74VCX162374 Low Voltage 16-Bit D-Type Flip-Flop
January 2000 Revised June 2005
74VCX162374 Low Voltage 16-Bit D-Type Flip-Flop with 3.6V Tolerant Inputs and Outputs and 26: Series Resistors in Outputs
General Description
The VCX162374 contains sixteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and output enable (OE) are common to each byte and can be shorted together for full 16-bit operation. The VCX162374 is also designed with 26: series resistors in the outputs. This design reduces line noise in applications such as memory address drivers, clock drivers and bus transceivers/transmitters. The 74VCX162374 is designed for low voltage (1.4V to 3.6V) VCC applications with I/O compatibility up to 3.6V. The 74VCX162374 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.
Features
s 1.4V–3.6V VCC supply operation s 3.6V tolerant inputs and outputs s 26: series resistors in outputs s tPD (CLK to O n)
3.4 ns max for 3.0V to 3.6V VCC
s Power-off high impedance inputs and outputs s Supports live insertion and withdrawal (Note 1) s Static Drive (IOH/IOL)
r12 mA @ 3.0V VCC
s Uses patented noise/EMI reduction circuitry s Latch-up performance exceeds 300 mA s ESD performance:
Human body model ! 2000V Machine model ! 200V
Note 1: To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.
Ordering Code:
Order Number 74VCX162374MTD Package Number MTD48 Package Descriptions 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Devices also available in Tape and Reel. Specify by appending suffix letter “X” to the ordering code.
Logic Symbol
Pin Descriptions
Pin Names OEn CPn I0–I15 O0–O15 Description Output Enable Input (Active LOW) Clock Pulse Input Inputs Outputs
© 2005 Fairchild Semiconductor Corporation
DS500235
www.fairchildsemi.com
74VCX162374
Connection Diagram
Truth Tables
Inputs CP1 Outputs I0–I7 H L X X O0–O7 H L O0 Z Outputs I8–I15 H L X X O8–O15 H L O0 Z OE1 L L L H Inputs CP2
L X
L X
OE2 L L L H
H L X Z O0
HIGH Voltage Level LOW Voltage Level Immaterial (HIGH or LOW, inputs may not float) High Impedance Previous O0 before HIGH-to-LOW of CP
Functional Description
The 74VCX162374 consists of sixteen edge-triggered flipflops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each clock has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flipflop will store the state of their individual I inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CPn) transition. With the Output Enable (OEn) LOW, the contents of the flip-flops are available at the outputs. When OEn is HIGH, the outputs go to the high impedance state. Operations of the OEn input does not affect the state of the flip-flops.
Logic Diagram
Byte 1 (0:7)
Byte 2 (8:15)
Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.
www.fairchildsemi.com
2
74VCX162374
Absolute Maximum Ratings(Note 2)
Supply Voltage (VCC) DC Input Voltage (VI) Output Voltage (VO) Outputs 3-STATED Outputs Active (Note 3) DC Input Diode Current (IIK) VI 0V DC Output Diode Current (IOK) VO 0 V VO ! VCC DC Output Source/Sink Current (IOH/IOL) DC VCC or GND Current per Supply Pin (ICC or GND) Storage Temperature Range (TSTG)
0.5V to 4.6V 0.5V to 4.6V 0.5V to 4.6V 0.5V to VCC 0.5V 50 mA 50 mA 50 mA r50 mA r100 mA 65qC to 150qC
Recommended Operating Conditions (Note 4)
Power Supply Operating Input Voltage Output Voltage (VO) Output in Active States Output in “OFF” State Output Current in IOH/IOL VCC VCC VCC VCC 3.0V to 3.6V 2.3V to 2.7V 1.65V to 2.3V 1.4V to 1.6V 0V to VCC 0.0V to 3.6V 1.4V to 3.6V
0.3V to 3.6V
Free Air Operating Temperature (TA) Minimum Input Edge Rate ('t/'V) VIN 0.8V to 2.0V, VCC 3.0V
r12 mA r8 mA r3 mA r1 mA 40qC to 85qC
10 ns/V
Note 2: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the Absolute Maximum Ratings. The “Recommended Operating Conditions” table will define the conditions for actual device operation. Note 3: IO Absolute Maximum Rating must be observed. Note 4: Floating or unused inputs must be held HIGH or LOW.
DC Electrical Characteristics
Symbol VIH Parameter HIGH Level Input Voltage Conditions VCC (V) 2.7 - 3.6 2.3 - 2.7 1.65 - 2.3 1.4 - 1.6 VIL LOW Level Input Voltage 2.7 - 3.6 2.3 - 2.7 1.65 - 2.3 1.4 - 1.6 VOH HIGH Level Output Voltage IOH IOH IOH IOH IOH IOH IOH IOH IOH IOH IOH IOH Min 2.0 1.6 0.65 x VCC 0.65 x VCC 0.8 0.7 0.35 x VCC 0.35 x VCC VCC - 0.2 2.2 2.4 2.2 VCC - 0.2 2.0 1.8 1.7 VCC - 0.2 1.25 VCC - 0.2 1.05 V V V Max Units
100 PA 6 mA 8 mA 12 mA 100 PA 4 mA 6 mA 8 mA 100 PA 3 mA 100 PA 1 mA
2.7 - 3.6 2.7 3.0 3.0 2.3 - 2.7 2.3 2.3 2.3 1.65 - 2.3 1.65 1.4 - 1.6 1.4
3
www.fairchildsemi.com
74VCX162374
DC Electrical Characteristics
Symbol VOL Parameter LOW Level Output Voltage IOL IOL IOL IOL IOL IOL IOL IOL IOL IOL IOL II IOZ IOFF ICC Input Leakage Current 3-STATE Output Leakage Power-OFF Leakage Current Quiescent Supply Current Increase in ICC per Input
(Continued)
VCC (V) 100 PA 6 mA 8 mA 12 mA 100 PA 6 mA 8 mA 100 PA 3 mA 100 PA 1 mA VIH or VIL 2.7 - 3.6 2.7 3.0 3.0 2.3 - 2.7 2.3 2.3 1.65 - 2.3 1.65 1.4 - 1.6 1.4 1.4 - 3.6 1.4 - 3.6 0 1.4 - 3.6 1.4 - 3.6 2.7 - 3.6 0.2 0.4 0.55 0.8 0.2 0.4 0.6 0.2 0.3 0.2 0.35 V
Conditions
Min
Max
Units
0 d VI d 3.6V 0 d VO d 3.6V, VI 0 d (VI, VO) d 3.6V VI VIH VCC or GND VCC 0.6V VCC d (VI, VO) d 3.6V (Note 5)
r5.0 r10.0
10.0 20.0
PA PA PA PA PA
r20.0
750
'ICC
Note 5: Outputs disabled or 3-STATE only.
AC Electrical Characteristics
Symbol fMAX Parameter Maximum Clock Frequency CL
(Note 6)
Conditions VCC (V) 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15 TA 40qC to 85qC Max Units Figure Number
Min 250 200 100 80 0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 0.8 1.0 1.5 1.0 1.5 1.5 2.5 3.0 1.0 1.0 1.0 2.0
30 pF, RL
500:
ns
CL tPHL tPLH Propagation Delay CPn to On CL tPZL tPZH CL tPLZ tPHZ CL tS Setup Time CL Output Disable Time CL Output Enable Time CL CL
15 pF, RL 30 pF, RL
2 k: 500:
1.5 r 0.1 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15
3.4 4.8 9.6 19.2 3.9 5.4 9.8 19.6 4.0 4.4 7.9 15.8 ns Figures 1, 3, 4 Figures 7, 9, 10 Figures 1, 6 Figures 6, 7 Figures 1, 6 Figures 6, 7 ns Figures 1, 3, 4 Figures 7, 9, 10 ns Figures 1, 2 Figures 7, 8
15 pF, RL 30 pF, RL
2 k: 500:
1.5 r 0.1 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15
15 pF, RL 30 pF, RL
2 k: 500:
1.5 r 0.1 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15
15 pF, RL 30 pF, RL
2 k: 500:
1.5 r 0.1 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15
ns
CL tH Hold Time CL
15 pF, RL 30 pF, RL
2 k: 500:
1.5 r 0.1 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15
ns
CL
15 pF, RL
2 k:
1.5 r 0.1
www.fairchildsemi.com
4
74VCX162374
AC Electrical Characteristics
Symbol tW Parameter Pulse Width CL
(Continued)
VCC (V) 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15 TA 1.5 1.5 4.0 4.0 0.5 0.5 0.75 1.5 ns ns Figures 1, 5 Figures 5, 7 40qC to 85qC Max
Conditions 30 pF, RL 500:
Units
Figure Number
Min
CL tOSHL tOSLH Output to Output Skew (Note 7) CL
Note 6: For CL
15 pF, RL 30 pF, RL
2 k: 500:
1.5 r 0.1 3.3 r 0.3 2.5 r 0.2 1.8 r 0.15
CL
15 pF, RL
2 k:
1.5 r 0.1
50PF, add approximately 300 ps to the AC maximum specification.
Note 7: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH).
Dynamic Switching Characteristics
Symbol VOLP Parameter Quiet Output Dynamic Peak VOL CL 30 pF, VIH Conditions VCC, VIL 0V V CC (V) 1.8 2.5 3.3 VOLV Quiet Output Dynamic Valley VOL CL 30 pF, VIH VCC, VIL 0V 1.8 2.5 3.3 VOHV Quiet Output Dynamic Valley VOH CL 30 pF, VIH VCC, VIL 0V 1.8 2.5 3.3 TA 25qC Typical 0.15 0.25 0.35 V Units
0.15 0.25 0.35
1.55 2.05 2.65 V V
Capacitance
Symbol CIN COUT CPD Input Capacitance Output Capacitance Power Dissipation Capacitance Parameter VCC VI VI VCC Conditions 1.8V, 2.5V or 3.3V, VI 0V or VCC, VCC 0V or VCC, f 10 MHz, 0V or VCC TA 25qC Typical 6.0 7.0 20.0 Units pF pF pF
1.8V, 2.5V or 3.3V
1.8V, 2.5V or 3.3V
5
www.fairchildsemi.com
74VCX162374
AC Loading and Waveforms (VCC 3.3V r 0.3V to 1.8V r 0.15V)
TEST tPLH, tPHL tPZL, tPLZ tPZH, tPHZ
SWITCH Open 6V at VCC 3.3 r 0.3V; VCC x 2 at VCC 2.5 r 0.2V; 1.8V r 0.15V GND FIGURE 1. AC Test Circuit
FIGURE 2. Waveform for Inverting and Non-Inverting Functions
FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic
FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic
FIGURE 5. Propagation Delay, Pulse Width and tREC Waveforms Symbol Vmi Vmo VX VY
FIGURE 6. Setup Time, Hold Time and Recovery Time for Low Voltage Logic VCC
3.3V r 0.3V 1.5V 1.5V VOL 0.3V VOH 0.3V
2.5V r 0.2V VCC/2 VCC/2 VOL 0.15V VOH 0.15V
1.8V r 0.15V VCC/2 VCC/2 VOL 0.15V VOH 0.15V
www.fairchildsemi.com
6
74VCX162374
AC Loading and Waveforms (VCC 1.5V r 0.1V)
TEST tPLH, tPHL tPZL, tPLZ tPZH, tPHZ
SWITCH Open VCC x 2 at VCC GND FIGURE 7. AC Test Circuit 1.5 r 0.1V
FIGURE 8. Waveform for Inverting and Non-Inverting Functions
FIGURE 9. 3-STATE Output High Enable and Disable Times for Low Voltage Logic
FIGURE 10. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic Symbol Vmi Vmo VX VY VCC 1.5V r 0.1V VCC/2 VCC/2 VOL 0.1V VOH 0.1V
7
www.fairchildsemi.com
74VCX162374 Low Voltage 16-Bit D-Type Flip-Flop
Physical Dimensions inches (millimeters) unless otherwise noted
48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. www.fairchildsemi.com 8 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com