_RX Figure 26 DAP Timing Host to Device t1 1 DAP1 t1 9 MC_ DAP1_TX Figure 27 DAP Timing Device to Host Note: The transmission timing is determined by the receiving debugger by evaluating the sync-request synchronization pattern telegram. Data Sheet 137 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Debug via JTAG The following parameters are applicable for communication through the JTAG debug interface. The JTAG module is fully compliant with IEEE1149.1-2000. Note: These parameters are not subject to production test but verified by design and/or characterization. Note: Operating Conditions apply; CL= 20 pF. Table 44 Interface Timing for Upper Voltage Range Parameter Symbol Values Min. TCK clock period TCK high time t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR Unit Typ. Max. − − ns 16 − − ns 50 1) 16 − − ns − − 8 ns − − 8 ns 6 − − ns t7 SR 6 − − ns TDO valid from TCK falling t8 CC edge (propagation delay)3) − 25 29 ns TDO high impedance to valid output from TCK falling edge4)3) t9 CC − 25 29 ns TDO valid output to high impedance from TCK falling edge3) t10 CC − 25 29 ns TDO hold after TCK falling t18 CC edge3) 5 − − ns TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Note / Test Condition 2) 1) The debug interface cannot operate faster than the overall system, therefore t1 ≥ tSYS. 2) Under typical conditions, the interface can operate at transfer rates up to 20 MHz. 3) The falling edge on TCK is used to generate the TDO timing. 4) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 138 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters Table 45 Interface Timing for Lower Voltage Range Parameter Symbol Values Unit Min. Typ. Max. 501) − − ns 16 − − ns 16 − − ns − t1 SR t2 SR t3 SR t4 SR t5 SR t6 SR − 8 ns − − 8 ns 6 − − ns t7 SR 6 − − ns TDO valid from TCK falling t8 CC edge (propagation delay)2) − 32 36 ns TDO high impedance to valid output from TCK falling edge3)2) t9 CC − 32 36 ns TDO valid output to high impedance from TCK falling edge2) t10 CC − 32 36 ns TDO hold after TCK falling t18 CC edge2) 5 − − ns TCK clock period TCK high time TCK low time TCK clock rise time TCK clock fall time TDI/TMS setup to TCK rising edge TDI/TMS hold after TCK rising edge Note / Test Condition 1) The debug interface cannot operate faster than the overall system, therefore t1 ≥ tSYS. 2) The falling edge on TCK is used to generate the TDO timing. 3) The setup time for TDO is given implicitly by the TCK cycle time. Data Sheet 139 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Electrical Parameters t1 0.9 VDDP 0.5 VDDP t5 t2 0.1 VDDP t4 t3 MC_JTAG_TCK Figure 28 Test Clock Timing (TCK) TCK t6 t7 t6 t7 TMS TDI t9 t8 t10 TDO MC_JTAG Figure 29 Data Sheet JTAG Timing 140 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Package and Reliability 5 Package and Reliability The XC2000 Family devices use the package type PG-LQFP (Plastic Green - Low Profile Quad Flat Package). The following specifications must be regarded to ensure proper integration of the XC238xE in its target environment. 5.1 Packaging These parameters specify the packaging rather than the silicon. Table 46 Package Parameters (PG-LQFP-144-16/-23) Parameter Symbol Limit Values Min. Unit Notes Max. Exposed Pad Dimension Ex × Ey – 7.5 × 7.5 mm Thermal resistance Junction-Ambient RΘJA 21 K/W 4-layer, pad soldered1) – – 1) Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board. Using this device without the exposed pad soldered or on boards without thermal vias is not recommended. Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note. Usage in High-Performance Applications The XC238xE can deliver a high performance to the system. In some cases additional measures are required to remove the heat from the device. This may be necessary if the XC238xE is supplied with VDDP = 5 V and is operated at a high system frequency in a hot environment. Applications with VDDP = 3.3 V usually require no extra measures. Package Compatibility Considerations The XC238xE is a member of the XC2000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies. Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the Exposed Pad (if present) may vary. If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration. Data Sheet 141 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Package and Reliability Package Outlines Figure 30 PG-LQFP-144-16/-23 (Plastic Green Thin Quad Flat Package) All dimensions in mm. You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page “Packages”: http://www.infineon.com/packages Data Sheet 142 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Package and Reliability 5.2 Thermal Considerations When operating the XC238xE in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 150 °C. The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDDP × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDDP-VOH) × IOH) + Σ(VOL × IOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • • • • Reduce VDDP, if possible in the system Reduce the system frequency Reduce the number of output pins Reduce the load on active output drivers Data Sheet 143 V1.3, 2014-07 XC2387E, XC2388E XC2000 Family Derivatives / Premium Line Package and Reliability 5.3 Quality Declarations The operation lifetime of the XC238xE depends on the applied temperature profile in the application. For a typical example, please refer to Table 48; for other profiles, please contact your Infineon counterpart to calculate the specific lifetime within your application. Table 47 Quality Parameters Parameter Symbol Values Unit Note / Test Condition 20 a See Table 48 and Table 49 − 2 000 V AEC-Q100-002 − − 500 V JESD22-C101 − − 750 V Corner Pins, JESD22-C101 MSL CC − − 3 − JEDEC J-STD-020C Min. Typ. Max. − − ESD susceptibility VHBM according to Human Body SR Model (HBM) − ESD susceptibility according to Charged Device Model (CDM) VCDM SR Moisture sensitivity level Operation lifetime Table 48 tOP CC Typical Usage Temperature Profile Operating Time (Sum = 20 years) Operating Temperat. Notes 1 200 h TJ = 150°C TJ = 125°C TJ = 110°C TJ = 100°C TJ = 0…10°C, …, Normal operation 3 600 h 7 200 h 12 000 h 7 × 21 600 h Normal operation Normal operation Normal operation Power reduction 60…70°C Table 49 Long Time Storage Temperature Profile Operating Time (Sum = 20 years) Operating Temperat. Notes 2 000 h Normal operation 151 200 h TJ = 150°C TJ = 125°C TJ = 110°C TJ ≤ 150°C Data Sheet 144 16 000 h 6 000 h Normal operation Normal operation No operation V1.3, 2014-07 w w w . i n f i n e o n . c o m Published by Infineon Technologies AG
XC2388E136F128LRAAKXUMA1 价格&库存

很抱歉,暂时无法提供与“XC2388E136F128LRAAKXUMA1”相匹配的价格&库存,您可以联系我们找货

免费人工找货