0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
FDP8870_08

FDP8870_08

  • 厂商:

    FAIRCHILD(仙童半导体)

  • 封装:

  • 描述:

    FDP8870_08 - N-Channel PowerTrench® MOSFET - Fairchild Semiconductor

  • 数据手册
  • 价格&库存
FDP8870_08 数据手册
FDP8870 e May 2008 FDP8870 N-Channel PowerTrench® MOSFET 30V, 156A, 4.1mΩ General Description This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low rDS(ON) and fast switching speed. tmM Features • rDS(ON) = 4.1mΩ VGS = 10V, ID = 35A , , • rDS(ON) = 4.6mΩ VGS = 4.5V, ID = 35A • High performance trench technology for extremely low rDS(ON) • Low gate charge Applications • DC/DC converters • High power and current handling capability • RoHS Compliant (FLANGE) DRAIN D SOURCE DRAIN GATE G S TO-220AB FDP SERIES MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol VDSS VGS Parameter Drain to Source Voltage Gate to Source Voltage Drain Current Continuous (TC = 25oC, VGS = 10V) (Note 1) ID Continuous (TC = 25oC, VGS = 4.5V) (Note 1) Continuous (Tamb = 25oC, VGS = 10V, with Rθ JA = 62oC/W) Pulsed EAS PD TJ, TSTG Single Pulse Avalanche Energy (Note 2) Power dissipation Derate above 25oC Operating and Storage Temperature 156 147 19 Figure 4 300 160 1.07 -55 to 175 A A A A mJ W W/oC oC Ratings 30 ±20 Units V V Thermal Characteristics RθJC RθJA Thermal Resistance Junction to Case TO-220 Thermal Resistance Junction to Ambient TO-220 ( Note 3) 0.94 62 o o C/W C/W Package Marking and Ordering Information Device Marking FDP8870 Device FDP8870 Package TO-220AB Reel Size Tube Tape Width N/A Quantity 50 units ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 FDP8870 Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units Off Characteristics BVDSS IDSS IGSS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 24V VGS = 0V VGS = ±20V TC = 150oC 30 1 250 ±100 V µA nA On Characteristics VGS(TH) Gate to Source Threshold Voltage VGS = VDS, ID = 250µA ID = 35A, VGS = 10V rDS(ON) Drain to Source On Resistance ID = 35A, VGS = 4.5V ID = 35A, VGS = 10V, TJ = 175oC 1.2 2.5 V Ω 0.0034 0.0041 0.0040 0.0046 0.0051 0.0065 Dynamic Characteristics CISS COSS CRSS RG Qg(TOT) Qg(5) Qg(TH) Qgs Qgs2 Qgd Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Total Gate Charge at 10V Total Gate Charge at 5V Threshold Gate Charge Gate to Source Gate Charge Gate Charge Threshold to Plateau Gate to Drain “Miller” Charge (VGS = 10V) VDD = 15V, ID = 35A VGS = 4.5V, RGS = 3.3Ω 11 105 70 46 168 173 ns ns ns ns ns ns VDS = 15V, VGS = 0V, f = 1MHz VGS = 0.5V, f = 1MHz VGS = 0V to 10V VGS = 0V to 5V VGS = 0V to 1V VDD = 15V ID = 35A Ig = 1.0mA 5200 970 570 2.1 106 56 5.0 15 10 23 132 69 6.5 pF pF pF Ω nC nC nC nC nC nC Switching Characteristics tON td(ON) tr td(OFF) tf tOFF Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Drain-Source Diode Characteristics VSD trr QRR Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ISD = 35A ISD = 15A ISD = 35A, dISD/dt = 100A/µs ISD = 35A, dISD/dt = 100A/µs 1.25 1.0 37 21 V V ns nC Notes: 1: Package current limitation is 80A. 2: Starting TJ = 25°C, L = 0.15mH, IAS = 64A, VDD = 27V, VGS = 10V. 3: Pulse width = 100s. 4 ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 FDP8870 Typical Characteristics TC = 25°C unless otherwise noted 1.2 175 150 ID, DRAIN CURRENT (A) 125 100 75 50 25 0 0 25 50 75 100 125 150 175 TC , CASE TEMPERATURE (oC) 0 25 50 75 100 125 (oC) 150 175 POWER DISSIPATION MULTIPLIER 1.0 CURRENT LIMITED BY PACKAGE 0.8 0.6 0.4 0.2 TC, CASE TEMPERATURE Figure 1. Normalized Power Dissipation vs Case Temperature 2 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 Figure 2. Maximum Continuous Drain Current vs Case Temperature ZθJC, NORMALIZED THERMAL IMPEDANCE PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC 10-3 10-2 t, RECTANGULAR PULSE DURATION (s) 10-1 100 101 SINGLE PULSE 0.01 10-5 10-4 Figure 3. Normalized Maximum Transient Thermal Impedance 1000 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION IDM, PEAK CURRENT (A) TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: VGS = 4.5V I = I25 175 - TC 150 100 50 10-5 10-4 10-3 10-2 t, PULSE WIDTH (s) 10-1 100 101 Figure 4. Peak Current Capability ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 FDP8870 Typical Characteristics TC = 25°C unless otherwise noted 1000 10µs IAS, AVALANCHE CURRENT (A) 500 If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] ID, DRAIN CURRENT (A) 100 100µs 10 100 STARTING TJ = 25oC OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 10ms 10 STARTING TJ = 150oC 1 SINGLE PULSE TJ = MAX RATED TC = 25oC 0.1 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) DC 60 1 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) 100 Figure 5. Forward Bias Safe Operating Area NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 6. Unclamped Inductive Switching Capability 160 VGS = 5V VGS = 4V ID, DRAIN CURRENT (A) 120 VGS = 10V 80 VGS = 3V 160 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V ID , DRAIN CURRENT (A) 120 TJ = 175oC 80 T J = 25o C 40 TJ = -55oC 0 1.5 40 TC = 25oC PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 0.25 0.5 0.75 1.0 0 2.0 2.5 3.0 VGS , GATE TO SOURCE VOLTAGE (V) 3.5 VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 7. Transfer Characteristics 10 NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 35A rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 8 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX Figure 8. Saturation Characteristics 1.6 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.4 1.2 6 1.0 4 ID = 1 A 0.8 VGS = 10V, ID = 35A 2 2 4 6 8 10 VGS, GATE TO SOURCE VOLTAGE (V) 0.6 -80 -40 0 40 80 120 TJ, JUNCTION TEMPERATURE (oC) 160 200 Figure 9. Drain to Source On Resistance vs Gate Voltage and Drain Current Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 FDP8870 Typical Characteristics TC = 25°C unless otherwise noted 1.4 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.2 NORMALIZED GATE THRESHOLD VOLTAGE 1.2 ID = 250µA 1.1 1.0 0.8 1.0 0.6 0.4 -80 -40 0 40 80 120 160 200 0.9 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) TJ , JUNCTION TEMPERATURE (oC) Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 10000 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 10 VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + CGD VDD = 15V 8 C, CAPACITANCE (pF) 6 CRSS = CGD COSS ≅ CDS + CGD 4 WAVEFORMS IN DESCENDING ORDER: ID = 35A ID = 5A 0 20 40 60 Qg, GATE CHARGE (nC) 80 100 1000 2 VGS = 0V, f = 1MHz 400 0.1 1 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 30 0 Figure 13. Capacitance vs Drain to Source Voltage Figure 14. Gate Charge Waveforms for Constant Gate Current ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 FDP8870 Test Circuits and Waveforms VDS BVDSS L VARY tP TO OBTAIN REQUIRED PEAK IAS VGS DUT tP 0V RG IAS VDD VDD tP VDS + IAS 0.01Ω 0 tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD L VGS VDS Qg(5) VDD DUT Ig(REF) VGS = 1V 0 Qg(TH) Qgs Ig(REF) 0 Qgd Qgs2 VGS = 5V Qg(TOT) VGS VGS = 10V + Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON td(ON) RL VDS 90% tr tOFF td(OFF) tf 90% VGS + VDD DUT 0 10% 10% RGS VGS VGS 0 10% 50% PULSE WIDTH 90% 50% Figure 19. Switching Time Test Circuit Figure 20. Switching Time Waveforms ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 FDP8870 PSPICE Electrical Model .SUBCKT FDP8870 2 1 3 ; rev December 2003 Ca 12 8 4.5e-9 Cb 15 14 4.5e-9 Cin 6 8 4.7e-9 10 LDRAIN DPLCAP 5 RLDRAIN DBREAK 11 + 17 EBREAK 18 MWEAK MMED MSTRO CIN LSOURCE 8 RSOURCE RLSOURCE S1A 12 S1B CA 13 + EGS 6 8 EDS 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19 7 SOURCE 3 DRAIN 2 RSLC1 51 ESLC 50 RDRAIN EVTHRES + 19 8 6 21 16 RSLC2 ESG + LGATE GATE 1 RLGATE EVTEMP RGATE + 18 22 9 20 6 8 It 8 17 1 Lgate 1 9 3.6e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 3.3e-9 RLgate 1 9 36 RLdrain 2 5 10 RLsource 3 7 33 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 2.15e-3 Rgate 9 20 2.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 9e-4 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))} .MODEL DbodyMOD D (IS=7.5E-12 IKF=17 N=1.01 RS=2.1e-3 TRS1=2e-3 TRS2=2e-7 + CJO=1.9e-9 M=0.57 TT=9e-11 XTI=2.6) .MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=1.75e-9 IS=1e-30 N=10 M=0.4) .MODEL MmedMOD NMOS (VTO=2.1 KP=30 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25) .MODEL MstroMOD NMOS (VTO=2.51 KP=650 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25) .MODEL MweakMOD NMOS (VTO=1.67 KP=0.1 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25) .MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-9e-7) .MODEL RdrainMOD RES (TC1=2.3e-3 TC2=5e-6) .MODEL RSLCMOD RES (TC1=1e-4 TC2=1e-6) .MODEL RsourceMOD RES (TC1=8e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-2.3e-3 TC2=-9e-6) .MODEL RvtempMOD RES (TC1=-3e-3 TC2=2e-7) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-2) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-4) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=-0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-1) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 - Ebreak 11 7 17 18 33.45 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 5 51 + Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD DBODY FDP8870 SABER Electrical Model rev December 2003 template FDP8870 n2,n1,n3 =m_temp electrical n2,n1,n3 number m_temp=25 { var i iscl dp..model dbodymod = (isl=7.5e-12,ikf=17,nl=1.01,rs=2.1e-3,trs1=2e-3,trs2=2e-7,cjo=1.9e-9,m=0.57,tt=9e-11,xti=2.6) dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=1.75e-9,isl=10e-30,nl=10,m=0.4) m..model mmedmod = (type=_n,vto=2.1,kp=30,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=2.51,kp=650,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.67,kp=0.1,is=1e-30, tox=1,rs=0.1) LDRAIN sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-2) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-2,voff=-4) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=-0.5) RLDRAIN RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-1) 51 c.ca n12 n8 = 4.5e-9 RSLC2 c.cb n15 n14 = 4.5e-9 ISCL c.cin n6 n8 = 4.7e-9 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod spe.ebreak n11 n7 n17 n18 = 33.45 GATE spe.eds n14 n8 n5 n8 = 1 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 i.it n8 n17 = 1 l.lgate n1 n9 = 3.6e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 3.3e-9 CA 12 S1B 13 + EGS 6 8 EDS LGATE ESG + EVTEMP RGATE + 18 22 9 20 6 MSTRO CIN 8 6 8 EVTHRES + 19 8 50 RDRAIN 21 16 MWEAK MMED EBREAK + 17 18 DBREAK 11 DBODY DRAIN 2 RLGATE LSOURCE 7 RLSOURCE SOURCE 3 RSOURCE S1A 13 8 S2A 14 13 S2B CB + 5 8 8 RVTHRES 14 IT VBAT + 22 15 17 RBREAK 18 RVTEMP 19 res.rlgate n1 n9 = 36 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 33 m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-9e-7 res.rdrain n50 n16 = 2.15e-3, tc1=2.3e-3,tc2=5e-6 res.rgate n9 n20 = 2.1 res.rslc1 n5 n51 = 1e-6, tc1=1e-4,tc2=1e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 9e-4, tc1=8e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-2.3e-3,tc2=-9e-6 res.rvtemp n18 n19 = 1, tc1=-3e-3,tc2=2e-7 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10)) } } ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 FDP8870 PSPICE Thermal Model REV 23 December 2003 FDP8870T CTHERM1 TH 6 1e-3 CTHERM2 6 5 2e-3 CTHERM3 5 4 3e-3 CTHERM4 4 3 9e-3 CTHERM5 3 2 1e-2 CTHERM6 2 TL 2e-2 RTHERM1 TH 6 3e-2 RTHERM2 6 5 8e-2 RTHERM3 5 4 1.1e-1 RTHERM4 4 3 1.6e-1 RTHERM5 3 2 1.72e-1 RTHERM6 2 TL 2e-1 th JUNCTION RTHERM1 CTHERM1 6 RTHERM2 CTHERM2 5 SABER Thermal Model SABER thermal model FDP8870T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =1e-3 ctherm.ctherm2 6 5 =2e-3 ctherm.ctherm3 5 4 =3e-3 ctherm.ctherm4 4 3 =9e-3 ctherm.ctherm5 3 2 =1e-2 ctherm.ctherm6 2 tl =2e-2 rtherm.rtherm1 th 6 =3e-2 rtherm.rtherm2 6 5 =8e-2 rtherm.rtherm3 5 4 =1.1e-1 rtherm.rtherm4 4 3 =1.6e-1 rtherm.rtherm5 3 2 =1.72e-1 rtherm.rtherm6 2 tl =2e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl CASE ©2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3 TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks. ACEx® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * ™ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * FPS™ F-PFS™ FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® ® tm PDP-SPM™ Power-SPM™ PowerTrench® Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ Saving our world 1mW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SuperMOS™ ® The Power Franchise® tm TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ µSerDes™ UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Advance Information Product Status Formative or In Design Definition This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. This datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. This datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I34 Preliminary First Production No Identification Needed Obsolete Full Production Not In Production @2008 Fairchild Semiconductor Corporation FDP8870 Rev. A3
FDP8870_08 价格&库存

很抱歉,暂时无法提供与“FDP8870_08”相匹配的价格&库存,您可以联系我们找货

免费人工找货